
EvoPress: Accurate Dynamic Model Compression via Evolutionary Search

Oliver Sieberling 1 Denis Kuznedelev 2 Eldar Kurtic 3 4 Dan Alistarh 3 4

Abstract

The high computational costs of large language
models (LLMs) have led to a flurry of research
on LLM compression, via methods such as quan-
tization, sparsification, or structured pruning. A
new frontier in this area is given by dynamic, non-
uniform compression methods, which adjust the
compression levels (e.g., sparsity) per-block or
even per-layer in order to minimize accuracy loss,
while guaranteeing a global compression thresh-
old. Yet, current methods rely on estimating the
“importance” of a given layer, implicitly assuming
that layers contribute independently to the overall
compression error. We begin from the motivating
observation that this independence assumption
does not generally hold for LLM compression:
pruning a model further may even significantly
recover performance. To address this, we pro-
pose EvoPress, a novel evolutionary framework
for dynamic LLM compression. By formulating
dynamic compression as a general optimization
problem, EvoPress identifies optimal compres-
sion profiles in a highly efficient manner, and
generalizes across diverse models and compres-
sion techniques. Via EvoPress, we achieve state-
of-the-art performance for dynamic compression
of Llama, Mistral, and Phi models, setting new
benchmarks for structural pruning (block/layer
dropping), unstructured sparsity, and quantization
with dynamic bitwidths. Our code is available at
https://github.com/IST-DASLab/EvoPress.

1. Introduction
Compression has become a standard way of reducing the
deployment costs of large language models (LLMs). Current
post-training techniques can be roughly categorized into
quantization-based, which reduce the bit-width of weights

1ETH Zürich 2Yandex Research 3IST Austria 4Red Hat AI.
Correspondence to: Dan Alistarh <dan.alistarh@ist.ac.at>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

or activations, e.g. (Frantar et al., 2022; Lin et al., 2023;
Dettmers & Zettlemoyer, 2022; Tseng et al., 2024), pruning-
based, which sparsify the weight matrices, e.g. (Frantar &
Alistarh, 2023; Yin et al., 2024), or structured pruning / layer
dropping, which drop entire model components, e.g. (Kim
et al., 2024; Men et al., 2024). While improvements are
still being made, existing methods are reaching diminishing
returns in terms of accuracy-vs-compression (Dettmers et al.,
2023; Tseng et al., 2024).

In this context, a new direction is dynamic, or non-uniform,
layer-wise compression, in which different layers can be
compressed to various levels, according to their “sensitiv-
ity” relative to the model output. Dynamic compression
allows to maximize model accuracy while satisfying a given
compression requirement, e.g. a target model size. Instance-
specific solutions for this problem have already been pro-
posed for essentially every compression type: sparsity (Yin
et al., 2024), quantization (Frantar & Alistarh, 2022), or
layer dropping (Kim et al., 2024; Men et al., 2024). Broadly,
these approaches work by assigning an error/sensitivity
score to each layer and compression level, which measures
the impact of its compression on output loss increase. Then,
one calculates a compression assignment which minimizes
the sum of error scores, while still satisfying the global
compression constraint. Thus, such approaches inherently
assume error monotonicity: i.e., that a lower sum of error
scores taken over layers implies a lower compression error
for the entire model.

Our work starts from the observation that error monotonicity
does not hold generally for LLM compression: specifically,
there are instances where compressed models with lower
sums of per-layer errors can perform worse than models
with higher error. We illustrate this fact in Table 1, which
shows an instance of a layer dropping configuration where
pruning more blocks leads to significantly better perplexity
than an instance which prunes strictly fewer blocks.

Contribution. This refutation of error monotonicity im-
plies that most prior approaches, which are based on this
assumption, can lead to sub-optimal solutions. Thus, it
motivates our investigation of alternatives towards optimal
non-uniform compression. For this, we propose a new evolu-
tionary search approach called EvoPress, which is provably
convergent, and is also sample and iteration efficient. Thus,

1

https://github.com/IST-DASLab/EvoPress

EvoPress: Accurate Dynamic Model Compression via Evolutionary Search

Table 1. Depth pruning is not monotone. In this example (Llama-3-8B), removing strictly more blocks (depicted in orange) can improve
perplexity across sources. The left half of a block corresponds to the attention layer, the right half to the MLP.

Model Configuration (Each block contains Attention + MLP) Wiki2↓ C4↓ FW↓

Llama-3-8B

5.54 8.80 7.72

188.01 147.25 70.46
24.39 35.53 26.24

EvoPress is the first non-uniform compression method with
guarantees; its two efficiency properties are critical for prac-
ticality in the context of LLMs, where the cost of evaluating
single models (“offspring”) is exceedingly high. We vali-
date the approach across all three popular approaches for
post-training LLM compression: layer dropping, one-shot
sparsification, and quantization. We find that EvoPress con-
sistently improves upon existing techniques, with major
improvements at higher compression ratios.

In more detail, we assume a setting where we are given a pre-
trained model, a compression constraint such as the target
model size, a set of compression options (e.g., 10 possible
sparsity options per layer), and aim to identify a per-layer
assignment which satisfies the constraint, while minimizing
accuracy loss, measured in perplexity or in-context learning
accuracy degradation. As is standard, e.g. (Frantar & Alis-
tarh, 2022), from the compression options we build a level
database, where each layer is compressed independently
to each compression option. During the candidate search,
our offspring are models stitched together from the level
database, and our fitness function will be the difference (e.g.,
in KL-divergence) between the outputs of the offspring and
the original model, on a set of calibration samples.

At each step, our search algorithm starts with a single search
point (candidate model), and generates a constant λ ≥ 1 ad-
ditional offspring, by applying a mutation operation which
preserves the compression constraint. The selection stage is
composed of multiple steps, where we iteratively evaluate
the offspring and parent on increasingly many randomly
chosen samples. For instance, we may start to evaluate the
parent and λ = 64 offspring on less than a single sample on
the first sub-step, but progressively multiply the number of
calibration samples as we sift through candidates, reducing
variance as we obtain more competitive offspring. We found
this trade-off between exploration and evaluation variance
essential for efficiency on LLMs, as it drastically reduces
our total number of evaluations relative to the case where
all the initial offspring must be evaluated on a full batch.

Our approach builds on the observation that the partial ef-
fectiveness of prior work, which assumes error linearity,
suggests that the fitness landscape induced by compression
allocation has properties similar to those of a linear function.
Such functions are particularly well-suited to hill climbing,

meaning they can be optimized through highly local explo-
ration, akin to gradient descent in a continuous search space.
EvoPress is specifically designed as an efficient hill climber,
though it is capable of optimizing a broad class of fitness
environments. Notably, our algorithm guarantees conver-
gence: specifically, any linear fitness function defined on the
n-dimensional hypercube will be maximized in expected
O(k(n− k)/λ) generations under the constraint ∥x∥1 = k,
where λ is the number of offspring. The proof is quite
non-trivial, as it needs to adapt stochastic drift analysis tech-
niques to the case where multiple offspring are examined
in each sub-step. In Figure 1, we illustrate the algorithm’s
fast convergence and high efficiency on a practical example
with correlated block dropping on Llama-3-8B, where we
determined the optimum via (expensive) exhaustive search:
EvoPress is able to reach the optimum in only 6 genera-
tions, using a total of only 56 model evaluations. A key
advantage of our approach is that it is agnostic of the model
architecture and compression type. We illustrate this via ex-
periments, which are the first to span all three compression
methods, across different LLM families.

Results show that EvoPress significantly improves upon
all prior work on depth pruning in terms of accuracy-vs-
compression, especially at medium levels, and also outper-
forms the prior best methods - OWL and dynamic program-
ming, respectively - for non-uniform pruning and quanti-
zation. Moreover, it can do so efficiently: the full version
of EvoPress, applied at high compression granularity, will
converge in a few hours on a single RTX 3090 GPU, and
we also present a lightweight version which utilizes fewer
samples and converges in ∼ 1 hour in the same setting, on
an 8B-parameter model.

2. Related Work
To our knowledge, we are the first to present a unified ap-
proach which covers all types of post-training LLM com-
pression (i.e., layer dropping / depth pruning and non-
uniform pruning / quantization) - so far, these problems
have generally been approached independently.

Depth Pruning. Recently, there has been a lot of interest in
compression by removing entire transformer blocks, both
for efficiency and to gain insights about the language model

2

EvoPress: Accurate Dynamic Model Compression via Evolutionary Search

1 2 3 4 5 6
Generation

50

100

150

200

250

300
Pe

rp
le

xi
ty

EvoPress
Optimum

0

1

2

3

4

5

6Hamming Dist. to Opt.

Figure 1. Removing twelve transformer blocks from Llama-3-8B
under the constraint that only pairs of consecutive blocks can be
removed. EvoPress finds the optimal configuration from the 8008
possible removal combinations in generation 6.

itself. Most methods are based on scoring the importance of
each block, and then maximizing the importance of the re-
sulting model by removing the blocks of lowest importance.
Therefore, they assume error linearity, meaning that each
block contributes independently to the total compression
error. Weight Subcloning (Samragh et al., 2023) proposed
a multi-step process to find good initializations for an un-
trained smaller model given an already trained larger one,
where the importance of each block is scored based on the
ratio of ℓ2 norms between the output embeddings of the
block with and without the residual connection. Shortened
Llama (Kim et al., 2024) proposes scoring each block by
measuring the perplexity after removing the respective block
from the full model. ShortGPT (Men et al., 2024) uses the
cosine similarity between the input and output embeddings
of each block to assess its importance. By contrast, Gromov
et al. (2024) restrict to removing consecutive blocks and
score each configuration by cosine similarity.

Non-Uniform Pruning and Quantization. He et al.
(2018); Ashok et al. (2018) were among the first to con-
sider automatic optimization of non-uniform compression,
specifically for the case of pruning, where they developed
Reinforcement Learning (RL)-based approaches. However,
both approaches suffer from high tuning complexity and
would be very hard to scale to large models. Follow-up
work (Hubara et al., 2021; Yao et al., 2021; Li et al., 2021)
considered a similar problem specifically for quantization,
but explore computationally-expensive solvers (e.g. ILPs)
which rely on the fact that quantization has only a small
number of choices (precision levels) per layer. SPDY (Fran-
tar & Alistarh, 2022) considered a unified framework which
reduces the problems to knapsack-type instances, and solves
them optimally modulo discretization. However, SPDY ex-

plicitly relies on monotonicity and linearity assumptions
on the dependency between the per-layer errors and model
output error, which we find not to hold on large models, es-
pecially in the high-compression regime (e.g., below 3 bits
per parameter). Relative to SPDY, EvoPress provides guar-
antees for a broader class of input functions, and focuses on
efficiency for LLM compression.

The recent OWL method (Yin et al., 2024) focuses on non-
uniform pruning of LLMs, and provides consistent improve-
ments over uniform profiles via a layer scoring system which
analyzes the activation outlier structure. Experimentally, we
find that OWL is effective especially for Llama-family mod-
els (Touvron et al., 2023) and at moderate sparsities, but
observe significant gaps in favor of EvoPress across all mod-
els and compression levels.

NAS and Structural Pruning. Random search is also
popular in the context of structural pruning and Neural Ar-
chitecture Search (NAS) (Chen et al., 2020; Dong et al.,
2021; Wang et al., 2020; Xu et al., 2021; Yin et al., 2021;
Molchanov et al., 2022; Kurtić et al., 2024). However, such
methods rely on re-training and have notoriously high costs,
which limits their applicability to post-training compression.
Thanks to its low sample complexity, we believe that Evo-
Press could be extensible to lightweight NAS, and plan to
investigate this in future work.

3. Method
All applications of EvoPress are grounded in a unified frame-
work, where the objective is to identify the optimal model
that adheres to a specified compression method and con-
straint. Formally, given a base model M , we seek to maxi-
mize the performance of the compressed model while satis-
fying the compression constraint:

M̂∗ = argmax
M̂

f(M̂) subject to g(M̂) ≤ C,

where f(M̂) quantifies the performance of the compressed
model M̂ and g(M̂) represents the compression constraint.
For simplicity, we will define g as the model’s total size (in
terms of parameters); however, the method can be adapted
to other constraints, such as inference speed.

We approach this optimization problem using evolutionary
search, which is a specific form of randomized search. The
feasibility of such an approach heavily depends on two fac-
tors: the time required to evaluate the fitness of a candidate
solution and the number of such function evaluations needed
until a satisfying result is achieved. This poses a particular
challenge in our case, as assessing the performance of an
LLM involves substantial computational costs.

3

EvoPress: Accurate Dynamic Model Compression via Evolutionary Search

Level Database. As a first step, we compress the model
to different levels. It is crucial that the units we search over
– specifically layers or blocks – are compressed indepen-
dently; otherwise, we risk losing performance when stitch-
ing together the compressed model. Ideally, the difference
between two compression levels should be consistent across
layers. This uniformity simplifies the optimization process,
allowing for the free exchange of compression levels, as we
will demonstrate for unstructured sparsity. However, this
restriction is not essential for the search procedure to be ef-
fective. In the context of quantization, we will demonstrate
a relaxation of this requirement, where compression steps
are uniform only across layers of the same size.

Fitness Environment. Given the specified database, any
compressed model is characterized by its compression level
per unit (e.g. per layer). With n units, each available in m
compression levels, our objective is to find

M̂∗ = argmax
v∈[m]n

f(M̂v) subject to g(M̂v) ≤ C,

where we are searching over the set of n-tuples over [m].
Assessing the performance of a model in practice typically
involves benchmark tasks, which have limited scope and
require lengthy evaluation. We address these challenges
by using the base model as the gold standard and focusing
solely on the relative degradation of our compressed models.
To quantify this degradation, we measure the Kullback-
Leibler (KL) divergence between the two models, as it has
proven particularly robust with limited data. Empirically,
we observed that already around 64K tokens of calibration
data (corresponding to 8 full sample sequences for Llama-
3-8B) are sufficient to reliably determine the quality of the
lightweight model. To avoid confusion, we will refrain from
inverting the fitness function and from now on consider the
minimization problem

M̂∗ = argmin
v∈[m]n

DKL(PM ∥ QM̂v
) subject to g(M̂v) ≤ C,

where we speak of higher fitness whenever the KL-
Divergence is lower.

Algorithm. EvoPress starts from upon the classic (1+λ)-
evolutionary algorithm, which maintains a single search
point at any given time. In each generation, λ offspring are
generated by copying the parent and then applying a muta-
tion operator to each copy. The offspring are then evaluated
on the fitness function, and the fittest one is selected. As an
elitist evolutionary algorithm, the (1 + λ)-EA replaces its
parent only if the best offspring has superior fitness.

We change this standard algorithm in two important ways.
The first is by introducing level-switch mutation, a simple
mutation operator that ensures high locality while preserv-
ing the compression constraint. The operator involves first

Algorithm 1: EvoPress: A (1 + λ)-Evolutionary
Algorithm with Level-Switch Mutation and Multi-
Step Selection for Maximizing f : [m]n → R.

Initialization: candidates← [] ;
for i← 1 to initialCandidates do

candidate← sampleUniformly();
candidates.append(candidate);

x(1) ← selectTopKFittest(candidates,
initialTokens,K = 1);
Optimization: for t← 1 to∞ do

offspring← [];
Mutation: for i← 1 to λ do

yi ← x(t);
yi ← LevelSwitchMutation(yi);
offspring.append(yi);

Selection: for step← 1 to selectSteps do
Elitism: if step = selectSteps then

offspring.append(x(t));

offs.← selectTopKFittest(offs.,
tokens[step],K = survivors[step]);

x(t+1) ← offspring[0];

randomly selecting one unit and increasing its compression
level. Next, a second unit is sampled until one with a match-
ing level step size is found, and its compression level is
decreased. This approach ensures that 1) the compression
constraint is preserved, and 2) the offspring model maintains
high similarity to the parent model – an important feature
for achieving rapid convergence.

The second modification is that we employ a very aggres-
sive form of multi-step selection. In the first stage, all λ
offspring are evaluated using only a fraction of a full sam-
ple. From this, only a small subset of the fittest offspring
are selected to compete in the next stage, where they are
evaluated on a significantly larger sample size. This pro-
cess is repeated once more, and in the final stage, the few
remaining offspring are evaluated against the parent using a
”full” minibatch, consisting of approximately 20-50 times
the number of tokens used in the first stage.

For initialization, we apply the target level directly if it
matches an available setting (e.g., all layers at 70% sparsity
for an average of 70% sparsity). If the target falls between
two compression levels (e.g., for block dropping), we ini-
tialize by randomly sampling candidates with some units
compressed to the next lower level, and others to the next
higher level, selecting the fittest among them. A high level
overview of this procedure can be found in Algorithm 1.

Design Considerations. Randomized search heuristics
are heavily influenced by the exploration-exploitation
dilemma, i.e. the trade-off between exploring a broader solu-
tion space and intensifying the search around the currently-

4

EvoPress: Accurate Dynamic Model Compression via Evolutionary Search

best solutions. Many applications utilize sophisticated
search procedures, such as genetic algorithms, to enhance
exploration, that often maintain a large population, intro-
duce crossover operations, and adopt non-elitist strategies,
where parents have no chance of survival into the next gen-
eration. However, implementing these approaches for LLM
compression would come with significant computational
costs.

Crossover, for instance, is only effective if population di-
versity is preserved, for example measured by the sum of
pairwise Hamming distances between individuals (Jansen
& Wegener, 2002; Opris et al., 2024). While this promotes
a more thorough exploration of the search space, it requires
allocating resources to less promising regions, which slows
down the progress toward optimal solutions. Similarly, non-
elitist algorithms, despite their ability to escape local optima
(Dang et al., 2021; Jorritsma et al., 2023; Lengler et al.,
2024), also incur costs by frequently discarding potentially
useful individuals. Consequently, these approaches should
be reserved for situations where the fitness landscape is
rugged, and escaping local optima is critical to finding bet-
ter solutions.

Convergence. Contrary to many real-world problems, dy-
namic model compression with a carefully designed level
database induces a notably smooth fitness environment,
where small changes in the compressed model tend to lead
to small changes in performance. A key insight into the
effectiveness of evolutionary approaches is that, although
the search space expands exponentially with the number of
units considered, the maximum Hamming distance between
any two search points in the search space increases only
linearly. Therefore, as long as we receive a “signal” indi-
cating the direction of improvement, even with seemingly
limited progress per generation, we can converge rapidly to
a high-quality solution.

To illustrate this, we consider the problem of removing
pairs of consecutive blocks of Llama-3-8B. We perform
a brute-force search over all possible 8008 block removal
configurations, where six pairs of blocks are removed. Our
method identifies the optimal configuration by the 6th gener-
ation, having evaluated only 16 candidates for initialization
and 8 candidates per generation. Figure 1 illustrates how the
algorithm approaches the optimum in Hamming distance.

Consequently, EvoPress is heavily exploitation-focused: we
rely on elitism, introduce minimal mutation, maintain only
a single offspring, and therefore employ zero population
diversity. We present ablations and a short discussion on
these choices in Appendix B. EvoPress excels at optimizing
smooth fitness environments, a capability we theoretically
support by proving rapid convergence under an ℓ1-constraint
for the class of linear functions. (Here, one bit corresponds

to two compression levels, while each weight of the linear
function corresponds to the “saliency”. The ℓ1-constraint is
now equivalent to a compression constraint.)
Theorem 3.1. Let n, k ∈ N with k ≤ n and consider
the (1 + λ)-EA with λ ∈ O(n/ log(n)) and level-switch
mutation. Then any linear fitness function f : {x | x ∈
{0, 1}n, ∥x∥1 = n− k} → R is optimized in expected

O

(
k · (n− k) · 1

λ

)
generations.

Discussion. The proof is based on stochastic drift analysis
and can be found in Appendix A. Notably, by increasing
the number of offspring per generation, we can reduce the
number of generations required for convergence, with the
reduction scaling proportionally to λ up to a reasonably
large value. Since our approach uses a highly aggressive
form of multi-step selection, the benefit is not simply a zero-
sum trade-off. Evaluating many offspring in each generation
incurs a significantly lower per-offspring computational cost,
leading to a substantial speedup in convergence time. This
makes the algorithm highly efficient in relatively smooth
fitness environments.

4. Experiments
We now validate the effectiveness of EvoPress for deter-
mining the optimal layer-wise compression across three
approaches: (1) layer dropping, where the goal is to isolate
the “optimal” set of blocks to drop given a target ratio, (2)
non-uniform unstructured sparsity and (3) non-uniform
quantization, where we are given a set of compression
options per layer (sparsities or bit-widths), and the goal is
to find the “optimal” configuration that matches a certain
model size. We focus on LLM compression, given the major
interest in the reduction of their model size and inference
latency, but our method is general and can be applied to any
neural network architecture and application domain.

Experimental Setup. We consider base models from
the Llama-2 and Llama-3 (Touvron et al., 2023) families,
Mistral-v0.3 (Jiang et al., 2023), and the instruction-tuned
Phi3-Medium-instruct-128k model (Abdin et al., 2024). We
adopt KL-divergence as our fitness function as it provides a
stronger and more robust signal compared to perplexity, re-
flecting the predictive distribution of the original model. We
present ablations to validate this choice in Appendix B.3.

Concretely, our algorithm works as follows: Initially, for
the case of quantization between available bit widths (e.g.
2.5 bit) and block dropping, we produce a number of initial
configurations (around 32), evaluate them on a few data sam-
ples, and take the fittest one. For quantization with available
target bitwidth and unstructured sparsity, we simply initial-
ize using the uniform configuration. Then, we generate

5

EvoPress: Accurate Dynamic Model Compression via Evolutionary Search

new offspring in each generation by making a small number
of random switches in compression levels, where the num-
ber of switches is sampled from min(randint(1,3),
randint(1,3)) and compression levels are exchanged
in such a way that the overall compression ratio is main-
tained. We perform selection in multiple steps by iteratively
choosing only the best configurations for survival, where
each round uses progressively more tokens and has fewer
survivors. To ensure elitism, we add the current parent to
the candidate pool in the last stage of selection. Finally,
after two or three of such stages, we take the last remaining
configuration and adopt it as the population for the next
round. We selected the number of generations, offspring,
and tokens based on the search space size but found the
search to be highly robust. Even drastic changes in hyper-
parameter settings yield similar results (see, e.g., Figure 3).
The detailed parameter setting is described in Appendix C.1.
For our main results we used a fixed number of generations
for optimization, which was chosen conservatively to better
understand convergence behavior. In practice, stopping the
search early can significantly reduce runtime requirements.
We discuss a simple stopping criteria and provide runtime
comparisons in Appendix G.

To perform per-layer compression via unstructured spar-
sity and quantization, we adopt the data-aware compres-
sion methods SparseGPT (Frantar & Alistarh, 2023) and
GPTQ (Frantar et al., 2022). For this purpose, we use
Fineweb-Edu (Penedo et al., 2024) as a source of clean
and diverse calibration data. Following Egiazarian et al.
(2024), we fix the total number of calibration tokens to 8
million (8M). For a fair comparison, all competitive meth-
ods employ the same calibration data.

Evaluation. We follow a standard evaluation proto-
col (Frantar et al., 2022), measuring perplexity on the
WikiText-2 (Merity et al., 2016) and C4 (Raffel et al.,
2019) datasets for language performance and accuracy
on zero-shot evaluations on standard benchmarks: Wino-
Grande (Sakaguchi et al., 2021), PiQA (Tata & Patel, 2003),
HellaSwag (Zellers et al., 2019), ARC-easy and ARC-
challenge (Clark et al., 2018) via the LM Eval Harness
(Gao et al., 2021).

4.1. Application 1: Depth Pruning

We first apply EvoPress on Depth Pruning. Although re-
moving entire transformer blocks generally results in large
accuracy losses, this approach recently attracted attention in
the context of initializing smaller models, as it guarantees
speedups proportional to the sparsity (Samragh et al., 2023;
Kim et al., 2024). Additionally, block dropping provides
insights into the capabilities of transformer models, mak-
ing it relevant for interpretability. We will compare against
the following baselines: (1) Shortened Llama (Kim et al.,

2024), which scores blocks on the perplexity change after re-
moval; (2) ShortGPT (Men et al., 2024), where blocks are
scored based on the average cosine similarity between input
and output embeddings, including the residual stream; (3)
Weight Subcloning (Samragh et al., 2023), where blocks
are scored using the ratio ||f(x)||/||f(x) + x||, where x
is the input embedding and f(x) is the block’s output, ex-
cluding the residual stream; (4) Sliding Window Cosine
Similarity (Gromov et al., 2024), where sets of consecutive
blocks are scored based on the cosine similarity between em-
beddings before and after the blocks, including the residual
stream. While Gromov et al. (2024) directly score entire re-
moval configurations, the other approaches determine block
removals based on their isolated scores.

0 10 20 30 40 50
Sparsity (%)

0

20

40

60

80

100

120

140

160

180

Pe
rp

le
xi

ty

Mistral-7B-v0.3
EvoPress
EvoPress (Attn.+MLP)
Cosine Sim. (Window)
ShortGPT
Shortened Llama
Weight Subcloning

Figure 2. Depth pruning results, on Mistral-7B-v0.3. Relative to
all prior methods, EvoPress shows significantly lower PPL gap
relative to the uncompressed model, with remarkably large gaps at
medium compression rates.

Search Space. In our approach, attention and MLP mod-
ules are treated independently rather than as a single unit.
For each module, there are two options: either retain it or
remove it. To achieve a target sparsity/depth, we initially
remove an equal number of attention and MLP modules.
During mutation, we allow compression level adjustments
only between modules of the same type. We leave it open for
future research to remove this constraint to allow flexibility
in the number of removed attention and MLP modules.

Results. Figure 2 compares our method with baselines
from previous work on Mistral-7B-v0.3. For a better com-
parison, we also included results where only entire trans-
former blocks are removed (Attn.+MLP). EvoPress consis-
tently outperforms all previous methods, showing significant
improvements even at medium sparsity levels. While all
baseline methods fail entirely beyond 31.25% sparsity, Evo-
Press identifies functional submodels even when removing
half of the model. To our knowledge, this is the first method
to achieve such results. We observed similar collapses in
Llama-2-7B, Llama-3-8B and Llama-3.1-8B. Overall, Evo-

6

EvoPress: Accurate Dynamic Model Compression via Evolutionary Search

0 50 100 150 200 250 300 350 400
Generation

12

14

16

18

20

22

24

26

Pe
rp

le
xi

ty

GPU Hour (RTX 3090)

Perplexity (Test)
KL Divergence (Train)

0.6

0.8

1.0

1.2

1.4

KL
-D

iv
er

ge
nc

e

Llama-2-7B - 70% Sparsity

0 50 100 150 200 250 300 350 400
Generation

12

14

16

18

20

22

24

26

Pe
rp

le
xi

ty GPU Hour (RTX 3090)

Perplexity (Test)
KL Divergence (Train)

0.6

0.8

1.0

1.2

1.4

KL
-D

iv
er

ge
nc

e

Llama-2-7B - 70% Sparsity

Figure 3. Left: The convergence of EvoPress vs. number of generations and wall-clock time (on a single RTX 3090 GPU with 24GB
RAM) for Llama-2-7B. We observe convergence close to optimum in 5-6h; Right: Convergence of the “super-fast” version which
reduces the number of tokens used for each evaluation. It converges to similar accuracy in little over one hour, in the same setting. The
KL-Divergence corresponds to the fitness of the survivor in each generation, which is measured on a random minibatch of the entire
training dataset. The perplexity is computed on the entire test dataset.

Press consistently outperforms all baselines across all tested
models and sparsities (see Appendix D.1 for full results),
and does so in a matter of minutes (Appendix D.2). We pro-
vide runtime comparisons as well as additional comparisons
to the iterative search methods SLEB (Song et al., 2024)
and BlockPruner (Zhong et al., 2024) in Appendix G.

All four previous methods rely on human-crafted scoring
methods to identify the optimal combination of transformer
blocks to remove. This is not only suboptimal, but also
prone to bias, as their results may reflect the characteristics
of the method itself rather than the model’s true behavior.
Specifically, we found that most scoring methods tend to
favor deeper blocks, resulting in highly similar removal con-
figurations across different prior scoring methods (Appendix
Table 13). This likely occurs because methods that bias to-
wards deeper blocks generally perform better than those that
focus on earlier blocks, although neither may be optimal. In
contrast, EvoPress employs an unbiased approach, offering
more accurate and meaningful insights into the model.

4.2. Application 2: Unstructured Sparsity

Next, we examine performance for unstructured sparsity,
which offers more fine-grained compression. The standard
approach is to allocate sparsity uniformly across layers.
However, some layers may be more sensitive to sparsity,
which can significantly impact the model’s output. To ad-
dress this, OWL (Yin et al., 2024) introduces the Layer
Outlier Distribution (LOD) metric as a measure of layer
saliency, and computes a sparsity profile that is weighted
by LOD. We compare EvoPress with both uniform sparsity
and OWL. For OWL we used the same hyperparameter grid
as the original work and took the configuration yielding the
best perplexity for each model.

Search Space. Sparsity levels are generated as follows:
For each layer, we first produce the base level correspond-
ing to the targeted average sparsity. Then, we generate
both higher and lower compression levels, where the differ-
ence between two levels corresponds to a fixed number of
weights. In our experiments, we used a “step size” of 1M
weights uniformly. This approach enables the mutation of
compression levels across all layers, independently of their
size. We adopt SparseGPT (Frantar & Alistarh, 2023) for
layer pruning. We provide results of EvoPress with Wanda
pruning (Sun et al., 2024) in Appendix G.

Table 2. Performance of various methods at 70% average sparsity.
EvoPress outperforms prior methods both in terms of validation
perplexity (PPL) and zero-shot accuracy.

Model Method Wiki2↓ C4↓ Task Avg.↑

Mistral-7B-v0.3

Dense 4.82 7.72 68.7

Uniform 23.08 30.03 49.9
OWL 17.22 21.66 51.9
EvoPress 14.42 16.46 53.8

Llama-3-8B

Dense 5.54 7.10 68.6

Uniform 85.84 98.35 44.1
OWL 48.07 52.32 48.4
EvoPress 28.76 33.72 50.8

Phi-3-Medium-14B

Dense 4.02 8.31 73.2

Uniform 16.66 24.73 56.5
OWL 15.66 23.38 55.4
EvoPress 13.83 19.13 59.8

Experimental Results. We compare different methods
for pruning to 50%, 60% and 70% unstructured sparsity. We
report the 70% results in Table 2; the 50% and 60% results
can be found in Appendix Tables 14 and 15, respectively.

7

EvoPress: Accurate Dynamic Model Compression via Evolutionary Search

As illustrated in Table 2, EvoPress successfully finds better
profiles than uniform sparsity and noticeably outperforms
competitive methods on PPL and zero-shot average accuracy
by large margins on all models.

Examining sparsity profiles (Appendix Figures 12 and 13),
we observe that EvoPress prunes the first blocks less ag-
gressively, blocks in the beginning of the second half of
the model more aggressively while keeping the even deeper
blocks relatively dense. Notably, EvoPress assigns high
importance to the v proj matrices, reducing its sparsity to
below 45%, compared to an overall average of 70%.

Running Time. EvoPress is also time-efficient. Figure 3
illustrates the rapid convergence of our method vs. itera-
tions and time, with steady improvements in test perplexity.
Moreover, by reducing the number of tokens used in the
multi-step selection evaluation, by 4× in the first step and
8× in the last step, and making each generation have fewer
offspring, we can significantly speed up the search. This
“super-fast” version converges in a little over one GPU hour
to similar test PPL (Figure 3, right), demonstrating the ro-
bustness of EvoPress, which can lead to further gains.

Table 3. Performance of various profiles at 3 bit quantization, for
PPL and avg. zero-shot accuracy.

Model Method Wiki2↓ C4↓ Task Avg.↑

Mistral-7B-v0.3

Dense 4.82 7.72 68.7

Uniform 5.54 8.57 66.3
DP 5.79 8.84 66.0

EvoPress 5.21 8.42 67.1

Llama-3-8B

Dense 5.54 7.10 68.6

Uniform 12.19 15.76 60.2
DP 29.00 20.03 61.3

EvoPress 7.49 12.03 64.3

Phi-3-Medium-14B

Dense 4.02 8.31 73.2

Uniform 5.18 9.05 70.0
DP 5.72 9.71 69.1

EvoPress 5.09 9.00 70.8

4.3. Application 3: Quantization

Finally, we apply EvoPress to the more challenging task of
non-uniform neural network quantization, where the widely
adopted baseline is uniform per-layer quantization (Frantar
et al., 2022; Lin et al., 2023; Chee et al., 2023). Additionally,
we consider a DP-based approach for comparison. (While
OWL has also been applied to quantization, the authors
found that it underperforms even relative to uniform per-
layer quantization (Yin et al., 2024).) The DP search is very
similar to SPDY (Frantar & Alistarh, 2022), where the goal
is to minimize the Normalized Mean Squared Error (NMSE),
defined as NMSE = ∥Ŷ − Y ∥22/∥Y ∥22, where Y represents

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5
Bit

8.0

8.1

8.2

8.3

8.4

8.5

8.6

Pe
rp

le
xi

ty

Llama-3-8B
Uniform
EvoPress

Figure 4. EvoPress enables non-uniform quantization with end-
to-end speedups in vLLM. vLLM supports only 4-bit and 8-bit
quantization, while requiring the query/key/value matrices as well
as the up/gate projections to share the same bitwidth. The displayed
average bitwidths include the overhead from groupwise scales.

the original model output at a layer, and Ŷ the output of
the compressed model. Then, the optimal compression
allocation can be determined via a dynamic programming
(DP) approach. The full SPDY method applies a second
iterative random search step, which is very expensive to
implement at LLM scale, and is therefore omitted.

Search Space. For each linear layer, we produce differ-
ent configurations via GPTQ (Frantar et al., 2022) with a
standard group size of 128. In each step of the evolutionary
search, the bitwidth of some layers is increased while the
bitwidth of others is decreased. To facilitate uniform tran-
sitions between compression levels, quantization options
differ by integral bits (1 bit in the following). Since differ-
ent layers may have different sizes, we allow swaps only
between projections with the same number of weights.

Experimental Results. To validate the effectiveness of
EvoPress, we consider the challenging problem of quantiza-
tion to 3 bits and below. For this compression rate, uniform
GPTQ quantization faces significant performance drops,
motivating a dynamic quantization bitwidth allocation. We
produce quantization levels at 2, 3, 4, 5, and 6 bits and
search for an optimal compression profile with respect to
the fitness function. The results in Table 3 indicate that
non-uniform quantization with EvoPress produces superior
models compared to the baseline methods. The improve-
ments are even more pronounced at 2.25 bit and 2.5 bit
quantization, as detailed in Appendix F.1. To show the real-
world applicability of EvoPress, we additionally tested a
restricted search limited to vLLM-supported options. vLLM
allows only 4-bit and 8-bit quantization, and requires uni-
form bitwidth for query/key/values matrices and up/gate
projections within a block. Figure 4 demonstrates strong

8

EvoPress: Accurate Dynamic Model Compression via Evolutionary Search

mixed precision quantization even under these constraints.

We visualize the configurations found by EvoPress for
Llama-3.1-8B in Appendix Figures 15 and 16. We observe
that the second and final blocks are compressed less aggres-
sively, while the first block undergoes the highest compres-
sion. This contrasts with unstructured sparsity, where the
first block is among the least compressed. Therefore, dy-
namic compression allocation must account for the specific
compression method used, which underscores the impor-
tance of automated compression allocation.

Overall, we observe that EvoPress yields significant accu-
racy improvements (e.g., 4.1 on the zero-shot averages for
Llama-3-8B), compared to the uniform profile. Moreover,
the improvement over the next-best method is always signif-
icant, both in terms of perplexity and zero-shot accuracy.

5. Conclusion
We have presented EvoPress, an optimization framework
for non-uniform compression. EvoPress is based on a new
evolutionary search algorithm with low sample and itera-
tion complexity, especially well-suited to loss landscapes
in LLM compression. Specifically, we have shown that
EvoPress can converge extremely fast to accurate configura-
tions for various non-uniform LLM compression problems,
and is also fast to execute in practice. We also emphasize
the breadth of our study, our method was implemented and
tested on three different compression approaches, relative
to prior work which largely focused on a single application.
Interesting directions we did not investigate are 1) combin-
ing different compression approaches into the same search
space, and 2) finer-grained structured pruning. We plan to
investigate this in future work.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References
Abdin, M., Jacobs, S. A., Awan, A. A., Aneja, J., Awadallah,

A., Awadalla, H., Bach, N., Bahree, A., Bakhtiari, A.,
Behl, H., Benhaim, A., Bilenko, M., Bjorck, J., Bubeck,
S., Cai, M., Mendes, C. C. T., Chen, W., Chaudhary,
V., Chopra, P., Giorno, A. D., de Rosa, G., Dixon, M.,
Eldan, R., Iter, D., Garg, A., Goswami, A., Gunasekar, S.,
Haider, E., Hao, J., Hewett, R. J., Huynh, J., Javaheripi,
M., Jin, X., Kauffmann, P., Karampatziakis, N., Kim, D.,
Khademi, M., Kurilenko, L., Lee, J. R., Lee, Y. T., Li,
Y., Liang, C., Liu, W., Lin, E., Lin, Z., Madan, P., Mitra,

A., Modi, H., Nguyen, A., Norick, B., Patra, B., Perez-
Becker, D., Portet, T., Pryzant, R., Qin, H., Radmilac, M.,
Rosset, C., Roy, S., Ruwase, O., Saarikivi, O., Saied, A.,
Salim, A., Santacroce, M., Shah, S., Shang, N., Sharma,
H., Song, X., Tanaka, M., Wang, X., Ward, R., Wang,
G., Witte, P., Wyatt, M., Xu, C., Xu, J., Yadav, S., Yang,
F., Yang, Z., Yu, D., Zhang, C., Zhang, C., Zhang, J.,
Zhang, L. L., Zhang, Y., Zhang, Y., Zhang, Y., and Zhou,
X. Phi-3 technical report: A highly capable language
model locally on your phone, 2024.

Ashok, A., Rhinehart, N., Beainy, F., and Kitani, K. M. N2N
learning: Network to network compression via policy gra-
dient reinforcement learning. In International Conference
on Learning Representations (ICLR), 2018.

Bengio, Y., Léonard, N., and Courville, A. Estimating or
propagating gradients through stochastic neurons for con-
ditional computation. arXiv preprint arXiv:1308.3432,
2013.

Chee, J., Cai, Y., Kuleshov, V., and Sa, C. D. Quip: 2-bit
quantization of large language models with guarantees,
2023.

Chen, D., Li, Y., Qiu, M., Wang, Z., Li, B., Ding, B., Deng,
H., Huang, J., Lin, W., and Zhou, J. Adabert: Task-
adaptive bert compression with differentiable neural ar-
chitecture search. In Bessiere, C. (ed.), Proceedings of
the Twenty-Ninth International Joint Conference on Artifi-
cial Intelligence, IJCAI-20, pp. 2463–2469. International
Joint Conferences on Artificial Intelligence Organiza-
tion, 2020. doi: 10.24963/ijcai.2020/341. URL https:
//doi.org/10.24963/ijcai.2020/341.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved
question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Dang, D.-C., Eremeev, A., and Lehre, P. Escaping local
optima with non-elitist evolutionary algorithms. Proceed-
ings of the AAAI Conference on Artificial Intelligence, 35:
12275–12283, 05 2021. doi: 10.1609/aaai.v35i14.17457.

Dettmers, T. and Zettlemoyer, L. The case for 4-bit pre-
cision: k-bit inference scaling laws. arXiv preprint
arXiv:2212.09720, 2022.

Dettmers, T., Svirschevski, R., Egiazarian, V., Kuznedelev,
D., Frantar, E., Ashkboos, S., Borzunov, A., Hoefler, T.,
and Alistarh, D. Spqr: A sparse-quantized representation
for near-lossless llm weight compression. arXiv preprint
arXiv:2306.03078, 2023.

Doerr, B. and Goldberg, L. A. Drift analysis with tail bounds.
In Schaefer, R., Cotta, C., Kołodziej, J., and Rudolph, G.

9

https://doi.org/10.24963/ijcai.2020/341
https://doi.org/10.24963/ijcai.2020/341

EvoPress: Accurate Dynamic Model Compression via Evolutionary Search

(eds.), Parallel Problem Solving from Nature, PPSN XI,
pp. 174–183, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg. ISBN 978-3-642-15844-5.

Doerr, B., Doerr, C., and Lengler, J. Self-adjusting mu-
tation rates with provably optimal success rules. In
Proceedings of the Genetic and Evolutionary Compu-
tation Conference, GECCO ’19, pp. 1479–1487, New
York, NY, USA, 2019. Association for Computing
Machinery. ISBN 9781450361118. doi: 10.1145/
3321707.3321733. URL https://doi.org/10.
1145/3321707.3321733.

Dong, C., Wang, G., Xu, H., Peng, J., Ren, X., and Liang, X.
Efficientbert: Progressively searching multilayer percep-
tron via warm-up knowledge distillation. In Proceedings
of the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pp. 1424–1437. Association
for Computational Linguistics, 2021. URL https://
aclanthology.org/2021.emnlp-main.108.

Egiazarian, V., Panferov, A., Kuznedelev, D., Frantar, E.,
Babenko, A., and Alistarh, D. Extreme compression of
large language models via additive quantization. arXiv
preprint arXiv:2401.06118, 2024.

Frantar, E. and Alistarh, D. SPDY: Accurate pruning with
speedup guarantees. arXiv preprint arXiv:2201.13096,
2022.

Frantar, E. and Alistarh, D. Massive language models
can be accurately pruned in one-shot. arXiv preprint
arXiv:2301.00774, 2023.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D. Gptq:
Accurate post-training quantization for generative pre-
trained transformers. arXiv preprint arXiv:2210.17323,
2022.

Gao, L., Tow, J., Biderman, S., Black, S., DiPofi, A., Foster,
C., Golding, L., Hsu, J., McDonell, K., Muennighoff, N.,
Phang, J., Reynolds, L., Tang, E., Thite, A., Wang, B.,
Wang, K., and Zou, A. A framework for few-shot lan-
guage model evaluation, September 2021. URL https:
//doi.org/10.5281/zenodo.5371628.

Gromov, A., Tirumala, K., Shapourian, H., Glorioso, P., and
Roberts, D. A. The unreasonable ineffectiveness of the
deeper layers, 2024.

He, J. and Yao, X. A study of drift analysis for estimat-
ing computation time of evolutionary algorithms. Nat-
ural Computing: An International Journal, 3(1):21–35,
March 2004. ISSN 1567-7818. doi: 10.1023/B:NACO.
0000023417.31393.c7. URL https://doi.org/10.
1023/B:NACO.0000023417.31393.c7.

He, Y., Lin, J., Liu, Z., Wang, H., Li, L.-J., and Han, S.
AMC: AutoML for model compression and acceleration
on mobile devices. In European Conference on Computer
Vision (ECCV), 2018.

Hevia Fajardo, M. A. and Sudholt, D. Self-adjusting popula-
tion sizes for non-elitist evolutionary algorithms: why
success rates matter. In Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO ’21,
pp. 1151–1159, New York, NY, USA, 2021. Associa-
tion for Computing Machinery. ISBN 9781450383509.
doi: 10.1145/3449639.3459338. URL https://doi.
org/10.1145/3449639.3459338.

Hubara, I., Chmiel, B., Island, M., Banner, R., Naor, S.,
and Soudry, D. Accelerated sparse neural training: A
provable and efficient method to find N:M transposable
masks. In Conference on Neural Information Processing
Systems (NeurIPS), 2021.

Jansen and Wegener. The analysis of evolutionary
algorithms–a proof that crossover really can help. Al-
gorithmica, 34(1):47–66, September 2002. ISSN 0178-
4617. doi: 10.1007/s00453-002-0940-2. URL https:
//doi.org/10.1007/s00453-002-0940-2.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., Casas, D. d. l., Bressand, F., Lengyel, G.,
Lample, G., Saulnier, L., et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

Johannsen, D. Random Combinatorial Structures and Ran-
domized Search Heuristics. PhD thesis, Universität des
Saarlandes, 2010.

Jorritsma, J., Lengler, J., and Sudholt, D. Comma se-
lection outperforms plus selection on onemax with ran-
domly planted optima. In Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO ’23,
pp. 1602–1610, New York, NY, USA, 2023. Associa-
tion for Computing Machinery. ISBN 9798400701191.
doi: 10.1145/3583131.3590488. URL https://doi.
org/10.1145/3583131.3590488.

Kaufmann, M., Larcher, M., Lengler, J., and Zou, X.
Self-adjusting population sizes for (1, λ)-ea on mono-
tone functions. In Parallel Problem Solving from Na-
ture – PPSN XVII: 17th International Conference, PPSN
2022, Dortmund, Germany, September 10–14, 2022,
Proceedings, Part II, pp. 569–585, Berlin, Heidelberg,
2022. Springer-Verlag. ISBN 978-3-031-14720-3. doi:
10.1007/978-3-031-14721-0 40. URL https://doi.
org/10.1007/978-3-031-14721-0_40.

Kern, S., Müller, S. D., Hansen, N., Büche, D., Oce-
nasek, J., and Koumoutsakos, P. Learning probabil-
ity distributions in continuous evolutionary algorithms–

10

https://doi.org/10.1145/3321707.3321733
https://doi.org/10.1145/3321707.3321733
https://aclanthology.org/2021.emnlp-main.108
https://aclanthology.org/2021.emnlp-main.108
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.1023/B:NACO.0000023417.31393.c7
https://doi.org/10.1023/B:NACO.0000023417.31393.c7
https://doi.org/10.1145/3449639.3459338
https://doi.org/10.1145/3449639.3459338
https://doi.org/10.1007/s00453-002-0940-2
https://doi.org/10.1007/s00453-002-0940-2
https://doi.org/10.1145/3583131.3590488
https://doi.org/10.1145/3583131.3590488
https://doi.org/10.1007/978-3-031-14721-0_40
https://doi.org/10.1007/978-3-031-14721-0_40

EvoPress: Accurate Dynamic Model Compression via Evolutionary Search

a comparative review. Natural Computing: An Inter-
national Journal, 3(1):77–112, March 2004. ISSN
1567-7818. doi: 10.1023/B:NACO.0000023416.59689.
4e. URL https://doi.org/10.1023/B:NACO.
0000023416.59689.4e.

Kim, B.-K., Kim, G., Kim, T.-H., Castells, T., Choi, S.,
Shin, J., and Song, H.-K. Shortened llama: A simple
depth pruning for large language models, 2024.

Kurtić, E., Frantar, E., and Alistarh, D. Ziplm: Inference-
aware structured pruning of language models. Advances
in Neural Information Processing Systems, 36, 2024.

Lengler, J. Drift analysis. In Theory of Evolutionary Com-
putation, pp. 89–131. Springer, 2020.

Lengler, J., Schiller, L., and Sieberling, O. Plus strate-
gies are exponentially slower for planted optima of
random height. In Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO ’24,
pp. 1587–1595, New York, NY, USA, 2024. Associa-
tion for Computing Machinery. ISBN 9798400704949.
doi: 10.1145/3638529.3654088. URL https://doi.
org/10.1145/3638529.3654088.

Li, Y., Gong, R., Tan, X., Yang, Y., Hu, P., Zhang, Q., Yu,
F., Wang, W., and Gu, S. BRECQ: Pushing the limit of
post-training quantization by block reconstruction. In
International Conference on Learning Representations
(ICLR), 2021.

Lin, J., Tang, J., Tang, H., Yang, S., Dang, X., and
Han, S. Awq: Activation-aware weight quantization
for llm compression and acceleration. arXiv preprint
arXiv:2306.00978, 2023.

Ma, X., Fang, G., and Wang, X. Llm-pruner: On the struc-
tural pruning of large language models. In Advances in
Neural Information Processing Systems, 2023.

Men, X., Xu, M., Zhang, Q., Wang, B., Lin, H., Lu, Y., Han,
X., and Chen, W. Shortgpt: Layers in large language
models are more redundant than you expect, 2024.

Merity, S., Xiong, C., Bradbury, J., and Socher, R.
Pointer sentinel mixture models. arXiv preprint
arXiv:1609.07843, 2016.

Molchanov, P., Hall, J., Yin, H., Kautz, J., Fusi, N., and
Vahdat, A. Lana: latency aware network acceleration. In
European Conference on Computer Vision, pp. 137–156.
Springer, 2022.

Opris, A., Lengler, J., and Sudholt, D. A tight o(4k/pc)
runtime bound for a (µ+1)ga on jumpk for realistic
crossover probabilities. In Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO ’24,

pp. 1605–1613, New York, NY, USA, 2024. Associa-
tion for Computing Machinery. ISBN 9798400704949.
doi: 10.1145/3638529.3654120. URL https://doi.
org/10.1145/3638529.3654120.

Penedo, G., Kydlı́ček, H., allal, L. B., Lozhkov, A., Mitchell,
M., Raffel, C., Werra, L. V., and Wolf, T. The fineweb
datasets: Decanting the web for the finest text data
at scale, 2024. URL https://arxiv.org/abs/
2406.17557.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683, 2019.

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi,
Y. Winogrande: an adversarial winograd schema chal-
lenge at scale. Commun. ACM, 64(9):99–106, 2021.
doi: 10.1145/3474381. URL https://doi.org/10.
1145/3474381.

Samragh, M., Farajtabar, M., Mehta, S., Vemulapalli, R.,
Faghri, F., Naik, D., Tuzel, O., and Rastegari, M. Weight
subcloning: direct initialization of transformers using
larger pretrained ones, 2023.

Song, J., Oh, K., Kim, T., Kim, H., Kim, Y., and Kim, J.-J.
Sleb: Streamlining llms through redundancy verification
and elimination of transformer blocks. In Proceedings of
the 41st International Conference on Machine Learning,
2024.

Sun, M., Liu, Z., Bair, A., and Kolter, J. Z. A simple and
effective pruning approach for large language models,
2024.

Tata, S. and Patel, J. M. PiQA: An algebra for querying pro-
tein data sets. In International Conference on Scientific
and Statistical Database Management, 2003.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023.

Tseng, A., Chee, J., Sun, Q., Kuleshov, V., and Sa, C. D.
Quip#: Even better llm quantization with hadamard inco-
herence and lattice codebooks, 2024.

Wang, H., Wu, Z., Liu, Z., Cai, H., Zhu, L., Gan, C., and
Han, S. Hat: Hardware-aware transformers for efficient
natural language processing. In Proceedings of the 58th
Annual Meeting of the Association for Computational Lin-
guistics, pp. 7675–7688. Association for Computational
Linguistics, 2020. URL https://aclanthology.
org/2020.acl-main.684.

11

https://doi.org/10.1023/B:NACO.0000023416.59689.4e
https://doi.org/10.1023/B:NACO.0000023416.59689.4e
https://doi.org/10.1145/3638529.3654088
https://doi.org/10.1145/3638529.3654088
https://doi.org/10.1145/3638529.3654120
https://doi.org/10.1145/3638529.3654120
https://arxiv.org/abs/2406.17557
https://arxiv.org/abs/2406.17557
https://doi.org/10.1145/3474381
https://doi.org/10.1145/3474381
https://aclanthology.org/2020.acl-main.684
https://aclanthology.org/2020.acl-main.684

EvoPress: Accurate Dynamic Model Compression via Evolutionary Search

Xu, J., Tan, X., Luo, R., Song, K., Li, J., Qin, T., and
Liu, T.-Y. Nas-bert: Task-agnostic and adaptive-size
bert compression with neural architecture search. In
Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, pp. 1933–1943.
ACM, 2021. URL https://dl.acm.org/doi/10.
1145/3447548.3467404.

Xu, P., Shao, W., Chen, M., Tang, S., Zhang, K., Gao, P.,
An, F., Qiao, Y., and Luo, P. Besa: Pruning large lan-
guage models with blockwise parameter-efficient sparsity
allocation, 2024. URL https://arxiv.org/abs/
2402.16880.

Yao, Z., Dong, Z., Zheng, Z., Gholami, A., Yu, J., Tan,
E., Wang, L., Huang, Q., Wang, Y., Mahoney, M., et al.
Hawq-v3: Dyadic neural network quantization. In Inter-
national Conference on Machine Learning, pp. 11875–
11886. PMLR, 2021.

Yin, L., Wu, Y., Zhang, Z., Hsieh, C.-Y., Wang, Y., Jia, Y.,
Li, G., Jaiswal, A., Pechenizkiy, M., Liang, Y., Bendersky,
M., Wang, Z., and Liu, S. Outlier weighed layerwise
sparsity (owl): A missing secret sauce for pruning llms
to high sparsity, 2024.

Yin, Y., Chen, C., Shang, L., Jiang, X., Chen, X., and
Liu, Q. Autotinybert: Automatic hyper-parameter
optimization for efficient pre-trained language mod-
els. In Proceedings of the 2021 International Joint
Conference on Natural Language Processing, pp.
5146–5157. Association for Computational Linguistics,
2021. URL https://aclanthology.org/2021.
ijcnlp-main.428.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi,
Y. Hellaswag: Can a machine really finish your sentence?
In Korhonen, A., Traum, D. R., and Màrquez, L. (eds.),
Proceedings of the 57th Conference of the Association
for Computational Linguistics, ACL 2019, Florence, Italy,
July 28- August 2, 2019, Volume 1: Long Papers, pp.
4791–4800. Association for Computational Linguistics,
2019. doi: 10.18653/v1/p19-1472. URL https://
doi.org/10.18653/v1/p19-1472.

Zhong, L., Wan, F., Chen, R., Quan, X., and Li, L. Block-
pruner: Fine-grained pruning for large language models.
arXiv preprint arXiv:2406.10594, 2024.

12

https://dl.acm.org/doi/10.1145/3447548.3467404
https://dl.acm.org/doi/10.1145/3447548.3467404
https://arxiv.org/abs/2402.16880
https://arxiv.org/abs/2402.16880
https://aclanthology.org/2021.ijcnlp-main.428
https://aclanthology.org/2021.ijcnlp-main.428
https://doi.org/10.18653/v1/p19-1472
https://doi.org/10.18653/v1/p19-1472

EvoPress: Accurate Dynamic Model Compression via Evolutionary Search

A. Convergence Proof of EvoPress
A.1. A Warm-Up Argument for a Single Offspring

The overall goal of this section is to prove Theorem 3.1. As the main argument is quite complex, relying heavily on stochastic
drift analysis, we begin with a warm-up, namely by presenting a simpler proof for the restricted case where λ = 1.

Unlike the practical application of Algorithm 1, this section assumes that each fitness evaluation returns the exact, or ’true,’
fitness value, ignoring any noise introduced by minibatching. Additionally, our results hold for any initialization. To align
with standard notation in the runtime analysis of evolutionary algorithms, we will count generations starting from zero (i.e.,
using 0-based indexing).

Theorem A.1 (Single offspring). Let n, k ∈ N with k ≤ n and consider the (1 + 1)-EA with level-switch mutation. Then
any linear fitness function f : {x | x ∈ {0, 1}n, ∥x∥1 = n− k} → R is optimized in expected

O(k · (n− k)) generations.

Proof. Let w ∈ Rn be the weights associated with the linear function such that f(x) =
∑n

i=1 xi · wi. To derive an upper
bound, we can assume that no two weights are equal1. Furthermore, assume without loss of generality that these weights are
sorted increasingly, meaning w1 < w2 < ... < wn, and that k ≤ (n− k), as the other case follows from symmetry. Since
f is defined on the bit strings with exactly k 0’s its unique optimum is now given by xopt = 0k1n−k. Denote by x(t) the
search point at step t and let

T = inf{t ≥ 0 | x(t) = xopt}

be the number of generations required until the optimum is found.
Define X(t) =

∑k
j=1 x

(t)
j as the random variable that captures the number of 1’s in the first k bits of the search point at step

t. We observe the following:

1. X(t) = 0 ⇔ x(t) = xopt;

2. X(t) is non-increasing;

3. X(t) −X(t+1) ≤ 1;

4. X(0) =
∑k

j=1 x
(0)
j .

It follows that given the initial search point x(0) we can decompose T into s =
∑k

j=1 x
(0)
j stages T1, T2, ..., Ts, where

Tj = inf({t ≥ 0 | X(t) = j − 1})− inf({t ≥ 0 | X(t) = j}) captures the number of generations spent at stage j. By the
linearity of expectation, we have

E[T | X(0) = s] =

s∑
j=1

E[Tj].

It remains to bound the expected time spent at each stage. Each offspring is generated by copying the parent, selecting a
1-bit uniformly at random, selecting a 0-bit uniformly at random, and finally flipping both bits. At stage j exactly j of the k
0-bits are among the last n− k positions and exactly j of the n− k 1-bits are among the k first positions. Hence, j2 out of
the total k(n− k) (1-bit position, 0-bit position)-pairs advance the optimization to the next stage, yielding

P[X(t+1) = j − 1 | X(t) = j] =
j2

k(n− k)
.

Therefore, Tj ∼ Geometric(j2

k(n−k)) and

E[Tj] =
k(n− k)

j2
.

1Formally, this can be shown using stochastic domination, which involves coupling the potentials in both cases and proving that, given
the same randomness, one is always at least as large as the other.

13

EvoPress: Accurate Dynamic Model Compression via Evolutionary Search

To obtain an upper bound, we can make a worst-case assumption by setting X(x(0)) = k. We conclude

E[T] ≤ E[T |X(0) = k] =

k∑
j=1

E[Tj] = k(n− k)

k∑
j=1

1

j2
∈ O(k(n− k)).

Discussion. Observe that, under the assumption that the probability of initializing at the optimum is sufficiently small, the
proof is tight up to a constant factor of 2.

It is important to note that the above proof relies on the key assumption that whenever one of the j2 “good” pairs is selected
during mutation, the resulting offspring is the fittest among all candidates. This condition holds naturally when there is only
a single offspring, as the offspring produced by flipping one of the j2 pairs will have higher fitness than the parent. However,
in the case of multiple offspring, this approach breaks down, as an offspring produced by flipping one of the j2 “good” pairs
might still have lower fitness than another offspring that was not generated by flipping one of these j2 “good” pairs.

A.2. The Main Argument

Drift analysis, originally developed to study all kinds Markov chains, has become the most widely used technique for
analyzing the runtime of evolutionary algorithms in recent years. It works by first defining a potential function X(t) that
measures the progress over each step t of the optimization. By estimating how this potential changes at each step in
expectation, i.e., computing the drift in X(t), one can then make probabilistic statements about the number of steps required
until the potential reaches a certain threshold, also called the hitting time. To this end, a variety of drift theorems have been
established, two of which will be employed in our proof. For a more thorough introduction to drift analysis, we refer to
Lengler (2020).

First of all, we will utilize the the Multiplicative Drift Theorem, more specifically a tail bound introduced by Doerr and
Goldberg, which is applicable when the potential decreases by a constant fraction in each step.

Theorem A.2 (Multiplicative Drift, Tail Bound (Doerr & Goldberg, 2010)). Let (X(t))t≥0 be a sequence of non-negative
random variables over a finite state space S ⊂ R+

0 . Assume that X(0) ≤ b and let T be the random variable that denotes
the first point in time t ∈ N for which X(t) ≤ a, for some a ≤ b. Suppose that there exists δ > 0 such that for all t < T ,

E[X(t) −X(t+1) | X(t)] ≥ δX(t)

Then,

P[T >
t+ log(b/a)

δ
] ≤ e−t.

Additionally, we will employ Johannsen’s Variable Drift Theorem. This theorem provides more flexibility compared to the
Multiplicative Drift Theorem, as it can be applied when the drift is bounded by any increasing function of the potential.
This often occurs naturally, as optimization typically becomes more difficult approaching the optimum.

Theorem A.3 (Variable Drift Theorem (Johannsen, 2010)). Let (X(t))t≥0 be a sequence of non-negative random variables
over a finite state space S ⊂ R+

0 . Let smin := min(S \ {0}), let T := inf{t ≥ 0 | X(t) = 0}, and for s ∈ S let
∆(t)(s) := E[X(t) −X(t+1) | X(t) = s]. If there is an increasing function h : R+ → R+ such that for all s ∈ S \ {0} and
all t ≥ 0,

∆(t)(s) ≥ h(s),

then

E[T] ≤ smin

h(smin)
+ E

[∫ X(0)

smin

1

h(σ)
dσ

]
,

where the expectation on the latter term is over the random choice of X(0).

14

EvoPress: Accurate Dynamic Model Compression via Evolutionary Search

We will first prove an auxiliary lemma, which will play a central role in bounding the drift. For this purpose, we define
an inversion in a bit string x ∈ {0, 1}n as a pair of indices (i, j) such that i < j and xi > xj . The distance between these
indices, j − i, will be referred to as the spread of this inversion.

Lemma A.4. Let x ∈ {0, 1}n be an arbitrary bit string with k 0-bits and denote by s the number of inversions in x. Then,
the average spread of these inversions is at least

√
s/16.

Proof. Consider the bit string 1n−k containing all 1-bits of x. We can now generate an arbitrary bit string x ∈ {0, 1}n with
k 0-bits and s inversions by adding k 0-bits in such a way that s inversions are generated. Observe that adding a 0-bit after
the j’th 1-bit results in exactly j additional inversions, regardless of the other 0-bits. This means that the order in which
the 0-bits are added does not affect the outcome. We proceed by a case distinction depending on how the inversions are
generated.

Case 1: at least s/2 inversions are generated by adding 0-bits after the
√
s’th 1-bit.

For each 0-bit that is added after the
√
s’th 1-bit, at least half of the resulting inversions have spread at least

√
s/2.

Consequently, this implies that there are at least s/4 inversions having spread at least
√
s/2 in total.

Case 2: fewer than s/2 inversions are generated by adding 0-bits after the
√
s’th 1-bit.

It follow that more than s/2 inversions are generated by adding 0-bits not after the min(n− k,
√
s)’th 1-bit. Observe that

each 1-bit can participate in at most j inversions with spread at most j. More specifically, each 1-bit can be part of at
most

√
s/4 inversions with spread at most

√
s/4. Because all of the s/2 inversions that are added contain one of the first

min(n − k,
√
s) 1-bits, at most s/4 of these inversions can have spread at most

√
s/4. Therefore, we conclude that the

average spread of all inversions must be at least
√
s/16.

We continue to prove the final result.

Proof of Theorem 3.1

Proof. As in the proof of Theorem A.1 let w ∈ Rn represent the weights associated with a linear function of the form
f(x) =

∑n
i=1 xi · wi. To establish an upper bound, we can again assume that no two weights are equal. Additionally,

without loss of generality, assume that the weights are ordered in increasing value, i.e., w1 < w2 < · · · < wn, and that
k ≤ n− k, as the other case follows by symmetry. Let x(t) denote the search point at step t, and define

T = inf{t ≥ 0 | x(t) = 0k1n−k}

as the number of generations required to reach the optimal solution.
Consider the potential function

X(t) =

n∑
i=1

(1− x
(t)
i) · i− k · (k + 1)

2
,

which captures the number of inversions at step t. Since xopt = 0k1n−k is the only bit string with k 0-bits without inversions,
we have X(t) = 0 if and only if x(t) = xopt. At the same time, no bit string with k 0-bits has more than k(n− k) inversions,
hence, X(t) ≤ k(n− k) at all times. During mutation, each of the λ offspring is generated independently by copying the
parent x(t), choosing uniformly at random one of the 1-bits, choosing uniformly at random one of the 0-bits and finally
flipping both bits. This flipping can also be viewed as switching both bits, so that bits “move” across the search point in
consecutive generations. We will use this abstraction in a later step of the proof.

As we assume the weights to be ordered increasingly, an offspring is fitter than its parent if and only if the chosen 1-bit was
to the left of the chosen 0-bit, meaning, the chosen pair during mutation was an inversion. Since there are k(n− k) possible
pairs in total, we have for each offspring y1, ..., yλ

P[f(yj) > f(x(t)) | X(t) = s] =
s

k(n− k)
.

15

EvoPress: Accurate Dynamic Model Compression via Evolutionary Search

At the same time, switching two bits corresponding to an inversion decreases the number of inversions by the difference in
their positions, which we call the spread of an inversion. This implies that any offspring fitter than its parent must have
fewer inversions than its parent and therefore, X(t+1) ≤ X(t) for all t. Note that we cannot make the same statement about
the entire group of offspring, meaning, the fittest offspring is not guaranteed to have the fewest inversions. Since X(t) is
non-increasing we can decompose T into the number of steps required until for the first time the current search point x(t)

has at most k(n− k)/λ inversions and the number of steps required from there until the optimum is found. By linearity of
expectation

E[T] = E[T1] + E[T2],

where

T1 = inf{t ≥ 0 | X(t) ≤ k(n− k)

λ
}

and

T2 = inf{t ≥ 0 | X(t) = 0} − inf{t ≥ 0 | X(t) ≤ k(n− k)

λ
}.

In the remainder of this proof we will demonstrate that each of these two phases requires only an expected O(k(n− k)/λ)
generations.

We begin by bounding the expected number of steps until the search point has at most k(n− k)/λ inversions. As computed
previously, a single offspring is fitter than its parent with probability s

k(n−k) . Since any fitter offspring has fewer inversion
than its parent, the potential decreases in a given step, if and only if, at least one of the offspring is fitter. By using that each
offspring is generated independently and that s ≥ k(n−k)

λ for this phase we get that

P[X(t+1) < X(t) | X(t) = s] = 1− (1− s

k(n− k)
)λ ≥ 1− e

−λs
k(n−k) ≥ 1− e−1.

This means, in phase 1 we have a constant probability of decreasing the potential every step. However, the resulting constant
drift only provides an upper bound of O(k(n − k)) via the Additive Drift Theorem (He & Yao, 2004). Improving this
constant drift bound is challenging because we must establish a lower bound on the expected reduction in the number of
inversions, given the existence of a fitter offspring. The number of inversions in an offspring is not independent of its
fitness, and there is no guarantee that a fitter offspring will have fewer inversions than a less fit one. This issue is mitigated
when there is only a single fitter offspring (as demonstrated in the proof of phase 2), but it becomes problematic when
multiple offspring are fitter than the parent with high probability. For example, consider the bit string 11010110001 with
corresponding weights w1 = 1, w2 = 1002, w3 = 1003, ..., w112 = 1112. If λ is reasonably large it becomes very likely
that at least one of the children will have the first 1-bit chosen in mutation. This offspring is guaranteed to be the fittest
one, but at the same time (assuming the chosen 0-bit is not the last one) it decreases the number of inversions very little
compared to sampling one of the inversions for mutation uniformly at random. We will resolve this difficulty by a separate
drift argument.

Let BC be the event that, within the next
2C

1− e−1

k(n− k)

λ

steps, the number of inversions in x(t) falls below the threshold of

k(n− k)

λ
.

Here, C is chosen such that λ ≤ C
8

n
log(n) . If we can demonstrate that BC occurs with a probability of at least some constant,

then the proof of the first phase is established, as BC is expected to occur after a constant number of repetitions.

Henceforth, we will implicitly condition on s ≥ k(n− k)/λ, since otherwise, the conclusion follows immediately. By the
Chernoff bound over round events, the probability that the potential decreases at most

C
k(n− k)

λ

16

EvoPress: Accurate Dynamic Model Compression via Evolutionary Search

times within the next
2C

1− e−1

k(n− k)

λ

rounds is sub-constant. We will condition on the event that the potential decreases at least

C
k(n− k)

λ

times, and from now on, we will only consider such potential-reducing generations.

If we regard mutation as swapping the 1-bit with the 0-bit, we can enumerate all 0-bits from 1 to k and denote by ij the
current position of the j’th 0-bit, which will be referred to as 0j . Note that this enumeration stays fixed across generations,
meaning that the relative order can change and 0j is not necessarily the j’th 0-bit in x(t). Now define

Z
(t)
j = 1 +

ij∑
l=1

xt

as the random variable that captures the number of 1-bits before 0j plus one, or in other words, one plus the number of
inversions this specific 0-bit is part of. Let Sj denote the event that the fittest offspring was generated by a mutation that
selected 0j and this offspring is fitter than the parent. We continue to show that

E[Z(t+1)
j | Z(t)

j = s, Sj] ≥
s

2
.

We achieve this by systematically revealing the randomness in each generation. First, uncover which 0-bit flip produced
the fittest offspring2. Assume this bit is 0j . Next, reveal all offspring that were generated by flipping other 0-bits than 0j .
Let m be the number of offspring that were not uncovered yet, i.e., the number of offspring where 0j was switched. Now
enumerate all 1-bits to the left of 0j in x(t) from right to left (here, relative order matters). Let l be the smallest integer
such that when switching the l’th 1-bit to the left of 0j with 0j the resulting offspring of x(t) has higher fitness than all
λ−m previously uncovered offspring. Denote by Dl the corresponding event. Such l must exists, since we condition on
the event that some offspring with bit 0j flipped (switched) is the fittest among all offspring. Because the weights are sorted
increasingly it must hold that switching the l + 1’th 1-bit with 0j will also result in an offspring with higher fitness than the
other λ−m offspring, while switching the l − 1’th 1-bit with 0j will result in an offspring with lower fitness than the other
λ−m offspring. Next, uncover all offspring where bit 0j was switched with one the first up to (l− 1)’th bit to the left of 0j .
Let m′ denote the number of yet uncovered offspring. Now each of the remaining m′ offspring is generated by flipping 0j
with one of the l’th to (s− 1)’th 1-bits to the left of 0j . Observe that the fittest among them will be the one with the leftest
1-bit chosen. Therefore,

E[Z(t+1)
j | Z(t)

j = s, Sj , Dl,m
′ offspring not uncovered] = s− E

[
max

i=1,...,m′
Ui

]
,

where Ui ∼ Uniform(l, s− 1). Given that we are conditioning on Sj , we know that the fittest offspring was produced by
flipping 0j , which implies m′ ≥ 1. As l ≥ 1 it follows that

E[Z(t+1)
j | Z(t)

j = s, Sj] ≥ s/2.

Denote by T̂j the number of steps required until Zj reaches 1, only counting steps where Zj is decreased. Using a tail bound
for the Multiplicative Drift Theorem (Theorem A.2) we have that

P[T̂j > 2(log(n) + log(n− k))] ≤ 1

n
.

As k < (n− k) we conclude by a union bound that with probability at least 1/2 each potential Zj will reach 1 within at
most 4 log(n) steps. Therefore, with probability at least 1/2, after 4k log(n) generations where some offspring is fitter than

2More precisely, we must uncover which 0-bit flip resulted in the offspring selected during the selection process. This accounts for
scenarios where multiple offspring have the same highest fitness, in which case one of the fittest candidates is typically chosen uniformly
at random. As the occurrence of multiple equally fit offspring is a mere technicality, we have largely omitted further discussion of this
case.

17

EvoPress: Accurate Dynamic Model Compression via Evolutionary Search

the parent, there must be 0 inversions in x(t). Note that in practice, there will not actually be 0 inversions in xt, as the
condition s ≥ k(n− k)/λ is violated earlier, leading the optimization process to enter the second phase. Using the fact that
λ ≤ C

8
n

log(n) and n− k ≥ n/2 we obtain

4k log(n) ≤ 8k(n− k) log(n)

n
≤ C

k(n− k)

λ
.

Finally, as the probability of having less than Ck(n − k)/λ “successful” generations in the considered time period is
sub-constant, we conclude via another union bound that there exists a constant C ′ such that event BC occurs with probability
at least 1/C ′. Consequently, we have

E[T1] ≤ C · C ′ · k(n− k)

λ
∈ O

(
k(n− k)

λ

)
.

To compute E[T2] we first bound the probability that exactly one of the generated offspring is fitter than the parent. Denote by

Ai =
{∣∣∣{j ∈ {1, . . . , λ} | f(yj) > f(x(t))

}∣∣∣ = i
}

the event that exactly i of the offspring are fitter than the parent x(t). As shown earlier, the probability that a given offspring
is fitter than its parent is exactly s

k(n−k) , where s represents the number of inversions in x(t). Given that each offspring
is generated independently, we have for s ≤ k(n− k)/λ

P[A1 | X(t) = s] = λ · s

k(n− k)
·
(
1− s

k(n− k)

)λ−1

≥ λ · s

k(n− k)
·
(
1− s

k(n− k)

) k(n−k)
s −1

≥ λ · s

k(n− k)
· 1
e
.

Lemma A.4 indicates that when selecting an offspring uniformly at random from all those with higher fitness than the
parent (i.e., those generated by flipping an inversion), the expected number of inversions in that offspring is at least

√
s/16

fewer than in the parent. We can now reveal the randomness in two steps. First, we only uncover how many of the generated
offspring are fitter than the parent. Given that there is only a single fitter offspring, i.e., conditioned on A1, we then uncover
its number of inversions. Clearly, this single fitter offspring is now sampled uniformly at random from all offspring with
higher fitness than x(t); thus, for s ≤ k(n− k)/λ

∆(t)(s) = E[X(t+1) −X(t) | X(t) = s]

=

λ∑
k=0

E[X(t+1) −X(t) | X(t) = s,Ak] · P[Ak | X(t) = s]

≥ E[X(t+1) −X(t) | X(t) = s,A1] · P[A1 | X(t) = s]

≥
√
s

16
· λ · s

k(n− k)
· 1
e
.

Finally, applying Johannsen’s Variable Drift Theorem (Johannsen, 2010) (Theorem A.3) yields

E[T2] ≤ 16e
k(n− k)

λ
+ E

[∫ X(0)

1

16e
k(n− k)

λσ3/2
dσ

]

≤ 16e
k(n− k)

λ

(
1 +

∫ k(n−k)
λ

1

1

σ3/2
dσ

)

∈ O

(
k(n− k)

λ

)
.

18

EvoPress: Accurate Dynamic Model Compression via Evolutionary Search

B. Evolutionary Search Parameter Ablations
B.1. Mutation Rate (Depth Pruning)

The mutation rate plays a crucial role in balancing exploration and exploitation. A higher mutation rate allows for broader
exploration of the search space; however, this space grows exponentially with the number of mutations. As a result, when
trying to approach the optimum in terms of Hamming distance, the proportion of “good” offspring decreases significantly
with an increasing mutation rate. Consequently, in a smooth fitness landscape, we expect significantly faster optimization
with a lower mutation rate.

To provide some mathematical intuition, consider optimizing over the 200-dimensional hypercube {0, 1}200, where the
current search point is x(t) = 0200 and the global optimum is xopt = 1200180. For this illustration we use a mutation operator
that randomly selects a subset of k bits to flip. Flipping k bits corresponds to selecting a bitstring from the k’th Hamming
layer of x(t) = 0200 uniformly at random, where the k’th Hamming layer consists of all bitstrings with a Hamming distance
of k from x(t). Similarly, the Hamming ball of radius k includes all bitstrings with a Hamming distance at most k. Assume
that any bitstring closer to the optimum in terms of Hamming distance has higher fitness than our current search point3.
The probability of improving the fitness via a mutation of k bits equals the fraction of points in the k’th Hamming layer of
x(t) that are also in the Hamming ball of radius 19 around xopt. When the current search point is reasonably close to the
optimum, this ratio is maximized for k = 1. For the described setting, we can compute the probabilities of each event Ak,
where Ak represents the event that mutating k bits of x(t) results in a decrease in the Hamming distance from xopt. These
probabilities are given by:

P[A1] =
(201)
(2001)

= 0.1 P[A2] =
(202)
(2002)

≈ 0.0095

P[A3] =
(203)+(

20
2)·(

180
1)

(2003)
≈ 0.0269 P[A4] =

(204)+(
20
3)·(

180
1)

(2004)
≈ 0.0032

P[A5] =
(205)+(

20
4)·(

180
1)+(

20
3)·(

180
2)

(2005)
≈ 0.0076 P[A6] =

(206)+(
20
5)·(

180
1)+(

20
4)·(

180
2)

(2006)
≈ 0.0010

Note that accounting for the potentially greater Hamming distance gained for higher mutation rates (i.e., calculating the drift
in the Hamming distance) has only marginal effect. This is because for an odd number of mutations, most of the conditional
probability mass is concentrated on the case where the Hamming distance is reduced by just one bit. Similarly, for an even
number of mutations, most of the conditional probability mass is concentrated on cases where the reduction in the Hamming
distance is only two bits. The advantage of a low mutation rate becomes even more pronounced as the search process nears
the optimum. For instance, when the Hamming distance between x(t) and xopt is 5, mutating a single bit results in a 16-fold
greater drift in Hamming distance compared to any other mutation rate.

To study the empirical impact of the mutation rate on our search process, we tested various distributions from which
the number of mutations is sampled. Table 4 illustrates the effects of these distributions for selecting the optimal twelve
blocks to drop for Mistral-7B-v0.3. The results confirm our intuition: higher mutation rates generally reduce performance.
However, sampling from the minimum of two uniform distributions ensures a reasonably high probability of choosing a
low number of mutations. These offspring, with fewer mutations, then drive the optimization process, yielding comparably
lower performance drops. Conversely, when we eliminate this sampling and instead use a high, constant mutation rate, we
lose the locality that is crucial for evolutionary algorithms, leading to a significant drop in performance.

A low mutation rate carries the risk of getting trapped in local optima. However, as discussed in Section 3, we expect
dynamic model compression to exhibit a smooth fitness landscape with few local optima. Moreover, fitness evaluations in
our context are relatively expensive. Increasing the mutation rate would only be beneficial if the smaller search space had
already been thoroughly explored. In our case, though, even a small neighborhood cannot be fully explored within a feasible
time frame.

A widely used strategy for balancing the advantages and disadvantages of different mutation rates involves self-adjusting
mutation rates, which have been shown to be effective both theoretically and in practice (Kern et al., 2004; Doerr et al.,
2019). These methods decrease the mutation rate when progress is relatively “easy”, and increase it when progress becomes
difficult, offering a greater chance of escaping local optima.

3While this assumption does not hold in practice, it serves as a useful intuition in a reasonably smooth fitness landscape.

19

EvoPress: Accurate Dynamic Model Compression via Evolutionary Search

Table 4. Effect of varying the distribution determining the number of mutations.

Number of Mutations Wiki2↓ C4↓ FW↓
min(U1, U2), U1, U2 ∼ U(1, 3) 17.52 21.60 16.79
min(U1, U2), U1, U2 ∼ U(1, 7) 21.49 22.41 17.65
min(U1, U2), U1, U2 ∼ U(1, 15) 18.65 22.67 17.63

1 18.12 21.12 16.33
3 22.09 25.42 19.25
7 25.06 26.52 19.65
15 27.01 28.19 22.03

B.2. Multi-Step Selection (Unstructured Sparsity)

We will use this subsection to ablate the impact of hyperparameters for the multi-step selection, namely, the number of
tokens and survivors. As discussed earlier in Section 4.2, the default hyperparameters we chose for our unstructured sparsity
search were quite conservative. The following experiments will be conducted based on the “super-fast” version, which uses
two steps of selection. It first generates 16 offspring, evaluates them on 512 tokens, and compares only the fittest one with
the parent on another 8192 tokens.

Table 5 shows the impact of adapting the number of tokens in the first selection step. Note that reducing tokens is only
reasonable up to a certain degree, as fitness evaluation has constant overhead independent of the number of tokens (e.g., for
loading the levels). Table 6 ablates the number of offspring in each generation. All perplexities were measured after 400
generations.

Table 5. Effect of varying the number of tokens in first preselection step.

Offspring Stage 1: Tokens Stage 2: Tokens Wiki2↓ C4↓ FW↓
16 1024 8192 16.22 17.93 12.26
16 512 8192 15.87 18.28 12.38
16 256 8192 17.25 18.51 12.52
16 128 8192 16.01 18.99 12.72
16 64 8192 15.89 19.35 12.98

Table 6. Effect of varying the number of offspring.

Offspring Stage 1: Tokens Stage 2: Tokens Wiki2↓ C4↓ FW↓
64 512 8192 16.35 18.27 12.36
32 512 8192 16.65 18.22 12.44
16 512 8192 15.87 18.27 12.38
8 512 8192 16.37 18.74 12.64
4 512 8192 17.87 18.97 12.72

In a similar vein to the discussion in Appendix B.1, the number of offspring can also be dynamically adapted. Ideally, the
number of offspring should increase to the point where the computational effort is compensated by the number of generations,
as outlined in Theorem 3.1. Methods such as the Self-Adjusting (1, λ)-EA have recently gained significant theoretical
interest and have been shown to automatically determine “ideal” offspring sizes on specific problems (Hevia Fajardo &
Sudholt, 2021; Kaufmann et al., 2022).

B.3. Fitness Environment (Quantization)

We explored an alternative fitness function by testing perplexity as opposed to KL-Divergence. One advantage of using
perplexity is the reduced memory requirement, as it does not necessitate storing the logits, which can be particularly
burdensome for large vocabularies. However, perplexity relies solely on the information from the ground truth token, while
KL-Divergence takes into account the entire distribution. This distinction is significant only if the selection decisions vary
between the two metrics. Generally, we expect KL-Divergence to perform at least as well as perplexity; however, in many

20

EvoPress: Accurate Dynamic Model Compression via Evolutionary Search

instances, their performances are similar. This observation could indicate that KL-Divergence might be using more tokens
than necessary to assess fitness effectively. Although in the context of quantization KL-Divergence yielded slightly better
results (Table 7, Figure 5 left), both metrics showed comparable performance when applied to unstructured sparsity (Figure 5
right).

0 20 40 60 80 100
Generation

6.78

6.80

6.82

6.84

6.86

6.88

6.90

Pe
rp

le
xi

ty

Llama-2-7B - 3 bit
Perplexity Fitness
KL Divergence Fitness

0 50 100 150 200 250 300 350 400
Generation

12

14

16

18

20

22

24

26

Pe
rp

le
xi

ty

Llama-2-7B - 70% Sparsity
Perplexity Fitness
KL Divergence Fitness

Figure 5. Convergence of EvoPress for unstructured sparsity (left) and quantization (right) for different fitness functions.

Table 7. Comparison of using KL-Divergence vs. Perplexity as fitness function.

Model # Bits Method Wiki2↓ C4↓ FW↓

Llama-3-8B

3
Uniform 12.19 15.76 11.47

EvoPress (PPL) 8.17 12.15 9.64
EvoPress (KL) 7.49 12.03 9.56

4
Uniform 6.48 9.50 8.46

EvoPress (PPL) 5.86 9.46 8.23
EvoPress (KL) 5.86 9.44 8.22

Llama-2-7B

3
Uniform 6.16 7.96 6.86

EvoPress (PPL) 5.74 7.90 6.79
EvoPress (KL) 5.70 7.87 6.76

4
Uniform 5.48 7.10 6.40

EvoPress (PPL) 5.25 7.09 6.37
EvoPress (KL) 5.22 7.07 6.34

Mistral-7B-v0.3

3
Uniform 5.54 8.57 6.96

EvoPress (PPL) 5.23 8.45 6.87
EvoPress (KL) 5.21 8.42 6.86

4
Uniform 5.10 7.87 6.50

EvoPress (PPL) 4.85 7.86 6.49
EvoPress (KL) 4.84 7.84 6.48

21

EvoPress: Accurate Dynamic Model Compression via Evolutionary Search

C. Experimental Setup
C.1. Hyperparameter Setting

Here, we provide an overview of the hyperparameters used in our experiments. As shown in Table 8, we employed different
choices for the number of tokens, offspring, and generations for different applications to account for the size of the respective
search space. However, the search is very robust with respect to these choices, and using one set of hyperparameters for
another application yields similar results. This is also demonstrated through the “super-fast” version, which uses drastically
different hyperparameters, but achieves comparable performance (see Figure 3 in main text).

Across all applications, we sampled the number of mutations from the distributions min(U1, U2) with U1, U2 ∼ Unif(1, 3),
which closely mimics the behavior of using only one mutation (see the ablation study in Appendix 4).

For Depth Pruning, where each block has only two choices and significantly fewer blocks are present compared to layers in
other methods, we leveraged the insight from Theorem 3.1, which suggests that the number of required generations scales
proportionally to k(n− k), where k represents the number of removed blocks and n the total number of blocks.

For Unstructured Sparsity, the search space is considerably larger, with more than 10 choices per layer4. As a result,
more generations are necessary to converge because each generation only makes small improvement in terms of Hamming
distance from the optimum.

For Quantization, the search space is somewhat smaller since fewer “natural” compression levels are available. However,
the fitness landscape is less smooth, with significantly larger step sizes in compression levels, motivating the use of a higher
number of tokens.

For all these applications, we adopted a conservative approach to the number of generations to better understand convergence.
In practice, we need significantly fewer generations to converge close to optimum, as demonstrated in Section 4.2,
Appendix D.2, Appendix F.2, and Appendix B.3. Additionally, we showed a much faster version (in terms of time per
iteration) that uses significantly less tokens and has fewer offspring.

Table 8. Employed hyperparameters for different applications.

Application Generations Offspring Survivors (1) Tokens (1) Survivors (2) Tokens (2) Survivors (3) Tokens (3)

Depth Pruning k(n− k)/1.5 32 2 2048 1 32768 N/A N/A
Unstr. Sparsity 400 64 8 2048 2 16384 1 65536
Quantization 150 128 16 2048 4 16384 1 131072
Super-Fast 400 16 1 512 1 8192 N/A N/A

C.2. Robustness to Random Seed

To evaluate the robustness of EvoPress, we conducted 16 independent runs with different random seeds. Specifically, we
used the “super-fast” variant to determine the optimal compression allocation for Llama-3-8B at 70% sparsity, assessing
perplexity scores on the C4, Wikitext2, and hold-out Fineweb-Edu datasets. The results indicate that EvoPress is highly
robust, as reflected by the low standard deviation observed across the hold-out metrics (Figure 7). For example, after 1000
generations of the “super-fast” variant, the configurations found achieve a mean C4 perplexity of 33.82 with a standard
deviation of 0.61, compared to 52.32 for the next best method, OWL. This improvements achieved by EvoPress are therefore
statistically relevant. Furthermore, as shown in Figure 6, the configurations identified across different runs are highly similar,
which is expected to improve further with additional generations.

4If needed, one could increase the step size and reduce the number of compression levels to load.

22

EvoPress: Accurate Dynamic Model Compression via Evolutionary Search

q k v o u g d

0

10

20

30

Seed: 1

q k v o u g d

0

10

20

30

Seed: 2

q k v o u g d

0

10

20

30

Seed: 3

q k v o u g d

0

10

20

30

Seed: 4

q k v o u g d

0

10

20

30

Seed: 5

q k v o u g d

0

10

20

30

Seed: 6

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sp
ar

sit
y

Llama-3-8B - 70% Sparsity

Figure 6. Configurations identified by EvoPress on Llama-3-8B after 1000 generations show high similarity across different seeds. The
y-axis represents the depth of the respective transformer block, while the x-axis denotes the corresponding layer (q: query, k: key, v:
value, o: output, u: MLP up, g: MLP gate, d: MLP down).

0 200 400 600 800 1000
Generations

20

30

40

50

60

Pe
rp

le
xi

ty

Llama-3-8B - 70% Sparsity
Wikitext2
C4
Fineweb-Edu

Figure 7. Convergence behavior of the “super-fast” variant across 16 independent runs. The extremely low standard deviation (shaded
area) demonstrates the robustness of the method, which suggests that local optima do not pose significant challenges to the search.

23

EvoPress: Accurate Dynamic Model Compression via Evolutionary Search

D. Additional Depth Pruning Results
D.1. Full Results

Here, we present our additional results for depth pruning experiments on Mistral-7B-v0.3 (Table 12), Llama-2-7B (Table 9),
Llama-3-8B (Table 10), and Llama-3.1-8B (Table 11). Across all levels of sparsities, EvoPress consistently outperforms
previous methods. Additionally, Table 12 includes results where only entire transformer blocks are removed by EvoPress.
This showcases that the significant gains are not primarily due to this relaxation, and that our method performs better than
baselines even when dealing with this coarser search space.

Table 9. Depth pruning of Llama-2-7B.

Sparsity Method Wiki2↓ C4↓ FW↓
0% Dense 5.21 6.93 6.40

12.5%

EvoPress 6.42 8.60 7.54
ShortGPT 8.86 10.78 9.30

Cosine Similarity (Window) 7.53 9.82 8.51
Weight Subcloning 9.09 11.06 9.60

ShortenedLlama 7.68 10.44 8.57

25%

EvoPress 9.15 11.46 9.69
ShortGPT 23.41 30.30 21.16

Cosine Similarity (Window) 16.60 21.04 17.37
Weight Subcloning 23.41 30.30 21.16
Shortened Llama 13.86 14.08 11.81

37.5%

EvoPress 17.98 18.91 15.53
ShortGPT 70.94 63.51 54.07

Cosine Similarity (Window) 192.07 212.60 151.10
Weight Subcloning 70.94 63.51 54.07
Shortened Llama 35.37 26.07 20.37

50%

EvoPress 48.84 42.29 33.57
ShortGPT 226.14 171.04 180.51

Cosine Similarity (Window) 4570.15 2876.83 1861.06
Weight Subcloning 226.14 171.04 180.51
Shortened Llama 145.78 87.40 68.79

24

EvoPress: Accurate Dynamic Model Compression via Evolutionary Search

Table 10. Depth pruning of Llama-3-8B.

Sparsity Method Wiki2↓ C4↓ FW↓
0% Dense 5.54 8.80 7.62

12.5%

EvoPress 7.72 12.61 10.15
ShortGPT 13.21 19.56 14.25

Cosine Similarity (Window) 9.54 14.87 11.64
Weight Subcloning 13.21 19.56 14.25
Shortened Llama 9.42 15.09 11.57

25%

EvoPress 13.99 22.83 15.84
ShortGPT 5527.54 11589.93 2346.13

Cosine Similarity (Window) 5519.95 11629.61 2342.91
Weight Subcloning 5527.54 11589.93 2346.13
Shortened Llama 16.59 20.81 16.28

37.5%

EvoPress 27.56 35.70 26.77
ShortGPT 64281.36 13836.12 3789.09

Cosine Similarity (Window) 64627.29 13890.14 3784.72
Weight Subcloning 64381.36 13836.13 3789.09
Shortened Llama 50.20 61.56 37.40

50%

EvoPress 84.99 87.86 66.41
ShortGPT 1663.97 1740.04 1588.20

Cosine Similarity (Window) 2053.19 1116.47 694.00
Weight Subcloning 1663.97 1740.04 1588.20
Shortened Llama 724.86 666.41 210.30

Table 11. Depth pruning of Llama-3.1-8B.

Sparsity Method Wiki2↓ C4↓ FW↓
0% Dense 5.61 8.90 7.67

12.5%

EvoPress 7.58 12.24 10.00
ShortGPT 12.54 19.21 13.76

Cosine Similarity (Window) 12.54 19.21 13.76
Weight Subcloning 12.54 19.21 13.76
Shortened Llama 9.27 14.80 11.21

25%

EvoPress 11.59 17.84 13.96
ShortGPT 4278.39 6754.92 1512.39

Cosine Similarity (Window) 4278.39 6754.92 1512.39
Weight Subcloning 4278.39 6754.92 1512.39
Shortened Llama 20.41 20.33 16.12

37.5%

EvoPress 24.98 35.77 25.93
ShortGPT 123044.19 22071.51 6059.03

Cosine Similarity (Window) 123044.19 22071.51 6059.03
Weight Subcloning 123044.19 22071.51 6059.03
Shortened Llama 41.34 43.53 31.00

50%

EvoPress 105.84 110.69 61.25
ShortGPT 1630.11 1680.21 1698.64

Cosine Similarity (Window) 1881.54 1196.63 683.24
Weight Subcloning 1630.11 1680.21 1698.64
Shortened Llama 454.96 309.42 153.96

25

EvoPress: Accurate Dynamic Model Compression via Evolutionary Search

Table 12. Depth pruning of Mistral-7B-v0.3.

Sparsity Method Wiki2↓ C4↓ FW↓
0% Dense 4.82 7.72 6.41

12.5%

EvoPress 6.06 9.00 7.42
EvoPress (Attn.+MLP) 6.33 9.44 7.80

ShortGPT 7.19 10.18 8.46
Cosine Similarity (Window) 7.19 10.18 8.46

Weight Subcloning 7.19 10.18 8.46
Shortened Llama 6.64 9.71 7.94

25%

EvoPress 8.66 12.04 9.92
EvoPress (Attn.+MLP) 9.46 13.02 10.59

ShortGPT 43.26 40.16 29.54
Cosine Similarity (Window) 33.75 54.07 36.26

Weight Subcloning 43.26 40.16 29.54
Shortened Llama 14.94 19.30 14.73

37.5%

EvoPress 17.52 21.60 16.90
EvoPress (Attn.+MLP) 21.62 25.17 18.97

ShortGPT 2898.98 2722.66 981.99
Cosine Similarity (Window) 1034.09 2471.86 1050.56

Weight Subcloning 2898.98 2722.66 981.99
Shortened Llama 440.20 442.09 486.15

50%

EvoPress 61.75 54.15 43.23
EvoPress (Attn.+MLP) 108.91 99.74 69.07

ShortGPT 2422.72 2134.92 1083.51
Cosine Similarity (Window) 3411.47 1934.16 1740.91

Weight Subcloning 2422.72 2134.92 1083.51
Shortened Llama 5241.76 3595.71 1953.14

26

EvoPress: Accurate Dynamic Model Compression via Evolutionary Search

D.2. Practical Convergence

EvoPress identifies superior compression profiles in a highly efficient manner. Figure 8 displays that the evolutionary search
produces better compressed models than previous techniques in a matter of minutes, with full convergence in around half an
hour.

0 20 40 60 80 100 120
Generation

10

12

14

16

18

Pe
rp

le
xi

ty GPU Hour (RTX 3090)

Perplexity (Test)
KL Divergence (Train)

0.4

0.5

0.6

0.7

0.8

KL
-D

iv
er

ge
nc

e

Mistral-7B-v0.3 - 8 Blocks Dropped

0 25 50 75 100 125 150 175
Generation

0

100

200

300

400

500

600

700

800

Pe
rp

le
xi

ty GPU Hour (RTX 3090)

Perplexity (Test)
KL Divergence (Train)

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

KL
-D

iv
er

ge
nc

e

Mistral-7B-v0.3 - 16 Blocks Dropped

Figure 8. Convergence of EvoPress when removing 8 transformer blocks (left) and 16 transformer blocks (right) of Mistral-7B-v0.3.

D.3. Locality of Dropped Blocks

Prior research indicates that deeper layers, aside from the final ones, are generally less effective (Gromov et al., 2024; Men
et al., 2024). Figure 9 illustrates the optimal removal configurations identified by EvoPress. For comparison, Table 13
displays the removal order of prior scoring methods. While EvoPress indeed removes some deeper layers across all sparsities,
we also observe that certain shallow layers appear to be less important. Notably, a “two hills” pattern emerges in many cases,
where blocks before and after the midpoint are pruned, yet the central blocks remain intact. Meanwhile, the first two blocks
are never pruned. However, in contrast to a heuristic proposed by Ma et al. (2023), we find that, in some instances, it is
effective to prune the final block as well.

Table 13. First 16 blocks in removal order of ShortGPT, Weight Subcloning and Shortened Llama on different models.

Model Method Removal Order (Left to Right)

Mistral-7B-v0.3
ShortGPT 26, 25, 24, 27, 23, 22, 28, 30, 21, 29, 20, 19, 13, 17, 18, 12

Weight Subcloning 26, 25, 24, 27, 23, 28, 22, 30, 21, 29, 20, 19, 13, 17, 12, 18
Shortened Llama 10, 12, 13, 11, 08, 09, 14, 15, 07, 06, 04, 27, 24, 16, 25, 05

Llama-2-7B
ShortGPT 27, 25, 26, 28, 29, 24, 23, 22, 21, 30, 20, 19, 18, 17, 15, 14

Weight Subcloning 27, 25, 28, 29, 26, 24, 23, 22, 21, 19, 30, 20, 18, 17, 14, 15
Shortened Llama 11, 12, 08, 09, 10, 06, 24, 25, 07, 14, 23, 13, 22, 21, 15, 27

Llama-3-8B
ShortGPT 25, 26, 27, 24, 28, 23, 22, 29, 20, 21, 19, 18, 30, 17, 16, 11

Weight Subcloning 25, 27, 26, 24, 28, 23, 22, 29, 20, 21, 19, 18, 30, 17, 16, 11
Shortened Llama 10, 08, 09, 11, 26, 25, 12, 22, 24, 23, 14, 13, 28, 06, 19, 21

Llama-3.1-8B
ShortGPT 25, 26, 24, 27, 23, 28, 22, 29, 20, 21, 19, 18, 17, 30, 16, 10

Weight Subcloning 25, 27, 26, 24, 28, 23, 22, 29, 20, 21, 19, 18, 30, 17, 16, 10
Shortened Llama 10, 09, 11, 08, 26, 25, 12, 24, 22, 23, 14, 28, 06, 13, 19, 21

27

EvoPress: Accurate Dynamic Model Compression via Evolutionary Search

0 5 10 15 20 25 30
Depth

0

1

2
Su

bb
lo

ck
s D

ro
pp

ed
4 Blocks Dropped

Llama-2-7B
Llama-3-8B
Mistral-7B-v0.3

0 5 10 15 20 25 30
Depth

0

1

2

Su
bb

lo
ck

s D
ro

pp
ed

8 Blocks Dropped
Llama-2-7B
Llama-3-8B
Mistral-7B-v0.3

0 5 10 15 20 25 30
Depth

0

1

2

Su
bb

lo
ck

s D
ro

pp
ed

12 Blocks Dropped
Llama-2-7B
Llama-3-8B
Mistral-7B-v0.3

0 5 10 15 20 25 30
Depth

0

1

2

Su
bb

lo
ck

s D
ro

pp
ed

16 Blocks Dropped
Llama-2-7B
Llama-3-8B
Mistral-7B-v0.3

Figure 9. Optimal removal configurations identified by EvoPress for different models.

D.4. Correlation of Scores with Perplexity

In this experiment, we first calculated the cosine similarity and squared error for each block by comparing activations before
and after the block. Next, we randomly removed subsets of blocks (excluding the first and last two) and for each configuration,
computed the average cosine similarity and squared error. The results are shown in Figure 11. Initially, the average squared
error exhibited a negative correlation, as the ℓ2-norm of the activations increased with depth. This led to configurations
with early blocks removed having small average error. To mitigate this, we normalized the activations prior to computing
the squared error, which significantly improved the correlation, resulting in performance comparable to cosine similarity.
However, as sparsity increased, the correlation degraded significantly for both methods, offering insight into why removal
techniques based on scoring fail even at moderate levels of sparsity. Meanwhile, when removing only a small number of
blocks, the average perplexity when removing each block separatly is a strong predictor of the performance after removing an
entire set of blocks, as depicted in Figure 10. We conclude that error monotonicity holds at smaller compression levels, but de-
cays rapidly at medium sparsity. The experiments were done using 131,072 tokens from the Fineweb-Edu calibration dataset.

28

EvoPress: Accurate Dynamic Model Compression via Evolutionary Search

Figure 10. Effect of removing random subsets of 2, 4, and 6 blocks for Llama-3-8B. The x-axis depicts the average perplexity when
removing each block separately, while the y-axis depicts the perplexity after removing the entire set of blocks. Error monotonicity holds
for smaller compression levels, but decays with increasing sparsity.

8.8 9.0 9.2 9.4
Average Perplexity

10

11

12

13

Pe
rp

le
xi

ty

Llama-3-8B - 2 Blocks Dropped

9.0 9.2 9.4
Average Perplexity

15

20

25

Pe
rp

le
xi

ty

Llama-3-8B - 4 Blocks Dropped

9.0 9.1 9.2 9.3 9.4 9.5
Average Perplexity

20

40

60

80

100

Pe
rp

le
xi

ty

Llama-3-8B - 6 Blocks Dropped

0.82 0.84 0.86 0.88 0.90 0.92
Average Cosine Similarity

102

Pe
rp

le
xi

ty

Llama-3-8B - 8 Blocks Dropped

0.84 0.85 0.86 0.87 0.88 0.89 0.90 0.91
Average Cosine Similarity

102

103

Pe
rp

le
xi

ty

Llama-3-8B - 10 Blocks Dropped

0.84 0.86 0.88 0.90 0.92
Average Cosine Similarity

102

103

Pe
rp

le
xi

ty

Llama-3-8B - 12 Blocks Dropped

80 100 120 140 160 180
Average Squared Error

102

Pe
rp

le
xi

ty

Llama-3-8B - 8 Blocks Dropped

100 120 140 160 180
Average Squared Error

102

103

Pe
rp

le
xi

ty

Llama-3-8B - 10 Blocks Dropped

90 100 110 120 130 140 150 160
Average Squared Error

102

103

Pe
rp

le
xi

ty

Llama-3-8B - 12 Blocks Dropped

11 12 13 14 15 16
Average Squared Error (normalized)

102

Pe
rp

le
xi

ty

Llama-3-8B - 8 Blocks Dropped

12 13 14 15
Average Squared Error (normalized)

102

103

Pe
rp

le
xi

ty

Llama-3-8B - 10 Blocks Dropped

11 12 13 14 15
Average Squared Error (normalized)

102

103

Pe
rp

le
xi

ty

Llama-3-8B - 12 Blocks Dropped

Figure 11. Effect of removing random subsets of 8, 10, and 12 blocks for Llama-3-8B. The x-axis depicts the average cosine similarity
(first row), average squared error (second row), and the average squared error after normalization (third row) when removing each block
separately, while the y-axis depicts the perplexity after removing the entire set of blocks. Error monotonicity breaks at medium sparsity
rates, providing an explanation for the failure of scoring-based methods at these sparsity levels.

29

EvoPress: Accurate Dynamic Model Compression via Evolutionary Search

E. Additional Unstructured Sparsity Results
E.1. 50% and 60% Sparsity

In the main text, we focused on results at 70% sparsity, where the performance differences are more pronounced. However,
since 50% and 60% sparsity levels are more practical and frequently referenced in the literature, we present the corresponding
results in Tables 14 and 15. We have also included Llama-2-7B in these tables for legacy purposes. Even at these lower
sparsity levels, EvoPress demonstrates significant improvements over uniform sparsity and consistently outperforms OWL.

Table 14. Performance of various sparsity profiles at 50% sparsity.

Model Method Wiki2↓ C4↓ ArcC↑ ArcE↑ HS↑ PiQA↑ WG↑ Avg↑

Mistral-7B-v0.3

Dense 4.82 7.72 48.9 79.6 60.9 80.3 73.9 68.7

Uniform 5.68 8.93 43.7 76.7 55.7 78.4 71.0 65.1
OWL 5.69 8.94 43.9 76.9 55.4 78.5 70.3 65.0

EvoPress 5.49 8.70 45.7 77.3 56.5 78.9 71.2 65.9

Llama-2-7B

Dense 5.12 6.93 43.4 76.3 57.1 78.1 69.0 64.8

Uniform 6.40 8.87 41.3 73.4 52.8 75.7 68.8 62.4
OWL 6.38 8.77 41.1 73.2 53.2 76.5 70.2 62.9

EvoPress 6.22 8.52 41.5 74.2 54.0 76.7 69.6 63.2

Llama-3-8B

Dense 5.54 7.10 50.4 80.1 60.2 79.7 72.6 68.6

Uniform 8.05 13.07 43.6 75.7 54.2 76.1 71.7 64.3
OWL 8.13 13.12 43.8 75.8 54.0 75.7 72.2 64.3

EvoPress 7.63 12.53 43.9 77.5 54.5 76.8 72.2 65.0

Llama-3.1-8B

Dense 5.61 8.90 51.2 81.4 60.0 80.1 73.9 69.3

Uniform 8.06 13.03 44.5 76.7 54.0 76.7 71.5 64.7
OWL 8.02 12.99 44.2 76.5 53.8 76.8 72.5 64.8

EvoPress 7.51 12.31 46.6 77.7 54.9 77.6 71.7 65.7

30

EvoPress: Accurate Dynamic Model Compression via Evolutionary Search

Table 15. Performance of various sparsity profiles at 60% sparsity.

Model Method Wiki2↓ C4↓ ArcC↑ ArcE↑ HS↑ PiQA↑ WG↑ Avg↑

Mistral-7B-v0.3

Dense 4.82 7.72 48.9 79.6 60.9 80.3 73.9 68.7

Uniform 7.78 11.86 38.0 72.3 49.4 75.0 69.3 60.9
OWL 7.50 11.34 38.5 71.9 49.6 75.1 70.2 61.1

EvoPress 7.08 10.27 40.5 72.8 51.9 76.9 68.8 62.2

Llama-2-7B

Dense 5.12 6.93 43.4 76.3 57.1 78.1 69.0 64.8

Uniform 9.3 12.37 35.8 69.5 45.9 72.4 65.9 57.9
OWL 8.35 11.00 36.0 69.1 47.5 73.2 66.2 58.4

EvoPress 8.21 10.34 37.1 70.6 49.3 74.4 67.6 59.8

Llama-3-8B

Dense 5.54 7.10 50.4 80.1 60.2 79.7 72.6 68.6

Uniform 13.86 21.43 35.2 69.7 45.6 72.2 68.0 58.2
OWL 12.37 18.53 38.0 70.3 47.7 72.1 68.5 59.3

EvoPress 11.02 16.37 39.0 71.9 48.6 74.0 69.1 60.5

Llama-3.1-8B

Dense 5.61 8.90 51.2 81.4 60.0 80.1 73.9 69.3

Uniform 13.43 21.46 36.4 69.7 46.2 72.3 67.7 58.5
OWL 12.08 18.25 38.9 71.1 47.7 73.1 68.8 59.9

EvoPress 10.58 15.96 40.0 72.5 49.0 74.6 69.5 61.1

E.2. Sparsity Profiles

Below, we visualize sparsity profiles determined by EvoPress and baseline approaches. Notably, EvoPress prunes the initial
blocks less aggressively than the middle and later blocks. Additionally, the q proj projection attains higher sparsity levels,
whereas the v proj projection is pruned to significantly lower sparsity on average. Although Figure 12 may suggest that
OWL and EvoPress produce similar sparsity profiles, this is misleading – OWL enforces uniform sparsity at block level, as
their original per-layer approach underperformed (Yin et al., 2024).

0 5 10 15 20 25 30
Depth

0.55

0.60

0.65

0.70

0.75

0.80

Sp
ar

sit
y

EvoPress
OWL
uniform

Figure 12. Comparison of different block-level sparsity profiles
for Llama-3.1-8B at 70% sparsity.

q_proj k_proj v_proj o_proj gate_proj up_proj down_proj0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Av
er

ag
e

sp
ar

sit
y

Figure 13. Average sparsity per projection type for Llama-3.1-8B
at 70% sparsity for EvoPress.

F. Additional Quantization Results
F.1. 2.25 Bit and 2.5 Bit

In addition to the 3 bit results presented in Section 4.3, we further evaluated EvoPress under extreme quantization conditions,
specifically testing it at 2.25 bit and 2.5 bit levels. As a baseline, we generated 32 random configurations combining 2
bit and 3 bit layers and selected the best performing setup. The results, as shown in Table 16, demonstrate that EvoPress
significantly outperforms this baseline, highlighting its ability to achieve extreme quantization levels.

31

EvoPress: Accurate Dynamic Model Compression via Evolutionary Search

Table 16. Performance of EvoPress on 2.25 bit and 2.5 bit quantization.
Model # Bits Method Wiki2↓ C4↓ ArcC↑ ArcE↑ HS↑ PiQA↑ WG↑ Avg↑

Mistral-7B-v0.3

2.25 Best of 32 11.53 18.32 30.1 59.6 44.5 69.4 56.8 52.1
EvoPress 8.63 13.47 36.2 66.0 49.3 74.2 63.5 57.8

2.5 Best of 32 7.50 11.76 37.0 68.0 51.7 75.0 63.5 59.0
EvoPress 6.60 10.40 39.8 71.7 54.0 77.1 65.8 61.7

Llama-2-7B

2.25 Best of 32 13.18 18.19 24.8 50.2 40.3 66.8 56.1 47.7
EvoPress 9.82 9.93 29.5 61.8 46.2 70.3 59.4 53.4

2.5 Best of 32 9.42 9.01 29.1 58.6 46.9 70.1 62.6 53.5
EvoPress 8.03 7.33 35.3 68.4 50.8 73.9 64.2 58.5

Llama-3-8B

2.25 Best of 32 149.85 432.96 21.2 29.1 28.1 55.6 49.8 36.8
EvoPress 23.93 43.17 23.6 46.9 39.3 63.6 56.5 46.0

2.5 Best of 32 21.65 23.92 25.1 47.6 41.2 65.6 56.2 47.1
EvoPress 13.93 18.15 31.7 61.5 47.9 71.7 64.3 55.4

Llama-3.1-8B

2.25 Best of 32 259.61 181.36 20.7 31.9 30.6 57.0 51.9 38.4
EvoPress 22.75 33.58 26.7 48.9 40.2 63.4 55.7 47.0

2.5 Best of 32 35.33 37.09 24.1 48.4 41.7 62.7 54.5 46.3
EvoPress 11.73 19.03 32.2 63.3 47.5 71.8 62.3 55.4

Phi-3-Medium

2.25 Best of 32 14.20 18.19 28.9 46.8 40.0 61.8 53.1 46.1
EvoPress 10.48 14.60 36.2 62.0 46.6 66.2 55.6 53.3

2.5 Best of 32 8.26 12.65 40.5 69.3 50.3 70.9 61.9 58.6
EvoPress 7.12 11.23 44.1 75.9 54.1 73.5 64.6 62.4

F.2. Practical Convergence

Similar to unstructured sparsity, EvoPress also demonstrates rapid convergence when applied to quantization. As shown in
Figure 14, the majority of improvements occur within two GPU hours, with full convergence achieved after approximately
eight GPU hours. If needed, this optimization time could be further shortened by tuning the hyperparameters, similarly
to the “super-fast” version for unstructured sparsity discussed in Section 4.2. However, we observed that the convergence
dynamics are less smooth compared to unstructured sparsity, likely due to the limited number of quantization levels available
(practically only 2, 3, and 4 bit are used), which results in a less smooth fitness landscape.

0 20 40 60 80 100 120 140
Generation

20

40

60

80

100

120

Pe
rp

le
xi

ty GPU Hour (RTX 3090)

Perplexity (Test)
KL-Divergence (Train)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

KL
-D

iv
er

ge
nc

e

Llama-3.1-8B - 2.25 bit

0 25 50 75 100 125 150
Generation

9.5

10.0

10.5

11.0

11.5

Pe
rp

le
xi

ty

GPU Hour (RTX 3090)

Perplexity (Test)
KL-Divergence (Train)

0.175

0.200

0.225

0.250

0.275

0.300

0.325

KL
-D

iv
er

ge
nc

e

Llama-3-8B - 3 bit

Figure 14. Convergence of EvoPress for 2.25 bit quantization on Llama-3.1-8B (left) and 3 bit quantization on Llama-3-8B (right).

F.3. Quantization Profiles

In this section, we visualize a quantization profile determined by EvoPress. As shown, EvoPress maintains a relatively
uniform quantization bitwidth allocation across the model. Interestingly, while the second and the two last blocks are less
compressed, the first block undergoes significantly higher compression. This suggests that “saliency” does not directly

32

EvoPress: Accurate Dynamic Model Compression via Evolutionary Search

equate to block importance but rather depends on the specific compression method used. Additionally, similar to the profiles
for unstructured sparsity, we observe a transfer of capacity to v proj.

0 5 10 15 20 25 30
Depth

2.8

2.9

3.0

3.1

3.2

3.3

Bi
ts

EvoPress
uniform

Figure 15. Block-level quantization profiles for Llama-3.1-8B
at 3 bit compression on average.

q_proj k_proj v_proj o_proj gate_proj up_proj down_proj2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

Av
er

ag
e

bi
tw

id
th

Figure 16. Average bitwidth per projection type for Llama-3.1-
8B at 3 bit compression on average.

G. Running Time Comparisons
In our main results, we did not include a stopping criteria into the optimization process, but instead continued the search
well beyond convergence to observe the convergence behavior. Here, we include a simple stopping criteria to our search,
which terminates the search whenever the perplexity on the training set has not improved in the last 20 generations. Based
on this version we compare the runtime requirements of EvoPress with baseline methods. However, it should be noted that
the amount of data used impacts both runtime and compression quality (with specific trade-offs being method-dependent),
meaning one can generally trade-off both objectives, which makes runtime comparison difficult.

In Table 17 we compare EvoPress for block dropping to various baseline methods on Llama-2-7B, where we, additionally to
the main results, also compare against the iterative search methods BlockPruner (Zhong et al., 2024) and SLEB (Song et al.,
2024). As the results show, EvoPress achieves the best compressed models across all sparsity ratios, while being quicker
than other search methods. Scoring-based methods are considerably faster than the search-based methods, but produce
significantly worse models.

In Table 18 we provide a comparison of EvoPress with BESA (Xu et al., 2024), a method for non-uniform sparsity allocation.
BESA performs gradient-descent based search for rowwise sparsity allocation using straight-through-estimation (Bengio
et al., 2013), with uniform sparsity on a per-block level. Therefore, both methods are not fully comparable, as EvoPress
searches for layerwise sparsities globally (across the entire model, not just blockwise), while keeping per-row sparsities
uniform. We demonstrate that both methods are complementary by performing a two-stage search, first, for blockwise
sparsities using EvoPress, then, for rowwise sparsities with fixed per-block sparsity using BESA. This merged version
produces best results on 50% and 60% sparsity, while it performs slightly worse than pure EvoPress on 70% sparsity. For a
fair comparison, we search on top of a Wanda (Sun et al., 2024) layer database for all methods. The runtime requirements
for both BESA and EvoPress are similar, as there is an additional hyperparameter sweep for BESA, which is not provided in
the author’s implementation (authors provide tuned coefficients). Similarly, we have not included OWL in this comparison,
as the authors have not provided instructions on how hyperparameters were obtained.

33

EvoPress: Accurate Dynamic Model Compression via Evolutionary Search

Table 17. Comparison of various depth pruning methods at different sparsities. We report the runtime on a single NVIDIA RTX 4090
GPU. Note that some methods perform forward passes on a strongly depth-pruned model, which explains the runtime difference for
EvoPress on 50% and 12.5% sparsity.

Sparsity Method Fineweb↓ Wiki2↓ C4↓ Runtime Fwd. Passes (Tokens)

0% - 6.40 5.12 6.99 - -

12.5% ShortGPT 9.30 8.86 10.78 46s 65K
12.5% Cosine Similarity (Window) 8.51 7.53 9.82 46s 65K
12.5% Weight Subcloning 9.60 9.09 11.06 49s 65K
12.5% ShortenedLlama 8.57 7.68 10.44 8min 2.1M
12.5% SLEB 7.71 6.51 8.78 70min 18.8M
11.4% BlockPruner 7.88 7.88 8.86 100min 26.6M
12.5% EvoPress 7.61 6.41 8.67 58min 12.4M

25% ShortGPT 21.16 23.41 30.30 44s 65K
25% Cosine Similarity (Window) 17.37 16.60 21.04 46s 65K
25% Weight Subcloning 21.16 23.41 30.30 49s 65K
25% ShortenedLlama 11.81 13.86 14.08 8min 2.1M
25% SLEB 10.21 9.45 12.03 122min 35.2M
25% BlockPruner 11.31 12.49 13.32 152min 42.8M
25% EvoPress 10.06 10.31 11.99 44min 10.0M

37.5% ShortGPT 54.07 70.94 63.51 44s 65K
37.5% Cosine Similarity (Window) 151.10 192.07 212.60 45s 65K
37.5% Weight Subcloning 54.07 70.94 63.51 49s 65K
37.5% ShortenedLlama 20.37 35.37 26.07 8min 2.1M
37.5% SLEB 17.29 19.57 20.91 159min 49.1M
36.4% BlockPruner 19.41 28.75 22.44 185min 54.8M
37.5% EvoPress 16.09 17.44 19.87 53min 19.7M

50% ShortGPT 180.51 226.14 171.04 44s 65K
50% Cosine Similarity (Window) 3611.06 4570.15 2876.83 45s 65K
50% Weight Subcloning 180.51 226.14 141.04 49s 65K
50% ShortenedLlama 68.79 145.78 87.40 8min 2.1M
50% SLEB 51.30 117.21 58.56 184min 60.1M

48.9% BlockPruner 52.28 97.23 60.47 208min 64.9M
50% EvoPress 34.20 47.15 40.10 31min 12.4M

34

EvoPress: Accurate Dynamic Model Compression via Evolutionary Search

Table 18. Comparison of EvoPress with uniform pruning and BESA on Llama-2-7B. Both EvoPress as well
as BESA (layerwise) operate on a layer database generated via Wanda. BESA (rowwise) additionally learns
per-output-channel sparsities, which target a different dimension of the compression space than EvoPress’s
layerwise allocation. EvoPress+BESA applies BESA using the average per-block sparsities found from
running EvoPress, showing that both methods can work complementary. Here, we use the lightweight version
of EvoPress with early stopping.

Sparsity Method Non-Uniformity Fineweb↓ Wiki2↓ C4↓ Runtime

50.00 Uniform N/A 7.60 6.41 8.97 -
49.79 BESA Layerwise 7.55 6.32 8.93 16min*
50.00 EvoPress Layerwise 7.48 6.28 8.79 87min
49.70 BESA Rowwise 7.39 6.19 8.72 33min*
49.72 EvoPress+BESA Rowwise 7.37 6.16 8.71 120min

60.00 Uniform N/A 10.22 9.56 12.95 -
59.46 BESA Layerwise 9.82 8.80 12.38 16min*
58.91 EvoPress Layerwise 8.75 8.03 11.94 102min
59.99 EvoPress Layerwise 9.01 8.66 10.96 94min
58.90 BESA Rowwise 9.15 8.11 11.88 33min*
59.12 EvoPress+BESA Rowwise 8.59 7.58 10.58 135min*

70.00 Uniform N/A 64.02 136.53 97.53 -
69.97 BESA Layerwise 52.65 66.51 67.58 16min*
68.52 EvoPress Layerwise 13.53 15.61 16.90 111min
69.99 EvoPress Layerwise 15.55 24.04 19.54 120min
68.51 BESA Rowwise 16.53 17.79 24.09 33min*
68.03 EvoPress+BESA Rowwise 13.83 14.19 19.52 144min*

• Sparsity values in red are more than 0.5% below the target. They are a result of BESA only enforcing a
soft constraint on the effective sparsity.

* BESA runtimes do not include the hyperparameter sweep over ‘-d-coef‘.

35

