
Published at the ICLR 2024 Workshop on Practical ML for Low Resource Settings(PML4LRS)

ADVANCING ENTERPRISE SPATIO-TEMPORAL FORE-
CASTING APPLICATIONS: DATA MINING MEETS IN-
STRUCTION TUNING OF LANGUAGE MODELS FOR
MULTI-MODAL TIME SERIES ANALYSIS IN LOW-
RESOURCE SETTINGS

Sagar Srinivas Sakhinana∗
sagar.sakhinana@tcs.com
TCS Research

Geethan Sannidhi
geethan.iiitp.ac.in
IIIT Pune

Chidaksh Ravuru
200010046@iitdh.ac.in
IIT Dharwad

Venkataramana Runkana
venkat.runkana@tcs.com
TCS Research

ABSTRACT
Spatio-temporal forecasting is crucial in transportation, logistics, and supply chain
management. However, current methods struggle with large, complex datasets.
We propose a dynamic, multi-modal approach that integrates the strengths of tra-
ditional forecasting methods and instruction tuning of small language models for
time series trend analysis. This approach utilizes a mixture of experts (MoE) ar-
chitecture with parameter-efficient fine-tuning (PEFT) methods, tailored for con-
sumer hardware to scale up AI solutions in low resource settings while balancing
performance and latency tradeoffs. Additionally, our approach leverages related
past experiences for similar input time series to efficiently handle both intra-series
and inter-series dependencies of non-stationary data with a time-then-space mod-
eling approach, using grouped-query attention, while mitigating the limitations of
traditional forecasting techniques in handling distributional shifts. Our approach
models predictive uncertainty to improve decision-making. Our framework en-
ables on-premises customization with reduced computational and memory de-
mands, while maintaining inference speed and data privacy/security. Extensive
experiments on various real-world datasets demonstrate that our framework pro-
vides robust and accurate forecasts, significantly outperforming existing methods.

1 INTRODUCTION
Multivariate time series forecasting (MTSF) has many applications, but it faces challenges such
as complex relationships between time series variables, non-linearity, sparsity, and non-stationarity.
Spatio-temporal graph neural networks (STGNNs) improve forecast accuracy by modeling temporal
dependencies within variables and interdependencies between variables. STGNNs utilize both ex-
plicit relationships based on predefined graphs provided by domain expert knowledge and implicit
relationships derived from data-driven relational inference methods. While ‘Human-in-the-loop’
STGNNs Yu et al. (2017); Li et al. (2017); Guo et al. (2020) use prior knowledge in predefined
graphs, they do not take into account latent variable relationships underlying the substantial data.
On the other hand, ‘Human-out-of-the-loop’ STGNNs Deng & Hooi (2021); Wu et al. (2020); Kipf
et al. (2018) jointly infer variable dependency graph structures and learn spatio-temporal dynam-
ics from data, but they may underutilize expert-defined graphs, especially in noisy data scenarios,
which can impact forecasting performance. However, existing methods rely on fixed historical win-
dow lengths that may not capture the diverse and complex time series patterns of varying lengths,
and lack reliable uncertainty estimates. TransformersVaswani et al. (2017), without a built-in bias
towards pairwise variable dependencies, provide greater flexibility in modeling long-range depen-
dencies beyond local spatial relationships, enabling the capture of global relationships. STGNNs
introduce a stronger spatio-temporal inductive bias, while Transformers provide enhanced repre-
sentational flexibility. Recent research indicates an opportunity to develop hybrid methods that
combine explicit domain knowledge in priori-known graph structures with data-driven relational

∗Corresponding author

1

Published at the ICLR 2024 Workshop on Practical ML for Low Resource Settings(PML4LRS)

learning, overcome the limitations of fixed-length window sequences by enabling the forecasting
methods to apply learned patterns across past observations, and provide probabilistic forecasts for
more accurate and reliable MTSF. In recent years, proprietary and closed-source large language
models (LLMs) such as GPT-4 OpenAI (2023) have revolutionized natural language processing by
achieving remarkable performance through pretraining on diverse and massive datasets. However,
their black-box nature hinders interpretability in applications. Open-source LLMs, such as Llama
2 Touvron et al. (2023), allow fine-tuning for domain-specific customization but require signifi-
cant computational resources. In contrast, smaller open-source models, like BERT Devlin et al.
(2018), are interpretable but may lack reasoning abilities compared to contemporary off-the-shelf
LLMs. Furthermore, integrating foundational LLMs with traditional forecasting methods remains
largely unexplored, yet it holds great promise for enhancing predictions. Adapting LLMs to gener-
ate natural language descriptions capturing time series trends and patterns, though unconventional,
offers a clear possibility for providing unique insights that complement and guide traditional fore-
casting techniques. However, sharing sensitive data with external proprietary LLM API services
raises concerns regarding data privacy, sovereignty, costs, and security and has limited ability to
customize them for specific needs. In this work, we introduce MultiTs Net, an innovative dy-
namic, multi-modal approach that combines prompt-based time series representation learning with
complementary instruction-tuning open-source language models for time series trend analysis, aim-
ing to enhance accurate time series forecasting. For an illustration of the proposed framework,
please refer to Figure 1. The key design methods include: (a) utilizing a flexible retrieval-based
prompt pool to integrate time series-specific knowledge and historical context relevant to the current
data distribution into traditional forecasting methods. (b) Instruction tuning of small-scale language
models for time series trend analysis to interpret and describe complex time series data. The prompt
design involves creating a shared pool of prompts stored as distinct key-value pairs. These prompts
are tailored to encode task-specific knowledge, such as trends or seasonality relevant to different
time periods. The framework uses these prompts to recognize and apply learned patterns to guide its
predictions for each time series instance through transfer learning. Our framework leverages related
past experiences, where similar input time series instances retrieve the same group of prompts from
the pool, enhancing efficiency and predictive performance. This approach is particularly suited for
overcoming fixed-window size limitations by handling the typically nonstationary nature of real-
world time series data with distributional shifts. The traditional representation learning method cap-
tures the full spectrum of both intra- and inter-series dependencies underlying the time series data
by implementing a time-then-space modeling approachGao & Ribeiro (2022), focusing on tempo-
ral dynamics before learning spatial dependencies. We utilize a grouped-query attention mecha-
nismAinslie et al. (2023) to learn long-range temporal dependencies. The spatial learning method
includes: (i) Graph Chebyshev convolutions to leverage explicit prior knowledge of domain expert-
based pairwise variable dependencies. (ii) Utilizing grouped-query attention with no graph spatial
priors to learn all pairwise variable dependencies, enhancing the understanding of long-range spatial
dependencies. We perform a convex combination through a gating mechanism to compute accurate
latent representations of the complex non-linear spatial dynamics of the time series data, which im-
proves forecasting accuracy. We utilize a large-scale open-source LLM, such as ‘llama2 70B 4k,’
to generate instruction-following data consisting of pairs of time-series data and the correspond-
ing natural language descriptions that encapsulate insights into time-series trends and patterns. We
employ the Mixture of Parameter-Efficient Experts (MoPEs) with Low-Rank Adaptation (LoRA)
technique for on-premises instruction-tuning of small-scale decoder-only language models, such as
‘llama2 7B 4k,’ using this machine-generated data to customize them for time-series trend analysis
for enterprise adoption to complement traditional forecasting methods. In addition, the framework
models predictive uncertainty to assist decision-making. In summary, our proposed framework inte-
grates open-source large and small-scale language models with traditional time series representation
learning methods by dynamically adapting to the evolving nature of non-stationary time series data
distributions to provide robust and accurate forecasts. It offers a secure and affordable solution to
run on consumer-grade hardware within their infrastructure, enhancing data privacy and reducing
costs, thereby enabling the realization of the benefits of language models for time series analysis
while addressing key adoption barriers. For more information on the proposed framework, refer to
Section5.1 in the technical appendix.
2 PROBLEM DEFINITION
Our study focuses on a dynamic system with N sensors collecting sequential data over T time
intervals across F features, forming a spatio-temporal matrix X ∈ RN×T×F . These features include
traffic attributes, such as speed, flow, and density. We denote the historical data for each sensor as

2

Published at the ICLR 2024 Workshop on Practical ML for Low Resource Settings(PML4LRS)

Xi ∈ RT×F , and the data for all sensors at each time step as Xt ∈ RN×F . To improve our
framework’s ability to adapt to traffic patterns, we apply a sliding window technique to segment
the historical data into overlapping, consecutive samples Xt−W :t−1 ∈ RN×W×F , where W is the
window size over past observations. We focus on a single feature, specifically, F = 1, to accurately
predict future traffic flow, allowing for consistent comparison with baseline models. Our neural
network model, denoted as Θ, aims to forecast traffic data for the upcoming ν steps into the future,
represented as St+1 = Xt:t+ν−1, based on past observations, which are denoted as St = Xt−W :t−1.
We train the framework using a mean absolute error (MAE) loss function as follows,

L(Θ) =
1

|ν|
|Ŝt+1 − St+1|

where Ŝt+1 denote the framework predictions.

Windowed Time
Series

 Pointwise Forecasts

P
ro

je
ct

io
n

 L
ay

er

 C
ro

ss
-M

o
d

al
 F

u
si

o
nShared

Prompt Pool
Temporal

Dependencies
Spatial

Dependencies

LM

Attention
PoolingLL

M Instruction-Tuning
with LoRA-MoPEs

Figure 1: The figure above illustrates our proposed comprehensive framework that synergizes three
core strategies for advanced time series analysis. First, it employs a dynamic prompting mecha-
nism that leverages historical learned patterns to adapt to emerging trends and capture dependencies
both within and across time series to compute context-aware time series embeddings. Second, it
fine-tunes a smaller language model using instruction-following data generated by larger models for
time series trend analysis, yielding text-level embeddings that encapsulate these patterns. Lastly, it
integrates these diverse, complementary cross-modal embeddings, offering accurate forecasts and
improved generalization and scalability for practical forecasting applications. The model architec-
ture is explained in great detail in Section5.1. Refer to the technical appendix for more information.

3 EXPERIMENTS AND RESULTS
Dataset Nodes Timesteps Time-Range Data Split Granularity
PeMSD3 358 26,208 09/2018 - 11/2018

6 / 2 / 2 5
m

ins

PeMSD4 307 16,992 01/2018 - 02/2018
PeMSD7 883 28,224 05/2017 - 08/2017
PeMSD8 170 17,856 07/2016 - 08/2016

PeMSD7(M) 228 12,672 05/2012 - 06/2012
METR-LA 207 34,272 03/2012 - 06/2012

7 / 1 / 2
PEMS-BAY 325 52,116 01/2017 - 05/2017

Table 1: The table provides a comprehensive overview of the benchmark traffic datasets used for the
MTSF task, highlighting the timesteps, time range, train/validation/test split.
3.1 DATASETS

The study focuses on evaluating two frameworks: MultiTs Net and its variant w/Unc-MultiTs
Net, using large-scale spatial-temporal traffic datasets (PeMSD3, PeMSD4, PeMSD7, PeMSD7(M),
PeMSD8) from the Caltrans Performance Measurement System (PeMS)Chen et al. (2001). PeMS
provides critical real-time and historical traffic data for California’s freeways, aiding in traffic man-
agement, monitoring, and analysis. Our study converts 30-second interval data into 5-minute av-
erages, following previous research methodsChoi et al. (2022), and also uses additional traffic flow
datasets (METR-LA and PEMS-BAY)Li et al. (2018) converted into the same format. This approach
allows for a consistent data format, enhancing the study’s ability to analyze and model complex
spatial-temporal data, and demonstrate superior performance over existing methodologies. Table 1
summarizes details about the benchmark datasets used in this study.
3.2 EXPERIMENTAL SETUP

In our study, we divided traffic-related datasets (PEMS-BAY and METR-LA) into three parts: train-
ing (70%), validation (10%), and testing (20%). Other datasets followed a 60%/20%/20% split. Be-
fore training, we standardized all time-series variables to a zero mean and unit variance. The models

3

Published at the ICLR 2024 Workshop on Practical ML for Low Resource Settings(PML4LRS)

were assessed using Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Mean
Absolute Percentage Error (MAPE), calculated on the original scale of data. Key hyperparameters
included: window size (W = 12), prompt pool size (M = 15), and embedding dimension (d = 64).
The Grouped-query multi-head attention (GQ-MHA) parameters included the number of groups (g
= 3), attention heads (H = 4), and key/value/query dimensions (dh = 16), balancing model accuracy
and efficiency. Our MultiTs Net framework was trained over 30 epochs with a batch size of 48,
employing early stopping based on Validation MAE to prevent overfitting. A learning rate scheduler
and the Adam optimizer were used for efficient training, with the initial rate set at 1e-3. Training
involved powerful NVIDIA Tesla V100 GPUs and multiple experimental runs, reporting ensemble
averages for model performance evaluation. We minimized MAE loss for MultiTs Net and Gaus-
sian negative log-likelihood loss for its variant w/Unc-MultiTs Net. For instruction-tuning the
Llama2-7B model involved utilizing the MoPEs technique with key hyperparameters: rank (r = 16),
controlling model capacity; alpha (α = 1

16 , a fraction of the rank), determining parameter update
magnitude; and a LoRA dropout rate (0.05) for generalization. Training settings included a batch
size of 16 per GPU, 15 epochs, an initial learning rate of 2e-4, weight decay of 0.001, the AdamW
optimizer, and 8-bit quantization via MoPEs for efficiency. The focus was on supervised training
to minimize the cross-entropy loss aiming to minimize cross-entropy loss by correlating time series
data with textual descriptions using Nvidia V100 GPUs and the PyTorch library.

Methods PeMSD3 PeMSD4 PeMSD7 PeMSD8 PeMSD7(M)
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

HA 31.58 52.39 33.78 38.03 59.24 27.88 45.12 65.64 24.51 34.86 59.24 27.88 4.59 8.63 14.35
ARIMA 35.41 47.59 33.78 33.73 48.80 24.18 38.17 59.27 19.46 31.09 44.32 22.73 7.27 13.20 15.38

VAR 23.65 38.26 24.51 24.54 38.61 17.24 50.22 75.63 32.22 19.19 29.81 13.10 4.25 7.61 10.28
FC-LSTM 21.33 35.11 23.33 26.77 40.65 18.23 29.98 45.94 13.20 23.09 35.17 14.99 4.16 7.51 10.10

TCN 19.32 33.55 19.93 23.22 37.26 15.59 32.72 42.23 14.26 22.72 35.79 14.03 4.36 7.20 9.71
TCN(w/o causal) 18.87 32.24 18.63 22.81 36.87 14.31 30.53 41.02 13.88 21.42 34.03 13.09 4.43 7.53 9.44

GRU-ED 19.12 32.85 19.31 23.68 39.27 16.44 27.66 43.49 12.20 22.00 36.22 13.33 4.78 9.05 12.66
DSANet 21.29 34.55 23.21 22.79 35.77 16.03 31.36 49.11 14.43 17.14 26.96 11.32 3.52 6.98 8.78
STGCN 17.55 30.42 17.34 21.16 34.89 13.83 25.33 39.34 11.21 17.50 27.09 11.29 3.86 6.79 10.06
DCRNN 17.99 30.31 18.34 21.22 33.44 14.17 25.22 38.61 11.82 16.82 26.36 10.92 3.83 7.18 9.81

GraphWaveNet 19.12 32.77 18.89 24.89 39.66 17.29 26.39 41.50 11.97 18.28 30.05 12.15 3.19 6.24 8.02
ASTGCN(r) 17.34 29.56 17.21 22.93 35.22 16.56 24.01 37.87 10.73 18.25 28.06 11.64 3.14 6.18 8.12
MSTGCN 19.54 31.93 23.86 23.96 37.21 14.33 29.00 43.73 14.30 19.00 29.15 12.38 3.54 6.14 9.00
STG2Seq 19.03 29.83 21.55 25.20 38.48 18.77 32.77 47.16 20.16 20.17 30.71 17.32 3.48 6.51 8.95
LSGCN 17.94 29.85 16.98 21.53 33.86 13.18 27.31 41.46 11.98 17.73 26.76 11.20 3.05 5.98 7.62

STSGCN 17.48 29.21 16.78 21.19 33.65 13.90 24.26 39.03 10.21 17.13 26.80 10.96 3.01 5.93 7.55
AGCRN 15.98 28.25 15.23 19.83 32.26 12.97 22.37 36.55 9.12 15.95 25.22 10.09 2.79 5.54 7.02
STFGNN 16.77 28.34 16.30 20.48 32.51 16.77 23.46 36.60 9.21 16.94 26.25 10.60 2.90 5.79 7.23
STGODE 16.50 27.84 16.69 20.84 32.82 13.77 22.59 37.54 10.14 16.81 25.97 10.62 2.97 5.66 7.36

Z-GCNETs 16.64 28.15 16.39 19.50 31.61 12.78 21.77 35.17 9.25 15.76 25.11 10.01 2.75 5.62 6.89
STG-NCDE 15.57 27.09 15.06 19.21 31.09 12.76 20.53 33.84 8.80 15.45 24.81 9.92 2.68 5.39 6.76
MultiTs Net 11.23 16.93 8.86 14.71 21.11 8.29 17.24 25.53 7.43 12.31 17.91 6.38 2.08 4.13 4.93

W/Unc-MultiTs Net 11.44 16.92 9.15 15.26 23.16 8.43 16.88 26.75 8.56 12.42 19.11 6.64 2.08 4.10 5.24

Table 2: The table shows the multi-metric error estimations for a 12-sequence-to-12-sequence fore-
casting task on the benchmark datasets, PeMSD3, PeMSD4, PeMSD7, PeMSD8, and PeMSD7(M).
A lower error indicates better model performance.
3.3 MULTISTEP FORECASTING RESULTS

Tables 2 and 3 compare two models, MultiTs Net and w/Unc-MultiTs Net, against various
baselines in the MTSF task. The baseline results are reported from earlier studiesChoi et al. (2022);
Wu et al. (2020). In a standard benchmark setting, we utilize historical data to predict estimates in
a popular 12-sequence-to-12-sequence forecasting task. It involves using 12 time steps of historical
data to forecast the value at the 12th future time step and then computing the forecasting errors.
Both the MultiTs Net and its variant with local uncertainty estimation, w/Unc-MultiTs Net,
demonstrate superior performance over the baselines. They achieve lower forecast errors and effec-
tively capture complex MTS data dynamics. However, w/Unc-MultiTs Net, despite providing
uncertainty estimates, slightly underperforms compared to MultiTs Net. Figure 3 shows the un-
certainty estimations on framework forecasts on the benchmark datasets. Our framework forecasts
consistently outperform baselines, as seen across all prediction horizons in Figure 2.
3.4 ABLATION STUDY RESULTS

The MultiTs Net is a unified framework designed to improve the accuracy and reliability of fore-
casting in multi-time series (MTS) data. An ablation study was conducted to evaluate the importance

4

Published at the ICLR 2024 Workshop on Practical ML for Low Resource Settings(PML4LRS)

of each component in the framework by testing various ablated variants (with specific components
disabled) on multiple datasets. The ablated variants that exclude the language model processing, dy-
namic prompting mechanism, intra-series dependencies, inter-series dependencies, and multi-modal
alignment method are labeled as proposed framework ‘w/o LLMs’, ‘w/o DP’, ‘w/o IntraS’, ‘w/o
InterS’, and ‘w/o MMA’ respectively; ‘w/o’ stands for ‘without’. The study found that removing
components significantly reduced performance, highlighting their importance. Table 4 shows the
ablation study results. In particular, the ablated variant lacking the multi-modal multi-head attention
mechanism (MMA) exhibited the highest error rates, emphasizing its crucial role. The increase in
error for the ‘w/o MMA’ ablated variant might be attributed to the oversimplified linear layer sub-
stituted to demonstrate MMA effectiveness. Variations in the performance of the ablated variants
across different datasets suggest that the complexity of each dataset uniquely affects the effective-
ness of each component.

Datasets Methods Horizon@3 Horizon@6 Horizon@12
RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

METR-LA

HA 10.00 4.79 11.70 11.45 5.47 13.50 13.89 6.99 17.54
VAR 7.80 4.42 13.00 9.13 5.41 12.70 10.11 6.52 15.80
SVR 8.45 3.39 9.30 10.87 5.05 12.10 13.76 6.72 16.70

FC-LSTM 6.30 3.44 9.60 7.23 3.77 10.09 8.69 4.37 14.00
DCRNN 5.38 2.77 7.30 6.45 3.15 8.80 7.60 3.60 10.50
STGCN 5.74 2.88 7.62 7.24 3.47 9.57 9.40 4.59 12.70

Graph WaveNet 5.15 2.69 6.90 6.22 3.07 8.37 7.37 3.53 10.01
ASTGCN 9.27 4.86 9.21 10.61 5.43 10.13 12.52 6.51 11.64
STSGCN 7.62 3.31 8.06 9.77 4.13 10.29 11.66 5.06 12.91
MTGNN 5.18 2.69 6.88 6.17 3.05 8.19 7.23 3.49 9.87
GMAN 5.55 2.80 7.41 6.49 3.12 8.73 7.35 3.44 10.07
DGCRN 5.01 2.62 6.63 6.05 2.99 8.02 7.19 3.44 9.73

MultiTs Net 3.81 1.89 4.54 5.95 2.94 7.15 6.92 3.33 9.47
w/Unc-MultiTs Net 3.95 1.96 4.69 6.17 3.17 7.27 6.96 3.42 9.54

PEMS-BAY

HA 4.30 1.89 4.16 5.82 2.50 5.62 7.54 3.31 7.65
VAR 3.16 1.74 3.60 4.25 2.32 5.00 5.44 2.93 6.50
SVR 3.59 1.85 3.80 5.18 2.48 5.50 7.08 3.28 8.00

FC-LSTM 4.19 2.05 4.80 4.55 2.20 5.20 4.96 2.37 5.70
DCRNN 2.95 1.38 2.90 3.97 1.74 3.90 4.74 2.07 4.90
STGCN 2.96 1.36 2.90 4.27 1.81 4.17 5.69 2.49 5.79

Graph WaveNet 2.74 1.30 2.73 3.70 1.63 3.67 4.52 1.95 4.63
ASTGCN 3.13 1.52 3.22 4.27 2.01 4.48 5.42 2.61 6.00
STSGCN 3.01 1.44 3.04 4.18 1.83 4.17 5.21 2.26 5.40
MTGNN 2.79 1.32 2.77 3.74 1.65 3.69 4.49 1.94 4.53
GMAN 2.91 1.34 2.86 3.76 1.63 3.68 4.32 1.86 4.37
DGCRN 2.69 1.28 2.66 3.63 1.59 3.55 4.42 1.89 4.43

MultiTs Net 1.55 0.78 1.55 2.36 1.15 2.21 2.86 1.59 2.91
w/Unc-MultiTs Net 1.64 0.81 1.56 2.48 1.22 2.33 3.06 1.62 3.14

Table 3: The table shows the forecast errors on METR-LA and PEMS-BAY datasets.

Model PeMSD3 PeMSD4 PeMSD7 PeMSD8 PeMSD7(M)
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

MultiTs Net 11.23 16.93 8.86 14.71 21.11 8.29 17.24 25.53 7.43 12.31 17.91 6.38 2.08 4.13 4.93
W/Unc-MultiTs Net 11.44 16.92 9.15 15.26 23.16 8.43 16.88 26.75 8.56 12.42 19.11 6.64 2.08 4.10 5.24

w/o LLMs 13.39 19.89 10.65 17.54 25.65 10.22 20.41 30.33 8.4 14.36 20.9 7.35 2.43 4.85 5.77
w/o DP 13.26 19.98 10.43 17.59 25.44 10.21 20.22 29.89 8.54 14.03 21.6 7.7 2.48 4.77 5.75

w/o IntraS 13.18 18.41 10.36 16.38 24.33 9.52 18.94 29.29 8.03 13.6 20.45 7.38 2.37 4.48 5.54
w/o w/o InterS 13.07 19.2 10.32 16.72 24.27 9.21 18.99 28.96 8.27 13.41 20.18 7.36 2.28 4.54 5.52

w/o CMA 15.02 22.07 11.41 19.13 27.71 10.9 21.25 33.84 9.57 15.57 22.91 8.19 2.6 5.14 6.42

Table 4: The table shows the ablation study results on the MTSF task using benchmark datasets.
Compared to the original MultiTS Net and W/Unc-MultiTSNet frameworks, the performance
of the ablated variants decreases.

4 CONCLUSION
We propose a dynamic, cost-effective, and privacy-conscious hybrid approach for multi-horizon
forecasting, specifically designed for private enterprise adoption. This approach integrates time se-
ries trend analysis using instruction-tuning of smaller language models with prompt-augmented,
time series representation learning. This combination enables accurate and reliable forecasts, even
in the presence of complex inter-variable relationships and non-stationarity. The method leverages

5

Published at the ICLR 2024 Workshop on Practical ML for Low Resource Settings(PML4LRS)

a blend of domain expert knowledge and data-driven insights to capture both explicit and implicit
variable dependencies, as well as long-range temporal dynamics through a time-then-space model-
ing approach. It overcomes limitations of traditional forecasting methods, such as fixed historical
window lengths, by adapting to the changing nature of time series data and being compatible with
consumer-grade hardware. Experiments validate the effectiveness of the hybrid method in improv-
ing forecast accuracy and quantifying uncertainty.

5 TECHNICAL APPENDIX
5.1 PROPOSED METHOD

5.1.1 MIXTURE OF PARAMETER-EFFICIENT EXPERTS
Low-Rank Adaptation (LoRA) Hu et al. (2022) is a parameter-efficient fine-tuning method for pre-
trained language models that does not increase inference latency. It enables efficient, task-specific
customization by incorporating a set of additional, lightweight trainable parameters into the exist-
ing architecture, of pretrained models, without modifying the original pretrained weights. Freezing
the original weights helps mitigate catastrophic forgetting by preserving the extensive knowledge
acquired by the pretrained models while learning new information. LoRA introduces a pair of
low-rank weight matrices, known as adapters, alongside the frozen pretrained weights to capture
task-specific information. Specifically, LoRA approximates the weight update of a linear layer as
follows: Y = (W0 +∆W)X = (W0 + αBA)X

where Y ∈ Rb×dout and X ∈ Rb×din are the output and input of a linear layer, respectively. din,
dout are the input and output dimensions, respectively, and b is the batch size. W0 ∈ Rdin×dout is
the pretrained weight matrix, ∆W is the low-rank approximation of the weight update, and α is a
scaling constant. B ∈ Rdin×r, A ∈ Rr×dout are projection-down and projection-up weight matri-
ces, respectively. For din = dout = d, the low-rank decomposition technique reduces the number of
trainable parameters from O(d2) to O(2dr), where r ≪ d, thus yielding substantial memory sav-
ings. The rank r is a key hyperparameter for effective fine-tuning of large pretrained models using
LoRA Hu et al. (2022) for niche tasks, impacting computational complexity and adaptability to new
tasks. However, LoRA suffers from high activation memory costs during task-specific adaptation,
which are comparable to full-parameter fine-tuning due to the need to store large input activations
(or intermediate outputs, like X ∈ Rb×din) for the computation of gradients of low-rank matrices
B and A during backpropagation. Current solutions include selective layer adaptation Hu et al.
(2022) or activation recomputation Chen et al. (2016), but these methods may impact performance.
In summary, vanilla LoRA enables efficient LLM adaptation through low-rank weight decomposi-
tion but faces challenges related to fine-tuning memory overhead. We further enhance the original
LoRA method by reducing the activation memory footprint further, without incurring extra com-
putational costs. We achieve this by freezing the projection-down weight B, while redefining the
projection-up weight A as the product of a pair of low-rank matrices, D and C, where D ∈ Rr× r

2

remains static, and C ∈ R r
2×d is updated during fine-tuning. This approach reduces trainable pa-

rameters and minimizes the size of input activations stored during fine-tuning, which are required
for backward propagation during gradient computation, all without adding inference latency. In
this approach, the input X ∈ Rb×din is initially mapped through B ∈ Rdin×r and D ∈ Rr× r

2 to
reduce its dimension to r

2 , before being projected back up through C. This approach significantly
reduces the activation memory requirements by limiting the storage of input activation to the out-
put of X transformed by matrix D, which is retained from the feed-forward pass to compute the
gradient of C during backward propagation. We start with B and D initialized from a normal dis-
tribution, and C set to zero, while keeping the adaptation weight matrix ∆W = BA = B(DC)
initially at zero. During fine-tuning, only C is updated, which limits weight updates to a reduced
column rank space (r2) defined by the output of D. In this work, we propose using a mixture of
parameter-efficient experts (MoPEsZadouri et al. (2023)) to synergistically combine the advantages
of applying a mixture of experts (MoEs) to parameter-efficient fine-tuning (PEFT) methods. This
results in a parameter-efficient adaptation of the MoE approach. The LoRA variant achieves pa-
rameter efficiency and activation memory reduction, and the MoE architecture utilizes specialized
experts (multiple LoRA variants) tailored for adapting to distinct aspects of the input data. With a
mixture of experts, each targeting specific patterns in the input data, MoPEs enable more efficient
fine-tuning of large pretrained models and enhance overall performance on complex tasks. MoPEs
represent a family of neural network architectures that enable conditional computation through mul-
tiple experts (LoRA variants), activated based on a gating mechanism (router R). We denote the
set of K experts as {C0 = E(X; θ0), . . . , CK = E(X; θK)}, where Ck is the k-th expert weight

6

Published at the ICLR 2024 Workshop on Practical ML for Low Resource Settings(PML4LRS)

matrix, learned during fine-tuning. Here, E represents a parameterized function, and θk denotes
the trainable parameters of expert k. The router R is typically another feed-forward network that
produces a k-dimensional vector indicating the routing probabilities for each expert. The output of
linear layer is computed as follows,

Y = (W0 +∆W)X = W0X +BD(CX), C =

K∑
k=1

R(X)kCk

Here, C represents a composite weight matrix obtained by combining the contributions of multiple
expert weight matrices, each weighted by its respective routing probability. We employ a top-k
routing strategy for soft merging, selecting only the top-k experts for computing the composite
matrix, thereby reducing computational complexity. Despite the conditional computation facilitated
by the MoPEs approach, the reduction in activation memory allows for an affordable fine-tuning
approach on consumer hardware.
5.1.2 FINE-TUNING SMALL-SCALE LMS

The Llama 2Touvron et al. (2023) is an advanced autoregressive, language-optimized transformer
architecture, fine-tuned using supervised fine-tuning (SFT) and reinforcement learning with human
feedback (RLHF) to align with human-centric values and preferences. It incorporates RMSNorm
pre-normalization, PaLM-inspired SwiGLU activation functions, and rotary positional embeddings.
Additionally, it utilizes a grouped-query attention mechanism, extending the input context length to
4096 tokens. The architecture consists of 32 layers and 32 attention heads, with a hidden size of
4096, and supports batch sizes of up to 32 for sequences up to 2048 tokens. We utilize zero-shot
prompting of the Llama2-70B model to generate training data for time series trend analysis, enabling
task-specific fine-tuning of smaller models. We perform instruction tuning on smaller models, such
as Llama2-7B through the Quantized MoPEs technique, using the machine-generated data men-
tioned earlier, to efficiently customize them for niche time series trend analysis through transfer
learning. This approach allows us to achieve both accuracy and efficiency comparable to that of
the larger model. We have integrated MoPEs modules into each linear layer of the grouped-query
attention layers in the Llama2-7B model architecture for efficient fine-tuning. Each layer typically
captures different aspects of language, with lower layers often capturing basic syntactic information
and higher layers capturing more complex semantic relationships, allowing for task-specific adap-
tation. Furthermore, the original weights of the Llama2-7B model hosted by Meta AI are in 16-bit
format to reduce memory usage. We also apply 8-bit quantizationDettmers et al. (2023) to further
compress the pretrained language model’s parameters, significantly reducing memory and com-
putational costs. We leverage paired input time series data and their corresponding Llama2-70B-
generated textual summaries to instruct-tune a smaller Llama2-7B model and minimize standard
cross-entropy loss to achieve similar performance with reduced resource consumption and increased
interpretability. The Llama2-7B model compute expressive token embeddings to encapsulate both
contextual information and semantic relationships between words or phrases. We freeze the fine-
tuned Llama2-7B model and use a downstream, forecasting task-based, differentiable softmax atten-
tion pooling mechanism to derive text-level embeddings, represented as Htext ∈ RN×W×d, across a
historical time window to compliment traditional forecasting method. Our innovative method aims
to demystify the ‘black-box’ nature of the Llama2-70B by generating instruction-following data,
thereby enhancing the Llama2-7B’s capabilities in interpreting and analyzing time series data with
increased precision and explainability through task-specific customization.
5.1.3 DYNAMIC PROMPTING MECHANISM DESIGN

We present a dynamic prompting mechanism designed to enhance the adaptability and accuracy of
traditional forecasting methods when dealing with complex time series data. The dynamic prompt-
ing mechanism consists of a predefined set of shared pools of prompts, stored as key-value pairs,
with each prompt associated with specific time series characteristics, such as periodic trends, sea-
sonality, cyclicality, and more. The prompting mechanism enables traditional methods to retrieve
relevant prompts based on the evolving nature of time series data and apply learned patterns for
forecasting tasks. This allows them to draw upon appropriate past knowledge and adapt to new,
similar time series trends or patterns, ultimately leading to improved forecast accuracy. Traditional
methods often struggle to adapt to dynamic, non-stationary data with distributional shifts. The abil-
ity to access and utilize the most relevant prompts from the shared pool to introduce appropriate
time-series-specific prior knowledge significantly improves upon traditional methods. The shared
pool of prompts encodes contextual information and insights learned from historical time series data
stored as key-value pairs (km, Vm) described as follows:

7

Published at the ICLR 2024 Workshop on Practical ML for Low Resource Settings(PML4LRS)

P = {(k1, V1) , (k2, V2) , · · · , (kM , VM)}
Where M represents the total number of prompts in this robust and representative set. Within this
set, denoted as K = {km}Mm=1, the key for each prompt is km ∈ Rd. Correspondingly, in the set
V = {Vm}Mm=1, each Vm ∈ RW×d represents the value of the prompt, characterized by a token
length W and an embedding dimension d. The initial time series data from each sensor, denoted as
St
i ∈ RW , is projected through a shared linear layer to d-dimensional space, resulting in transformed

data represented as St
i ∈ RW×d. The proposed method utilizes an additive attention mechanism to

calculate the relevance of each prompt to the current input time series data, enabling the selection
of the most pertinent prompts for dynamic adaptation. This approach ensures that the framework
can handle a wide spectrum of time series patterns, including those not encountered during training,
leading to more accurate predictions. For the additive attention mechanism, the relevance score
between the time series data St

i and a prompt key km is calculated using a score-matching function
computed as follows:

a(St
i,km) = W⊤

v tanh(WqS
t
i +Wkkm)

where Wq ∈ RW×d is the query weight matrix, Wk ∈ Rd×d is the key weight matrix, Wv ∈ Rd

is the trainable vector for computing the final score, and a : RW×d × Rd → R is the func-
tion mapping the input data and key to a relevance score. The score-matching function identifies
the most similar prompt keys and selects the corresponding prompt values, optimizing forecasts
with improved accuracy based on the retrieved prompts. The relevance score measures the signifi-
cance of a specific prompt for the current time series data, aiding the framework in identifying the
most relevant past knowledge. We retrieve the top-K corresponding prompt values for the input
data St

i and concatenate them to obtain the contextualized time series embedding for each sensor:
S̃t
i = [V1; · · · ;VK;St

i]Wo, where Wo is trainable weight matrix. Employing a diverse prompt
pool capturing diverse time series traits enables the forecasting framework to adapt to evolving re-
lationships, boosting accuracy and understanding of complex patterns. In the coming sections, we
effectively model both intra-series and inter-series dependencies in MTS data, leading to more ac-
curate and robust forecasting models.

5.1.4 MODELING INTRA-SERIES DEPENDENCIES

We model the dependencies within each individual time series to enhance pointwise forecasts. We
employ the Grouped-query multi-head attention (GQ-MHA) mechanism to capture non-linear, time-
evolving dependencies. Our approach involves projecting the time series embedding S̃t ∈ RN×W×d

for each of the N sensors into shared keys (Kg), shared values (Vg), and unique queries (Qg,h) for
each head(h) in the group(g), as follows:

Ki
g = S̃t

iWKg , i = 1, . . . , N

V i
g = S̃t

iWVg
, i = 1, . . . , N

Qi
g,h = S̃t

iWQg,h
, i = 1, . . . , N.

where the weight matrices WKg , WVg , and WQg,h
have dimensions Rd×d. Consequently, the di-

mensions of Ki
g , V i

g , and Qi
g,h for each sensor i are RW×d, respectively. The transformed time

series embeddings are computed using the scaled dot-product attention mechanism, as follows:

Attention(Qi
g,h,K

i
g, V

i
g) = softmax

(
Qi

g,h(K
i
g)

T

√
dk

)
V i
g

where dk = d
H is a scaling factor, and H is the total number of heads. We then perform aggregation

across heads and groups to synthesize a concise representation of the time series data for each sensor
as follows:

S̃t
i =

1

G

G∑
g=1

(Concat(Attention1, . . . ,AttentionH)Wo)

Here, Wo ∈ RHd×d. Understanding the internal dynamics of each time series can provide a strong
foundation for later exploring inter-series dependencies.

5.1.5 MODELING INTER-SERIES DEPENDENCIES

In highly intricate multivariate systems with intertwined dynamics, a hybrid approach that iteratively
learns both intra-series and inter-series dependencies might be the most effective way to adequately

8

Published at the ICLR 2024 Workshop on Practical ML for Low Resource Settings(PML4LRS)

capture the full complexity of multivariate data. We perform multi-task learning by jointly modeling
intra-series patterns and shared dependency patterns among multiple related time series to enhance
predictions. We utilize the Grouped-query multi-head attention mechanism (GQ-MHA) to learn and
understand the interdependencies among time series, aiming to enhance pointwise forecasts. Our
approach involves projecting the contextualized time series embedding, S̃t ∈ RN×W×d, to compute
the shared keys Kw

g , shared values V w
g , and unique query projections Qw

g,h for each window step
(w) and group (g) as follows:

Kw
g = S̃t

wWKg , w = 1, . . . ,W

V w
g = S̃t

wWVg , w = 1, . . . ,W

Qw
g,h = S̃t

wWQg,h
, w = 1, . . . ,W.

Here, WKg
, WVg

, and WQg,h
are weight matrices with dimensions Rd×d. The spatial attention

mechanism transformed time series embeddings are computed using a scaled dot-product attention
mechanism, as follows,

Attention(Qw
g,h,K

w
g , V w

g) = softmax

(
Qw

g,h(K
w
g)T

√
dk

)
V w
g

We aggregate the attention scores across all heads and groups to synthesize a comprehensive repre-
sentation as,

S̄t
w =

1

G

G∑
g=1

(Concat(Attention1, . . . ,AttentionH)WO) (1)

Our approach captures complex, non-linear relationships within and across series to enable holistic
understanding, which is crucial for interpretation, decision-making, reliability in multi-sensor envi-
ronments, and significantly enhancing forecast accuracy. We discovered spatial dependencies that
go beyond pairwise relationships from the data. In the following section, we incorporate an accurate
and reliable predefined graph, constructed using domain expert knowledge, to improve predictions.

5.1.6 GRAPH CHEBYSHEV CONVOLUTION

Graph convolution is an effective method for processing graph-structured data, with spectral graph
convolution Tanaka (2021) being notable but computationally intensive. To address this, Chebyshev
Graph Convolution (CGC) Defferrard & Vandergheynst (2016) offers a more scalable alternative,
leveraging Chebyshev polynomials to approximate spectral graph convolution, facilitating efficient
convolutional filtering on graph-structured data using the Chebyshev polynomial approximation of
the graph Laplacian. The Chebyshev polynomials are calculated based on the normalized Lapla-
cian matrix of the predefined graph, denoted as L̂ = D̂−1/2ÂD̂−1/2, where Â is the normalized
adjacency matrix, and D̂ is the diagonal degree matrix of the graph. The Chebyshev approxima-
tion of the graph Laplacian to any degree is obtained using Chebyshev polynomials Tk(L̂), where k
represents the degree of the polynomial. The GCC operation can be defined as follows:

Ṡt
w = σ

(
K−1∑
k=0

Tk(L̂)S̃
t
wΘk

)
(2)

where σ(·) is a non-linear activation function applied element-wise, Θk ∈ Rd×d is the trainable
weight matrix for the k-th order Chebyshev polynomial, and K denotes the maximum order of the
Chebyshev polynomials, which influences the expressive power of the approximation. Ṡt

w is the
transformed time series embedding, which captures the spatial relationships within the graph. To
regulate the information flow from S̄t

w (refer Equation equation 1) and Ṡt
w (refer Equation equa-

tion 2), we employ a gating mechanism that generates a weighted combination of these repre-
sentations, denoted as S̃t

w. Our hybrid architecture combines explicit domain-expert knowledge
with implicit knowledge, extending beyond pairwise dependencies to capture the full complexity of
spatio-temporal dependencies. Our approach, by modeling both local and global relationships in
spatio-temporal data, enables accurate forecasting

5.1.7 OUTPUT LAYER

We employ the multi-head attention mechanism (MHA) Vaswani et al. (2017) to merge text-level and
time series embeddings, thereby enhancing contextual understanding and alignment across different
multi-domain embeddings. This integration improves the analysis and understanding of multi-time-

9

Published at the ICLR 2024 Workshop on Practical ML for Low Resource Settings(PML4LRS)

series data, leading to more accurate framework predictions, Ŝt+1, by combining insights from both
modalities.

5.1.8 UNCERTAINITY ESTIMATION

We present a variant and extension of our proposed framework, MultiTs Net for time series fore-
casting: w/Unc-MultiTs Net, with a focus on uncertainty estimation. The MultiTs utilizes a
supervised learning approach to minimize the Mean Absolute Error (MAE) which quantifies the de-
viation between the framework’s forecasts and actual data. The w/Unc-MultiTs Net extends this
by assessing uncertainties in forecasts, with predictions modeled as a heteroscedastic Gaussian dis-
tribution, characterized by mean µϕ

(
S̃t
w

)
and variance σ2

ϕ

(
S̃t
w

)
. These parameters are derived using

µϕ

(
S̃t
w

)
, σ2

ϕ

(
S̃t
w

)
= fθ

(
S̃t
w

)
, from a linear layer function fθ applied to the output of a multi-modal

alignment output layer.

LGaussianNLLLoss =

T∑
t=1

 log σϕ

(
S̃t
w

)2
2

+

(
St+1 − µϕ

(
S̃t
w

))2
2σϕ

(
S̃t
w

)2

The framework minimizes the Gaussian negative log-likelihood loss, thereby enhancing the quan-
tification of uncertainty. While the MultiTs Net focuses on minimizing MAE for accurate fore-
casting, the w/Unc-MultiTs Net emphasizes minimizing the Gaussian negative log-likelihood
loss for effective uncertainty quantification in time series forecasting.

5.1.9 IRREGULAR TIME SERIES

We focus on evaluating the effectiveness of the MultiTs Net framework in handling missing data
in large, complex sensor networks. The study simulates two types of missingness patterns: MCAR
(Missing Completely At Random), representing random sensor failures, and block-missing, where
data points are missing for a contiguous period. Block-missing patterns are defined by their length
(the number of missing points) and frequency (how often they occur). These simulations help assess
the framework’s performance in 12-sequence-to-24-sequence forecasting tasks, with data missing-
ness ranging from 10% to 50%. Tables 5 and 6 show the imputation results. The performance of the
proposed models in the forecasting task was assessed by calculating the average error between pre-
dicted and actual values over 12 future time steps. The results reveal that while the MultiTs Net
performs well with lower missing data percentages, its accuracy declines as the level of missingness
increases. However, its ability to condition forecasts on available observations without relying on
imputed values demonstrates its resilience and effectiveness in capturing nonlinear spatio-temporal
dependencies in sensor network data.

Missing Scheme Missing Rate PeMSD3 PeMSD4 PeMSD7 METR-LA
RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

MultiTs Net 0% 21.03 13.64 11.30 27.04 18.02 10.31 30.05 19.52 8.08 7.53 4.56 9.47

Point
10% 21.83 13.50 11.97 26.97 18.11 12.01 31.24 21.79 8.55 7.92 4.87 8.63
30% 21.99 13.48 12.83 31.07 20.05 11.95 30.66 22.05 9.09 8.47 5.46 9.64
50% 22.08 15.46 12.67 32.10 20.65 13.70 32.41 21.91 10.35 8.77 5.82 9.29

Block
10% 19.87 13.70 11.82 28.27 18.39 11.52 29.84 20.65 8.39 8.40 4.52 8.86
30% 21.14 13.96 12.65 29.59 20.34 12.43 30.85 22.33 8.78 8.73 5.05 9.57
50% 23.01 14.72 13.88 33.18 20.88 13.81 33.04 23.21 10.21 9.47 5.56 9.39

Table 5: The table shows the pointwise forecasting error on 12-sequence-24-sequence forecasting
task on irregular datasets.

Missing Scheme Missing Rate PeMSD7(M) PeMSD8 PEMS-BAY
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

MultiTs Net 0% 4.97 2.71 5.57 21.49 13.85 7.80 2.81 1.50 2.73

Point
10% 5.16 2.97 6.85 22.61 15.91 8.67 2.82 1.60 3.20
30% 5.60 3.63 7.63 24.67 16.96 9.48 3.04 1.77 3.45
50% 5.93 3.69 7.90 26.96 17.50 9.90 3.16 2.01 3.44

Block
10% 5.20 3.15 6.88 23.03 15.59 9.13 2.98 1.68 3.10
30% 5.53 3.49 7.65 24.16 16.48 9.80 3.11 1.79 3.31
50% 5.82 3.76 8.18 26.12 17.96 10.70 3.25 1.92 3.50

Table 6: The table shows the pointwise forecasting error on 12-sequence-24-sequence forecasting
task on irregular datasets.

10

Published at the ICLR 2024 Workshop on Practical ML for Low Resource Settings(PML4LRS)

1 2 3 4 5 6 7 8 9 10 11
Horizon

2

4

6

8

10

12

14

M
AP

E

PeMSD7

MultiTs Net
STGODE
STGNCDE
ZCNETS
AGCRN

(a) MAPE on PeMSD7

1 2 3 4 5 6 7 8 9 10 11
Horizon

5
10
15
20
25
30
35

RM
SE

PeMSD7

MultiTs Net
STGODE
STGNCDE
ZCNETS
AGCRN

(b) RMSE on PeMSD7

1 2 3 4 5 6 7 8 9 10 11
Horizon

7
10
13
16
19
22
25
28

M
AE

PeMSD7

MultiTs Net
STGODE
STGNCDE
ZCNETS
AGCRN

(c) MAE on PeMSD7

1 2 3 4 5 6 7 8 9 10 11
Horizon

5
8

11
14
17
20
23
26

M
AE

PeMSD4

MultiTs Net
STGODE
STGNCDE
ZCNETS
AGCRN

(d) MAE on PeMSD4

1 2 3 4 5 6 7 8 9 10 11
Horizon

4
6
8

10
12
14
16
18

M
AP

E

PeMSD4

MultiTs Net
STGODE
STGNCDE
ZCNETS
AGCRN

(e) MAPE on PeMSD4

1 2 3 4 5 6 7 8 9 10 11
Horizon

5
10
15
20
25
30
35
40

RM
SE

PeMSD4

MultiTs Net
STGODE
STGNCDE
ZCNETS
AGCRN

(f) RMSE on PeMSD4

1 2 3 4 5 6 7 8 9 10 11
Horizon

1

3

5

7

9

11

RM
SE

PeMSD7(M)
MultiTs Net
STGODE
STGNCDE
ZCNETS
AGCRN

(g) RMSE on PeMSD7(M)

1 2 3 4 5 6 7 8 9 10 11
Horizon

0

1

2

3

4

5

M
AE

PeMSD7(M)
MultiTs Net
STGODE
STGNCDE
ZCNETS
AGCRN

(h) MAE on PeMSD7(M)

1 2 3 4 5 6 7 8 9 10 11
Horizon

1
2
3
4
5
6
7
8

M
AP

E

PeMSD7(M)
MultiTs Net
STGODE
STGNCDE
ZCNETS
AGCRN

(i) MAPE on PeMSD7(M)

1 2 3 4 5 6 7 8 9 10 11
Horizon

4

7

10

13

16

19

22

M
AE

PeMSD3

MultiTs Net
STGODE
STGNCDE
ZCNETS
AGCRN

(j) MAE on PeMSD3

1 2 3 4 5 6 7 8 9 10 11
Horizon

4
6
8

10
12
14
16
18

M
AP

E

PeMSD3

MultiTs Net
STGODE
STGNCDE
ZCNETS
AGCRN

(k) MAPE on PeMSD3

1 2 3 4 5 6 7 8 9 10 11
Horizon

5

10

15

20

25

30

35

RM
SE

PeMSD3

MultiTs Net
STGODE
STGNCDE
ZCNETS
AGCRN

(l) RMSE on PeMSD3

1 2 3 4 5 6 7 8 9 10 11
Horizon

4
6
8

10
12
14
16
18
20

M
AE

PeMSD8

MultiTs Net
STGODE
STGNCDE
ZCNETS
AGCRN

(m) MAE on PeMSD8

1 2 3 4 5 6 7 8 9 10 11
Horizon

3

5

7

9

11

13

M
AP

E

PeMSD8

MultiTs Net
STGODE
STGNCDE
ZCNETS
AGCRN

(n) MAPE on PeMSD8

1 2 3 4 5 6 7 8 9 10 11
Horizon

6

11

16

21

26

31

RM
SE

PeMSD8

MultiTs Net
STGODE
STGNCDE
ZCNETS
AGCRN

(o) RMSE on PeMSD8

Figure 2: The table displays the pointwise prediction error across multiple forecast horizons on
benchmark datasets.

11

Published at the ICLR 2024 Workshop on Practical ML for Low Resource Settings(PML4LRS)

0 50 100 150 200 250 300
Instance

0

100

200

300

400

500

Tr
af

fic
 F

lo
w

Predictions
uncertainity
Ground Truth

(a) Node 12 in PeMSD3

0 50 100 150 200 250 300
Instance

0

100

200

300

400

500

Tr
af

fic
 F

lo
w

Predictions
uncertainity
Ground Truth

(b) Node 99 in PeMSD3

0 50 100 150 200 250 300
Instance

0

100

200

300

400

500

Tr
af

fic
 F

lo
w

Predictions
uncertainity
Ground Truth

(c) Node 108 in PeMSD3

0 50 100 150 200 250 300
Instance

0

100

200

300

400

500

Tr
af

fic
 F

lo
w

Predictions
uncertainity
Ground Truth

(d) Node 141 in PeMSD3

0 50 100 150 200 250 300
Instance

0

100

200

300

400

500

Tr
af

fic
 F

lo
w

Predictions
uncertainity
Ground Truth

(e) Node 149 in PeMSD4

0 50 100 150 200 250 300
Instance

0

100

200

300

400

500

Tr
af

fic
 F

lo
w

Predictions
uncertainity
Ground Truth

(f) Node 170 in PeMSD4

0 50 100 150 200 250 300
Instance

0

100

200

300

400

500

Tr
af

fic
 F

lo
w

Predictions
uncertainity
Ground Truth

(g) Node 211 in PeMSD4

0 50 100 150 200 250 300
Instance

0

100

200

300

400

500

Tr
af

fic
 F

lo
w

Predictions
uncertainity
Ground Truth

(h) Node 287 in PeMSD4

0 50 100 150 200 250 300
Instance

0
50

100
150
200
250
300
350
400

Tr
af

fic
 F

lo
w

Predictions
uncertainity
Ground Truth

(i) Node 66 in PeMSD4

0 50 100 150 200 250 300
Instance

0
100
200
300
400
500
600
700

Tr
af

fic
 F

lo
w

Predictions
uncertainity
Ground Truth

(j) Node 139 in PeMSD4

0 50 100 150 200 250 300
Instance

0
100
200
300
400
500
600
700
800

Tr
af

fic
 F

lo
w

Predictions
uncertainity
Ground Truth

(k) Node 277 in PeMSD4

0 50 100 150 200 250 300
Instance

0

100

200

300

400

500

Tr
af

fic
 F

lo
w

Predictions
uncertainity
Ground Truth

(l) Node 85 in PeMSD4

0 50 100 150 200 250 300
Instance

0
20
40
60
80

100
120
140
160

Tr
af

fic
 F

lo
w

Predictions
uncertainity
Ground Truth

(m) Node 104 in PeMSD8

0 50 100 150 200 250 300
Instance

0
20
40
60
80

100
120
140
160

Tr
af

fic
 F

lo
w

Predictions
uncertainity
Ground Truth

(n) Node 155 in PeMSD8
Figure 3: The figure shows the uncertainty estimations for the w/Unc-MultiTs Net framework
forecasts on a sample of sensors(nodes) on the benchmark datasets.

12

Published at the ICLR 2024 Workshop on Practical ML for Low Resource Settings(PML4LRS)

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
points. arXiv preprint arXiv:2305.13245, 2023.

Chao Chen, Karl Petty, Alexander Skabardonis, Pravin Varaiya, and Zhanfeng Jia. Freeway perfor-
mance measurement system: mining loop detector data. Transportation Research Record, 1748
(1):96–102, 2001.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174, 2016.

Jeongwhan Choi, Hwangyong Choi, Jeehyun Hwang, and Noseong Park. Graph neural controlled
differential equations for traffic forecasting. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pp. 6367–6374, 2022.

Xavier Defferrard and Pierre Vandergheynst. Convolutional Neural Networks on Graphs with Fast
Localized Spectral Filtering. In NeurIPS, number Nips, pp. 3844–3852, jun 2016.

Ailin Deng and Bryan Hooi. Graph neural network-based anomaly detection in multivariate time
series. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 4027–
4035, 2021.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Jianfei Gao and Bruno Ribeiro. On the equivalence between temporal and static equivariant graph
representations. In International Conference on Machine Learning, pp. 7052–7076. PMLR, 2022.

Kan Guo, Yongli Hu, Zhen Qian, Hao Liu, Ke Zhang, Yanfeng Sun, Junbin Gao, and Baocai Yin.
Optimized graph convolution recurrent neural network for traffic prediction. IEEE Transactions
on Intelligent Transportation Systems, 22(2):1138–1149, 2020.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural relational
inference for interacting systems. In International Conference on Machine Learning, pp. 2688–
2697. PMLR, 2018.

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural net-
work: Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926, 2017.

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural net-
work: Data-driven traffic forecasting. In ICLR (Poster), 2018.

OpenAI. Gpt-4 technical report, 2023.

Yuichi Tanaka. Graph spectral filtering. Graph Spectral Image Processing, pp. 3, 2021.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

13

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9

Published at the ICLR 2024 Workshop on Practical ML for Low Resource Settings(PML4LRS)

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi Zhang. Con-
necting the dots: Multivariate time series forecasting with graph neural networks. In Proceedings
of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp.
753–763, 2020.

Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks: A deep
learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875, 2017.

Ted Zadouri, Ahmet Üstün, Arash Ahmadian, Beyza Ermiş, Acyr Locatelli, and Sara Hooker. Push-
ing mixture of experts to the limit: Extremely parameter efficient moe for instruction tuning.
arXiv preprint arXiv:2309.05444, 2023.

14

	Introduction
	Problem Definition
	Experiments and Results
	Datasets
	Experimental Setup
	Multistep Forecasting Results
	Ablation Study Results

	Conclusion
	Technical Appendix
	Proposed Method
	Mixture of Parameter-Efficient Experts
	Fine-Tuning small-scale LMs
	Dynamic Prompting Mechanism Design
	Modeling Intra-series dependencies
	Modeling Inter-series dependencies
	Graph Chebyshev convolution
	Output Layer
	Uncertainity Estimation
	Irregular Time Series

