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Abstract

Positron emission tomography (PET) plays a crucial role in diagnosing and monitoring neu-
rological disorders. However, its clinical availability is constrained by high costs, radiation
exposure risks, and logistical limitations. In this study, we propose Causal PETS, a novel
causality-informed multimodal synthesis model for PET image generation. Unlike conven-
tional approaches that rely on a direct transformation from T1-weighted MRI to PET, our
model explicitly captures causal relationships among multimodal data—including MRI,
demographic information, and cerebrospinal fluid (CSF) biomarkers—and seamlessly in-
tegrates these factors into the PET synthesis process. Through extensive evaluations, we
demonstrate that Causal PETS surpasses existing non-causal methods in image clarity and
accuracy, particularly in highlighting regions of interest critical for neurological disorders
such as Alzheimer’s disease (AD). This work underscores the significance of causality in
medical image synthesis and highlights the potential of multimodal integration for enhanc-
ing clinical decision-making.
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1. Introduction

Medical image synthesis offers new solutions to the problem of obtaining certain modality
imaging data. For example, Positron Emission Tomography (PET) is pivotal in neuroimag-
ing and is crucial for the diagnosis and monitoring of neurodegenerative diseases such as
Alzheimer’s Disease (AD) by detecting abnormal molecules (Marcus et al., 2014; Nordberg
et al., 2010). However, the widespread use of PET is hindered by several challenges: its
reliance on frequent scans for longitudinal studies, the significant expenses of the radio-
tracers and advanced imaging technology, and the health risks posed by radiation exposure
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(Nievelstein et al., 2012; Brix et al., 2009). Thus, there is an urgent need to explore alter-
native approaches for acquiring PET to support diagnostic applications, among which the
synthesis of PET from other more available modalities presents a promising solution.

Recently, deep learning-based medical image synthesis models have shown great po-
tential. (Wang et al., 2021a,b). In the context of PET imaging, most approaches adopt
a straightforward architecture for generating target images from source images. Some re-
search synthesize PET images from MRI or CT (Zhang et al., 2022a; Ou et al., 2024b),
while others aim at generating high-dose PET images from low-dose PET data (Pan et al.,
2024; Shen et al., 2024). While achieving success, this type of image-to-image paradigm,
as shown in Fig. 1 (blue path), faces one key challenge: the significant information gap
between two image modalities. For instance, generating PET-CT from MRI often suffers
from insufficient information representation. The imaging principle of MRI relies on dif-
ferences in proton relaxation times, which provides structural information. In contrast,
PET-CT imaging, based on the positron radiation of radioactive tracers binding to specific
molecules, reflects the distribution of these molecules, which MRI inherently lacks.

Multi-modal image synthesis, which integrates complementary information from other
modalities, serves as an effective approach to filling the information gap between two im-
age modalities. However, existing multi-modal image synthesis methods typically take all
modalities as direct inputs and rely on the network to automatically learn how to utilize
them. This approach often suffers from limitations, such as suboptimal exploitation of rela-
tionships between different modalities, which in turn leads to inefficient feature fusion and
degraded synthesis performance.

To address these challenges, causal image synthesis provides a principled framework by
explicitly modeling the causal relationships among different modalities. Deep Structural
Causal Models (Pawlowski et al., 2020) and Neural Causal Models (Xia et al., 2022) have
demonstrated the potential of incorporating causal structures into generative models. How-
ever, they exhibit several limitations. DSCMs primarily rely on VAE for image generation,
which often leads to blurry and less realistic synthetic images. In addition, they focus on
counterfactual image generation, which lacks ground-truth validation, making it difficult
to assess the accuracy and reliability of the generated images in real-world applications.
These limitations motivate our work, which extends causal image synthesis to a multi-
modal, high-fidelity, and ground-truth-verifiable setting, ensuring both interpretability and
practical utility.

We propose an innovative causality-informed multi-modal synthesis model that explic-
itly models and leverages causal relationships between multi-modalities to better exploit
their complementary information, fill the information gap between image modalities, and
improve synthesis performance. Specifically, the novelties and contributions of this paper
are as follows: (i) A novel causality-informed multimodal medical image synthesis
paradigm. Unlike conventional image-to-image translation methods that rely on a single
modality, Causal PETS employs a causal graph to explicitly model and leverage causal re-
lationships among multiple modalities, effectively capturing their complementary informa-
tion for improved PET image synthesis. (ii) Enhanced Performance. Leveraging the causal
graph, Causal PETS achieves state-of-the-art (SOTA) reconstruction quality in PET image
synthesis. Furthermore, by integrating the synthesized PET images with existing modality
data, our approach also attains SOTA classification performance for the early diagnosis
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Figure 1: The Causal Graph of PET Synthesis
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Figure 2: The architecture of the auto-encoder of T1 MRI and the PET generator.

and monitoring of Alzheimer’s disease (AD). (iii) High interpretability. By generating
PET images under controlled interventions on specific variables in the model, Causal PETS
enables a deeper understanding of the role of each modality, enhancing the interpretability
of the synthesis process.

2. Method: Causal PETS

2.1. Causal Graph & Structural Causal Equations

2.1.1. Causal Graph

A Causal Graph (Pearl, 2010) is a graph representing the causal relationships between
variables, where nodes represent variables and an edge from node A to node B (A→B)
signifies that A has a direct causal effect on B. The variables can be either Observed
Variables, measured in the dataset or Latent Variables, not directly observed.
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We construct the causal graph of PET acquisition for AD as Fig.1, which ontains the
demographic factor M (Age, Gender, Education levels, APOE4 allele number), brain struc-
ture S, biomarker CSF level BCSF , biomarker distribution B, T1 MRI image IT1 , and PET
image IPET , according to clinical research, explained as follows.

M → S: Demographic factors have a causal impact on brain structure. Brain atrophy
occurs as a results of age increasing (Kasantikul et al., 1979), differences in brain volumes
are significant between males and females (Gur et al., 2002), and both educational levels
and the presence of the APOE4 allele contribute to brain atrophy (Coffey et al., 1999; Lim
et al., 2017).

S → IT1: T1 MRI relies on the magnetic resonance signals of hydrogen nuclei(Tang
et al., 2018) and is directly caused by the brain structure.

S → IPET : PET imaging (Catafau and Bullich, 2015) relies on the use of radiotracers
the uptake of radiotracers may vary depending on the size and shape of brain (S).

B → IPET : The radiotracers bind to specific molecules and the molecule concentration
distribution(B) determines the radiotracer uptake and thus influences IPET (Catafau and
Bullich, 2015).

B → BCSF : CSF biomarkers measure the sampled concentration of molecules in the
cerebrospinal fluid (CSF), thus determined by the distribution of specific molecule.

2.1.2. Structural Causal Equations

Structural Causal Equations show how a variable is generate, which can be expressed as

Y = fY (Pa(Y ), ϵY ), (1)

where fY is a generative function, Pa(Y ) denotes the set of parent variables of Y , and ϵY
is an error term representing all other latent variables affecting Y .

Take the variable IPET as an example. The structural equation is expressed as

IPET = fIPET
(S,B, ϵIPET

), (2)

where ϵY can be the PET image prototype, the instrumental or the imaging noise, which
can affect the PET image but are not included in the model.

For the PET synthesis model, IT1 and BCSF can be used to provide the information of
their causal parents. In our model, we predict the posterior S and B by

S = gS(IT1 ,M), B = gB(BCSF ,M), (3)

where gS is implemented by an encoder and gB by an Multiple-Layer Perceptron (MLP).
Then we use an decoder to implement fIPET

in (2).

2.2. Causality-Informed PET Synthesis (Causal PETS)

The Causal PETS Model is shown in Fig. 2, based on the causal graph Fig. 1. We use two
decoders as the structural equation for T1 MRI and PET, described in (2).

When training and infering, the S and B are firstly approximated by

S = E(IT1 ,M), B = f(BCSF ,M), (4)
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where f denotes the fusion MLP and E denotes the T1 MRI encoder.
Then IPETsyn and IT1rec are generated as the causal structural function,

IPETsyn = GP (S,B, ϵPET ), IT1rec = GT1(S, ϵT1), (5)

where GP and GT1 denotes generator, ϵPET and ϵT1 are sampled from normal distribution.
As for the better quality of PET synthesis, we added a discriminator D for adversary

training, matching the synthetic data distribution to the target data distribution.

2.2.1. Architectures

In this section we introduce the architectures of networks of the proposed model. Fig. 2
provides an architectural overview. The model architecture details can be found in code1.

Auto-encoder for T1 The auto-encoder consists of one Atten-ResBlock, five ResBlocks,
three Upsample Layers, and three Downsample Layers. The encoder predict the µS and σS
and the generator outputs the IT1rec . The dimension of feature map is marked in Fig. 2.

Attention-based Generator The attention-based generator consists of three Atten-
ResBlocks and three upsampling layers. The first Atten-ResBlock is of cross-attention
and the other two are of self-attention.

Fusion MLP and Discriminator The fusion MLP is made up with three linear layers
of a latent dimension 128, and the discriminator is chosen as a Patch Discriminator, a
discriminator structure based on PatchGAN (Isola et al., 2017a).

2.2.2. Loss Function

For the auto-encoder, the commonly used reconstruction loss and the KL loss is used as

LAE = Ex∼IT1

[
∥IT1 −GT1(E(IT1))∥2

]
+KL (qϕ(E(IT1))∥p(S)) , (6)

where KL (qϕ(S|IT1)∥p(S)) is the KL divergence between the approximate posterior and the
prior distribution (normal distribution)

For the PET image generator, an L1 loss and a perceptual loss are incorporated to
minimize the absolute pixel-wise difference and the perceptual difference.

L1(GP ) = E(x,z,m,y)∼(IT1 ,BCSF ,M,IPET ),ϵ∼N ∥y −GP (E(x,m), f(z), ϵ)∥1,
(7)

LPerceptual(GP ) = E(x,z,m,y)∼(IT1 ,BCSF ,M,IPET ),ϵ∼N ∥V (y)− V (GP (E(x,m), f(z,m), ϵ))∥1.
(8)

The loss function of the generator GP and the discriminator D is as follows,

L(D) = E(x,z,m)∼(IT1 ,BCSF ,M),ϵ∼N
[
(D(GP (E(x,m), f(z,m), ϵ))2

]
+ Ey∼IPET

[
(D(y)− 1)2

]
,

(9)

Ladv(GP ) = Ex∼IT1,z∼(BCSF ,M),ϵ∼N [1− (D(GP (E(x,m), f(z), ϵ))2].

(10)

1. https://github.com/jessyblues/Causality-Informed-PET-Synthesis-from-Multi-modal-Data
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Figure 3: The visualizations of synthesized AV45 PET (the first row) and AV1451 PET
(the third row) of different methods with the different map against the grountruth.

The overall loss function are as follows:

LAE,GP
= LAE + L1(GP ) + λpLPerceptual(GP ) + λadvLadv(GP ). (11)

where λp and λadv are the hyper-parameters and the details are in appendix. The discrim-
inator and generator is trained using a standard adversarial framework.

3. Experiments

3.1. Datasets and Training Details

We train and test on a subset of the Alzheimer’s Disease Neuroimaging Initiative database
(ADNI) (Petersen et al., 2010), using PET of two different radio-tracers, AV45 and AV1451,
with corresponding CSF bio-marker data. The details of dataset are in the appendix.

dataset AV45 dataset AV1451

Method MAE(×10−1) ↓ SSIM(%) ↑ PNSR↑ ϵSUV R ↓ MAE(×10−1) ↓ SSIM(%) ↑ PNSR↑ ϵSUV R ↓

CycleGAN (Zhu et al., 2017) 0.349∗∗∗±0.147 92.46∗∗∗±1.50 23.192∗∗∗±2.558 0.23∗∗∗±0.30 0.443∗∗∗±0.219 88.26∗∗∗±2.10 21.869∗∗∗±3.263 0.12∗∗∗±0.11

Pix2Pix (Isola et al., 2017b) 0.450∗∗∗±0.164 93.78∗∗∗±1.46 21.825∗∗∗±3.001 0.21∗∗∗±0.27 0.251∗∗∗±0.081 91.34∗∗∗±1.50 25.469∗∗∗±1.830 0.12∗∗∗±0.12

U-Net w/o condition 0.265∗∗±0.122 96.73∗∗∗±1.33 25.719∗∗∗±2.930 0.16∗∗∗±0.17 0.230∗∗∗±0.112 95.42∗∗∗±1.37 26.216∗∗∗±2.610 0.11∗∗∗±0.10

U-Net w/ condition 0.237∗∗±0.142 97.19∗±1.28 26.578±2.859 0.12∗∗±0.13 0.229∗∗∗±0.119 95.15∗∗∗±1.51 26.425∗∗∗±2.668 0.09∗±0.09

BMGAN (Hu et al., 2021) 0.320∗∗∗±0.116 96.51∗∗∗±1.41 24.262∗∗∗±2.374 0.18∗∗∗±0.22 0.214∗±0.136 94.78∗∗∗±1.53 27.644∗∗∗±3.691 0.10∗±0.11

BPGAN (Zhang et al., 2022b) 0.321∗∗∗±0.114 95.63∗∗∗±1.31 24.092∗∗∗±2.215 0.18∗∗∗±0.24 0.214∗±0.162 93.97∗∗∗±1.49 27.688∗∗∗±4.285 0.11∗∗±0.10

ControlNet (Zhang et al., 2023) 0.553∗∗∗±0.081 91.90∗∗∗±1.78 21.720∗∗∗±1.107 0.17∗∗∗±0.16 0.941∗∗∗±0.167 81.77∗∗∗±2.66 19.296∗∗∗±1.415 0.10∗∗∗±0.09

CLDM (Ou et al., 2024a) 0.329∗∗∗±0.128 95.57∗∗∗±1.26 23.905∗∗∗±2.833 0.23∗∗∗±0.15 0.211±0.117 97.07∗∗±2.92 27.896∗∗∗±3.215 0.11∗±0.12

PASTA (Li et al., 2024) 0.349∗∗∗±0.109 95.33∗∗∗±1.20 23.513∗∗∗±2.393 0.23∗∗∗±0.14 0.394∗∗∗±0.171 93.26∗∗∗±2.73 23.104∗∗∗±3.155 0.12∗∗∗±0.09

Causal PETS (ours) 0.224±0.104 97.47±1.13 26.740±2.581 0.10±0.13 0.202±0.096 98.12±0.82 29.687±1.905 0.08±0.10

Table 1: Quantitative comparison of PET images synthesised by different methods

3.2. PET Image Quality

We evaluate our model’s performance in generating PET images, compared against image
translation methods Pix2Pix (Isola et al., 2017b), CycleGAN (Zhu et al., 2017), Unet,
and MRI-specific networks including BMGAN (Hu et al., 2021), BPGAN (Zhang et al.,
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2022b) and diffusion-based method including ControlNet (Zhang et al., 2023), CLDM (Ou
et al., 2024a), and PASTA (Li et al., 2024). Quantitative results, including mean absolute
error (MAE), multi-sacle structural similarity (SSIM) index, and Peak Signal-to-Noise Ratio
(PSNR), are detailed in Table 1. We use paired t-tests to evaluate statistical significance.
Statistical significance is indicated as ***: p < 0.001, **: p < 0.01, and *: p < 0.05.

Specifically, we furthermore compute the SUVR (Standardized Uptake Value Ratio)
MAE between the synthesized PET and the target real PET. SUVR is a metric to quantify
the concentration of radio-tracer uptake in a region of interest (ROI) relative to a reference
region. As recommended in clinical research (Schindler et al., 2021; Jack Jr et al., 2018), the
cerebral cortex region is set as the ROI with the cerebellar cortex as the reference region.
The formula of SUVR computation is provided in the appendix.

Our method achieves the lowest MAE, the highest SSIM and PSNR on both datasets,
demonstrating a superior accuracy and the advanced structural similarity. Our method
also outperforms other methods in terms of SUVR MAE, demonstrating its effectiveness in
synthesizing high-quality PET images in terms of ROI.

Figs. 3 show the slices of the synthesised AV45 and AV1451 PET images respectively.
The error map is visualized by subtracting the real PET image from the synthetic one. It
shows that our method generates the most authentic PET image and the darkest error map.

3.3. Downstream Tasks

dataset AV45 dataset AV1451

Method F1 AUC Acc Prec Recall F1 AUC Acc Prec Recall

CycleGAN (Zhu et al., 2017) 0.7494∗∗∗ 0.6148∗∗∗ 0.7857∗∗∗ 0.7221∗∗∗ 0.7857∗∗∗ 0.8616∗∗∗ 0.9245∗∗∗ 0.8958∗∗∗ 0.9069∗∗∗ 0.8558∗∗∗

Pix2Pix (Isola et al., 2017b) 0.7629∗∗∗ 0.5948∗∗∗ 0.7653∗∗∗ 0.7606∗∗∗ 0.7653∗∗∗ 0.8977∗∗∗ 0.8849∗∗∗ 0.9167∗∗∗ 0.9823 0.8167∗∗∗

Unet w/o condition 0.7747∗∗∗ 0.6016∗∗∗ 0.7951∗∗∗ 0.8032∗∗∗ 0.7551∗∗∗ 0.8977∗∗∗ 0.9202∗∗ 0.9167∗∗∗ 0.9239∗∗∗ 0.9167∗∗∗

Unet w/ condition 0.7990∗∗∗ 0.8301∗ 0.8129∗ 0.8137∗∗∗ 0.8129 0.9093∗∗∗ 0.9405∗ 0.9167∗∗∗ 0.9091∗∗∗ 0.9167∗∗∗

BMGAN (Hu et al., 2021) 0.7337∗∗∗ 0.5478∗∗∗ 0.7163∗∗∗ 0.6663∗∗∗ 0.8163 0.8425∗∗∗ 0.9446 0.8021∗∗∗ 0.9271∗∗∗ 0.8021∗∗∗

BPGAN (Zhang et al., 2022b) 0.7520∗∗∗ 0.6781∗∗∗ 0.8095∗∗ 0.7461∗∗∗ 0.7795∗∗∗ 0.8977∗∗∗ 0.9302∗∗ 0.9167∗∗∗ 0.9239∗∗∗ 0.9167∗∗∗

ControlNet (Zhang et al., 2023) 0.6620∗∗∗ 0.7225∗∗∗ 0.7333∗∗∗ 0.557∗∗∗ 0.6333∗∗∗ 0.7038∗∗∗ 0.7124∗∗∗ 0.4746∗∗∗ 0.5458∗∗∗ 0.6458∗∗∗

CLDM (Ou et al., 2024a) 0.6320∗∗∗ 0.7584∗∗∗ 0.8036∗∗∗ 0.6526∗∗∗ 0.6199∗∗∗ 0.8824∗∗∗ 0.9384∗∗ 0.8750∗∗∗ 0.8937∗∗∗ 0.8750∗∗∗

PASTA (Li et al., 2024) 0.4156∗∗∗ 0.7500∗∗∗ 0.5714∗∗∗ 0.3265∗∗∗ 0.5714∗∗∗ 0.8167∗∗∗ 0.9483 0.8750∗∗∗ 0.7656∗∗∗ 0.8750∗∗∗

Causal PETS (ours) 0.8310 0.8373 0.8265 0.8782 0.8087∗ 0.9547 0.9505 0.9583 0.9602∗∗∗ 0.9583

Real Images 0.8587 0.8569 0.8265 0.9178 0.8465 0.9592 0.9898 0.9615 0.9632 0.9615

Table 2: Comparison of pMCI vs sMCI classification results using synthesised PET images.

dataset AV45 dataset AV1451

Method F1 AUC Acc Prec Recall F1 AUC Acc Prec Recall

PET 0.8587 0.8569 0.8265 0.9178 0.8465 0.9592 0.9898 0.9615 0.9632 0.9615
Tabular 0.7722∗∗∗ 0.7776∗∗∗ 0.7119∗∗∗ 0.8438 0.7438∗∗∗ 0.8776∗∗∗ 0.7582∗∗∗ 0.8125∗∗∗ 0.9180∗∗∗ 0.8125∗∗∗

T1 and PET 0.7671 0.8243 0.8177 0.7338 0.8177 0.9392 0.9861 0.9375 0.9422 0.9375
T1 and Tabular 0.7761∗∗∗ 0.8023∗∗∗ 0.8021∗∗ 0.7582∗∗∗ 0.8021∗∗ 0.8699∗∗∗ 0.8975∗∗∗ 0.8958∗∗∗ 0.9072∗∗∗ 0.8958∗∗∗

PET and Tabular 0.8163 0.8368 0.8021 0.8393 0.8021 0.9604 0.9910 0.9583 0.9676 0.9682
T1 and PET and Tabular 0.8541 0.8996 0.8594 0.8504 0.8594 0.9785 0.9952 0.9792 0.9797 0.9715

PET* 0.8310 0.8373 0.8265 0.8782 0.8087 0.9547 0.9505 0.9481 0.9602 0.9583
PET* and Tabular 0.7897 0.7905 0.7756 0.8083 0.7856 0.9301 0.9512 0.9375 0.9418 0.9375
T1 and PET* and Tabular 0.8334 0.8377 0.8281 0.8399 0.8281 0.9585 0.9812 0.9503 0.9612 0.9644

Table 3: Comparison of pMCI vs sMCI classification results by different modality data.
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To further evaluate the synthesized PET images, we employ a downstream task of
classification of progressive Mild Cognitive Impairment (pMCI) and stable Mild Cognitive
Impairment (sMCI). Mild Cognitive Impairment (MCI) is a stage before dementia. pMCI
is likely to progress to AD while sMCI remains relatively stable over time. Distinguishing
between pMCI and sMCI is essential for early intervention and treatment planning. Based
on the encoder of the T1 MRI encoder, we train a PET classifier on the real PET images
and synthesized PET are only for test. We set ten different random seeds and conducted
ten rounds of model training and validation. The mean results are reported in the table,
with the best values highlighted in bold, and the t-values from paired t-tests with other
methods are also provided. ***: p < 0.001, **: p < 0.01, and *: p < 0.05. As Table 2
shows, for both the AV45 and AV1451, our method scores the highest in most metrics. Real
PET images provide the benchmark and our proposed method closely approximates these
results.

Table 3 shows the classification results using different modalities data. PET* denoted
the synthesized PET images while PET denoted the real PET images. We set ten differ-
ent random seeds and conducted ten rounds of model training and validation. We also
conducted paired t-tests between the multimodal classification results using synthetic PET
and those without synthetic PET (using only tabular data, T1 MRI, or their combination).
The results demonstrate that the improvement in classification performance with synthetic
PET is statistically significant. ***: p < 0.001, **: p < 0.01, and *: p < 0.05. The results
indicate the clinical significance of our method.

3.4. Interpretability

Generating counterfactual PET images by intervening on variables explains their roles in
the model. For example, reducing APOE4 count lowers SUVR in generated PET images
(∆nAPOE4 = −1), shown in Fig. 4, indicating less amyloid or tau deposition, consistent
with clinical findings (Lim et al., 2017). This enhances Causal PETS’ interpretability.

These observations are further supported by the regional analysis presented in Table 4.
We divided the brain into six regions of interest (ROIs): Frontal Cortex (FC), Temporal
Cortex (TC), Parietal Cortex (PC), Occipital Cortex (OC), Cingulate and Insula (CI), and
Operculum and Orbital Areas (OO). For each ROI, we performed a paired t-test to compare
SUVR values before and after the counterfactual intervention on APOE4 count.

As shown in Table 4, different tracers exhibit distinct regional sensitivity to APOE4
alterations. For AV45, which primarily targets amyloid deposition, the most significant
reductions in SUVR when decreasing APOE4 count (∆nAPOE4 = −1) occur in FC, PC,
and CI (p < 0.001), followed by TC and OC (p < 0.01)**. This suggests that these regions
are particularly susceptible to APOE4-related amyloid accumulation. In contrast, AV1451,
which binds to tau pathology, shows relatively weaker effects in some regions, such as OC and
CI, but still exhibits significant reductions in FC, TC, and PC. Notably, the operculum and
orbital areas (OO) show less pronounced differences in both tracers, potentially indicating
lower tracer sensitivity in these regions or reduced APOE4-driven pathology.

Further discussion and additional regional analyses can be found in the appendix.
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Table 4: ROI Mean Difference and P-Value

Mean Difference FC TC PC OC CI OO

AV45 SUVR
∆nAPOE = −1 -0.0236∗∗∗ -0.0201∗∗∗ -0.0235∗∗∗ -0.0098∗∗∗ -0.0280∗∗∗ -0.0164∗∗∗

∆nAPOE = 1 0.0081∗∗ 0.0076∗∗∗ 0.0063∗∗ 0.0019 0.00956∗∗ 0.0038

AV1451 SUVR
∆nAPOE = −1 -0.0222∗∗ -0.0183∗∗∗ -0.0021∗∗ 0.0138 -0.0189 -0.0295
∆nAPOE = 1 0.0028∗ 0.0160∗∗ 0.0012 0.0144∗∗ 0.0011 0.0004

dataset AV45 dataset AV1451

original PET suvr original PET suvr original PET suvroriginal PET suvr

sy
nt
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sis
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Figure 4: The SURV comparisons of counterfactual PET

3.5. Ablation Study

To validate the contribution of each module and loss function component, we conducted
ablation experiments, shown in Table 5. Removing IT1 reconstruction leads to the highest
MAE increase and SSIM drop, while omitting the PET Discriminator also degrades perfor-
mance, highlighting their roles in image refinement. Additionally, perceptual loss and ϵIPET

help reduce variance, suggesting that ϵIPET
improves robustness to image noise.

dataset AV45 dataset AV1451

Method MAE(×10−1) ↓ SSIM(%) ↑ PNSR↑ ϵSUV R ↓ MAE(×10−1) ↓ SSIM(%) ↑ PNSR↑ ϵSUV R ↓

w/o IT1 reconstruction 0.247±0.109 97.33±1.15 26.25±2.53 0.130±0.120 0.265±0.119 98.11±1.08 24.02±2.24 0.090±0.089

w/o PET Discriminator 0.243±0.109 97.29±1.10 26.25±2.49 0.136±0.110 0.235±0.102 98.01±0.93 26.70±1.96 0.091±0.094

w/o Perceptual loss 0.233±0.111 97.31±1.10 26.46±2.61 0.124±0.120 0.211±0.092 97.28±0.62 28.26±2.07 0.083±0.104

w/o ϵIPET
0.233±0.131 97.30±1.31 26.36±2.85 0.131±0.182 0.212±0.122 97.28±1.49 27.38±2.38 0.089±0.133

Ours 0.224±0.104 97.47±1.13 26.740±2.581 0.10±0.13 0.202±0.096 98.12±0.82 29.687±1.905 0.08±0.10

Table 5: Ablation Study on AV45 and AV1451 Dataset

4. Conclusion

In this work, we propose Causal PETS, a novel causality-informed synthesis model for
generating PET images from multi-modal data. Our model analyzes the causal relation-
ships between different modalities to generate PET images. Our causality-informed PET
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synthesis model represents a significant step forward in the integration of multi-modal data
for medical imaging. However, our work still has some limitations, e.g., we do not con-
sider the temporal dimension. By addressing the limitations we can enhance the clinical
applicability and impact of this approach.
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Appendix A. Dataset

AV45 PET imaging (Johnson et al., 2013), also known as florbetapir (AV-45) PET imaging,
is used to visualize amyloid plaques. Correspondingly, CSF Aβ data is chosen as BCSF ,
referring to measurements of amyloid-beta peptides in the CSF. AV45 PET images and CSF
Aβ data reflect the amyloid pathology in brain. AV1451 PET imaging (Mishra et al., 2017),
also known as flortaucipir (AV-1451)PET imaging, is the imaging of tau protein tangles.
Meanwhile, CSF tau and p-tau data measure the total tau and phosphorylated tau proteins
in the CSF, respectively. They both reflect the tau pathology.

The dataset details for training the synthesis model is as follows. We divided the dataset
into training, validation, and test sets in a 4:1:1 ratio, ensuring that all scans from the same
individual appear in the same set, thereby preventing data leakage.

AV45 dataset
Category CN MCI AD
# of subjects 519 476 197
# of sessions 776 954 213
Age 74.84±7.29 73.29±7.44 73.60±7.46

AV1451 dataset
Category CN MCI AD
# of subjects 187 130 61
# of sessions 314 269 82
Age 72.96±7.32 72.80±7.08 72.73±8.02

Table 6: The Basic Information of ADNI Dataset

For imaging processing, all T1 MRI are skull-stripped using ROBEX (Iglesias et al.,
2011), aligned to the MNI152 space, resampled to 1.5mm isotropic using ANTs (Avants
et al., 2009), cropped to dimensions of 96×128×96, and normalized in voxel values to range
[0, 1]. The PET images are skull-stripped using ROBEX (Iglesias et al., 2011), registered
to the paired T1 MRI, normalized to range [0, 1].

To pair IPET with IT1 and BCSF, we define a successful pairing as having a measurement
interval of less than 6 months. let tPET, tT1, and tCSF represent the time points at which
the data were taken. A successful pair is defined as:

max (|tPET − tT1| , |tPET − tCSF| , |tT1 − tCSF|) < 6 months.

This condition ensures that the measurements IPET, IT1, and BCSF are temporally aligned.

Appendix B. Training Process

We adopt an adversarial training approach, where the generator and discriminator are
alternately trained. The ADAM optimizer is used with a learning rate (LR) of 0.0001 for
the generator, fusion Network, auto-encoder and a LR of 0.0005 for the discriminator. The
training is conducted over 1000 epochs, taking approximately 1.5 days. The batch size
is set to 2, and we use 6 NVIDIA TITAN RTX GPUs for parallel training. All code is
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implemented based on PyTorch. The auto-encoder, generator, and discriminator are built
using the basic architectures from MONAI. The λPerceptual is set to 0.02 and λadv is set to
0.005 in the overall loss function.

Appendix C. SUVR formula

The SUVR value is calculated using the following formula:

SUVR =

1
|VROI|

∑
v∈VROI

v

1
|Vref|

∑
v∈Vref

v
, (1)

where VROI is the set of voxel values in ROI, and Vref is the set of voxel values in the
reference region. |VROI| and |Vref| denote the number of voxels in each respective region. As
recommended in clinical research (Schindler et al., 2021; Jack Jr et al., 2018), the cerebral
cortex region is set as the ROI.

Appendix D. Extended Experiments of AD classification

dataset AV45 dataset AV1451

Method F1 AUC Acc Prec Recall F1 AUC Acc Prec Recall

Uni-Modal
CycleGAN (Zhu et al., 2017) 0.5360∗∗∗ 0.5852∗∗∗ 0.5080∗∗∗ 0.7260∗∗∗ 0.5080∗∗∗ 0.6877∗∗∗ 0.5061∗∗∗ 0.6742∗∗∗ 0.7019∗∗∗ 0.6742∗∗∗

Pix2Pix (Isola et al., 2017b) 0.7627∗∗∗ 0.7231∗∗∗ 0.7968∗∗∗ 0.7768∗∗∗ 0.7968∗∗∗ 0.7810∗∗∗ 0.5455∗∗∗ 0.8427∗∗∗ 0.7278∗∗∗ 0.8427∗∗∗

Unet w/o condition 0.7938∗∗∗ 0.8552∗∗ 0.8075∗∗∗ 0.7920∗∗∗ 0.8075∗∗∗ 0.7983∗∗∗ 0.8102∗∗∗ 0.7774∗∗∗ 0.8440∗∗∗ 0.7774∗∗∗

Multi-Modal(Attention-based Fusion)
Unet w/ condition 0.8140∗∗ 0.8522∗ 0.8021∗∗ 0.8500 0.8021∗∗∗ 0.8453∗∗∗ 0.8596∗∗∗ 0.8468∗∗∗ 0.8440∗∗∗ 0.8468∗∗∗

BMGAN (Hu et al., 2021) 0.7277∗∗∗ 0.7517∗∗∗ 0.7914∗∗∗ 0.8049∗∗∗ 0.7914∗∗∗ 0.8410∗∗∗ 0.8261∗∗∗ 0.8597∗∗∗ 0.8433∗∗∗ 0.8597∗∗∗

BPGAN (Zhang et al., 2022b) 0.7594∗∗∗ 0.7087∗∗∗ 0.7754∗∗∗ 0.7538∗∗∗ 0.7754∗∗∗ 0.7983∗∗∗ 0.8102∗∗∗ 0.7774∗∗∗ 0.8440∗∗∗ 0.7774∗∗∗

ControlNet (Zhang et al., 2023) 0.7588∗∗∗ 0.7431∗∗∗ 0.7692∗∗∗ 0.7590∗∗∗ 0.7692∗∗∗ 0.8120∗∗∗ 0.6957∗∗∗ 0.7600∗∗∗ 0.9116 0.7600∗∗∗

CLDM (Ou et al., 2024a) 0.5980∗∗∗ 0.5903∗∗∗ 0.6154∗∗∗ 0.5872∗∗∗ 0.6154∗∗∗ 0.6714∗∗∗ 0.7066∗∗∗ 0.6274∗∗∗ 0.8583∗∗∗ 0.6274∗∗∗

PASTA (Li et al., 2024) 0.6272∗∗∗ 0.6389∗∗∗ 0.6538∗∗∗ 0.6176∗∗∗ 0.6538∗∗∗ 0.7928∗∗∗ 0.7279∗∗∗ 0.7692∗∗∗ 0.8234∗∗∗ 0.7692∗∗∗

Multi-Modal(Causality-based Fusion)
CausalPETS (ours) 0.8354 0.8703 0.8289 0.8492 0.8289 0.8720 0.8824 0.8926 0.9050∗ 0.8926

Real Images 0.8472 0.8996 0.8396 0.8677 0.8396 0.9072 0.9295 0.9032 0.9153 0.9032

Table 7: Comparison of CN vs AD classification results using synthesised PET images.

AD Classification Results. In addition to the pMCI vs. sMCI classification experiments
shown in the main paper, we further evaluate the quality of synthesized PET images on the
downstream task of AD vs. CN classification. As shown in Table 7, this task involves a larger
population and presents a more balanced and robust evaluation of model generalization. We
compare our method with several representative baselines under three settings: Uni-Modal
(using only synthetic PET), Multi-Modal with attention-based fusion, and Multi-Modal
with causality-based fusion. Our method consistently outperforms all baselines across both
datasets (AV45 and AV1451) and all evaluation metrics (F1, AUC, Accuracy, Precision,
and Recall). The strong performance in this more general classification setting confirms the
reliability and superiority of our synthesized images for supporting clinical-level decision-
making tasks.
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Appendix E. Interpretability

In this section we generate PET images with intervening on one of the variables in Fig. 1,
and the role of each variable within the model can be explained. This counterfactual
manipulation allows us to explore the role of variables in our causal PETS model, thereby
enhancing the interpretability of the model.

Here we presents the visualisation results of synthesised PET with the intervention on
BCSF (Aβ42 for AV45 dataset and pτ181 for AV1451 daraset).

Text

-0.25

0.25

Figure 5: The PET images generated by intervening on the BCSF (Aβ42), experiments on
AV45 dataset. The first row shows the generated PET image and the second row shows the
difference map.

-0.25

0.25

Figure 6: The PET images generated by intervening on the BCSF (pτ), experiments on
AV1451 dataset. The first row shows the generated PET image and the second row shows
the difference map.

In dataset AV45, BCSF measures the soluble Aβ42 concentration in CSF, while PET
detects the deposited amyloid in the brain. Lower levels of Aβ42 in the CSF are often
associated with higher levels of amyloid deposition in the brain because Aβ42, which is a form
of amyloid-beta, tends to accumulate in amyloid plaques in the brain, leading to reduced
levels in the CSF. Thus, a lower CSF concentration indicates more amyloid deposition in
the brain, resulting in a higher-signal in PET image, and vice versa. As Fig. 5 shows, our
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visualization results reflect the specific locations (mostly cerebral cortex) and patterns of
amyloid deposition in the brain as CSF concentration decreases.

In dataset AV1451, BCSF measures pτ181 protein and binds to neurofibrillary tangles,
which are aggregates of pτ associated with AD. The pτ181 protein is primarily generated
in the brain and enters the CSF through the blood-brain barrier. Thus, a lower CSF
concentration indicates less pτ181 in the brain, resulting in a lower-signal in PET image,
and vice versa. As Fig. 6 shows, our visualization results reflect the specific locations and
patterns of pτ181 in the brain as CSF concentration increases.
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