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Abstract

Understanding when and why interpolating methods generalize well has recently
been a topic of interest in statistical learning theory. However, systematically
connecting interpolating methods to achievable notions of optimality has only
received partial attention. In this paper, we investigate the question of what is the
optimal way to interpolate in linear regression using functions that are linear in the
response variable (as the case for the Bayes optimal estimator in ridge regression)
and depend on the data, the population covariance of the data, the signal-to-noise
ratio and the covariance of the prior for the signal, but do not depend on the value
of the signal itself nor the noise vector in the training data. We provide a closed-
form expression for the interpolator that achieves this notion of optimality and
show that it can be derived as the limit of preconditioned gradient descent with a
specific initialization. We identify a regime where the minimum-norm interpolator
provably generalizes arbitrarily worse than the optimal response-linear achievable
interpolator that we introduce, and validate with numerical experiments that the
notion of optimality we consider can be achieved by interpolating methods that only
use the training data as input in the case of an isotropic prior. Finally, we extend the
notion of optimal response-linear interpolation to random features regression under
a linear data-generating model that has been previously studied in the literature.

1 Introduction

Establishing mathematical understanding for the good generalization properties of interpolating
methods, i.e. methods that fit the training data perfectly, has attracted significant interest in recent
years. Motivated by the quest to explain the generalization performance of neural networks which
have zero training error, for example even on randomly corrupted data (Zhang et al.,[2017), this area
of research has established results for a variety of models. For instance, in kernel regression, |Liang
and Rakhlin| (2020) provide a data-dependent upper bound on the generalization performance of the
minimum-norm interpolator. By analyzing the upper bound, they show that small generalization
error of the minimum-norm interpolator occurs in a regime with favourable curvature of the kernel,
particular decay of the eigenvalues of the kernel and data population covariance matrices and,
importantly, in an overparametrized setting. In random features regression, [Mei and Montanari
(2019) showed that for large signal-to-noise ratio and in the limit of large overparametrization, the
optimal regularization is zero, i.e. the optimal ridge regressor is an interpolator. |Liang and Sur|(2020)
characterized the precise high-dimensional asymptotic generalization of interpolating minimum-
£1-norm classifiers and boosting algorithms which maximize the ¢; margin. Bartlett et al.| (2020)
isolated a setting of benign overfitting in linear regression, dependent on notions of effective rank of
the population covariance matrix, in which the minimum-norm interpolator has small generalization
error. Similarly, this regime of benign overfitting occurs with large overparametrization.

Linear models, in particular, provide a fundamental playground to understand interpolators. On
the one hand, in overparametrized regimes, interpolators in linear models are seen to reproduce
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stylized phenomena observed in more general models. For example, the double descent phenomenon,
which was first empirically observed in neural networks (Belkin et al.l 2019), has also featured
in linear regression (Hastie et al.l 2019). On the other hand, neural networks are known to be
well-approximated by linear models in some regimes. For example, with specific initialization and
sufficient overparametrization, two-layer neural networks trained with gradient descent methods
are well-approximated by a first-order Taylor expansion around their initialization (Chizat et al.,
2019). This linear approximation can be split into a random features component and a neural-tangent
component. The random features model, a two-layer neural network with randomly initialized
first layer which is fixed during training, shares similar generalization behavior with the full neural
network (Bartlett et al.l 2021)), and as such, the random features model provides a natural stepping
stone towards tackling a theoretical understanding of neural networks.

A major focus of the interpolation literature has so far been to theoretically study if and when
interpolating methods based on classical techniques such as ridge regression and gradient descent
can have optimal or near-optimal generalization (Bartlett et al., 2021). However the question of
understanding which interpolators are best, and designing data-dependent schemes to implement
them, seems to have received only partial attention. Work investigating which interpolators are
optimal in linear regression includes Muthukumar et al.|(2019)), where the authors constructed the
best-possible interpolator, i.e. a theoretical device which uses knowledge of the true parameter
and training noise vector to establish a fundamental limit on how well any interpolator in linear
regression can generalize. When the whitened features are sub-Gaussian, this fundamental limit is
lower bounded by a term proportional to n/d, up to an additive constant and with high probability,
which is small only in the regime of large overparametrization. Here, n and d are the size and the
dimension of the data. While this interpolator provides the best-possible generalization error, the
interpolator is not implementable in general, as one would need access to the realization of the true
data-generating parameter w* and the realization of the noise in the training data. Rangamani et al.
(2020)) studied generalization of interpolators in linear regression and showed that the minimum-norm
interpolator minimizes an upper bound on the generalization error related to stability. In (Mourtadal
2020), it was shown that the minimum-norm interpolator is minimax optimal over any choice of
the true parameter w* € R?, distributions of the noise with mean 0 and bounded variance, and for
a fixed nondegenerate distribution of the features. |Amari et al.| (2021)) computed the asymptotic
risk of interpolating preconditioned gradient descent in linear regression and investigated the role
of its implicit bias on generalization. In particular, they identified the preconditioning which leads
to optimal asymptotic (as d/n — v > 1 with n,d — oo) bias and variance, separately, among
interpolators of the form w = PXT(XPXT)~ly for some matrix P, where X € R"*? is the
data matrix, y € R" is the response vector. They showed that, within this class of interpolators,
using the inverse of the population covariance matrix of the data as preconditioning achieves optimal
asymptotic variance. However, the interpolator with optimal risk is not given.

In this paper, we study the question of what is the optimal way to interpolate in overparametrized
linear regression by procedures that do not use the realization of the true parameter generating the data,
nor the realization of the training noise. The motivation for studying this question is twofold. First, in
designing new ways to interpolate that are directly related to notions of optimality in linear models, we
hope to provide a stepping stone to designing new ways to interpolate in more complex models, such
as neural networks. Second, our results illustrate that there can be arbitrarily large differences in the
generalization performance of interpolators, in particular considering the minimum-norm interpolator
as a benchmark. This is a phenomenon that does not seem to have received close attention in the
literature and may spark new interest in designing interpolators connected to optimality.

We consider the family of interpolators that can be achieved as an arbitrary function f of the data,
population covariance, signal-to-noise ratio and the prior covariance such that f is linear in the
response variable y (as the case for the Bayes optimal estimator in ridge regression). We call such
interpolators response-linear achievable (see Definition [3). We also introduce a natural notion of
optimality that assumes that the realization of true data-generating parameter and the realization of
the noise in the training data are unknown. Within this class of interpolators and under this notion
of optimality, we theoretically compute the optimal interpolator and show that this interpolator is
achieved as the implicit bias of a preconditioned gradient descent with proper initialization. We refer
to this interpolator as the optimal response-linear achievable interpolator.

Could it be that the commonly used minimum-norm interpolator is good enough so that the benefit of
finding a better interpolator is negligible? We illustrate that the answer to this question is, in general,



no. In particular, we construct an example in linear regression where the minimum-norm interpolator
has arbitrarily worse generalization than the optimal response-linear achievable interpolator. Here,
the variance (hence also generalization error) of the minimum-norm interpolator diverges to infinity
as a function of the eigenvalues of the population covariance matrix, while the generalization error of
the optimal response-linear achievable interpolator stays bounded, close to the optimal interpolator,
i.e. the theoretical device of Muthukumar et al.|(2019) which uses the value of the signal and noise.

The optimal response-linear achievable interpolator uses knowledge of the population covariance
matrix of the data (similarly as in/Amari et al.|(2021)), the signal-to-noise ratio, and the covariance of
the true parameter (on which we place a prior distribution). Is it the case that the better performance
of our interpolator is simply a consequence of this population knowledge? We provide numerical
evidence that shows that the answer to this question is, in general, no. In particular, we construct
an algorithm to approximate the optimal response-linear achievable interpolator which does not
require any prior knowledge of the population covariance or the signal-to-noise ratio and uses only
the training data X and y, and we empirically observe that this new interpolator generalizes in a
nearly identical way to the optimal response-linear achievable interpolator.

Finally, we show that the concept of optimal response-linear achievable interpolation can be extended
to more complex models by providing analogous results for a random features model under the same
linear data-generating regime as also considered in (Me1 and Montanari, [2019), for instance.

2 Problem setup

In this paper we investigate overparametrized linear regression. We assume there exists w* € R¢
(unknown) so that y; = (w*, z;) + & fori € {1,...,n}, with i.i.d. noise £; € R (unknown) such that
E(&) = 0,E(£?) = 0% and i.i.d. features x; € R that follow a distribution P, with mean E(z;) = 0
and covariance matrix E(x;z]) = . We store the features in a random matrix X € R"*¢ with
rows z; € R?, the response variable in a random vector y € R™ with entries y; € R, and the noise
in a random vector £ € R™ with entries §; € R. Throughout the paper we assume that d > n. We
consider the whitened data matrix Z = XX~2 € R"*%, whose rows satisfy E(z;2] ) = I, where
I; € R?* js the identity matrix. We place a prior on the true parameter in the form w* ~ P«
such that E(w*) = 0 and E(w*w*’) = %@. Here, ® is a positive definite matrix and 2 is the
signal. We sometimes abuse terminology and refer to ¢ as the covariance of the prior even though
%Cb is the covariance matrix. Our results will be proved in general, but for the sake of exposition

it can be assumed that 7; ~ N(0,%), £ ~ N(0,021,) and w*~N(0, %(I)). We also define the

signal-to-noise ratio = r?/0? and consider the squared error loss ¢ : (z,y) € R? — (2 — y)?.

Througout the paper, we assume the following two technical conditions hold.

Assumption 1. P, (x; € V) = 0 for any linear subspace V of R? with dimension smaller than d.

Assumption 2. For all Lebesgue measurable sets A C R?, v(A) > 0 implies P,,- (w* € A) > 0,
where v is the standard Lebesgue measure on R

Assumption [1] is needed only so that rank(X) = n with probability 1 (for a proof see [A.4). A
sufficient condition is that P, has a density on R?. A sufficient condition for Assumption[2[is that
P, has a positive density on R?. Now, our goal is to minimize the population risk

rw) = E, #(((w,3) - §)%),

or, equivalently, the excess risk r(w) — r(w*). Here, (Z, ¥, £) is a random variable which follows the
distribution of (z1,y1,&1), - - -, (Tn, Yn, &x) and is independent from them. Throughout the paper we
write E,g(z, 2) to denote the conditional expectation E(g(z, 2)|Z), for two random variables z and 2
and for a function g. The population risk satisfies

r(w) = (w—w)S(w —w*) + 0 = w—w*|§ + r(w”), (1)
where ||w||% = wT Xw. We define the bias and variance of w € R¢ by the decomposition

E¢,w+ r(w) = B(w) + V(w), )



where
B(w) = B¢ e [E(w|w*, X) —w*[[} V(w) = Eg e w — E(w|w*, X)|3:. 3)

One of the main paradigms to minimize the (unknown) population risk is based on minimizing
the empirical risk R(w) = £ 30 ((w, 2;) — 3)? = 2 30, (w2, y;) (Vapnik, |1995). In our
setting, minimizing the empirical risk is equivalent to finding w € R? such that Xw = .

3 Interpolators

An interpolator is any minimizer of the empirical risk. Let G be the set of interpolators, which in
linear regression can be written as

G={weR?: Xw=y}.

As rank(X) = n with probability 1, we have G # @ with probability 1. In linear regression, the
implicit bias of gradient descent initialized at 0 is the minimum-norm interpolator (Gunasekar et al.,
2018). We define the minimum-norm interpolator by

wy, = argmin ||w||§ = XJ[y7
weRe : Xw=y

where XT € R™*4 ig the Moore-Penrose pseudoinverse (Penrose, |1955). As rank(X) = n, we
can also write X7 = XT(XXT)~!. The second interpolator of interest is a purely theoretical
device, previously used in (Muthukumar et al., 2019) to specify a fundamental limit to how well any
interpolator in linear regression can generalize.

Definition 1. The best possible interpolator is defined as

Wy, = arg min r(w).
weg

We can write

Wy = argmin |2 (w—w*)|3,
weR : Xw=y

and after a linear transformation and an application of a result on approximate solutions to linear
equations (Penrosel [1956), we obtain

W, =w* + ¥ 7 (X22)t¢. 4)

We notice that the best possible interpolator fits the signal perfectly by having access to the true

parameter w* and fits the noise through the term ¥z (Xx- 3 )T€ by having access to the noise vector
¢ in the training data. In general, this interpolator cannot be implemented as it requires access to
the unknown quantities w* and £. We are interested in interpolators which can be achieved by some
algorithm using the data X and y.

Definition 2. We define an estimator w € R? to be achievable if there exists a function f such that
w=f(X,y,%,®,0).

In our definition of achievability, we allow for knowledge of the population data covariance, the
signal-to-noise ratio, and the prior covariance to define a fundamental limit to what generalization
performance can be achieved also without access to these quantities, and we later empirically show
that we can successfully approach this limit using only the knowledge of the training data X and y,
in considered examples (see Section . Moreover, our theory is also useful in situations when one
has access to some prior information about the regression problem which they can incorporate into
an estimate of 3, §, ® (for example, one may know the components of z; are independent and hence
Y. is diagonal) and hence it is relevant to consider a broader class than w = f(X,y).

Definition 3. We define the set of response-linear achievable estimators by

L={weR?:3f suchthatw = f(X,y,%,®,5) where y € R" — f(X,y, %, ®,0) is linear }.



Linearity of y € R" — f(X,y, 3, ®,6) is equivalent to f(X,y, X, ®,d) = g(X, X, ®, )y, where g
is any function which has image in R?*"™. The notion of optimality that we introduce is that of the
optimal response-linear achievable interpolator, which is the interpolator that minimizes the expected
risk in the class L.

Definition 4. We define the optimal response-linear achievable interpolator by

wo = arg min B¢ ,,»r(w) — r(w™). ®)
weGNL

4 Main results

By definition, the interpolator wo has the smallest expected risk among all response-linear achievable
interpolators. Our first contribution is the calculation of its exact form.

Proposition 1. The optimal response-linear achievable interpolator satisfies

-1

wo = <2¢XT+2‘5(X2‘5)T) (In-l—le(I)XT) Y. ©)

For an isotropic prior ® = I;, wo depends only on the population covariance X and the signal-to-
noise ratio ¢ so that weo can be approximated using estimators of these quantities, which is what
we do in Sections [5] and Even if ® # [;, one might have some information about the prior
covariance, which can be incorporated into an estimate ® and used instead of ®. However, even if no

such estimate is available, in Sectionwe empirically show that, in our examples, using ® = I
when ¢ # [; has a small effect on generalization.

Secondly, using results of Gunasekar et al.| (2018)) on the implicit bias of converging mirror descent,
we show that the optimal response-linear interpolator is the limit of gradient descent preconditioned
by the inverse of the population covariance, provided that it converges and is suitably initialized.

Proposition 2. The optimal response-linear achievable interpolator is the limit of preconditioned
gradient descent

wipr = wg — X VR(wy), (N
provided that the algorithm converges, initialized at
5 5 -
wy = E@XT <In + dX(I)XT> y. (8)

The interpolator wo does not have the smallest bias or the smallest variance in the bias-variance
decomposition E¢ ,,» m(w) = B(w) + V(w), but rather achieves a balance. This is related to
the results of (Amari et al., 2021). Their setting looks at interpolators achieved as the limit of
preconditioned gradient descent in linear regression (preconditioned with some matrix P) and
initialized at 0. Such interpolators can be written as w = PXT (X PXT)~1y. For these interpolators,
they compute the risk of w, separate the risk into a variance and a bias term and using random matrix
theory they find what the variance and bias terms converge to when d — co,n — oo in a way
such that d/n — ~ > 1. For these calculations to hold, they assume that the spectral distribution
of (¥4)aen converges weakly to a distribution supported on [¢, C] for some ¢, C' > 0. Then, after
obtaining the limiting variance and bias, they prove which matrices P minimize these limits separately
(not their sum, which is the overall asymptotic risk).

We approach the problem from the other direction. That is, we do not a priori consider interpolators
that can be achieved as limits of specific algorithms, but we directly look at which interpolator
minimizes the risk as a whole (not bias and variance separately). Only after computing the optimal
response-linear interpolator, we show in Proposition [2] that the interpolator is in fact the limit of
preconditioned gradient descent, however with a specific initialization. Our results hold for every
finite d > n and we do not put assumptions on the eigenvalues or the spectral distribution of 3.

In particular, we can recover the results of (Amari et al., 2021) as a special case of Proposition E} If
we take the signal-to-noise ratio § — 0 (by taking r* — 0) in Proposition we obtain the matrix P



which achieves optimal variance and if we take § — oo (by taking o> — 0), we obtain the matrix P
which achieves optimal bias. Moreover, we provide a further extension in Proposition 3]

We show that the preconditioned gradient descent w; 1 = w; — ;X 'V R(w;) achieves optimal
variance among all interpolators when initialized at any deterministic wq and for any finite d,n € N.

Proposition 3. The limit of preconditioned gradient descent w; 1 = w; — nt2_1VR(wt) initialized
at a deterministic wo € R?, provided that it converges, satisfies
lim wy = argmin V(w). 9)
t—o00 weG

We note that the optimal variance is achieved among all interpolators, not only among response-linear
achievable interpolators.

A natural question to ask is whether the optimal response-linear achievable interpolator wo provides a
significant benefit compared to other interpolators. A second question is whether we can successfully
approximate the optimal response-linear achievable interpolator without knowledge of the population
covariance ¥ and the signal-to-noise ratio d. In the following section, we illustrate that both the
interpolator with optimal variance and the interpolator with optimal bias can generalize arbitrarily
badly in comparison to wo as a function of the eigenvalues of the population covariance. In the same
regimes where this happens, we present numerical evidence that we can successfully approximate wo
by an empirical interpolator weo, without any prior knowledge of 3 or § by using the Graphical Lasso
estimator (Friedman et al., | 2007) of the covariance matrix 3 and choosing the empirical estimate of §
by crossvalidation on a subset of the data.

S Comparison of interpolators

First, we present an example where the minimum-norm interpolator w,, generalizes arbitrarily worse
than the best response-linear achievable interpolator wo. Second, we give an example where an
interpolator with optimal variance generalizes arbitrarily worse than wo. This shows that arbitrarily
large differences in test error are possible within the class of estimators with zero training error.

In the examples, we consider a setting where z; ~ N(0,Y) and w* ~ A(0, §<I>) Therefore,

throughout Sectionwe assume P, = N(0,%) and P« = N(0, %CI)). Before presenting these
examples, we discuss approximating wo by an interpolator, wo., which uses only the data X and y.

5.1 Empirical approximation

The interpolator wo is the limit of the algorithm

Wt41 = Wt — mE*lVR(wt). (10)
The population covariance ¥ is required to run this algorithm. However, the matrix X is usually
unknown in practice. One may want to estimate 3. However, if one replaces X by ¥ = X7 X/n+ M\

(with A > 0), then the limit of is the same as the limit of gradient descent (provided that both
algorithms converge). This is because, using the singular value decomposition of X, one can show

D (Xi_%)Ty = XTy.
The preconditioned gradient update wy 1 — w; = 17, P~'V.R(w;) has to not belong to Im(X7) in
order to not converge to the minimum-norm interpolator. Hence, using P = ¥ = X7 X /n + A, (for

example, also the Ledoit-Wolf shrinkage approximation (Ledoit and Wolf} [2004)) in preconditioned
gradient descent removes the benefit of preconditioning in terms of generalization of the limit.

We use the Graphical Lasso approximation (Friedman et al.,[2007). We empirically observe that in
the examples considered in this paper (Figures|I] [2] 3] |4] [5] [6) using the Graphical Lasso covariance
Y. instead of X has nearly no effect on generalization. Under specific assumptions, |Ravikumar et al.
(2011) provide some convergence guarantees of the Graphical Lasso.

In regards to approximating the signal-to-noise ratio 4, we choose d, that minimizes the crossvalidated
error on random subsets of the data. In this way, we arrive at the interpolator
5. -

wou= (2xTm b oem ) (14 2xxT) an



which approximates wo and is a function of only X and y. We note that the interpolator wo. uses Iy
in place of the prior covariance matrix.

In the experiments (Figures|T] 2} 3l @] [5] [6) we used the Graphical Lasso implementation of scikit-
learn (Pedregosa et al.l 2011) with parameter &« = 0.25 (« can also be crossvalidated for even
better performance) and in estimating d, for each ¢, in {0.1,0.2,...,1,2,...,10}, we computed

) ) )

the validation error on a random, unseen tenth of the data and averaged over 10 times. The §, with
smallest crossvalidated error was chosen.

5.2 Random matrix theory concepts
For presenting the discussed examples we need to review some concepts from random matrix theory.

Definition 5. For a symmetric matrix ¥ € R?*? with eigenvalues \; > Ay > --- > A\g > 0 we
define its spectral distribution by i (z) = % Z?:l I 00) ().

The following assumptions will be occasionally considered for the covariance matrix 3.

Assumption 3. There exists kyax > 0 such that Ay (2) < ko uniformly for d € N.
Assumption 4. There exists kmin > 0 such that ki < Apin(3) uniformly for d € N.

Assumption 5. The spectral distribution Fy; of the covariance matrix ¥ converges weakly to a
distribution H supported on [0, 00).

Marcenko and Pastur| (1967)) showed that there exists a distribution ]?7 such that 7,7, — Jﬂ’-:,y,

2i~N (0, I;) independently. Then, under Assumption [3] it can be shown that the spectral distribution
of S = XxTX /n = DEVAWA /n converges weakly, with probability 1 to a distribution supported
on [0, 00), which we denote by F.,, see e.g. (Silverstein and Choil [1995)). Similar arguments also
show that the spectral distribution of X X7 /n € R"*" converges weakly, with probability 1.

weakly, with probability 1 as n — 0o, d — oo with d ‘l — . In our discussion, x; = E%zi, where

Definition 6. For a distribution F supported on [0, o), we define the Stieltjes transform of F, for
any z € C\ R™ by

mr(z) = /000 3 1 de()\).

The weak convergence of the spectral distribution of £ to F., is equivalent to mg(z) — m(z) and
mx x7/y(2) = v(z) almost surely for all z € C\ R*, where m and v are the Stieltjes transforms

of F., and the limiting spectral distribution of X X*' /n, respectively (see e.g. Proposition 2.2 of
(Hachem et al.,[2007)). We call v the companion Stieltjes transform of .

5.3 Diverging variance of interpolator with optimal bias
Using wy = 0 in Proposition 3} we choose the interpolator with optimal variance to be (see
wy =X73(XE72)fy. (12)

When & = I, the interpolator with best bias among response-linear achievable interpolators is the
minimum-norm interpolator (see Section[A.5). We identify an example where the minimum-norm
interpolator wy, generalizes arbitrarily worse than the best response-linear achievable interpolator
wo. For this, we exploit results of |Hastie et al.| (2019) on computing the asymptotic risk of the
minimum-norm interpolator. They show that if & = I, under Assumptions and if % —y>1
with n — 0o, d — oo then with probability 1,

* T2 2 U/(O)
E£7w*r(w€2) —r(w") — ~v(0) to (U(O)2 - 1)’ "

where v is the companion Stieltjes transform introduced in Section[5.2] In comparison, similarly
as in (Amari et al.| 2021), the asymptotic risk of the best variance estimator wy satisfies that under



Assumptionand if n,d — oo with % — v > 1 then with probability 1 we have that

lim B¢ e r(wy) —r(w*) = P21 L /OO s dH(s) + o (14)
dooo S v N v Jo y—1

An alternative way is to write [ s dH(s) = limg_,o Tr(3). This result follows by an application
of Theorem 1 of (Rubio and Mestre, |201 1)), which is in the supplementary material for completeness.

Now we find a regime of covariance matrices X, for which the variance term of the minimum-

norm solution, Vy, = 02(:;;((83 — 1), diverges to infinity, while the risk of wo stays bounded and

close to optimal. For this, we consider a generalization of the spike model of covariance matrices
(Baik and Silverstein, [2006; Johnstonel 2001}, which is a fundamental model in statistics. Here
Y = diag(p1,..-,p1,p2,---,p2) € R¥*? where the number of pys is d - ¢ with ¢; € [0, 1]. This
model was also considered in (Richards et al.|[2021)) where it is called the strong weak features model.
In this regime, it is possible to explicitly calculate the companion Stieltjes transform v(0) and v’ (0)
of . In the case that y = 2,11 = 1/2 we have

/ 2
() S(fEE)

If we fix p; = 1 and take pa — 0, then the variance term V, diverges to infinity. This also means that
the asymptotic risk of the minimum-norm interpolator diverges to infinity. Moreover, the asymptotic
risk of wy in (T4) evaluates to

2
lim Eq e r(wy) — r(w*) = <w1p1 - 1/11)p2> (1 - 1) P S

d—o0 0 1

asymptotic limit of E¢ ,,»r(wo) — r(w*), as d/n — v > 1, stays bounded by (16) as po — 0. The

In addition, by construction of wo, we know that Egyw*r(wo) < ]Eg,w*r(wv and therefore the
expected generalization error in the setting described above is illustrated in Figure|l]
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Figure 1: Plot of E¢r(w) (points) for w € Figure 2: Plot of E¢r(w) (points) for w €
{we,, wy, wo, wWoe, wy} along with predictions {wy,, wy, wo, Woe, Wy along with predictions
(crosses) from (T4) and (T3] in the strong weak (crosses) from (I4)) and (I3)) in the strong weak
features model with 2 = 1,02 = 1,7 = 2,4, = features model withr? = 1,02 =1,y = 2,9, =
1/2,n = 3000 and p; =1, pa — 0. 1/2,m = 3000 and p2 = 1, p; — 0.

We note that the empirical estimator wo, (yellow points), which is a function of only the training
data X and y and does not use the population covariance ¥ or the signal-to-noise ratio §, performs
almost identically to the optimal response-linear achievable interpolator wo (cyan points).

In this example, we chose v = 2 and ¢); = 1/2 deliberately. One does not achieve diverging variance
for an arbitrary choice of v and 1);. However, for any v > 1 such that y; = 1, the phenomenon of
Figure [T holds (see of the supplementary material).



5.4 Diverging bias of interpolator with optimal variance

Now, we illustrate a regime where the best variance interpolator wy, generalizes arbitrarily worse
than weo. In the same strong and weak features covariance model described above in Section[5.3]
when v = 2 and ¢, = 1/2, if we instead have p; — oo and po = 1, then the asymptotic risk
diverges to infinity linearly. However, the variance of the minimum-norm interpolator in diverges
only like v/p1. Moreover, the bias term satisfies

,,,2 7,2

y(0) ~ VI

which also diverges like ,/p1. Now, because E¢ w T (wo) < E¢ wr (we, ), we have that

dli)m ng*r(wo)<,/p1p2+(1/p1 1)p2 +3)

so that the asymptotic risk of wo diverges to infinity as /p;. We 1llustrate this in Figure

By, =

We notice that the empirical approximation wp, again performs in a nearly identical way to the
optimal response-linear achievable interpolator wo. Moreover, importantly, we note that wy and
wo are limits of the same algorithm, wy41 = wy — ¢ E*1VR(wt), only with different initialization.
Hence, this shows that different initialization of the same optimization algorithm can have an
arbitrarily large influence on generalization through implicit bias.

6 Random features regression

The concept of optimal interpolation as a function which is linear in the response variable, is general
and can be extended beyond linear models. We present an extension of Proposition [I]to the setting of
random features regression. Random features models were introduced as a random approximation to
kernel methods (Rahimi and Recht, |2008)) and can be viewed as a two-layer neural network with first
layer randomly initialized and fixed as far as training is concerned. They can be shown to approximate
neural networks in certain regimes of training and initialization and hence are often considered in
the literature as a first step to address neural networks (e.g. (Jacot et al.l 2018))). We consider data
generated in the same way as before, y; = (z;, w*) + &, and the model to be a two-layer neural

network f, : R? 5 z + o 0(©x/+/d), where the first layer © € RY*? is randomly initialized. This
setting, along with ; and rows of © belonging to the sphere S~ (v/d) with radius v/d in R?, is often
considered in the literature on interpolation of random features models (Mei and Montanari, 2019
Ghorbani et al.| 2021). If we analogously define the optimal response-linear achievable interpolator
in random features regression by

ap = argminE¢ .« 7(f,) — r(w”), (17

aegGNL

where here G = {a € RY : Za = y} is the set of interpolators, Z = ¢(X 07T /v/d) and L is the
same as in Definition 3] then the following analogue of Proposition [T holds.

Proposition 4. The optimal response-linear achievable interpolator in random features regression
satisfies

-1,d
ao=371 <sz<I>XT+ZT (zs7'zT)7" (5

In+X<I>XT—ZE;12m<I>XT)> (d

-1
5In+X<I>XT> v,

Here ¥, = E;(0(0%/vd)o(02/vd)T) and ., = E;(0(0%/V/d)zT) are covariance and cross-
covariance matrices, respectively. This interpolator can be again obtained as the implicit bias of
preconditioned gradient descent using results of (Gunasekar et al.[(2018)).

Proposition 5. The optimal response-linear achievable interpolator (17)) in random features regression
is the limit of preconditioned gradient descent on the last layer,

Wi41 = W — T]tZZ71VR(’LUt),

provided that the algorithm converges, initialized at

d —1
ap =318, X7 <5In + X(I)XT> Y.



In Section we illustrate the test error of f,, with @ = ao in comparison to the test error for the
minimum-norm interpolator a = a,, = ZTy on a standard example.

7 Conclusion

In this paper, we investigated how to design interpolators in linear regression which have optimal gen-
eralization performance. We designed an interpolator which has optimal risk among interpolators that
are a function of the training data, population covariance, signal-to-noise ratio and prior covariance,
but does not depend on the true parameter or the noise, where this function is linear in the response
variable. We showed that this interpolator is the implicit bias of a covariance-based preconditioned
gradient descent algorithm. We identified regimes where other interpolators of interest are arbitrarily
worse using computations of their asymptotic risk as % — v > 1withd,n — oc.

In particular, we found a regime where the variance term of the minimum-norm interpolator is
arbitrarily large compared to our interpolator. This confirms the phenomenon that implicit bias has an
important influence on generalization through the choice of optimization algorithm.

We identified a second regime where the interpolator that has best variance is arbitrarily worse than
our interpolator. In this second example, both interpolators are the implicit bias of the same algorithm,
but with different initialization. This contributes to illustrating that initialization has an important
influence on generalization.

We also considered an empirical approximation of the optimal response-linear achievable interpolator,
which uses only the training data X and y and does not assume knowledge of the population
covariance matrix, the signal-to-noise ratio or the prior covariance and empirically observe that it
generalizes in a nearly identical way to the optimal response-linear achievable interpolator in the
examples that we consider.

A limitation of this work includes a precise guarantee on the approximation error of the Graphical
Lasso for a general covariance matrix X. Some guarantees are in (Ravikumar et al., 2011), however
establishing guarantees for a general covariance matrix would be a contribution on its own.

A natural question for future research, which also motivated our work, is how to systematically design
new ways of interpolation, which are adapted to the distribution of the data and related to notions of
optimality, for more complex overparametrized machine learning models such as neural networks.
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