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Abstract
Inverse reinforcement learning (IRL) algorithms
often rely on (forward) reinforcement learning or
planning over a given time horizon to compute an
approximately optimal policy for a hypothesized
reward function and then match this policy with
expert demonstrations. The time horizon plays a
critical role in determining both the accuracy of
reward estimates and the computational efficiency
of IRL algorithms. Interestingly, an effective time
horizon shorter than the ground-truth value often
produces better results faster. This work formally
analyzes this phenomenon and provides an expla-
nation: the time horizon controls the complexity
of an induced policy class and mitigates overfit-
ting with limited data. This analysis serves as a
guide for the principled choice of the effective
horizon for IRL. It also prompts us to re-examine
the classic IRL formulation: it is more natural to
learn jointly the reward and the effective horizon
rather than the reward alone with a given horizon.
To validate our findings, we implement a cross-
validation extension and the experimental results
confirm the theoretical analysis.

1. Introduction
Inverse reinforcement learning (IRL) (Ng & Russell, 2000)
aims to infer the underlying task objective from expert
demonstrations. One common approach is to estimate a
reward function that induces a policy matching closely
the demonstrated expert trajectories. This model-based ap-
proach holds the promise of generalizing the learned reward
function and the associated policy over states not seen in the
demonstrations (Osa et al., 2018).

Many existing IRL algorithms follow the classic formulation
and assume a known ground-truth discount factor (or equiv-
alently, time horizon) for the expert demonstrations (Ng &
Russell, 2000; Abbeel & Ng, 2004; Ramachandran & Amir,
2007; Ziebart et al., 2008; Boularias et al., 2011; Levine
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et al., 2011; Wulfmeier et al., 2016; Pirotta & Restelli, 2016;
Finn et al., 2016b;a; Ho & Ermon, 2016; Fu et al., 2018; Ni
et al., 2020; Ke et al., 2020; Ramponi et al., 2020; Metelli
et al., 2021; Hoshino et al., 2022). They estimate the reward
function based on this time horizon. However, we have the
flexibility to choose a different time horizon when learning
the reward function and optimizing the policy.

Surprisingly, we find that using a horizon shorter than the
ground-truth value often produces better results faster, espe-
cially when expert data is scarce. Why? Intuitively, the time
horizon controls the complexity of an induced policy class.
With limited data, a shorter time horizon is preferred, as the
induced policy class is simpler and mitigates overfitting. We
refer to the horizon or discount factor used during learning
as the effective horizon or effective discount factor, as it
holds promise to enhance learning effectiveness.

We present a formal analysis showing that, with limited
expert data, using a shorter discount factor or time horizon
improves the generalization of the learned reward function
to unseen states. In IRL settings where the effective horizon
varies, the performance gap between the induced policy and
the expert policy arises from two sources: (i) reward esti-
mation error due to limited data during IRL, and (ii) policy
optimization error from using an effective horizon shorter
than the ground-truth. We prove that the effective horizon
controls the complexity of the approximated policy class
during IRL. As the horizon increases, reward estimation er-
ror grows—overfitting occurs because we estimate policies
from a more complex class using limited expert data. On the
other hand, as the horizon approaches the ground-truth, the
policy optimization error decreases. These opposing errors
suggest that an intermediate effective horizon balances this
trade-off and produces the most expert-like policy.

Based on our theoretical findings, we propose a more natu-
ral and higher-performing formulation of the IRL problem:
jointly learning the reward function and the effective hori-
zon/discount factor. To validate our theoretical results, we
extend the linear programming IRL algorithm (LP-IRL) (Ng
& Russell, 2000) and the maximum entropy IRL algorithm
(MaxEnt-IRL) (Ziebart et al., 2008) using cross-validation.
Our experimental evaluation of both LP-IRL and MaxEnt-
IRL across four different tasks corroborates our theoretical
analysis.
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This work presents the first formal analysis of the relation-
ship between the time horizon and the performance of the
learned reward function in IRL. Previous studies have ex-
amined the impact of the time horizon in Reinforcement
Learning (RL) (Guo et al., 2022; Hu et al., 2022; Laidlaw
et al., 2023; Amit et al., 2020), approximate dynamic pro-
gramming (Petrik & Scherrer, 2008), and planning (Jiang
et al., 2015; Mattingley et al., 2011), but the effects when the
reward function is unknown and inferred from data remain
under-explored. Our work addresses this gap by providing
a theoretical foundation for how changes in the horizon af-
fect policy performance in IRL. This analysis is timely, as
the IRL community is increasingly interested in leveraging
different horizons to enhance policy outcomes. Some IRL
algorithms employ smaller effective time horizons for com-
putational efficiency (MacGlashan & Littman, 2015; Lee
et al., 2022; Xu et al., 2022), while others learn discount
factors from data to better align with demonstrations, some-
times incorporating multiple feedback types (Giwa & Lee,
2021; Ghosal et al., 2023). By formally examining the role
of varying time horizons, our work complements existing
methods and offers valuable insights to guide future IRL
research.

2. Related works
Effective Horizon of Imitation Learning Imitation learn-
ing learns desired behaviors by imitating expert demonstra-
tions and comprises two classes of methods: model-free
behavior cloning (BC) and model-based inverse reinforce-
ment learning (IRL) (Osa et al., 2018). The primary dis-
tinction between BC and IRL lies in the horizons used to
align the learned behaviors with expert data. BC matches
step-wise expert actions, resulting in poor generalization to
unseen states. In contrast, IRL addresses this issue by either
matching multi-step trajectory distributions (Ziebart et al.,
2008; Boularias et al., 2011; Levine et al., 2011; Wulfmeier
et al., 2016; Finn et al., 2016b;a; Pirotta & Restelli, 2016;
Ramponi et al., 2020) or their marginalized approximations
(Ho & Ermon, 2016; Fu et al., 2018; Ni et al., 2020; Ke
et al., 2020; Ghasemipour et al., 2019; Hoshino et al., 2022).
The former employs a double-loop structure to interleave
the policy optimization and reward function update, while
the latter learns a discriminator to distinguish expert-like
behaviors. Both approaches utilize the ground-truth hori-
zon/discount factor for policy optimization, ensuring global
temporal consistency between the learned policy and ex-
pert. Notably, few IRL methods adopt receding horizons to
reduce computational cost(MacGlashan & Littman, 2015;
Lee et al., 2022; Xu et al., 2022), claiming shorter opti-
mization horizons yields sub-optimal policies. Moreover,
several works focus on finding the optimal discount factors
in an IRL context, sometimes incorporating different human
feedback types (Ghosal et al., 2023; Giwa & Lee, 2021).

However, a theoretical analysis on the impact of the horizon
in IRL is lacking, making it an important yet overlooked
consideration in the field.

Theoretical Analysis on Effective Horizon There has
been significant research analyzing the impact of planning
horizons on Reinforcement Learning (RL) (Guo et al., 2022;
Hu et al., 2022; Laidlaw et al., 2023; Amit et al., 2020), ap-
proximate dynamic programming (Petrik & Scherrer, 2008),
and planning (Mattingley et al., 2011), especially with tran-
sition models estimated from samples (Jiang et al., 2015).
In these studies, where the reward function is known, policy
performance is directly affected by differences in planning
horizons. However, the impact of horizons when the reward
function is learned from data remains under-explored. Our
work examines how changes in the horizon affect policy per-
formance when the reward function is derived from expert
demonstrations. Under our setting, the policy optimization
depends not only on the horizon but also on reward function
estimation, which is in turn also horizon-dependent.

This dual dependency introduces unique analytical chal-
lenges not present in forward RL or planning. The key
challenge lies in the second part: analyzing how varying dis-
count factors impact reward function estimates when expert
data is limited. While Metelli et al. (2021) defines a set of
reward functions compatible with limited expert demonstra-
tions under a fixed, known discount factor, we extend this
formulation to settings with unknown and varying horizons.
By considering this extended class of compatible reward
functions, we analyze how horizon affects reward estimation
and overall policy optimization performance, particularly
when expert demonstrations are scarce.

3. Problem formulation
We consider an MDP (S,A, P,R0, γ0), where S and A
represent the state and action spaces, respectively. The tran-
sition function is denoted by P : S×A×S → [0, 1], and the
ground-truth reward function is R0 : S × A → [0, Rmax].
The discount factor, γ0, implicitly determines the value of
future rewards at the current time step. The optimal policy,
π∗
R0,γ0

, maximizes the total discounted reward based on
R0 and γ0. In our setting, we are given the MDP without
the reward function R0 or the discount factor γ0. Instead,
we have a set of N expert demonstrated state-action pairs
D = {(s0, a0), (s1, a1), ...(sN−1, aN−1)} sampled from
π∗
R0,γ0

. We assume the expert policy is deterministic. More-
over, the MDP is assumed to be ergodic, such that any state
is reachable from any other state by following a suitable
policy. This underlying interconnectivity within the state
space allows for the deduction of unobserved states’ value
by propagating information obtained from observed states
through the transition function. Our analysis employs the

2



On the Effective Horizon of Inverse Reinforcement Learning

discount factor for simplicity; however, the findings are
equally applicable to the planning horizon since both de-
termine how much future rewards are valued. A smaller
discount factor effectively limits the agent’s planning hori-
zon by diminishing the importance of distant rewards.

We examine the scenario where both the reward function
and discount factor (R̂, γ̂) are jointly learned from the
limited expert demonstrations. The scarcity of data sug-
gests that (R̂, γ̂) is susceptible to approximation errors,
which consequently affects the induced optimal policy π∗

R̂,γ̂
.

We measure the quality of the (R̂, γ̂) pair by comparing
the performance of its induced policy π∗

R̂,γ̂
with that of

the ground-truth optimal policy π∗
R0,γ0

, both evaluated un-
der the ground-truth (R0, γ0) for fair comparison. For-
mally, we define the loss as the performance difference
between the induced and ground-truth optimal policies:∥∥∥∥V π∗

R0,γ0

R0,γ0
− V

π∗
R̂,γ̂

R0,γ0

∥∥∥∥
∞

, where V π
R,γ represents the value

function of policy π evaluated under (R, γ). The “best”
policy π∗

R̂,γ̂
is the one that minimizes this loss. We use this

loss to theoretically study the inter-dependency between the
amount of expert data, the effective discount factor utilized
for reward learning, and the performance of the policy in-
duced by these factors. In practical terms, this loss can also
guide our choice of the (R̂, γ̂) pair. The existing IRL works
either use ground-truth γ0, or a smaller one to reduce the
computation burden. In this work, we investigate how to
choose the discount factor γ̂ ≤ γ0 that minimizes the perfor-
mance loss defined above. We define the optimal effective
discount factor as:

γ̂∗ = argmin
0≤γ̂≤γ0

∥∥∥∥V π∗
R0,γ0

R0,γ0
− V

π∗
R̂,γ̂

R0,γ0

∥∥∥∥
∞

. (1)

4. Analysis
4.1. Overview

We define the effective horizon as the horizon (or discount
factor) used in learning the reward function and optimizing
policies, which may differ from the ground-truth horizon.
We formally analyze how this effective horizon influences
the quality of the learned reward function under varying
amounts of expert data. Our main result, Theorem 4.1,
shows that when expert data is limited, using a discount fac-
tor smaller than the ground-truth value enables IRL methods
to learn reward functions that induce policies more closely
aligned with the expert.
Theorem 4.1. Let (S,A, P ) be a controlled Markov
process shared by two MDPs: the ground-truth MDP
(S,A, P,R0, γ0) with reward function R0 : S × A →
[0, Rmax] and discount factor γ0 ∈ (0, 1); and the estimated
MDP (S,A, P, R̂, γ̂) with reward function R̂ : S × A →
[0, Rmax] and discount factor γ̂ ∈ (0, 1), estimated from N

expert state-action pairs. Let |Πγ̂ | denote the complexity of
the policy class induced by the estimated effective horizon
γ̂, and suppose the optimal policy π∗

R̂,γ̂
derived from (R̂, γ̂)

belongs to this class, i.e., π∗
R̂,γ̂

∈ Πγ̂ . Then, for the optimal
policies π∗

R0,γ0
and π∗

R̂,γ̂
induced by the ground-truth and

estimated parameters, respectively, the difference between
their value functions evaluated under R0 and γ0 is bounded
with probability at least 1− δ by∥∥∥∥V π∗

R0,γ0

R0,γ0
− V

π∗
R̂,γ̂

R0,γ0

∥∥∥∥
∞

≤ 2Rmax

(1− γ̂)2

√
1

2N
log

|S||Πγ̂ |
2δ

+
γ0 − γ̂

(1− γ0)(1− γ̂)
Rmax (2)

Intuitively, Theorem 4.1 bounds the performance disparity
between the policy induced by the learned (R̂, γ̂) and the
expert policy as a sum of two terms: the first term bounds
the reward function estimation error that arises from using
a limited dataset and an effective γ̂ during IRL, while the
second term measures the policy performance gap when op-
timized using γ̂ < γ0 using that estimated reward function.
When γ̂ increases, the first term, i.e., the reward function
estimation error, grows due to overfitting arising from es-
timating a policy from an increasingly complex class Πγ̂

using only limited expert data, while the second term, i.e.,
the policy optimization error, diminishes to encourage fi-
delity to the ground-truth γ0 and approaches 0 when γ̂ → γ0.
Consequently, these opposing error terms imply that an in-
termediate value of γ̂ yields a better reward function that
induces the most expert-like policy.

We build up intermediate theorems and lemmas to formally
prove Theorem 4.1 in the remaining subsections. The over-
all strategy is the following: The overall bound in Theo-
rem 4.1 measures the performance gap between the policy
induced by the learned (R̂, γ̂) pair and the optimal policy.
This gap arises from two sources: (i) differences in the
reward functions, and (ii) differences in the horizons over
which the policies are optimized. Therefore, we decom-
pose the overall bound into two error terms: (i) the reward
function estimation error resulting from limited expert data
during IRL, and (ii) the policy optimization error due to
using an effective horizon different from the ground truth.

After deriving bounds for both error terms, we combine
them to prove Theorem 4.1 in Section 4.6. The second term
is straightforward to bound (see Section 4.6), The main chal-
lenge lies in bounding the reward function estimation error
in the first term (Sections 4.2 to 4.5). We summarize our
strategy on bounding the first error term—reward function
estimation error—in terms of the effective horizon γ̂ and
the number of expert state-action pairs N . IRL methods
learn the reward function by minimizing the discrepancy
between the induced policy and the expert data. Therefore,
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we first bound the reward function estimation error using
the expert policy estimation error, which measures the gap
between the policy induced by the learned reward function
and the ground-truth expert policy (see Section 4.3 and 4.4).
The expert policy estimation error, in turn, depends on the
complexity of the policy class Πγ̂ and the number of expert
pairs N used to fit it (see Section 4.5). Furthermore, we
prove that the policy class complexity |Πγ̂ | is controlled by
the effective horizon γ̂: as γ̂ increases, the complexity of
the policy class Πγ̂ rises (see Section 4.2). By combining
these results, we derive the bound for the reward function
estimation error in terms of γ̂ and N in Section 4.5. This
completes the proof.

The remainder of this section is structured as follows. In
Section 4.2 we derive how the effective horizon controls the
complexity measure of the policy class and prove the mono-
tonicity. In Section 4.3, we establish an correspondence
between the feasible reward function set and an expert pol-
icy. This correspondence is crucial for bounding the error in
reward function estimation by the expert policy estimation
error. In Section 4.4, we bound the reward function estima-
tion error by the expert policy estimation error. In Section
4.5, we derive a probabilistic bound on the expert policy
estimation error, based on the number of samples, policy
complexity, and effective horizon. In Section 4.6, we derive
the final error bound by combining the results above.

4.2. Complexity of the Policy Class

We propose using the number of potentially optimal poli-
cies, given a fixed state space, action space, and transition
function, but any unknown reward functions under mild
conditions, as the complexity measure of the policy class
for different γs.

Definition 4.2 (Complexity Measure). The complexity mea-
sure of the policy class under a specific γ is defined as the
number of optimal policies under the fixed state space S,
action space A, and transition function P , but with arbitrary
reward function R ∈ FR that satisfies our assumption de-
scribed later. Formally, we define the class of optimal policy
corresponding to the given γ as:

Πγ = {π : ∃R ∈ FR s.t. π is optimal in (S,A, P,R, γ)},

where FR denotes the set of reward functions satisfying the
following condition: for each state s ∈ S, there exists a
specific action a∗(s) such that R(s, a∗(s)) is strictly greater
than R(s, a) for all other actions a ̸= a∗(s). In other words,
for every R ∈ FR, the action a∗(s) yields the highest re-
ward at state s, although the exact reward values may vary
among different functions in FR. This form of reward func-
tion is not overly restrictive, as it merely excludes reward
functions that assign equal rewards to multiple actions for

any given state. In systems with uniquely higher step-wise
rewards, we can always construct a reward function R from
FR. We assume this specific form of reward function to
ensure that discussions about the policy class remain mean-
ingful, as any policy could be considered optimal when
arbitrary reward functions are allowed. The complexity of
the policy class w.r.t. γ is the number of optimal policies in
the corresponding policy class, which is |Πγ |.

Next, we prove that the complexity of the policy class de-
fined in Definition 4.2 increases monotonically as the dis-
count factor γ̂ increases. We refer the readers to Appendix
A for the full proof.

Theorem 4.3. Under a specific MDP M = (S,A, P, ·, ·)
with fixed state space S, action space A, and transition
function P , we define the optimal policy class according to
Definition 4.2, then we have the following claims:

1. ∀γ, γ′ ∈ [0, 1), if γ < γ′, then Πγ ⊆ Πγ′ .

2. When γ = 0, |Π0| = 1.

3. If γ → 1, |Πγ | ≥ (|A| − 1)
|S|−1 |S| under mild condi-

tions.

Intuitively, claim 1 asserts that as the discount factor γ
grows, the number of potentially optimal policies increases
monotonically. Together with claim 2 and 3, Theorem 4.3
demonstrates that there is a steep increase in policy com-
plexity associated with the increment of γ. Specifically,
when the discount factor is at its lowest (γ = 0), there is
only one optimal policy, as the reward function has a unique
maximum state-action pair for each state. However, as γ
increases and approaches the largest value (γ → 1), the
optimal policy class can eventually encompass nearly all
possible policies, with |Πγ | = (|A|−1)|S|−1|S|. In essence,
γ effectively controls the complexity of the policy class.

4.3. Feasible Reward Function Set

In this section, we establish a correspondence between the
given expert demonstrations and the feasible reward func-
tion set—the set of all reward functions consistent with the
expert data. This correspondence is essential for later bound-
ing the reward function estimation error by the expert policy
estimation error.

To create an algorithm-agnostic mapping from the fixed
set of expert data and the effective horizon to the learned
reward functions, we extend Metelli et al.’s (Metelli et al.,
2021) definition of feasible reward function sets—originally
formulated for known discount factors—to variable and
unknown effective discount factors. We begin by implic-
itly defining the feasible reward function set based on the
foundational IRL formulation (Ng & Russell, 2000), which
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includes all reward functions whose induced policies match
the expert data. From this implicit definition, we derive an
explicit characterization of the feasible reward function set
as a function of the expert policy.

We start by first implicitly defining the feasible reward set
based on the IRL definition (Ng & Russell, 2000), adapting
for the flexible discount factor.

Definition 4.4 (IRL Problem, adapted to the setting of vary-
ing discount factors). Let M = (S,A, P ) be the MDP
without the reward function or discount factor. An IRL
problem, denoted as ℜ = (M, πE), consists of the MDP
and an expert’s policy πE . A reward R̂ ∈ RS×A is feasible
for ℜ if there exists a γ̂ such that πE is optimal for the MDP
M∪ (R̂, γ̂), i.e., πE ∈ Π∗

R̂,γ̂
. We use Rℜ to denote the set

of feasible rewards for ℜ.

This IRL formulation implies an implicit correspondence
between the expert policy πE and a feasible (R̂, γ̂)

pair through their advantage function AπE

R̂,γ̂
(s, a) =

QπE

R̂,γ̂
(s, a) − V πE

R̂,γ̂
(s). Specifically, the optimal policy in-

duced by (R̂, γ̂) matches πE when the following two condi-
tions on the advantage function are met:

1. if πE(a|s) > 0, then AπE

R̂,γ̂
(s, a) = 0,

2. if πE(a|s) = 0, then AπE

R̂,γ̂
(s, a) ≤ 0.

The first condition ensures the expert’s chosen actions have
zero advantage, while the second guarantees unchosen ac-
tions have non-positive advantages.

Next, we establish an explicit correspondence between the
estimated (R̂, γ̂) and their compatible expert policy πE by
enforcing these two conditions on the advantage function
AπE

R̂,γ̂
. To do this, we introduce two operators for any given

policy π:

1. the expert-filter: (BπA)(s, a) = A(s, a)1{π(a|s) >
0}, that retains the advantage A(s, a) values for actions
taken by the expert policy πE(a|s),

2. the expert-filter-complement: (B̄πA)(s, a) =
A(s, a)1{π(a|s) = 0}, that preserves the advantage
values for actions not taken by the expert.

Using the Bellman equation, we express the advantage func-
tions in terms of the estimated (R̂, γ̂). We then apply the
two filters to the advantage function AπE

R̂,γ̂
to enforce the

optimality conditions, simplifying the expression in the pro-
cess. This allows us to derive the explicit expression for the
feasible reward set presented in Lemma 4.5. The detailed
derivation is provided in Appendix B.1.

Lemma 4.5 (Feasible Reward Set, extended from Metelli
et al. (2021)). Let ℜ = (M, πE) be an IRL problem. Let
R̂ ∈ RS×A and 0 < γ̂ < 1, then R̂ is a feasible reward, i.e.,
R̂ ∈ Rℜ if and only if there exists ζ ∈ RS×A

≥0 and V ∈ RS

such that:

R̂ = −B̄πE

ζ + (E − γ̂P )V, (3)

whereas E : R|S| → R|S|×|A| is an operator that marginal-
izes the action for each state on a function f(·) such that
(Ef)(s, a) = f(s).

The feasible reward function in Lemma 4.5 comprises two
terms: the first term depends on the expert policy πE and
the second term depends on the underlying MDP’s transi-
tion function. The first term, −B̄πE

ζ, is derived using the
expert-filter-complement on a non-negative function ζ . This
ensures that actions taken by the expert (i.e., πE(a|s) > 0)
are assigned a value of zero, while actions not taken (i.e.,
πE(a|s) = 0) have non-positive values. The second term
represents the policy’s temporal effect that relies on the
MDP’s transition function. This can be viewed as reward
shaping through the value function, which preserves the
expert policy’s optimality.

We have thus established an explicit correspondence be-
tween the feasible (R̂, γ̂) and the expert policy πE in
Lemma 4.5. This explicit expression will later be used
to bound the difference in reward functions by the expert
policy estimation error.

4.4. Reward Function Estimation Error from Expert
Policy Estimation Error

In this section, we establish a bound on the reward function
estimation error in terms of the expert policy estimation
error—the discrepancy between the estimated expert policy
(from limited data) and the true expert policy. Since IRL
methods learn the reward function by matching the induced
policy to expert data, establishing this bound is crucial, as it
allows us to relate the reward estimation error to the amount
of expert data and the induced policy complexity in later
analysis.

Let’s consider two IRL problems, ℜ = (M, πE) and ℜ̂ =
(M, π̂E), which differ only in expert policies: ℜ utilizes the
ground-truth expert policy, while ℜ̂ employs an estimated
policy from samples. Since an IRL algorithm aligns its
induced policy with the estimated expert policy, its feasible
sets will be equivalent to that of the estimated expert policy.
Intuitively, inaccuracies in estimating the expert policy πE

lead to errors in estimating the feasible sets Rℜ. Our goal is
to obtain a reward function R̂ with a feasible set “close” to
the ground-truth R0’s feasible set. Specifically, “closeness”
is determined by the distance between the nearest reward
functions in each set. The estimated Rℜ̂ is considered close
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to the exact Rℜ if, for every reward R0 ∈ Rℜ, there exists
an estimated reward R̂ ∈ Rℜ̂ with a small |R0 − R̂| value.

Given the form of the feasible reward functions correspond-
ing to an expert policy as derived in Lemma 4.5, we express
the estimation error |R0 − R̂| as a function of the ground-
truth expert policy πE and the estimated expert policy π̂E

from limited data. The bound on the reward function esti-
mation error is shown below.

Theorem 4.6 (Extension of Theorem 3.1 in Metelli et al.
(2021)). Let ℜ = (M, πE) and ℜ̂ = (M, π̂E) be two
IRL problems. Then for any R0 ∈ Rℜ such that R0 =

−B̄πE

ζ + (E − γ0P )V and ∥R0∥∞ ≤ Rmax there exist
R̂ ∈ Rℜ̂ and 0 < γ̂ < 1, such that element-wise it holds
that: ∣∣∣R0 − R̂

∣∣∣ ≤ B̄πE

Bπ̂E

ζ. (4)

Furthermore, ∥ζ∥∞ ≤ Rmax

1−γ0
.

The theorem above bounds the reward function estimation
error by the discrepancy between the true expert policy πE

and the estimated expert policy π̂E derived from limited
data. Intuitively, it states that there exists a reward function
R̂ in the estimated feasible set Rℜ̂ whose estimation error
is controlled by the expert policy estimation error, under
the corresponding γ̂. Specifically, the error term on the
right-hand side is non-zero only for state-action pairs where
πE(a | s) = 0 but π̂E(a | s) > 0. This means the re-
ward estimation error is zero for state-action pairs observed
in the expert demonstrations, while errors arise where the
estimated expert policy incorrectly assigns positive proba-
bility to actions the expert did not take. We refer readers to
Appendix B.2 for the detailed proof.

4.5. Expert Policy Estimation Error from Limited Data

In this section, we derive a bound on the expert policy
estimation error in terms of the amount of expert data N , the
effective horizon γ̂, and the induced policy complexity |Πγ̂ |.
We measure this error using the term B̄πE

Bπ̂E

ζ, which
quantifies how much the estimated policy π̂E deviates from
the true expert policy πE .

Our derivation proceeds in three steps. First, we derive
the expected value of the expert policy estimation error
E[B̄πE

Bπ̂E

ζ] under our estimation strategy. Then, we ap-
ply McDiarmid’s inequality to obtain a probabilistic bound
on how likely this error deviates from its expected value.
Finally, we derive a uniform bound on the estimation error
by substituting appropriate threshold values and simplifying
the expression.

Expected Value of the Expert Policy Estimation Error
To estimate the expert policy π̂E ∈ {0, 1}|S|×|A| from N
independent state-action samples, we aggregate the demon-

strated pairs by summing their counts into Π̂E
N . For each

state s, we estimate π̂E(s, a) by selecting the action a with
the highest count:

âs = argmax
a

Π̂E
N (s, a). (5)

If the count of âs is uniquely the highest, we set π̂E(s, a)
to 1 for âs and 0 for other actions. If no action has a unique
maximum count, we set all entries to 0, indicating uncer-
tainty. As the number of samples N increases, the estimated
policy is more likely to reflect the expert’s true decisions.
For further details, see Appendix B.4.1.

Next, based on the estimation strategy described above, we
first compute the expected value for the approximated expert
policy E[π̂E ] estimated from N expert samples, and in turn
that of the estimation error E[B̄πE

Bπ̂E

ζ].

We first compute the expected value of π̂E(s, a) given N
expert state-action pairs. The expected number state s is
sampled across the N samples is N · 1

|S| . Moreover, since the
expert policy is deterministic, the probability that a∗s is the
unique maximum at state s is the same as the probability that
state s is sampled at least once. Therefore, the expectation
of the estimated policy E[π̂E ] for each state s is given by:

E[π̂E(s, a)] =

1−
(
1− 1

|S|

)N
for a = a∗s,

0 otherwise.

Next, we compute the expected value of the expert policy
estimation error E[B̄πE

Bπ̂E

ζ]. Recall the operator B̄πE

retains the values of ζ(s, a) for actions a that are not part of
the expert policy. The true expert policy πE deterministi-
cally selects action a∗s for each state s, so the expert-filter
complement will only retain the values for actions a ̸= a∗s .
Thus, after applying the expert-filter complement, the ex-
pected value becomes:

E[B̄πE

Bπ̂E

ζ(s, a)] = E[Bπ̂E

ζ(s, a)] ·E[1{πE(a|s) = 0}]

Moreover, the operator Bπ̂E

preserves the function values
for actions that are chosen by the estimated policy π̂E(s, a).
Thus, the expected value of Bπ̂E

ζ(s, a) is:

E[Bπ̂E

ζ(s, a)] = ζ(s, a) · E[1{π̂E(a|s) > 0}] (6)

Simplifying the expressions above, we have
E[B̄πE

Bπ̂E

ζ(s, a)] = 0, since πE(a|s) = 0 for all
a ̸= a∗s . Intuitively, an expected expert policy estimation
error of 0 implies that, on average, the estimated policy
π̂E correctly matches the expert policy πE . This means
it does not assign non-zero probabilities to actions the
expert would not take, indicating no systematic bias in the
estimation process.
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Applying McDiarmid’s Inequality Next, we obtain
a probabilistic bound on how likely the expert pol-
icy estimation error deviates from its expected value
E[B̄πE

Bπ̂E

ζ(s, a)]. We do so by applying McDiarmid’s
Inequality to the term B̄πE

Bπ̂E

ζ. Since ζ is bounded by
Rmax

1−γ̂ , altering any single state-action sample affects at most
one row of the estimated policy π̂E(s, :), which leads to a
bounded change in the value of B̄πE

Bπ̂E

ζ by at most Rmax

1−γ̂ .
This satisfies the bounded difference condition necessary
for McDiarmid’s Inequality.

By applying McDiarmid’s Inequality, we derive that the
probability of the expert policy estimation error exceeding a
threshold t is bounded by:

Pr
(
B̄πE

Bπ̂E

ζ(s, a) ≥ t
)
≤ exp

(
−2Nt2(1− γ̂)2

R2
max

)
.

(7)

This bound quantifies how likely this estimation error ex-
ceeds a threshold t. As the number of expert-demonstrated
state-action pairs N increases, the probability of significant
deviations from the true policy decreases exponentially.

Uniform Bound on the Expect Policy Estimation Error
To obtain a uniform bound on the expert policy estimation
error across all (s, π) pairs, we apply the union bound and
set the right-hand side of the bound to δ

|S||Πγ̂ | . Solving
for t, we derive the threshold that bounds the error with
probability at least 1− δ:

t =
Rmax

1− γ̂

√
1

2N
ln

(
|S||Πγ̂ |

δ

)
. (8)

Since the reward function estimation error is bounded by
the expert policy estimation error,

∣∣∣R0 − R̂
∣∣∣ ≤ B̄πE

Bπ̂E

ζ,
the error bound threshold t applies to the reward function
estimation error with probability at least 1 − δ. As the
amount of expert data N increases, the estimation error
decreases, reflecting improved accuracy with more data.
Moreover, the effective horizon γ̂ plays an important role:
smaller values of γ̂ reduce both 1

1−γ̂ and |Πγ̂ |, tightening
the bound and better controlling the estimation error.

4.6. Error Decomposition and Deriving the Overall
Bound

In this section, we use the reward function estimation er-
ror bound from earlier to establish the final bound on∥∥∥∥V π∗

R0,γ0

R0,γ0
− V

π∗
R̂,γ̂

R0,γ0

∥∥∥∥
∞

presented in Theorem 4.1. Recall

that π∗
R0,γ0

∈ Πγ0 is the optimal policy derived from the
ground-truth parameters (R0, γ0), while π∗

R̂,γ̂
∈ Πγ̂ is the

optimal policy derived from the learned parameters (R̂, γ̂).

We aim to bound the difference between their value func-
tions evaluated under the ground-truth R0 and γ0.

To simplify the analysis, we decompose the overall error
into two manageable terms: the first accounts for the dif-
ference in value functions caused by the reward function
estimation error,

∥∥∥R0 − R̂
∥∥∥
∞

; the second accounts for the
value difference due to optimizing the policy under different
horizons (γ0 versus γ̂).

Theorem 4.7 (Value Function Difference Bound). Let
M = (S,A, P ) be a partial Markov Decision Process
shared by two MDPs. Let R0 : S × A → [0, Rmax] be
the ground-truth reward function, with γ0 ∈ (0, 1) as the
ground-truth discount factor. Let R̂ : S × A → [0, Rmax]
and γ̂ ∈ (0, 1) be the estimated reward function and dis-
count factor obtained from data. Consider the optimal
policies π∗

R0,γ0
and π∗

R̂,γ̂
induced by (R0, γ0) and (R̂, γ̂),

respectively. Then, the difference between their value func-
tions, evaluated using the ground-truth reward R0 and dis-
count factor γ0, is bounded above by∥∥∥∥V π∗

R0,γ0

R0,γ0
− V

π∗
R̂,γ̂

R0,γ0

∥∥∥∥
∞

≤ 2

1− γ̂

∥∥∥R0 − R̂
∥∥∥
∞

+
|γ0 − γ̂|

(1− γ0)(1− γ̂)
Rmax. (9)

Proof of Theorem 4.7 is in Appendix B.3.

Recall that we have established a bound on the reward esti-
mation error

∥∥∥R0 − R̂
∥∥∥
∞

in terms of the number of expert

data N , the effective horizon γ̂, and the policy complexity
|Πγ̂ | in Section 4.5. Specifically, with probability at least
1 − δ, the reward function estimation error is bounded by
Rmax

1−γ̂

√
1

2N ln
(

|S||Πγ̂ |
δ

)
. Substituting this bound into the

first error term on the right-hand side of Theorem 4.7, we
obtain:

∥∥∥∥V π∗
R0,γ0

R0,γ0
− V

π∗
R̂,γ̂

R0,γ0

∥∥∥∥
∞

≤ Rmax

1− γ̂

√
1

2N
ln

(
|S||Πγ̂ |

δ

)
+

|γ0 − γ̂|
(1− γ0)(1− γ̂)

Rmax.

(10)

This completes the proof of Theorem 4.1. The overall error
consists of two terms. The first term arises from the reward
function estimation error, which increases with larger γ̂.
A larger γ̂ leads to a more complex induced policy class,
making overfitting more likely when expert data is limited.
Consequently, the reward function estimation error increases
as the expert policy estimation error grows significantly.
The second term represents the performance loss from using
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a smaller discount factor (γ̂ < γ0), and decreases as γ̂
approaches γ0. These opposing dependencies on γ̂ suggest
that there exists an intermediate value 0 < γ̂ < γ0 that
minimizes the overall loss. We will empirically demonstrate
this in the following section.

5. Experiments
In this section, we empirically examine Theorem 4.1 by
exploring how discount factors influence IRL performance
with varying amounts of expert data. We adapt Linear Pro-
gramming IRL (LP-IRL) (Ng & Russell, 2000) and Maxi-
mum Entropy IRL (MaxEnt-IRL) (Ziebart et al., 2008) to
accommodate different discount factor settings and expert
data sizes (implementation details are provided in Appen-
dices D and E).

To jointly learn (R̂, γ̂), we incorporate cross-validation into
our modified IRL methods to optimize the discount factor
(details in Section 5.2). By evaluating policies across a range
of γ̂s, cross-validation allows us to directly observe how
varying γ̂ affects IRL performance with different amounts
of expert data. While specialized IRL methods exist for
optimizing γ̂ (Giwa & Lee, 2021; Ghosal et al., 2023), we
choose cross-validation because it not only identifies the
optimal discount factor, but also reveals performance trends
across various settings, which is crucial for validating the nu-
anced implications of our theoretical findings. Specifically,
we answer the following questions through cross-validation:

Q.1 Can a lower γ̂ < γ0 improve IRL policy performance?

Q.2 How does γ̂∗ change with increasing expert data N?

Q.3 Is the cross-validation extension effective in finding
γ̂∗?

We evaluate the performance of LP-IRL and MaxEnt-IRL
on four Gridworld and Objectworld tasks with varying re-
ward complexity. We use the number of incorrectly induced
actions as a proxy for value estimation error in the over-
all error bound. This measure counts the number of states
where the induced policy π̂E differs from πE in action se-
lection. For Q.1, we measure the number of incorrectly
induced actions under varying discounted factors and dif-
ferent amount of expert data. Our findings show that the
optimal γ̂s across all expert amount are smaller than γ0 for
both algorithms. For Q.2, we plot how the optimal discount
factors change as the number of expert data increases. The
consistent U-shaped curves observed in all cases align with
the anticipated overfitting effect implied by the second error
term in Equation 2. For Q.3, we compare the performance
of policies selected via cross-validation with the best policy
learnable from the available expert data. Our results indi-
cate that the discrepancy in performance is negligible for all

tasks, demonstrating the effectiveness of cross-validation in
selecting γ̂∗.

5.1. Task Setup

We design four tasks of varying complexity in reward
functions: Gridworld-simple, Gridworld-hard, Objectworld-
linear, and Object-world-nonlinear, adapted from (Levine
et al., 2011) and (Ng & Russell, 2000). We illustrate each
task instance in the first three columns of Tables 1 and more
details on the task specification are in Appendix C. The
ground-truth discount factor is γ0 = 0.99.

The Gridworld tasks provide sparse rewards only at ran-
domly sampled goals: Gridworld-simple has fewer goals (4)
and a smaller state space (10× 10 states), while Gridworld-
hard has more goals (6) and a larger state space (15 × 15
states). On the other hand, the Objectworld tasks have
denser ground-truth rewards that are functions of nearby
object features. The reward function for Objectworld-linear
is linear with respect to the features of nearby objects, while
that of Objectworld-nonlinear is non-linear. Intuitively,
learning a complex reward function may be more suscep-
tible to overfitting, especially when expert data is sparse
compared to the state space.

We vary the amount of expert data by adjusting the number
of state-action pairs included, measuring this as a percent-
age relative to the state space size. Since states may be
sampled multiple times in the trajectories, the total number
of state-action pairs N can exceed the number of states |S|.
Given expert trajectories D = {τ0, τ1, . . . }, we define the
percentage of expert data as K% = N

|S| × 100%. We evalu-
ate the performance of the induced policy by counting the
number of states where it selects a different action from the
expert policy—referred to as the state error count.

5.2. Cross Validation Extension

We use cross-validation to determine the optimal γ̂∗ from
the expert data D containing N state-action pairs. We split
D into non-overlapping training (80%) and validation (20%)
sets. We uniformly sample M = 20 discount factors from
the interval (0, γ0). For each sampled γ, we learn Rγ using
the training set and evaluate the induced policy on the vali-
dation set by counting the number of states where it selects
a different action from the expert policy—the state error
count. The γ that minimizes this error count is selected as
the optimal γ̂. For all tasks, we randomly sample 10 environ-
ments per task and report the mean and standard deviation
of errors. To assess the effectiveness of cross-validation, we
employ an oracle representing the best policy learnable from
all available expert data. This oracle, considered ”cheating,”
uses both the training and validation sets for training and
validates on the entire state space (both observed and unob-
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Figure 1: Summary of LP-IRL with varying discount factors across four tasks. The error counts measure the number of
states for which a policy’s action selection deviates from the expert’s actions. Each task displays the ground-truth value
function (column 1), reward function (column 2), expert policy (column 3), error count curves for different amount of expert
data in a single instance (columns 4-8), and the error count curve summary for a batch of 10 MDPs across varying amount
of expert data (column 9). In all four tasks, γ0 = 0.99. The optimal discount factor γ̂∗ < γ0 for varying amount of expert
data. MaxEnt-IRL has similar curves in Figure 4.

Figure 2: Optimal γ̂∗ for LP-IRL at varying amount of
expert data. For each task, we select γ̂∗ for all 10 sampled
environments through cross-validation (see Section 5.2).
The orange curves illustrate how the optimal discount factor
γ̂∗ changes with the amount of expert data, while the green
curves show the corresponding error counts. The ground-
truth γ0 = 0.99 is depicted in grey, with its error counts
displayed in blue. As the amount of expert data increases,
γ̂∗ initially decreases sharply and then gradually increases,
indicating that overfitting is prominent when expert data is
scarce.

served states). We use this oracle only to compare whether
the γ̂∗ chosen by cross-validation corresponds to that of the
oracle policy, not for selecting the optimal γ̂.

5.3. Results

We assess the impact of the effective horizon on IRL by
evaluating LP-IRL and MaxEnt-IRL across four tasks. For

simplicity, we treat LP-IRL’s discount factor γ and MaxEnt-
IRL’s horizon T interchangeably, with findings for γ also
applying to T unless specified otherwise. Policy perfor-
mance results are presented in Tables 1 (LP-IRL) and 4
(MaxEnt-IRL). We report state error counts, measuring dis-
crepancies between induced and expert policies by counting
the states where their action selections differ.

Q.1 Optimal γ̂∗ is Lower than Ground-Truth.

As shown in Figures 1 and 4, the optimal discount factor
γ̂∗ < γ0 for all four tasks and across various amounts of
expert data in both LP-IRL and MaxEnt-IRL. With limited
expert data, the error count curves are generally U-shaped:
discrepancies with the expert policy decrease as γ̂ increases
to a “sweet spot” and then rise sharply. This pattern confirms
our error bounds in Theorem 4.1: for small γ̂, the overfitting-
related error (second term in Equation 2) is less significant,
and increasing γ̂ allows temporal extrapolation, reducing
the overall error. However, beyond the optimal γ̂, overfitting
becomes more pronounced, and the overall error increases
as the first error term outweighs the benefits.

With abundant expert data, error counts remain low (in LP-
IRL) or initially decrease (in MaxEnt-IRL) for small γ̂ and
then increase as γ̂ grows, indicating that γ̂∗ < γ0 yields the
most expert-like policy, confirming our theoretical results.
Interestingly, in LP-IRL, the error counts do not initially
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Figure 3: The cross-validation results for LP-IRL on four
tasks are shown. The x-axis represents the amount of expert
data; the y-axis shows policy error count differences. We
compare discount factors γ̂∗

cv (learned from cross-validation)
and γ̂∗

oracle (chosen by the oracle). Orange dots depict er-
ror differences between policies induced by γ̂∗

cv and γ̂∗
oracle;

blue dots show differences between policies induced by γ̂∗
cv

and the ground-truth γ0. The orange curves near zero indi-
cate that cross-validation effectively selects γ̂∗, while the
positive blue curves show that cross-validation consistently
yields better policies than using γ0.

drop as γ̂ increases. This is because, with dense expert data,
LP-IRL accurately matches step-wise behaviors, making
performance gains from temporal reasoning negligible. This
observation supports Spencer et al. (2021)’s insight that
naive behavioral cloning can outperform IRL algorithms
when ample expert data is available. In contrast, MaxEnt-
IRL does not exhibit low error counts for small γ̂ because its
reward function is parameterized linearly in state features,
limiting its ability to precisely replicate actions even with
abundant data.

Q.2 Optimal γ̂∗s Vary with the Amount of Expert Data.

Figures 2 and 5 show how the optimal discount factor γ̂∗

varies with increasing amounts of expert data for LP-IRL
and MaxEnt-IRL, respectively. When data is scarce, γ̂∗ is
high because the benefits of temporal reasoning outweigh
overfitting concerns—the estimation error of the expert pol-
icy remains high regardless of overfitting. A large γ̂∗ en-
ables extrapolation of actions to nearby unobserved states,
reducing the first error term in Theorem 4.1 and improving
overall error reduction.

With a moderate amount of data, γ̂∗ decreases: although
expert policy estimation improves with more data, it is still
limited. The overall error bound favors a smaller γ̂∗ to
mitigate overfitting, reducing the second error term even at
the cost of some temporal reasoning benefits. As data in-
creases further, γ̂∗ rises again since overfitting becomes less
significant, and larger values enhance temporal reasoning.

Overall, as expert data increases, error counts for γ̂∗ strictly
decrease and remain below those for γ0, indicating that γ̂∗

enables IRL to learn more effectively from additional expert
data.

Q.3 Cross-Validation Effectively Selects Optimal γ̂∗s.

Figures 3 and 6 summarize the cross-validation results for
LP-IRL and MaxEnt-IRL, respectively. The performance
discrepancy between policies induced by γ̂∗

cv and the oracle
γ̂∗

oracle (orange curves) is consistently near zero across all
four tasks, indicating that cross-validation effectively se-
lects γ̂∗ similar to the oracle. Moreover, the blue curves
represent the error differences between policies induced by
the ground-truth γ0 and γ̂∗

cv, which are significantly higher
than zero. This suggests that γ̂∗

cv yields better-performing
policies than using the ground-truth γ0, confirming our the-
oretical findings in Theorem 4.1.

6. Conclusion
In this paper, we present a theoretical analysis on IRL that
unveils the potential of a reduced horizon in inducing a more
expert-like policy, particularly in data-scarce situations. Our
findings reveals an important insight on role of the horizon
in IRL: it controls the complexity of the induced policy class,
therefore reduces overfitting to the limited expert data. We,
therefore, propose a more natural IRL function class that
jointly learns reward-horizon pairs and empirically substan-
tiate our analysis using a cross-validation extension for the
existing IRL algorithms. As overfitting remains a challenge
for IRL, especially with scarce expert data, we believe our
findings offer valuable insights for the IRL community on
better IRL formulations.
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A. Complexity Measure of Policy
Definition A.1 (Reward and Policy Equivalence). For an MDP M = (S,A, P, ., γ), we define two bounded reward functions
R and R′ to be equivalent, i.e. R ≡ R′, if and only if they induce the same set of optimal policies.

Lemma A.2 (Potential-based Reward Shaping (Ng et al., 1999)). For an MDP M = (S,A, P, ., γ), two bounded reward
functions R and R′ are equivalent, i.e. R ≡ R′, if and only if there exists a bounded potential function ϕ : S → R such that
for all s, s′ ∈ S and a ∈ A:

R′(s, a, s′) = R(s, a, s′) + γϕ(s′)− ϕ(s) (11)

Remark A.3. We extend the potential-based reward shaping presented in lemma A.2, which utilizes a reward function
parameterized by R(s, a, s′), to one that does not rely on the subsequent state, namely, R(s, a). For an MDP M =
(S,A, P, ., γ), two bounded reward functions R(s, a) and R′(s, a) are equivalent, if and only if there exists a bounded
potential function ϕ : S → R such that for all s, s′ ∈ S and a ∈ A:

R′(s, a) = R(s, a) + γ
∑
s′

P (s′|a, s)ϕ(s′)− ϕ(s) (12)

Proof. Consider the reward function R(s, a, s′), its R(s, a) counterpart is defined as follows:

R(s, a) =
∑
s′

P (s′|a, s)R(s, a, s′) (13)

Now, we consider R′(s, a, s′) ≡ R(s, a, s′) by potential-based shaping with potential function ϕ, we have the following
reward-equivalent shaping for R′(s, a):

R′(s, a) =
∑
s′

P (s′|a, s)R′(s, a, s′)

=
∑
s′

P (s′|a, s)(R(s, a, s′) + γϕ(s′)− ϕ(s))

=
∑
s′

P (s′|a, s′)R(s, a, s′) + γ
∑
s′

P (s′|a, s)ϕ(s′)− ϕ(s)
∑
s′

P (s′|a, s)

=R(s, a) + γ
∑
s′

P (s′|a, s)ϕ(s′)− ϕ(s) (14)

Proof. Proof of theorem 1, claim 1. Given γ, γ′ ∈ [0, 1), γ < γ′, we prove if π ∈ Πγ , then π ∈ Πγ′ as well. Formally, let π
be the optimal policy in MDP M = (S,A, P,R, γ), we construct a reward function R′ ∈ FR such that π is still optimal in
MDP (S,A, P,R′, γ′).

Given policy π, let Pπ be the transition function matrix of size |S| × |S| such that [Pπ](s, s′) = P (s′|π(s), s), and Rπ be
the reward vector of size |S| such that [Rπ](s) = R(s, π(s)). We can write the value function V π

R,γ of policy π evaluated
under the reward function R and discount factor γ as follows:

V π
R,γ = Rπ + γPπV π

R,γ (15)

Next, we apply a potential-based shaping to the original reward function Rπ. Let R
′π be the shaped reward vector of size

|S| such that [R
′π](s) = R′(s, π(s)), we have:

R
′π = Rπ + γPπϕ− ϕ (16)

where ϕ is the potential vector defined as follows:

ϕ =
γ′ − γ

γ
V π
R′,γ (17)

13
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With this shaped reward function R′ and γ, we have the new value function:

V π
R′,γ =R

′π + γPπV π
R′,γ

=Rπ + γPπϕ− ϕ+ γPπV π
R′,γ

=Rπ + γ
γ′ − γ

γ
PπV π

R′,γ − γ′ − γ

γ
V π
R′,γ + γPπV π

R′,γ

=Rπ + γ′PπV π
R′,γ − γ′ − γ

γ
V π
R′,γ

Rearranging, we have:

V π
R′,γ = (I − γ′Pπ +

γ′ − γ

γ
)−1Rπ (18)

Since R ≡ R′, their respective value function V π
R,γ and V π

R′,γ induce the same set of optimal policies. We emphasize that
R′ is not necessary from FR. To prove that any optimal policy π ∈ Πγ is still optimal in Πγ′ , we construct a R̂ ∈ FR which
can make its value function V π

R̂,γ′ evaluated with larger γ′ the same as V π
R′,γ .

We construct R̂ as follows:

R̂π = Rπ − γ′ − γ

γ
V π
R̂,γ′ (19)

The value function V π
R̂,γ′ for R̂ and γ′ is:

V π
R̂,γ′ = R̂π + γ′PπV π

R̂,γ′ (20)

= Rπ − γ′ − γ

γ
V π
R̂,γ′ + γ′PπV π

R̂,γ′ (21)

Rearrange, we have:

V π
R̂,γ′ = (I − γ′Pπ +

γ′ − γ

γ
)−1Rπ (22)

= V π
R′,γ (23)

It suffices to show that the construction for R̂ in equation (19) satisfies R̂ ∈ FR. We now write the construction for R̂(s, a)
for every (s, a) pair:

R̂(s, a) = R(s, a)− γ′ − γ

γ
V π
R̂,γ′(s) (24)

We notice that the second term is a factor of the value function, which only depends on the current state s. Therefore,
R(s, a∗) > R(s, a) iff R̂(s, a∗) > R̂(s, a) for all s ∈ S. That is, R̂ ∈ FR.

Proof. Proof of theorem 1, claim 2. γ = 0 is the special case where the planning only performs one-step look ahead and
optimize the immediate reward greedily. When γ = 0, the planning objective reduces to

π∗
R,γ=0 = argmax

π∈Π
E

at∼π(st)
[R(st, at)] (25)

Given the assumption that ∀s ∈ S, argmax
a∈A

R(s, a) is unique, then π∗ is also unique and |Π0| = 1.

Proof. Proof of theorem 1, claim 3. This proof is by construction. We consider a fully connected state space with the
transition function P (s′|s, a) defined below. Recall that for each s ∈ S, there exists a unique a∗s that maximizes R(s, a), we
first define the transition for each state for taking this a∗s:

∀s ∈ S, P (s′|s, a∗s) =

{
1 if s′ = s

0 otherwise
(26)

14
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For all other actions a ∈ A/{a∗s} in state s ∈ S, the transition function is defined as follows:

P (s′|s, a) = 1

|S| − 1
,∀s′ ∈ S/{s} (27)

The given transition model corresponds to a fully connected state space where (s, a∗s) creates a self-loop, and any other
action has an equal probability of transitioning to different states. We construct Rs∗ ∈ FR in this manner: for a state s∗ ∈ S,
let Rs∗(s

∗, a∗s∗) > 2|S|Rs∗(s, a
∗
s) for any other state s ∈ S/{s∗}. Consider an arbitrary policy π with the constraints

π(s∗) = a∗s∗ and π(s) ̸= a∗s for other states. We demonstrate that this policy π is optimal in Rs∗ and P . The optimality of
π at s∗ is apparent since this state is absorbing and π selects the action maximizing immediate reward. For any other state s,
we show that π is optimal by calculating the optimal Q-value of (s, π(s)) compared to any other action a. Remember that
for s ̸= s∗, we constrain π not to choose a∗s , so the alternative choice of a is to precisely select a∗s . Therefore, we have:

Q∗(s, π(s)) =R(s, π(s)) + γ(
1

|S| − 1

1

1− γ
R(s∗, a∗s∗) (28)

+
1

|S| − 1

∑
s′∈S/{s∗}

Q(s′, π(s′)) (29)

Q∗(s, a∗s) =R(s, a∗s) +
γ

1− γ
R(s, a∗s) (30)

We have:

Q∗(s, π(s)) > R(s, π(s)) +
γ

1− γ

1

|S| − 1
R(s∗, a∗s∗)

> R(s, π(s)) +
γ

1− γ

2|S|
|S| − 1

R(s, a∗s)

> R(s, π(s)) +
γ

1− γ
2R(s, a∗s) (31)

Since 2R(s, a∗s)−R(s, a∗s) = R(s, a∗s) > 0, and as γ approaches one, γ
1−γ tends to infinity, so for sufficiently large γ we

can guarantee that Q∗(s, π(s)) ≥ Q∗(s, a). Given each s∗ and its corresponding Rs∗ , under our constraints for π, there are
(|A| − 1)|S|−1 such policies. In addition, since the choice of s∗ is arbitrary, we can form |S| of such Rs∗ , therefore, the total
number of such policy is (|A| − 1)|S|−1|S|.

B. Proofs for Section 4
B.1. Proof for Lemma 4.5

Proof. This proof is adapted from the proof of Lemma B.1 and Lemma 3.2 in Metelli et al. (2021). Recall that we use the
advantage function to derive two conditions such that the expert policy πE is optimal under the reward function R̂ and γ̂.
Specifically,

QπE

R̂,γ̂
(s, a)− V πE

R̂,γ̂
(s) = 0 if πE(a|s) > 0, (32)

QπE

R̂,γ̂
(s, a)− V πE

R̂,γ̂
(s) ≤ 0 if πE(a|s) = 0. (33)

Consider an IRL problem ℜ = (M, πE). A Q-function satisfies the specified conditions if and only if there exist ζ ∈ RS×A
≥0

and V ∈ R|S| such that:

QR̂,γ̂ = −B̄πE

ζ + EV. (34)

Given that πEB̄πE

= 0S and πEE = IS , the corresponding value function is VR̂,γ̂ = πEQR̂,γ̂ = V . For any s ∈ S and
a ∈ A with πE(a|s) > 0, we obtain QR̂,γ̂(s, a) = V (s) = VR̂,γ̂(s). This establishes the first condition in equation 32. If
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a ∈ A has πE(a|s) = 0, then QR̂,γ̂(s, a) = −ζ(s, a) + V (s) = −ζ(s, a) + VR̂,γ̂(s) ≤ VR̂,γ̂(s). This verifies the second
condition in equation 33. Conversely, if QR̂,γ̂ fulfills the two conditions, we set V = VR̂,γ̂ and ζ = EVR̂,γ̂ −QR̂,γ̂ ≤ 0.

Next, recall that QR̂,γ̂ = R̂+ γ̂PπEQR̂,γ̂ . The Q-function can be written as the fixed point of the above Bellman equation:

QR̂,γ̂ = (IS×A − γ̂PπE)−1R̂, and for γ̂ < 1, the matrix is invertible. In other words, with fixed πE , P , and γ̂ < 1, there is
a one-to-one correspondence between Q-functions and rewards. From equation 34, we obtain:

R̂ = (IS×A − γ̂PπE)(−B̄πE

ζ + EV )

= −B̄πE

ζ + γ̂PπEB̄πE

ζ + (E − γ̂PπEE)V

= −B̄πE

ζ + (E − γ̂P )V, (35)

since πEB̄πE

= 0S and πEE = IS .

B.2. Proof for Theorem 4.6

Proof. This proof is adapted from Theorem 3.1 in Metelli et al. (2021). Note that R0 in Theorem 4.6 is the ground-truth
reward function and has the corresponding ground-truth discount factor γ0. Using Lemma 4.5, we express reward functions
R0 ∈ Rℜ and R̂ ∈ Rℜ̂ as:

R0 = −B̄πE

ζ + (E − γ0P )V, (36)

R̂ = −B̄π̂E

ζ̂ + (E − γ̂P )V̂ , (37)

where V, V̂ ∈ RS and ζ, ζ̂ ∈ RS×A
≥0 . To find the existence of R̂ ∈ Rℜ̂, we choose V̂ = (E − γ̂P )−1(E − γ0P )V and

ζ̂ = B̄πE

ζ. Then:

R0 − R̂ =− (B̄πE

ζ − B̄π̂E

B̄πE

ζ) + (E − γ0P )V − (E − γ̂P )(E − γ̂P )−1(E − γ0P )V

=− (IS×A − B̄π̂E

)B̄πE

ζ

=−Bπ̂E

B̄πE

ζ (38)

As the expert-filter-complement B̄π̂E

is linear and sums with the expert-filter to unity, i.e., Bπ̂E

+ B̄π̂E

= IS×A, we get:

|R0 − R̂| ≤ Bπ̂E

B̄πE

ζ. (39)

Finally, we obtain ∥ζ∥∞ ≤ Rmax

1−γ0
by using the condition ∥R0∥ ≤ Rmax.

B.3. Proof of Theorem 4.7

To prove Theorem 4.7, we need three lemmas.

Lemma B.1 (lemma 1 from (Jiang et al., 2015)). For any MDP M with rewards in [0, Rmax], ∀π : S → A and γ̂ ≤ γ0,

V π
R0,γ̂

≤ V π
R0,γ0

≤ V π
R0,γ̂

+
γ0 − γ̂

(1− γ0)(1− γ̂)
Rmax (40)

Hence, we have the following upper bound:∥∥∥V π∗
R0,γ0

R0,γ0
− V

π∗
R0,γ0

R0,γ̂

∥∥∥
∞

≤ γ0 − γ̂

(1− γ0)(1− γ̂)
Rmax (41)
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Intuitively, Lemma B.1 measures the performance discrepancy of a policy π when evaluated under two different discount
factors: γ̂ and γ0.

Lemma B.2 (Adapted from lemma 3 in (Jiang et al., 2015)). For any M = (S,A, P, R̂, γ̂) with R̂ bounded by [0, Rmax],∥∥∥∥V π∗
R0,γ̂

R0,γ̂
− V

π∗
R̂,γ̂

R0,γ̂

∥∥∥∥
∞

≤ 2max
π∈Πγ̂

∥∥∥V π
R0,γ̂

− V π
R̂,γ̂

∥∥∥
∞

(42)

Proof. ∀s ∈ S,

V
π∗
R0,γ̂

R0,γ̂
(s)− V

π∗
R̂,γ̂

R0,γ̂
(s)

=(V
π∗
R0,γ̂

R0,γ̂
(s)− V

π∗
R0,γ̂

R̂,γ̂
(s))− (V

π∗
R̂,γ̂

R0,γ̂
(s)− V

π∗
R̂,γ̂

R̂,γ̂
(s)) + (V

π∗
R0,γ̂

R̂,γ̂
(s)− V

π∗
R̂,γ̂

R̂,γ̂
(s))

≤(V
π∗
R0,γ̂

R0,γ̂
(s)− V

π∗
R0,γ̂

R̂,γ̂
(s))− (V

π∗
R̂,γ̂

R0,γ̂
(s)− V

π∗
R̂,γ̂

R̂,γ̂
(s))

≤2max
π∈Πγ̂

|V π
R0,γ̂

(s)− V π
R̂,γ̂

(s)|. (43)

Intuitively, Lemma B.2 measures the difference between V-functions of two policies: the optimal policy under the ground-
truth reward function R0, and the one under the estimated reward function R̂. Both are evaluated using R0 and the effective
discount factor γ̂. Lemma B.2 shows that this difference is at most double the highest V-function difference among policies
in Πγ̂ , when evaluated with R0 and R̂. This connects the value difference between two optimal policies evaluated under the
ground truth reward to the difference in the same policy evaluated using the ground truth and estimated rewards respectively.

Lemma B.3. Let M = (S,A, P ) be a partial MDP, and let R0 ∈ RS×A
≥0 be the ground-truth reward function and

R̂ ∈ RS×A
≥0 be the estimated reward function with the discount factor γ̂, and let π be a policy. Then the following inequality

holds: ∥∥∥V π
R0,γ̂

− V π
R̂,γ̂

∥∥∥
∞

≤ 1

1− γ̂

∥∥∥R0 − R̂
∥∥∥
∞

(44)

Proof. From the bellman equation, we have:

V π
R0,γ̂

= πR0 + γ̂πPV π
R0,γ̂

. (45)

Rearrange this, we will have V π
R0,γ̂

= (IS − γ̂πP )−1πR0. Therefore,

V π
R0,γ̂

− V π
R̂,γ̂

= (IS − γ̂πP )−1πR0 − (IS − γ̂πP )−1πR̂

= (IS − γ̂πP )−1π(R0 − R̂) (46)

For the L∞ inequality, we simply observe:

∥∥∥V π
R0,γ̂

− V π
R̂,γ̂

∥∥∥
∞

=
∥∥∥(IS − γ̂πP )−1π(R0 − R̂)

∥∥∥
∞

≤
∥∥(IS − γ̂πP )−1

∥∥
∞ ∥π∥∞

∥∥∥R0 − R̂
∥∥∥
∞

≤ 1

1− γ̂

∥∥∥R0 − R̂
∥∥∥
∞

(47)

where we exploited the fact that
∥∥(IS − γ̂πP )−1

∥∥
∞ = 1

1−γ̂ and that ∥π∥∞ ≤ 1.

Using these three lemmas, we can now proceed to prove Theorem 4.7.
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Proof. Proof of Theorem 4.7 ∀s ∈ S

V
π∗
R0,γ0

R0,γ0
(s)− V

π∗
R̂,γ̂

R0,γ0
(s) = (V

π∗
R0,γ0

R0,γ0
(s)− V

π∗
R0,γ0

R0,γ̂
(s)) + (V

π∗
R0,γ0

R0,γ̂
(s)− V

π∗
R̂,γ̂

R0,γ0
(s)). (48)

Using Lemma B.1, we obtain: ∥∥∥V π∗
R0,γ0

R0,γ0
− V

π∗
R0,γ0

R0,γ̂

∥∥∥
∞

≤ γ0 − γ̂

(1− γ0)(1− γ̂)
Rmax. (49)

For the second term, we derive the following:

V
π∗
R0,γ0

R0,γ̂
(s)− V

π∗
R̂,γ̂

R0,γ0
(s) ≤V

π∗
R0,γ0

R0,γ̂
(s)− V

π∗
R̂,γ̂

R0,γ̂
(s)

≤V
π∗
R0,γ̂

R0,γ̂
(s)− V

π∗
R̂,γ̂

R0,γ̂
(s)

≤2max
π∈Πγ̂

|V π
R0,γ̂

(s)− V π
R̂,γ̂

(s)|. (50)

The first line results from γ̂ ≤ γ0, the second line from V
π∗
R0,γ̂

R0,γ̂
(s) ≥ V

π∗
R0,γ′

R0,γ̂
(s) for any γ′ ∈ [0, 1], and the last line utilizes

Lemma B.2.

Using Lemma B.3, for any policy π, we get:∥∥∥V π
R0,γ̂

− V π
R̂,γ̂

∥∥∥
∞

≤ 1

1− γ̂

∥∥∥R0 − R̂
∥∥∥
∞

(51)

By combining Equations 50 and 51, we arrive at the inequality:∥∥∥∥V π∗
R0,γ0

R0,γ̂
− V

π∗
R̂,γ̂

R0,γ0

∥∥∥∥
∞

≤ 2

1− γ̂

∥∥∥R0 − R̂
∥∥∥
∞

(52)

B.4. Expert Policy Estimation Error Bound

In this section, we establish a bound on the expert policy estimation error based on the coverage of expert demonstrations.
Specifically, we use B̄πE

Bπ̂E

ζ to measure the expert policy estimation error and constrain the reward function estimation
error: ∣∣∣R0 − R̂

∣∣∣ ≤ B̄πE

Bπ̂E

ζ. (53)

We bound this error term B̄πE

Bπ̂E

ζ by the number of expert-demonstrated state-action pairs. The derivation involves three
key steps:

1. State the strategy for estimating the expert policy π̂E from N samples of expert-demonstrated state-action pairs,

2. Compute the expectation of the estimated expert policy π̂E based on N samples and subsequently the expectation of
the expert policy estimation error B̄πE

Bπ̂E

ζ.

3. Apply McDiarmid’s Inequality to B̄πE

Bπ̂E

ζ as a function of N expert-demonstrated samples to bound the expert
policy estimation error.

After simplification, the bound on the expert policy estimation error, in terms of the number of expert-demonstrated samples
N and the effective γ̂, is given by:

Pr
(
B̄πE

Bπ̂E

ζ(s, a) ≥ t
)
≤ exp

(
−2t2(1− γ)2

NR2
max

)
(54)
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B.4.1. EXPERT POLICY ESTIMATION STRATEGY

Setup We estimate the expert policy π̂E from N independently sampled state-action pairs from the expert policy πE .
For simplicity, we assume a discrete state and action space. Thus, the expert policies can be represented as a matrix of
size |S| × |A|, where rows correspond to states and columns to actions. Given that πE is deterministic, each row of π̂E

contains at most one entry with a value of 1, indicating that action a is chosen at state s; all other entries are 0. Formally, the
estimated πE can be represented as:

πE =


x1,1 x1,2 · · · x1,A

x2,1 x2,2 · · · x2,A

...
...

. . .
...

xS,1 xS,2 · · · xS,A


where xs,a ∈ {0, 1}, and for each s ∈ {1, . . . , |S|}, exactly one entry in the row is 1, while the rest are 0. For each
demonstrated state-action pair, we represent them as a matrix of the same size π̂E

i ∈ {0, 1}|S|×|A|, and there is one row si
such that:

π̂E
i (si, :) = πE(si, :)

That is, for each matrix π̂E
i , there exists a row si where π̂E

i (si, :) = πE(si, :). The remaining rows of π̂E
i are not necessarily

useful and contain value 0. We want to devise an estimation strategy that maps the N observed matrices π̂E
1 , π̂

E
2 , . . . , π̂

E
N )

to the estimated matrix π̂E .

Estimation We describe the estimation strategy below. We first take the element-wise sum for all observed partial expert
policy matrices:

Π̂E
N (s, a) =

N∑
i=1

π̂E
i (s, a) (55)

Specifically, each of the entry of Π̂E
N (s, a) counts how many times action a was chosen for state s across the N observed

matrices. We estimate π̂E from the aggregated Π̂E
N .

For each row s, estimate the action a that corresponds to the column where the value is 1 by finding the column with the
uniquely maximum count:

âs = argmax
a

Π̂E
N (s, a) such that Π̂E

N (s, âs) > Π̂E
N (s, a),∀a ̸= âs

Thus, the estimated row π̂E(s, :) is given by placing a 1 in column âs and 0 in all other columns:

π̂E(s, a) =

{
1, if a = âs

0, otherwise

For rows that do not have a single action with the highest count, set all entries in the row to 0. Thus the final π̂E is estimated
by choosing the column with the highest vote from the observed matrices.

B.4.2. CALCULATING THE EXPECTED VALUE

Given that there are |S| states and each of the N demonstrated states is uniformly and independently sampled, we first
compute of the expectation of the estimated policy E[π̂E ], then the expectation of the expert policy estimation error
B̄πE

Bπ̂E

ζ.

Expected Value of Estimated Policy The count for each action in the aggregated matrix Π̂E
N (s, a) depends on how often

state s is sampled in N independent demonstrations. Since the states are sampled uniformly, the probability of observing
state s in any single demonstration is 1

|S| . Let Xs be the random variable representing the number of times state s is sampled
in N independent demonstrations. Xs follows a binomial distribution: Xs ∼ Binomial(N, 1

|S| ). Thus, the expected number
of times state s is sampled across the N demonstrations is:

E[Xs] = N · 1

|S|
.
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For each time state s is sampled, the expert chooses the correct action a∗s . Therefore, the expected count for action a∗s at
state s is:

E[Π̂E
N (s, a∗s)] = E[Xs] = N · 1

|S|
.

For any action a ̸= a∗s , the expert never chooses it, so the expected count for those actions is 0:

E[Π̂E
N (s, a)] = 0 for all a ̸= a∗s.

The probability that a∗s is the unique maximum can be approximated by the probability that state s is sampled at least once.

This probability is given by 1−
(
1− 1

|S|

)N
. Therefore, the probability that the correct action a∗s is the unique maximum

for state s is approximately:

P unique
s ≈ P sampled

s = 1−
(
1− 1

|S|

)N

The expectation of the estimated policy E[π̂E ] for each state s is given by:

E[π̂E(s, :)] = P unique
s · πE(s, :)

Substituting P unique
s with the expression derived above:

E[π̂E(s, a)] =

1−
(
1− 1

|S|

)N
for a = a∗s,

0 otherwise.

The expectation of the estimated expert policy E[π̂E ] is scaled by the probability that each state s is sampled at least once
across the N demonstrations. This probability increases as N grows, and in the limit as N → ∞, E[π̂E ] converges to the
true expert policy πE .

Expected Value of Expert Policy Estimation Error We compute the expected value of the operation B̄πE

Bπ̂E

ζ given
N demonstrated expert state-action pairs.

We recap the key definitions for the ease of reading:

• Bπ̂E

(.) represents the expert-filter that preserves function values only for actions taken by the approximate expert
policy π̂E(a|s),

• B̄πE

(.) is the expert-filter-complement that preserves values for actions not taken by the ground-truth expert policy
πE(a|s),

• ζ is a non-negative function bounded by Rmax

1−γ .

We are interested in computing the expectation of the operation E[B̄πE

Bπ̂E

ζ]. This involves two steps:

In step 1, the expert filter Bπ̂E

ζ keeps the values of ζ(s, a) for actions a that are taken by the estimated expert policy
π̂E(a|s). From the expectation of π̂E , we know that:

E[π̂E(s, a)] = P unique
s · 1{a = a∗s}
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Thus, the expected value of Bπ̂E

ζ(s, a) is:

E[Bπ̂E

ζ(s, a)] = ζ(s, a) · E[1{π̂E(a|s) > 0}] (56)

= P unique
s · ζ(s, a∗s) · 1{a = a∗s} (57)

For any other action a ̸= a∗s , E[Bπ̂E

ζ(s, a)] = 0, since π̂E(s, a) will not take that action.

In step 2, we apply the expert-filter complement B̄πE

, which preserves the function values for actions not taken by the
true expert policy πE . The true expert policy πE deterministically selects action a∗s for each state s, so the expert-filter
complement will only retain the values for actions a ̸= a∗s .

Thus, after applying the expert-filter complement, the expected value becomes:

E[B̄πE

Bπ̂E

ζ(s, a)] = E[Bπ̂E

ζ(s, a)] · 1{πE(a|s) = 0}

Since πE(a|s) = 0 for all a ̸= a∗s , we only preserve values for actions other than a∗s . Therefore, we have:

E[B̄πE

Bπ̂E

ζ(s, a)] =

{
P unique
s · ζ(s, a∗s) · 1{a = a∗s} if a ̸= a∗s

0 otherwise

We now combine the two steps to compute the full expectation E[B̄πE

Bπ̂E

ζ]. Since the expert-filter complement B̄πE

retains only the values for actions a ̸= a∗s , and Bπ̂E

retains only the values for action a∗s , the result of applying both filters
will be 0 for all s and a, because no action can satisfy both conditions simultaneously.

Thus, the expected value of the operation is:

E[B̄πE

Bπ̂E

ζ(s, a)] = 0

B.4.3. APPLYING MCDIARMID’S INEQUALITY ON THE EXPERT POLICY ESTIMATION ERROR

We apply McDiarmid’s Inequality to bound the error in the expert policy estimation, specifically E[B̄πE

Bπ̂E

ζ], where ζ is
bounded by Rmax

1−γ .

McDiarmid’s Inequality Let X1, X2, . . . , XN be independent random variables taking values in a space X , and let
f : XN → R be a function that satisfies a bounded difference property. Specifically, if there exist constants ci such that:

sup
x1,...,xN ,x′

i

|f(x1, . . . , xi, . . . , xN )− f(x1, . . . , x
′
i, . . . , xN )| ≤ ci

then McDiarmid’s Inequality states that:

Pr (f(X1, . . . , XN )− E[f(X1, . . . , XN )] ≥ t) ≤ exp

(
−2t2∑N
i=1 c

2
i

)

The Function f(·) in Our Case Let the function f(π̂E
1 , π̂

E
2 , . . . , π̂

E
N ) represent B̄πE

Bπ̂E

ζ, which is determined by N
independent state-action pairs sampled from the expert policy. Based on the boundedness of ζ by Rmax

1−γ , we want to bound
the deviation of this function from its expectation.

Sensitivity (Bounded Difference Property) For each sample π̂E
i , changing it affects at most one row of the estimated

policy π̂E(s, :), and consequently, the value of the function B̄πE

Bπ̂E

ζ is only affected in that row. The magnitude of this
change is limited by the bound on ζ, which is Rmax

1−γ .

Thus, for any change in a single sample π̂E
i , the change in the value of the function is bounded by:
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∣∣f(π̂E
1 , . . . , π̂

E
i , . . . , π̂

E
N )− f(π̂E

1 , . . . , (π̂
E
i )

′, . . . , π̂E
N )
∣∣ ≤ Rmax

1− γ

This gives us the sensitivity constant ci = Rmax

1−γ for each sample π̂E
i .

Applying McDiarmid’s Inequality Now, we apply McDiarmid’s Inequality with ci =
Rmax

1−γ for all i = 1, 2, . . . , N . The
inequality becomes:

Pr
(
B̄πE

Bπ̂E

ζ − E[B̄πE

Bπ̂E

ζ] ≥ t
)
≤ exp

− 2t2

N
(

Rmax

1−γ

)2


Simplifying the bound, the probability that the expert policy estimation error, measured by B̄πE

Bπ̂E

ζ, deviates from its
expected value by more than ϵ is bounded by:

Pr
(
B̄πE

Bπ̂E

ζ(s, a) ≥ t
)
≤ exp

(
−2t2(1− γ)2

NR2
max

)
(58)

As N increases, the probability of significant deviations from the expert policy estimation error diminishes exponentially,
providing a high-confidence guarantee that the estimated policy will converge to the true expert policy.

Given the state space S and policy space Πγ̂ for the effective horizon γ̂, we want the bound to hold uniformly over all (s, π)
pairs. Using the union bound, we ensure the total failure probability remains below δ

|S||Πγ̂ | , hence each (s, π) pair has a
small enough failure probability so that, collectively, the probability of any pair violating the bound is at most δ. By setting
the RHS of the bound to δ

|S||Πγ̂ | , we solve for t:

exp

(
−2t2(1− γ)2

NR2
max

)
=

δ

|S||Πγ̂ |
2t2(1− γ)2

NR2
max

= − ln

(
δ

|S||Πγ̂ |

)
t2 =

NR2
max

2(1− γ)2
ln

(
|S||Πγ̂ |

δ

)
t =

Rmax

1− γ̂

√
N

2
ln

(
|S||Πγ̂ |

δ

)
(59)

We obtain the threshold that bounds the expert policy estimation error with probability at least 1− δ, uniformly across all
state-policy pairs.

At first glance, it may seem counterintuitive that the error bound threshold t increases with the number of samples N , as
indicated in the expression of t. However, this bound should be interpreted in terms of the probability of the estimation error
exceeding t, i.e., Pr(estimation error > t). As N increases, the threshold t grows, but the probability of the error exceeding
this larger bound decreases exponentially.

This means that, though larger deviations are allowed with more samples, these deviations become increasingly unlikely
as N increases. Therefore, for a fixed level of confidence (i.e., fixed δ), the overall estimation error actually decreases
with more data, as the model becomes more accurate, and the likelihood of significant errors diminishes. The increasing
threshold merely reflects the fact that we are accounting for possible rare deviations, but these deviations are becoming less
probable as N grows.

Interpreting the Error Bound We rearrange the original bound to focus on how the estimation error behaves as N grows,
for a fixed probability δ. We can rewrite the bound to emphasize the dependence on N and δ more explicitly:
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t =
Rmax

1− γ

√
N

2
ln

(
|S||Πγ̂ |

δ

)

We have the following key observations:

Dependence on N : The term
√
N shows that the error bound increases as N increases, but the rate of increase is proportional

to the square root of N . This means that to significantly reduce the error, you need a large increase in N , as the error
decreases inversely with

√
N .

Dependence on δ (confidence level): The logarithmic term ln
(

|S||Πγ̂ |
δ

)
captures the effect of the confidence level. As δ

(the failure probability) decreases, the logarithmic term grows, making t larger. This means that requiring higher confidence
(lower δ) results in a higher error bound, reflecting the trade-off between confidence and error tolerance.

Simplified Bound to Show Error Decrease:

For a fixed confidence level (i.e., for fixed δ and |S||Πγ̂ |), you can express the bound more clearly as:

t = O

(
Rmax

1− γ

√
N

)

This shows that, for fixed confidence, the error bound increases with the square root of N , and as a result, the probability
that the error exceeds this bound decreases. In practice, this means that while larger sample sizes allow for larger deviations,
these deviations become increasingly unlikely as N increases. By writing the bound in this direct form, we make it clear that
as N increases, the error bound becomes more controlled (grows slowly compared to N ) while the probability of exceeding
this bound shrinks exponentially. This formulation provides an intuitive and direct interpretation of the trade-off between
error, sample size, and confidence level.

C. Details of the Tasks
All tasks share a common action space, transition function with 9 actions per state, and a 10% chance of moving randomly.

Gridworld-simple. In each Gridworld-simple environment, there are 10× 10 states with 4 randomly selected goal states.
The ground-truth reward function assigns +1 for goal states and 0 for all others. The expert policy moves greedily towards
the nearest goal.

Gridworld-hard. The Gridworld-hard environment consists of 15× 15 states and 6 random goal states. It has a larger state
space and more goal states than Gridworld-simple, but shares the same reward function.

Objectworld-linear. Each Objectworld-linear environment has 10× 10 states and 10 randomly placed objects, each with a
randomly assigned inner and outer color from the set C = {c0, c1}. Object states receive a reward of +3 for outer color c0
and +1 for outer color c1. All other states have a 0 reward.

Objectworld-nonlinear. Objectworld-nonlinear differs from its linear counterpart only in the reward function. The reward
depends on the outer colors of surrounding objects: +1 for states within 3 grids of c0 and 2 grids of c1, −1 for states within
3 grids of c1, and 0 otherwise.

D. Modifications to the Linear Programming IRL method (LP-IRL)
The original objective function of LP-IRL (Ng & Russell, 2000) is formulated on the full state coverage of the expert policy
and the ground-truth γ0. We modified the objective function to extend it to our setting with varying partial state coverage
and γ̂. W.L.O.G, let a1 be the uniquely optimal action for all states. The transition probability vector at state s for the
expert action is thus Pa1(s) = P (.|s, a1), while that for the rest of the actions a ∈ {a2, ..., ak} be Pa(s) = P (.|s, a). Our
modified objective function for LP-IRL is as follows:
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Given expert demonstrations covering N states,

max
R̂

N∑
i=1

min
a∈{a2,...,ak}

(Pa1
(i)− Pa(i))(I − γ̂P̂a1

)−1R̂

subject to (Pa1
(i)− Pa(i))(I − γ̂P̂a1

)−1R̂ ≥ b

b > 0,∀a ∈ {a2, ..., ak}

|R̂| ≤ Rmax, for i = 1, ..., N, (60)

whereas Pa1
is full expert policy transition matrix of size |S| × |S| such that [Pa1

](s, s′) = P (s′|a1, s), while P̂a1
is an

estimate of Pa1 from partial expert demonstrations covering only N ≤ |S| states. Essentially, the transition matrix of the
expert policy Pa1 is the combination of the transition function P (known) and the expert policy πE (unknown). Therefore,
estimating transition matrix of the expert policy P̂a1

is equivalent to estimating the expert policy from expert demonstrations.
Our modifications are highlighted below.

Estimate Expert Transition Matrix. We estimate P̂a1
by setting the transitions of the undemonstrated states to 0. Using

this estimation, the action choices at the undemonstrated states do not affect the constraints on the other states. In addition,
the value of the undemonstrated state myopically reduced to the state reward function.

Use Different Discount Factors. Our objective function also allows γ̂ to differ from the ground-truth γ0. That is, with an
estimated P̂a1

, we allow the mapping F̂i,γ̂ = (Pa1
(i)− Pa(i))(I − γ̂P̂a1

)−1 to take different γ̂s to account the temporal
effect of the policy at different horizons.

Remove L1 Regularization. The original LP-IRL uses the L1-regularization on the reward function, i.e., |R|, to resolve the
ambiguity among the feasible reward functions. This assumption on the preferred reward function form can be a confounding
factor to the performance of the induced policy, therefore we remove it to focus on the effect of horizons.

Enforce Uniquely Optimal Expert Policy. To enforce the induced policy to be uniquely optimal, we modified the
constraints to be strictly positive, i.e., b > 0.

E. Modifications to the Maximum Entropy IRL method (MaxEnt-IRL)
Our theoretical analysis of the effective horizon stems from the error bound between two feasible reward function sets: the
ground truth expert policy set and the approximated expert policy set derived from limited expert demonstrations. However,
most IRL algorithms, such as Maximum Entropy IRL (Ziebart et al., 2008) and Maximum Margin IRL (Ratliff et al., 2006),
obtain a single reward function from the feasible set using specific criteria. The error bound between the learned reward
function and the ground-truth R0 may deviate from the bound between their corresponding feasible sets. In this section, we
extend our theoretical insights to Maximum Entropy Inverse Reinforcement Learning (Ziebart et al., 2008) and demonstrate
that our conclusions on the effective horizon are still applicable when choosing the reward function based on specific criteria.

E.1. Maximum Entropy IRL

MaxEnt-IRL is formulated for finite horizon MDPs with horizon T0 and no discounting. The reward function is linear in the
state feature, i.e., r = θT0ϕ(s). The reward of a trajectory τ = (s0, ..., sT0

) is the undiscounted sum of all state rewards,
where fT0

is the total feature count for the trajectory τ . MaxEnt IRL aims to match the feature counts between the policy and
the expert demonstrations while maximizing the entropy of the induced policy. This leads to a distribution over behaviors
constrained to match feature expectations, as shown in Equation (61).

p(τ |θ, P, T0) ≈
1

Z(θ, P, T0)
expθ

T fT0

∏
st,at,st+1∈τ

P (st+1|st, at) (61)

The MaxEnt IRL objective is to choose the reward parameter θ that maximizes the probability of expert demonstrations
under the distribution in Equation (61):

θ∗ := argmax
θ

L(θ) = argmax
θ

∑
τi∈demo

log p(τi|θ, P, T0) (62)
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Figure 4: Summary of MaxEnt-IRL with different horizons for the four tasks. For each task, we present the ground-truth
value function (column 1), ground-truth reward function (column 2), expert policy (column 3), error count curves in all
states for different amount of expert data for a single instance of the task (columns 4-8), and finally, a summary of the
error curves for a batch of 10 MDPs (column 9). In all four tasks, the ground-truth horizon T0 = 20. The optimal horizon
T̂ ∗ < T0 for varying amount of expert data.

The objective function in equation (62) can be optimized using gradient-based methods, where the gradient is the difference
between the empirical and learner’s expected feature counts, expressed in terms of expected state visitation frequencies,
Dsi,T0

.

∇L(θ) = f̃ −
∑

τ∈demo

p(τ |θ, P )fT0 = f̃ −
∑
si

Dsi,T0fsi (63)

E.2. Maximum Entropy IRL with varying Effective Horizon

To extend MaxEnt IRL to varying effective horizons, we optimize trajectories with horizon T̂ ≤ T0. The corresponding
optimal trajectory distribution is given in Equation (64), where fT̂ is the undiscounted sum of T̂ consecutive states in
trajectory τ = (s0, ..., sT̂ ).

p(τ |θ, P, T̂ ) ≈ 1

Z(θ, P, T̂ )
expθ

T fT̂

T̂−1∏
t=0

P (st+1|st, at) (64)

whereas the feature factor fT̂ =
∑T̂

t=0 ϕ(st) is the undiscounted sum of T̂ consecutive states in trajectory τ = (s0, ..., sT̂ ).

To investigate the performance of varying effective horizons under the same amount of expert data, we adjust the expert
trajectories’ lengths to match the planning horizons T̂ , while maintaining the total number of demonstrated states constant.
Given that the expert covers N states, for each effective horizon T̂ , we collect N//T̂ trajectories with random initial states.
Consequently, the gradient of the objective function is modified as shown in Equation (65):

∇L(θ, T̂ ) = f̃T̂ −
∑

τ∈demo

p(τ |θ, P, T̂ )fT̂ = f̃T̂ −
∑
si

Dsi,T̂
fsi (65)

where the expert expected feature vector f̃T̂ and the induced state visitation frequency Dsi, T̂ consider only trajectories
with length T̂ .

Our method for collecting expert demonstrations differs from the standard IRL approaches, where expert demonstrations are
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fixed and given upfront. Instead, we generate expert trajectories independently for each horizon T̂ by rolling out trajectories
with random initial states using the expert policy.

An alternative approach is to augment the fixed set of expert trajectories with length T0 by breaking them into T0 − T̂ + 1
shorter segments each with length T̂ . However, this method can slightly underestimate the visitation frequency of the final
states of the original trajectories due to uniform sampling over the first T0 − T̂ + 1 states. Our data collection method
eliminates the potential bias that may arise from the quality of the expert demonstrations. In addition, our initial state
distribution ρ0 is a uniform distribution over the entire state space, which ensures a good approximation of the true state
visitation frequency of the expert policy.

E.3. Results

The performance trends of MaxEnt-IRL align with those of LP-IRL, further supporting our theoretical results. Figure 4
provides a summary of the performance. Figure 5 demonstrates how the optimal horizon T̂ ∗ changes with increasing amount
of expert data for MaxEnt-IRL. Figure 6 summarizes cross-validation results for MaxEnt-IRL.

Figure 5: Optimal horizons (T̂ ∗) for MaxEnt-IRL at varying amount of expert data. We select the optimal T̂ ∗ for each of 10
sampled task environments using the algorithm in Section 5.2, based on the amount of expert data. Orange curves show
how T̂ ∗ changes with the amount of expert data, while green curves display corresponding error counts. The ground-truth
T0 = 20 is depicted by a grey line, with corresponding error lines in blue. The trends are consistent with LP-IRL.

Figure 6: Cross-validation results for four tasks on MaxEnt-IRL. The x-axis represents the amount of expert data, while
the y-axis shows error count differences in all states for various T̂ ∗s: T̂ ∗

cv learned via cross-validation, and T̂ ∗
oracle chosen

optimally using the oracle. Orange dots depict error count differences between the induced policies of T̂ ∗
cv and T̂ ∗

oracle, while
blue dots represent differences between the induced polices of T̂ ∗

cv and T0.
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