
Training High Performance Spiking Neural Network
by Temporal Model Calibration

Jiaqi Yan 1 2 Changping Wang 1 2 De Ma 1 2 Huajin Tang 1 2 Qian Zheng 1 2 Gang Pan 1 2

Abstract
Spiking Neural Networks (SNNs) are considered
promising energy-efficient models due to their dy-
namic capability to process spatial-temporal spike
information. Existing work has demonstrated that
SNNs exhibit temporal heterogeneity, which leads
to diverse outputs of SNNs at different time steps
and has the potential to enhance their performance.
Although SNNs obtained by direct training meth-
ods achieve state-of-the-art performance, current
methods introduce limited temporal heterogene-
ity through the dynamics of spiking neurons or
network structures. They lack the improvement
of temporal heterogeneity through the lens of the
gradient. In this paper, we first conclude that the
diversity of the temporal logit gradients in cur-
rent methods is limited. This leads to insufficient
temporal heterogeneity and results in temporally
miscalibrated SNNs with degraded performance.
Based on the above analysis, we propose a Tempo-
ral Model Calibration (TMC) method, which can
be seen as a logit gradient rescaling mechanism
across time steps. Experimental results show that
our method can improve the temporal logit gradi-
ent diversity and generate temporally calibrated
SNNs with enhanced performance. In particu-
lar, our method achieves state-of-the-art accuracy
on ImageNet, DVSCIFAR10, and N-Caltech101.
Codes are available at https://github.com/zju-bmi-
lab/TMC.

1. Introduction
Spiking Neural Networks (SNNs), unlike traditional Artifi-
cial Neural Networks (ANNs), mimic the dynamic behav-

1The State Key Lab of Brain-Machine Intelligence, Zhe-
jiang University 2College of Computer Science and Technol-
ogy, Zhejiang University. Correspondence to: Qian Zheng
<qianzheng@zju.edu.cn>, Gang Pan <gpan@zju.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

iors of biological neurons and have spatio-temporal informa-
tion process capability via spike transmission (Maass, 1997;
Hu et al., 2021; Li et al., 2024a). The rise of neuromorphic
computing (Ma et al., 2024; Davies et al., 2018) has allowed
SNNs to achieve enhanced performance and greater energy
efficiency, garnering extensive attention (Yan et al., 2024;
Liu et al., 2024; Hu et al., 2023) and driving widespread
applications (Liao et al., 2024; Zhang et al., 2024; Yan et al.,
2025). Previous works have demonstrated that neuronal
dynamics lead to temporal heterogeneity in SNNs (Perez-
Nieves et al., 2021; Chakraborty & Mukhopadhyay, 2024;
Wang et al., 2025; Chen et al., 2025). This characteristic
enables SNNs to extract temporal dynamic features and
produce temporally extended diverse outputs that are trans-
formations of those features (Wu et al., 2025; Gast et al.,
2024; She et al., 2021b; Savin & Denève, 2014). By integrat-
ing the diverse outputs to make decisions, the performance
of SNNs can be further improved, especially in tasks with
complex temporal structures, such as neuromorphic datasets
(Gast et al., 2024; Zheng et al., 2024; She et al., 2021b;
Chakraborty & Mukhopadhyay, 2023).

The rate-coding based SNNs trained using direct training
methods based on BackPropagation Through Time (BPTT)
and surrogate gradient (Wu et al., 2018; Deng et al.) have
achieved state-of-the-art performance (Zhou et al., 2024;
Yao et al.). To further explore the potential of SNNs, re-
searchers focus on enhancing the temporal heterogeneity of
the rate-coded SNNs during direct training from two per-
spectives. The first category (Rathi & Roy, 2021; Fang et al.,
2021b; Yao et al., 2022) increases the heterogeneity of neu-
rons by proposing parametric spiking neurons. They set one
or more membrane-related parameters learnable to enlarge
the representation space and improve the performance of
SNNs. The second category (She et al., 2021b;a) investi-
gates the relationship between heterogeneity and network
structure and demonstrates that recurrent connections are
beneficial to capture different features of temporal patterns.

However, gradient descent in the temporal dimension de-
termines the learning of temporal features (Wu et al., 2018;
Huh & Sejnowski, 2018), and how to enhance the temporal
heterogeneity of SNNs through the lens of gradient has not
been fully studied. Following existing works (Huh & Se-

1

Training High Performance Spiking Neural Network by Temporal Model Calibration

jnowski, 2018; Perez-Nieves & Goodman, 2021), the gradi-
ents in direct training methods of SNNs can be decomposed
into two components: the temporal gradients propagated
backward through hidden layers (temporal hidden layer gra-
dients) and the temporal gradients of the loss function with
respect to the logits (temporal logit gradients). The temporal
hidden layer gradients, determined by the spiking neuron
behaviors, have been shown to exhibit temporal heterogene-
ity (Perez-Nieves & Goodman, 2021). Nevertheless, the
temporal logit gradients, which are derived from the loss
function and calculated as the error between model outputs
and the optimization target across time steps, have not been
sufficiently investigated.

In this work, we investigate the temporal logit gradients
under existing loss functions and conclude that they have
insufficient diversity in the temporal dimension. We demon-
strate that this is not beneficial to capture temporal dynamic
features across time steps, limits the temporal heterogeneity,
and results in temporally miscalibrated SNNs with degraded
performance. To address this, we introduce the concept of
model calibration in ANNs (Mukhoti et al., 2020; Ross &
Dollár, 2017; Tang et al., 2020), and propose a Temporal
Model Calibration (TMC) method. TMC can be seen as
a temporal gradient rescaling mechanism to generate di-
verse logit gradients in the temporal dimension. Our main
contributions can be summarized as follows:

• We analyze the temporal logit gradients calculated in
existing direct training methods and conclude that they
have insufficient diversity in the temporal dimension.
This restricts temporal heterogeneity and leads to mis-
calibrated SNNs with degraded performance.

• Inspired by the concept of model calibration in ANNs,
we propose the TMC method, which can be seen as a
temporal logit gradient rescaling mechanism.

• Extensive experimental results demonstrate that the
proposed method can improve the temporal logit gradi-
ent diversity and generate temporally calibrated SNNs
that exhibit enhanced performance. It is worth noting
that our method achieves state-of-the-art performance
on ImageNet and neuromorphic datasets.

2. Related Work
Temporal Heterogeneity of SNNs. As the basic informa-
tion processing units, spiking neurons exhibit rich dynamic
behaviors and determine the intrinsic properties of SNNs,
which are different from ANNs (Wu et al., 2018; Roy et al.,
2019). Existing work has shown that neuronal dynamics
lead to temporal heterogeneity in SNNs (Perez-Nieves et al.,
2021; Chakraborty & Mukhopadhyay, 2024; Wang et al.,
2025). Experimental evidence shows that temporal hetero-
geneity enhances the performance of SNNs, particularly

in tasks with complex temporal structures, such as neuro-
morphic datasets (Gast et al., 2024; Zheng et al., 2024; She
et al., 2021b; Chakraborty & Mukhopadhyay, 2023). Fur-
thermore, the relationship between temporal heterogeneity
and the performance of SNNs has been widely studied. Re-
cent work demonstrates that temporal heterogeneity enables
SNNs to extract dynamic features and produce temporally
diverse outputs that are transformations of those features
(Wu et al., 2025; Gast et al., 2024; She et al., 2021b; Savin
& Denève, 2014). Based on rate coding, making decisions
by integrating the diverse outputs improves the performance
of SNNs.

Direct Training Strategies for SNNs. To enhance the
performance of SNNs, existing direct training methods in-
troduce training strategies from both forward and backward
perspectives. On the one hand, to enlarge the representation
space of SNNs, current studies (Rathi & Roy, 2021; Fang
et al., 2021b; Yao et al., 2022) propose different parametric
spiking neurons, which set one or more membrane-related
parameters to be learnable during training. In addition,
researchers (She et al., 2021b;a) introduce recurrent connec-
tions to approximate temporal mapping functions. On the
other hand, current works propose different loss functions
to determine the temporal optimization of SNNs. Specif-
ically, Standard Direct Training method (Wu et al., 2018)
uses the average membrane potential of the last layer as the
final output and optimizes it towards the one-hot label. The
Temporal Efficient Training (Deng et al.) method assigns
the true label as the optimization target for each time step.
Recently, new loss functions have been proposed (Dong
et al., 2024; Zhao et al., 2025; Qiu et al., 2024; Zuo et al.,
2024), which introduce additional optimization constraints
of outputs based on SDT.

Model Calibration in Deep Learning. Recent evidence
has shown that deep networks are prone to make overcon-
fident predictions due to miscalibrated output probabilities
(Mukhoti et al., 2020; Müller et al., 2019). To mitigate the
issue, two main families of approaches have emerged re-
cently: post-processing methods (Tomani et al., 2021; Ma &
Blaschko, 2021) and learning-based methods (Ovadia et al.,
2019; Szegedy et al., 2016; Mukhoti et al., 2020). Never-
theless, post-processing methods do not work well under
data distribution shifts (Ovadia et al., 2019). Thus, learning-
based calibration methods have become a more powerful
choice. Muller et al. (Szegedy et al., 2016) propose Label
Smoothing on soft targets, which aids in improving cali-
bration. Mukhoti et al. (Mukhoti et al., 2020) showed that
focal loss (Ross & Dollár, 2017) can implicitly calibrate
models by reducing the KL-divergence between predicted
and target distribution. Recently, common learning-based
calibration methods use additional loss terms as a regular-
ization term (Chen et al., 2024; Pereyra et al., 2017), which
has achieved state-of-the-art performance. It is notable that

2

Training High Performance Spiking Neural Network by Temporal Model Calibration

learning-based model calibration methods fundamentally
have the rescaling effect to the logit gradient (Tang et al.,
2020; Lee et al., 2022).

3. Method
3.1. Problem Definition

Temporal Heterogeneity Analysis. Here, we provide the
analysis of the temporal heterogeneity within a spiking neu-
ron under both continuous and discrete time.

Continuous Time. The behavior of a spiking neuron over
continuous time can be formulated as follows:

τ
dut

dt
= −(ut − ureset) + It, ut < Vth, (1)

ot =
∑
tf

δ(t− tf), (2)

where ut is the membrane potential, τ is the time content,
It is the input current, and Vth is the threshold. δ(·) is the
Dirac delta function. The spike train ot is generated when ut

reaches Vth at time tf , and ut is reset to the resting potential
ureset.

In Equation A.5, the change of ut is quantified by dut

dt ,
which is determined by two components −(ut−ureset) and
It. The term −(ut − ureset) reflects the natural decay of
the membrane potential back toward the resting potential
ureset. Meanwhile, It captures the influence of the tempo-
rally varying external current on the membrane potential and
spike firing. Overall, |dut

dt | is likely to be greater than zero,
indicating ongoing changes in the membrane potential and
spike train. Notably, for complex temporal structures, such
as those found in neuromorphic datasets, a higher degree of
temporal heterogeneity is necessary to effectively capture
dynamic features. More detailed analysis can be found in
Appendix B.

Discrete Time. To establish the computational link along the
spatial-temporal dimension, a discrete-time spiking neuron
model is utilized for constructing SNNs as follows:

ui
t+1 = (1− 1

τ
)(ui

t − Vtho
i
t) +

∑
j

W ijojt+1, (3)

oit = H(ui
t − Vth), (4)

where W is the trainable synaptic weights, and H(·) is the
Heaviside step function.

In Equation 3, the change of ui
t+1 is determined by (1 −

1
τ)(u

i
t − Vtho

i
t) and

∑
j W

ijojt+1. The first term, that is,
the neuron’s intrinsic temporal membrane potential, can be
enriched by incorporating one or more trainable parameters
related to the membrane, which has been explored in cur-
rent studies (Rathi & Roy, 2021; Fang et al., 2021b; Yao

et al., 2022). The second term, which represents the tem-
poral input current, can be enriched through two primary
approaches: Diversifying the input spike train oit through re-
current connections, which has been investigated in current
studies (She et al., 2021b;a). Expanding the representation
space of W. However, this approach is a promising yet
under-researched approach. In the following section, we
present a comprehensive analysis of the temporal training
dynamics for W.

Temporal Gradient Analysis. In the direct training meth-
ods, SNNs are updated by computing the gradient of the
loss function with respect to the synaptic weights in each
layer. Using Backpropagation Through Time (BPTT) with
surrogate gradients (Wu et al., 2018), the weight gradients
can be calculated as:

∂LCE

∂W
=

1

T

T∑
t=1

(αt − Yt)
∂Zt

∂W
, (5)

where LCE represents the cross-entropy (CE) loss. At time
step t, αt is the optimization objective, which is determined
by the form of loss functions, and Yt is the optimization
target. The synaptic weights W are used to process the given
input and produce the logit Zt. T is the total number of time
steps.

In Equation (5), the update gradient of W at each time step
can be decomposed into two terms. The first term ∂Zt

∂W is
the gradients propagated backward down to the input layer
across time steps (temporal hidden layer gradient). It is
associated with the dynamic behaviors in spiking neurons
and have been proven to be heterogeneous in the temporal
dimension (Perez-Nieves & Goodman, 2021). The second
term (αt−Yt) is the partial derivative of the loss function to
the logit over time steps (temporal logit gradient). It is cal-
culated as the error between the model’s outputs and the true
labels, determining the optimization objective of SNNs. To
effectively represent temporal dynamic features, (αt − Yt)
should provide a reasonable optimization magnitude and
direction of W at each time step while maintaining temporal
diversity across time steps. However, as demonstrated in
the following section, the temporal logit gradients in cur-
rent direct training methods don’t exhibit these properties
simultaneously.

Standard Direct Training (SDT), as defined by Deng et al.
(Deng et al.), calculates the cross-entropy loss between the
average pre-synaptic input of the output layer and the true
label. For SDT, the temporal logit gradient 1 ∇Zt at time
step t can be derived as:

∇ZSDT
t = (Pavg − Y), (6)

1Formally, the temporal logit gradient is defined as the partial
derivative of the loss function with respect to the logit output Zt,
or ∂L

∂Zt
in the mathematical form. In the rest of the paper, we will

use the symbol ∇Zt for its simplicity.

3

Training High Performance Spiking Neural Network by Temporal Model Calibration

where Pavg is the softmax probability of the average output
logit and Y is the one-hot encoded training label. Given
that ∇ZSDT

t is the same across time steps, it constrains the
gradient diversity within SDT. Recently, new loss functions
have been proposed in (Dong et al., 2024; Zhao et al., 2025;
Qiu et al., 2024; Zuo et al., 2024). They introduce additional
loss terms as a regularization term, which can be regarded as
variants of SDT. Their objective is to realize the consistent
representation of SNNs, which is not compatible with the
temporal heterogeneity of SNNs.

Temporal Efficient Training (TET) (Deng et al.) first
calculates the cross-entropy loss between the pre-synaptic
inputs of the output layer with the true labels at each time
step. Then, it employs the mean of these losses as the final
loss. For TET, the temporal logit gradient is expressed as:

∇ZTET
t = (Pt − Y), (7)

where Pt is the softmax probability of the output logit at
time step t. Although the logit gradients have different
magnitudes across time steps due to varying Pt, they ho-
mogenously guide the optimization of temporal outputs in
the same direction toward the one-hot encoded training label
Y. However, existing studies have presented that minimiz-
ing the CE loss optimizes Pt to infinitely match the training
label Y. This results in temporally miscalibrated SNNs with
overconfidence issues and limited performance (Mukhoti
et al., 2020; Müller et al., 2019).

3.2. Gradient Rescaling in Model Calibration

Based on the above analysis, the temporal logit gradients
should provide a reasonable optimization magnitude and
direction of W at each time step while maintaining temporal
diversity across time steps to generate temporally calibrated
SNNs. In the following sections, we explicitly define the
temporally calibrated SNNs and propose the temporal logit
gradient rescaling mechanism that can generate the SNNs.

Temporally Perfectly Calibrated SNN. At each time step,
consistently optimizing the predictive output Pt towards
the one-hot encoded training label Yt achieves impressive
performance and is commonly used in the direct training of
SNNs. However, based on the concept of model calibration,
this approach leads to an overfitting issue and generates
miscalibrated SNNs with limited performance. To address
this issue, we first introduce the definition of a perfectly
calibrated model in ANNs and then extend the definition to
the temporal dimension for SNNs.

Specifiaclly, a model is perfectly calibrated if and only if the
predicted probability confidence of each sample equals the
model’s accuracy. This can be mathematically expressed
as P̂ = P(ŷ = y|P̂), where P̂ is the confidence, that is, the
highest value within the predictive probability P. ŷ denotes
the predicted class, and y denotes the true label. We further

extend the definition to the temporal dimension for SNNs,
which is defined as follows:

Definition 3.1. At time step t, an SNN is temporally per-
fectly calibrated if and only if:

P̂t = P(ŷ = y|P̂t), t ∈ {1, 2, . . . , T}. (8)

As our work focuses on the rate-coded SNNs that currently
achieve state-of-the-art performance, we incorporate spe-
cialized analysis for these SNNs based on Definition 3.1.
Specifically, a rate-coded SNN makes decisions according
to the average accumulated temporal information. We use
Z̄t =

1
t

∑t
i=1 Zi to refer to the average accumulated logit

at time step t, where t ∈ {1, 2, . . . , T}. Then, the tem-
poral confidence P̂t can be represented by the maximum
value of Softmax(Z̄t). Notably, Li et al. (Li et al., 2024b)
suggest that the accuracy of rate-coding SNNs should in-
crease monotonically with time steps if temporal hetero-
geneity exists. Based on this observation, the confidence
of a temporally perfectly calibrated SNN should increase
monotonically with time steps, and we have the following
remark:
Remark 3.2. Given a rate-coded SNN with a T time steps,
let P̂t denote the predicted probability confidence at time
step t. If the SNN is temporally perfectly calibrated, then
for any t, t = 1, ..., T − 1, it satisfies P̂t < ˆPt+1.

Temporal Logit Gradient Rescaling. To generate the tem-
porally perfectly calibrated SNNs, we draw inspiration from
the learning-based model calibration methods. These meth-
ods introduce novel loss functions built upon the CE loss,
demonstrating the most effective performance for model
calibration in ANNs (Chen et al., 2024; Pereyra et al., 2017).
We analyze the optimization effect of the loss functions in
the learning-based model calibration methods, and then ex-
tend the effect to the temporal dimension for direct training
of SNNs.

Specifically, the loss functions in current learning-based
model calibration methods realize calibration during opti-
mization by applying the rescaling effect to the logit gradient
of the CE loss. This can be formulated as:

∇Z∗ ⊘∇ZCE = g(P), (9)

where ⊘ is the element-wise division operator, Z is the
output logit, ∇Z∗ is the logit gradient of the loss function
in the model calibration method, and ∇ZCE is that of CE
loss. P is the softmax probability of Z, and the highest
value within P denotes the predicted probability confidence.
g(·) represents the rescaling function, which is influenced
by the confidence and is adaptively diverse between differ-
ent samples and training phases. The confidence-related
rescaling effect on the logit gradient of ∇ZCE finally pro-
duces the model-calibrated logit gradient ∇Z∗. Thus, the

4

Training High Performance Spiking Neural Network by Temporal Model Calibration

model calibration methods in ANNs can adaptively generate
model-calibrated logit gradients and alleviate the overfitting
issue where the predicted probability confidence is infinitely
close to 1, ignoring the model accuracy.

With further instantiation specific to the rate-coding SNNs,
we extend the logit gradient rescaling effect to the tempo-
ral dimension for direct training of SNNs. We denote the
temporal rescaling factor as gt and define it as:

Definition 3.3. Let ∇Z∗
t be the temporal logit gradient of

the loss function in the temporal model calibration method.
Similar to Equation 9, gt is defined as:

∇Z∗
t ⊘∇ZCE

t = g(Pt|Z1,Z2, ...,Zt). (10)

Notably, due to the rate coding mechanism of SNNs, gt
is required to satisfy two properties: First, gt should be
dependent on the accumulated logits of the model up to
the time step t. Second, gt should optimize the rate-coded
SNN with linearly increasing confidence over time steps as
described in Remark 3.2.

3.3. Temporal Model Calibration for SNNs

In this section, we propose a Temporal Model Calibration
(TMC) method with a new loss function to generate the
temporal gradient rescaling factor gt as discussed above.

Confidence Regularization. Inspired by the effective
learning-based model calibration methods that add a regular-
ization term to the CE loss (Chen et al., 2024; Pereyra et al.,
2017), at each time step, we introduce confidence regular-
ization to the CE loss. The loss function can be expressed
as:

Lt = LCE(Pt,Y) + P̂t, (11)

P̂t = argmax(softmax(Z̄t)), (12)

Z̄t =
1

t

t∑
i=1

Zi, (13)

where P̂t is the temporal confidence of a rate-coded SNN as
defined in Section 3.2.

However, directly using P̂t as a regularization term is likely
to cause suboptimal solutions and could hinder the gradient
analysis due to two issues: First, the class index correspond-
ing to the confidence P̂t may vary during training. While our
goal is to optimize P̂t only when its class index corresponds
to the target class. In cases where this is not true, we aim to
optimize the probability of the target class to be the highest
value in the probability distribution. Second, in Equation
13, P̂t is generated by the model’s temporal outputs up to
the current time step t. This leads to a complex calculation
graph during gradient backpropagation and complicates the
formulation of gt.

Modification 1. To address the above problems, we replace
P̂t with the output predictive probability of the target class,
denoted as βt. In addition, we detach the historical logits
in Equation 13 from the calculation graph, retaining only
the logit at the current time step t. The modification can be
defined as:

βt =
exp(Qk

t)∑C
j exp(Qj

t)
,

Qt =
1

t

[t−1∑
i=1

SG(Zi) + Zt

]
.

(14)

where Qt is the average accumulated logits, k refers to the
index of the target class, C is the total number of class, and
SG(·) indicates the stop-gradient operation. We need to
highlight that, under the application of βt, our loss func-
tion’s effect is to optimize the probabilities of the target class
to serve as the confidence over time steps during training.
Thus, in the following content, the optimization objective
“confidence” refers to the probability of the target class.

Modification 2. The term βt regularizes the logit value of the
target class during training and is already able to alleviate
overconfidence to some extent. However, we want to ex-
plicitly enhance the effect of regularization when βt is close
to 1, that is, the model faces a high risk of overconfidence.
Thus, we replace βt with θt:

θt =
βt

1− βt
=

exp(Qk
t)∑C,j ̸=k

j exp(Qj
t)
, (15)

where θt is highly sensitive to the change of βt. When
βt approaches 1, even a small change in βt can result in
significant increase of θt.

Linear Increasing Confidence Constraint. Notably, the
use of SG(·) will not hinder our training objective of the lin-
early increasing confidence over time steps. Specifically, we
can prove that, under the guidance of the non-optimizable
constant bias, if the logit of the target class Zk

t at each time
step can be optimized to increase monotonically, the accu-
mulated logit value of the target class Z̄k

t will also increase
monotonically. Consequently, the temporal confidence can
achieve a linear increase over time steps. To formalize this,
we have the following proposition (a detailed proof can be
found in Appendix C):

Proposition 3.4. Let Zk
t be the logits at a single time step

t, and Z̄k
t be the average logits of the cumulative time step.

Given a perfectly calibrated SNN, if for any t, t = 1, ..., T −
1, Zk

t < Zk
t+1, it satisfies Z̄k

t < Z̄k
t+1.

This implies that the effect of θt should decrease as t in-
creases. Given that minor changes in βt can lead to sig-
nificant differences in θt, it is necessary to introduce an

5

Training High Performance Spiking Neural Network by Temporal Model Calibration

exponential term t to θt to control its effect. Moreover, we
define λt =

T−t
T , which linearly decreases with time steps,

to ensure that the effect of θt can decrease across time steps.
Overall, the final version of the loss function in our method
is presented as follows:

Lt = LCE(Pt,Y) + θλt
t . (16)

Gradient Rescaling Factor Analysis. After designing the
loss function of our method, we use it to instantiate the gra-
dient rescaling factor gt and see if it can match the desired
property discussed in Section 3.2.

We first apply the temporal gradient calculation analysis
framework in Section 3.1 to our method and derive the
expression of the partial derivative of our loss function to
the logits ∇ZTMC

t as follows:

∇ZTMC,k
t = Pk

t − Yk +
1

t
λtθ

λt
t ,

∇ZTMC,m
t = Pm

t − Ym − 1

t
λtθ

λt
t

P̄m
t

1− P̄k
t

.
(17)

Here P̄t = softmax(Qt). k and m refer to the index of the
target class and the index of the non-target classes, respec-
tively. Then, the temporal logit gradient rescaling vector gt
of our method can be written as

gkt =
∇ZTCM,k

t

∇ZCE,k
t

= 1− 1

t

λtθ
λt
t

1− Pk
t

,

gmt =
∇ZTCM,m

t

∇ZCE,m
t

= 1− 1

t

λtθ
λt
t

1− P̄k
t

P̄m
t

Pm
t

.

(18)

The detailed derivations of Equation 17 and Equation 18
can be found in Appendix D.

In Equation 18, as time step increases, the terms 1
t and λt

weaken the effect of 1
t
λtθ

λt
t

1−Pk
t

and 1
t
λtθ

λt
t

1−P̄k
t

P̄m
t

Pm
t

in gkt and gmt ,
respectively. This means the logit gradient effect of the CE
loss will take over, making the later time steps tend to be
more confident. Thus, the linearly increasing temporal confi-
dence of the trained SNNs will align with the monotonically
increasing accuracies to satisfy the Definition 3.1. More
detailed theoretically analysis of the temporal confidence
of a SNN trained with TMC could converge to its accuracy
can be found in Appendix E.

We further analyze the diverse distribution of gt across time
steps. From Equation 18, we can infer that the distribution
of gt will be affected by the confidence, that is, gt has a
negative correlation with Pk

t and P̄k
t . Since the temporal

confidence monotonically increases with time steps, this will
introduce diversity to the distribution of gt across time steps.
We carried out experiments in Section 4.1 to demonstrate
the detailed correlation between gt and confidence, as well
as their diversity of gt over time steps.

4. Experiments
We primarily validate our proposed method TMC on the im-
age classification tasks, where static datasets (CIFAR10, CI-
FAR100, and ImageNet) and neuromorphic datasets (DVS-
CIFAR10, N-Caltech101, DVS-Gesture, and SL-Animals-
DVS) are used. The network architectures in this paper
include ResNet-19, VGG-SNN, Meta-SpikeFormer, and
Hierarchical SpikingTransformer. More details of the exper-
imental configurations can be found in Appendix A.1. The
results on the DVS-Gesture and SL-Animals-DVS are re-
ported in Appendix F.2. Additionally, to further demonstrate
the effectiveness of our method, we conduct experiments
on the text classification task, where the Quora Question
Pair (QQP) dataset and the SpikingBERT architecture (Bal
& Sengupta, 2024) are used. The results of this task are
reported in Appendix F.1.

4.1. Analysis of Temporal Gradient Rescaling Effect

We decompose gt into the temporal logit gradient rescaling
factor on the target class gkt and the factor on non-target
classes ḡ¬k

t = 1
C−1

∑C,m ̸=k
m=1 gmt , where C is the total class

number. Then, in Figure 1, we visualize the relationship be-
tween confidence and gt as well as the relationship between
(1-confidence) and ḡ¬k

t of 500 samples at the end of training
on DVSCIFAR10. There are two important observations:
Firstly, at each time step, we can observe that gt and ḡ¬k

t

show the symmetric distribution pattern. This implies that
despite gkt and gmt having slightly different formulations in
Equation (18), the rescaling factor across different classes
may have close values with little variation. In such way,
the rescaling mechanism will not bring much variation to
the direction of temporal gradient. This property is similar
to the rescaling factor of some existing model calibration
methods, the expectation of which has been proven to be
consistent across different classes (Tang et al., 2020). In
addition, when the network is under-confident, gkt and ḡ¬k

t

will be closer to 1. Similarly, they will likely be pushed
toward 0 or become negative numbers when the network is
overconfident. Secondly, over time steps, the distributions
of confidence and rescaling factors increasingly converge
towards 1. This is compatible with what we discussed in
Section 3.3 of Gradient Rescaling Factor Analysis. Overall,
gt exhibits diversity distribution in the temporal dimension
and at the data instance level. In addition, we provide a
evaluation of the training stability of gt in Appendix F.3.

4.2. Evaluation of Model Performance

Classification and Calibration Performances. To verify
the temporal gradient rescaling effect on model classifica-
tion and calibration performances, we evaluate the calibra-
tion errors and accuracies of our method at each time step
on DVSCIFAR10 and compare them with SDT and TET.

6

Training High Performance Spiking Neural Network by Temporal Model Calibration

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

4

3

2

1

0

1

Lo
gi

t G
ra

di
en

t R
es

ca
lin

g
Ef

fe
ct

gk
1

g¬k
1

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

4

3

2

1

0

1

Lo
gi

t G
ra

di
en

t R
es

ca
lin

g
Ef

fe
ct

gk
2

g¬k
2

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

4

3

2

1

0

1

Lo
gi

t G
ra

di
en

t R
es

ca
lin

g
Ef

fe
ct

gk
3

g¬k
3

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

4

3

2

1

0

1

Lo
gi

t G
ra

di
en

t R
es

ca
lin

g
Ef

fe
ct

gk
4

g¬k
4

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

4

3

2

1

0

1

Lo
gi

t G
ra

di
en

t R
es

ca
lin

g
Ef

fe
ct

gk
5

g¬k
5

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

4

3

2

1

0

1

Lo
gi

t G
ra

di
en

t R
es

ca
lin

g
Ef

fe
ct

gk
6

g¬k
6

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

4

3

2

1

0

1

Lo
gi

t G
ra

di
en

t R
es

ca
lin

g
Ef

fe
ct

gk
7

g¬k
7

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

4

3

2

1

0

1

Lo
gi

t G
ra

di
en

t R
es

ca
lin

g
Ef

fe
ct

gk
8

g¬k
8

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

4

3

2

1

0

1

Lo
gi

t G
ra

di
en

t R
es

ca
lin

g
Ef

fe
ct

gk
9

g¬k
9

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

4

3

2

1

0

1

Lo
gi

t G
ra

di
en

t R
es

ca
lin

g
Ef

fe
ct

gk
10

g¬k
10

Figure 1. Visualization of the temporal relationship between predicted probabilities and gradient rescaling effect.

Table 1. Classification and calibration performances for different methods across time steps on DVSCIFAR10.

Methods T=1 T=2 T=3 T=4 T=5
Acc↑ ECE↓ AdaECE↓ Acc↑ ECE↓ AdaECE↓ Acc↑ ECE↓ AdaECE↓ Acc↑ ECE↓ AdaECE↓ Acc↑ ECE↓ AdaECE↓

SDT 19.24 0.64 0.69 48.42 0.36 0.42 62.06 0.27 0.24 69.24 0.22 0.20 67.28 0.21 0.15
TET 65.64 0.26 0.27 73.22 0.22 0.22 77.26 0.18 0.18 78.45 0.18 0.17 79.64 0.18 0.17
Ours 63.65 0.25 0.24 75.56 0.11 0.17 78.97 0.11 0.16 81.76 0.12 0.15 81.64 0.12 0.13

Methods T=6 T=7 T=8 T=9 T=10
Acc↑ ECE↓ AdaECE↓ Acc↑ ECE↓ AdaECE↓ Acc↑ ECE↓ AdaECE↓ Acc↑ ECE↓ AdaECE↓ Acc↑ ECE↓ AdaECE↓

SDT 69.63 0.25 0.18 71.25 0.23 0.20 70.06 0.25 0.22 69.63 0.25 0.20 70.05 0.26 0.18
TET 79.22 0.18 0.17 79 67 0.17 0.17 78 45 0.17 0.17 78.04 0.17 0.17 81.22 0.18 0.16
Ours 81.91 0.11 0.13 83.37 0.08 0.08 83.08 0.06 0.06 83.87 0.04 0.05 83.94 0.08 0.05

Following previous studies, we use three standard metrics
for network calibration performance: Expected Calibration
Error (ECE) (Naeini et al., 2015), Adaptive ECE (AdaECE)
(Mukhoti et al., 2020), and Classwise-ECE (CECE) (Kull
et al., 2019). The specific introduction and calculation for-
mulas for these three metrics can be found in Appendix A.2.
We report the main results in Table 1 and the calibration er-
rors in CECE metric are reported in Table A.5 in Appendix
F.5. Firstly, compared to SDT and TET, over time steps,
our method exhibits very competitive classification accura-
cies. Compared to TET, our method achieves the highest
accuracy improvement of 5.83% at time step 9. Apart from
a slight fluctuation at time step 8, overall, the accuracy of
our method can increase progressively with the time step,
while SDT and TET don’t have this property. Secondly, the
calibration errors of our method drop significantly in both
ECE and AdaECE metrics. In particular, the calibration
errors are lower in the later time steps since our proposed
method has more advantages in mitigating overconfidence
in this phase. In Table A.1, We further show the overall
classification and calibration performances by evaluating
the average predicted probability across time steps of SNNs.
Note that we chose QKformer architecture to evaluate the
performance on ImageNet since it is the best-performance
architecture. Noticeably, our method achieves the best accu-
racy and lowest calibration errors on various datasets.

Temporal Scalability. The temporal heterogeneity enables
SNNs to extract dynamic features and produce temporally
extended diverse outputs. This implies that, with increasing
time steps, the performance of SNNs can be improved by
incorporating diverse temporal outputs. Here, we verify
the temporal scalability of SNNs trained with our proposed
loss function. Specifically, we first train a ResNet-19 on
CIFAR100 with a small time step length of 6 on CIFAR100.
Then, we evaluate the trained SNN directly changing the
time step length from 2 to 10 without fine-tuning on the test
set. Figure 2 displays the results under different time step
lengths of our method, SDT and TET. We can see that just
under the time step length of 2, our method has surpassed
the accuracy of SDT and TET under the time step length of
10. When we increase the test time step length, the accuracy
of our method exhibits a more explicit increase, while the
accuracy of SDT has a limited increase trend and that of
TET remains stable. This implies that the SNNs trained
with our method can generate diverse temporal outputs and
further introduce significant performance improvement as
time step increases.

4.3. Ablation Studies

The proposed regularization term consists of two compo-
nents: the base θt and the exponent λt. In this section, we
verify the impact of these two components on the proposed
regularization term, respectively.

7

Training High Performance Spiking Neural Network by Temporal Model Calibration

Table 2. Overall classification and calibration performances.
Dataset Architecture Time Step Method Accuracy↑ ECE↓ AdaECE↓

CIFAR100 ResNet-19 6 SDT 71.12 0.22 0.20
TET 74.72 0.18 0.18
Ours 78.05 0.05 0.04

ImageNet QKformer 4 SDT 85.62 0.05 0.05
TET 85.66 0.05 0.04
Ours 85.83 0.02 0.02

DVSCIFAR10 VGG-SNN 10 SDT 73.86 0.20 0.19
TET 83.17 0.16 0.14
Ours 87.63 0.12 0.11

N-Caltech101 VGG-SNN 10 SDT 79.86 0.14 0.14
TET 81.72 0.11 0.10
Ours 86.03 0.12 0.10

2 3 4 5 6 7 8 9 10
Time Steps

70

72

74

76

78

A
cc

ur
ac

y
(%

)

SDT
TET
Ours

Figure 2. Time scalability of ResNet-19 on CIFAR100.

Effect of θt. To validate the regularization effect introduced
by θt, we first create a variant of our loss function by re-
placing θt with βt, denoted as Ours∗. Then, we compare
the classification and calibration performances of the SNNs
trained using our loss function and the variant loss func-
tion on the DVSCIFAR10 dataset. In Table 3, we report
the calibration errors in ECE and AdaECE metrics and test
accuracies at each time step on DVSCIFAR10. We can see
that the calibration errors of the variant loss function are
higher than those of our proposed loss function at the later
time steps. In addition, the classification performance at the
later time steps is limited. This indicates that θt in our loss
function exhibits a more efficient effect for the later time
steps to mitigate overconfidence, and further improve the
performance of SNNs.

Effect of λt. We conduct experiments to evaluate the tem-
poral constraint of λt on the strength of the proposed regu-
larization term. First, We create a variant of our loss func-
tion by removing λt, denoted as Ours†. Then, we compare
the classification and calibration performances on DVSCI-
FAR10 and the results reported in Table 3. Except for the
first time step, the calibration errors of the variant loss func-
tion are significantly higher than those of our proposed loss
function. Moreover, the accuracy does not increase with
time step. This means that without the constraint of λt,
θt can not have a desirable regularization effect to make
temporal confidence increase progressively.

4.4. Comparison to Existing Works

In this section, we conduct experiments on static datasets
(CIFAR10, CIFAR100, and ImageNet) and neuromorphic
datasets (DVSCIFAR10 and N-Caltech101) to evaluate the
performance of our method and compare the experimental
results with previous works. All of the experiment results
are summarized in Table 4. We specify all the training
details in Appendix A.1.

CIFAR10/100. We apply our method on CIFAR10 and
CIFAR100 and report the mean and standard deviation of
3 runs under different random seeds. The results of our
method and existing methods on CIFAR100 are shown in
Table 4, and the results on CIFAR10 can be found in Table
A.4 in Appendix F.4. Our method achieves competitive
performance on CIFAR10 and CIFAR100 compared with
other methods. The accuracies of our method on these two
datasets are slightly lower than TEBN and RMP-Loss since
they apply extra membrane potential regularizing operations.
Our method outperforms the finite difference surrogate gra-
dient descent method DSpike and spiking neurons paramet-
ric method GLIF on CIFAR10 and CIFAR100. compared
to TET, TKS, TCL, ETC, and TSSD, our method doesn’t
achieve the best performance since the superiority of our
method can not be fully exhibited on the static datasets.

ImageNet. Compared to the convolution-based SNNs,
transformer-based SNNs have achieved superior perfor-
mance on ImageNet. We apply our loss function to the two
best-performing transformer-based SNNs: Spike-Driven
Transformer V2 and QKFormer. We train Spike-Driven
Transformer V2 from scratch. Note that considering the high
training cost required to train QKFormer from scratch, we
load the trained model of the initial QKformer and fine-tune
it using our proposed loss function for 10 epochs. As shown
in Table 4, our method further improves the performance
of these two architectures by 0.80% and 0.18%, respec-
tively. Overall, our method achieves SOTA performance
on ImageNet and exhibits significant accuracy advantages
compared to the convolution-based SNNs.

Neuromorphic Datasets. DVSCIFAR10 and N-Caltech101
are the most challenging mainstream neuromorphic datasets.
We apply our method on these two datasets and report
the mean and standard deviation of 3 runs under differ-
ent random seeds. As shown in Table 4, on DVSCIFAR10,
our method achieves an accuracy of 87.63% top-1 accu-
racy, outperforming the previous SOTA method. On N-
Caltech101, the proposed method achieves 88.24% top-1 ac-
curacy. The results show the potential of SNNs in handling
neuromorphic data. Compared to static datasets, neuro-
morphic datasets exhibit richer spatiotemporal components
through their interaction with both spatial and temporal in-
formation. TMC leverages temporal heterogeneous training,
thereby capturing a richer set of task-relevant spatiotempo-

8

Training High Performance Spiking Neural Network by Temporal Model Calibration

Table 3. Ablation study on DVSCIFAR10.

Methods T=1 T=2 T=3 T=4 T=5
ACC↑ ECE↓ AdaECE↓ ACC↑ ECE↓ AdaECE↓ ACC↑ ECE↓ AdaECE↓ ACC↑ ECE↓ AdaECE↓ ACC↑ ECE↓ AdaECE↓

Ours∗ 65.00 0.25 0.25 78.56 0.17 0.16 78.09 0.17 0.17 79.26 0.16 0.16 80.08 0.16 0.16
Ours† 64.40 0.26 0.26 76.20 0.22 0.23 77.05 0.20 0.22 78.80 0.21 0.20 79.80 0.20 0.21
Ours 63.65 0.25 0.24 75.56 0.11 0.17 78.97 0.11 0.16 81.76 0.12 0.15 81.64 0.12 0.13

Methods T=6 T=7 T=8 T=9 T=10
ACC↑ ECE↓ AdaECE↓ ACC↑ ECE↓ AdaECE↓ ACC↑ ECE↓ AdaECE↓ ACC↑ ECE↓ AdaECE↓ ACC↑ ECE↓ AdaECE↓

Ours∗ 80.85 0.16 0.17 81.08 0.16 0.16 81.38 0.17 0.16 81.35 0.17 0.16 81.82 0.16 0.16
Ours† 81.20 0.17 0.17 80.40 0.17 0.16 81.02 0.17 0.17 80.80 0.18 0.18 81.32 0.17 0.16
Ours 81.91 0.11 0.13 83.37 0.08 0.08 83.08 0.06 0.06 83.87 0.04 0.05 83.94 0.08 0.05

Table 4. Performance comparison with state-of-the-art methods.

Dataset Model Architecture Time Step Accuracy

CIFAR100

DSpike(Li et al., 2021) ResNet-18 6 74.24
GLIF(Yao et al., 2022) ResNet-19 6 77.35

TEBN(Duan et al., 2022) ResNet-19 6 78.76
RMP-Loss(Guo et al., 2023) ResNet-19 6 78.98

TET(Deng et al.) ResNet-19 6 74.72
TKS(Dong et al., 2024) ResNet-19 4 76.20
TCL(Qiu et al., 2024) ResNet-19 4 79.73

ETC(Zhao et al., 2025) ResNet-19 4 79.47
TSSD(Zuo et al., 2024) VGG-9 2 74.69

Ours ResNet-19
6 78.05±0.18
4 77.52±0.13
2 76.35±0.15

ImageNet

DSpike(Li et al., 2021) VGG-16 5 71.24
GLIF(Yao et al., 2022) ResNet-34 6 69.09

TEBN(Duan et al., 2022) SEW ResNet-34 4 68.28
RMP-Loss(Guo et al., 2023) ResNet-34 4 65.17

TET(Deng et al.) Spiking-ResNet-34 6 64.79
TKS(Dong et al., 2024) SEW-ResNet-34 4 69.60
ETC(Zhao et al., 2025) Spiking-ResNet-34 6 69.64
TSSD(Zuo et al., 2024) ResNet-34 2 66.13

Spike-Driven Transformer V2(Yao et al.) Meta-SpikeFormer 4 80.00
QKFormer(Zhou et al., 2024) Hierarchical SpikingTransformer 4 85.65

Ours Meta-SpikeFormer 4 80.80
Hierarchical SpikingTransformer 4 85.83

DVSCIFAR10

DSpike(Li et al., 2021) ResNet-18 10 75.40
GLIF(Yao et al., 2022) Wide 7B Net 16 78.10

TEBN(Duan et al., 2022) VGG-SNN 10 84.90
RMP-Loss(Guo et al., 2023) ResNet-19 10 76.20

TET(Deng et al.) VGG-SNN 10 83.17
TKS(Dong et al., 2024) VGG-SNN 10 85.30
TCL(Qiu et al., 2024) VGG-SNN 4 79.10

ETC(Zhao et al., 2025) VGG-SNN 10 85.95
TSSD(Zuo et al., 2024) VGG-9 16 84.37

Ours VGG-SNN 10 87.63±0.15

N-Caltech101

DART(Ramesh et al., 2019) N/A N/A 66.80
TCJA-SNN(Zhu et al., 2024) VGG-SNN 14 78.50
STCA-SNN(Wu et al., 2023) N/A 14 80.90

TET(Deng et al.) VGG-SNN 10 81.72
ETC(Zhao et al., 2025) VGG-SNN 10 85.53
TKS(Dong et al., 2024) VGG-SNN 10 84.10

Ours VGG-SNN 10 86.03±0.13
VGG-SNN 16 88.24±0.10

ral dynamics features. This enables TMC to outperform
existing methods that rely on temporal homogeneous train-
ing.

5. Conclusion
In this work, we analyze the temporal logit gradient in exist-
ing direct training methods and conclude that the insufficient
diversity of the logit gradient in the temporal dimension will

limit the temporal heterogeneity and the performance of
SNNs. Inspired by model calibration methods, we propose
TMC, which can be seen as a temporal gradient rescaling
mechanism to generate diverse logit gradients in the tempo-
ral dimension. Experimental results show that our method
can improve the temporal heterogeneity and performance
of SNNs. In particular, our method achieves state-of-the-art
accuracy on ImageNet, DVSCIFAR10, and N-Caltech101.

9

Training High Performance Spiking Neural Network by Temporal Model Calibration

Acknowledgements
This work was supported in part by the National Key
Research and Development Program of China (No.
2020AAA0109002), in part by the National Natural Science
Foundation of China (62376247, 62334014, and 62436008),
and in part by the grant from Key R&D Program of Zhejiang
(2022C01048).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Amir, A., Taba, B., Berg, D., Melano, T., McKinstry, J.,

Di Nolfo, C., Nayak, T., Andreopoulos, A., Garreau, G.,
Mendoza, M., et al. A low power, fully event-based
gesture recognition system. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 7243–7252, 2017.

Anumasa, S., Mukhoty, B., Bojkovic, V., De Masi, G.,
Xiong, H., and Gu, B. Enhancing training of spiking
neural network with stochastic latency. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol-
ume 38, pp. 10900–10908, 2024.

Bal, M. and Sengupta, A. SpikingBERT: Distilling bert to
train spiking language models using implicit differentia-
tion. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 10998–11006, 2024.

Chakraborty, B. and Mukhopadhyay, S. Heterogeneous
recurrent spiking neural network for spatio-temporal clas-
sification. Frontiers in Neuroscience, 17:994517, 2023.

Chakraborty, B. and Mukhopadhyay, S. Exploiting hetero-
geneity in timescales for sparse recurrent spiking neural
networks for energy-efficient edge computing. arXiv
preprint arXiv:2407.06452, 2024.

Chen, T., Wang, W., Pu, T., Qin, J., Yang, Z., Liu, J., and
Lin, L. Dynamic correlation learning and regularization
for multi-label confidence calibration. IEEE Transactions
on Image Processing, 2024.

Chen, Z., Lu, Z., Ma, D., Tang, H., Jiang, X., Zheng, Q., and
Pan, G. EvHDR-GS: Event-guided hdr video reconstruc-
tion with 3d gaussian splatting. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 39,
pp. 2367–2375, 2025.

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y.,
Choday, S. H., Dimou, G., Joshi, P., Imam, N., Jain, S.,
et al. Loihi: A neuromorphic manycore processor with
on-chip learning. IEEE Micro, 38(1):82–99, 2018.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 248–255, 2009.

Deng, S., Li, Y., Zhang, S., and Gu, S. Temporal effi-
cient training of spiking neural network via gradient re-
weighting. In International Conference on Learning Rep-
resentations.

Dong, Y., Zhao, D., and Zeng, Y. Temporal knowledge
sharing enable spiking neural network learning from past
and future. IEEE Transactions on Artificial Intelligence,
2024.

Duan, C., Ding, J., Chen, S., Yu, Z., and Huang, T. Temporal
effective batch normalization in spiking neural networks.
Advances in Neural Information Processing Systems, 35:
34377–34390, 2022.

Fang, W., Yu, Z., Chen, Y., Huang, T., Masquelier, T., and
Tian, Y. Deep residual learning in spiking neural net-
works. Advances in Neural Information Processing Sys-
tems, 34:21056–21069, 2021a.

Fang, W., Yu, Z., Chen, Y., Masquelier, T., Huang, T., and
Tian, Y. Incorporating learnable membrane time constant
to enhance learning of spiking neural networks. In Pro-
ceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 2661–2671, 2021b.

Gast, R., Solla, S. A., and Kennedy, A. Neural heterogeneity
controls computations in spiking neural networks. Pro-
ceedings of the National Academy of Sciences, 121(3):
e2311885121, 2024.

Guo, Y., Liu, X., Chen, Y., Zhang, L., Peng, W., Zhang,
Y., Huang, X., and Ma, Z. RMP-Loss: Regularizing
membrane potential distribution for spiking neural net-
works. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 17391–17401, 2023.

Hu, Y., Tang, H., and Pan, G. Spiking deep residual net-
works. IEEE Transactions on Neural Networks and
Learning Systems, 34(8):5200–5205, 2021.

Hu, Y., Zheng, Q., Jiang, X., and Pan, G. Fast-SNN:
Fast spiking neural network by converting quantized ann.
IEEE Transactions on Pattern Analysis and Machine In-
telligence, 45(12):14546–14562, 2023.

Huh, D. and Sejnowski, T. J. Gradient descent for spik-
ing neural networks. Advances in Neural Information
Processing Systems, 31, 2018.

10

Training High Performance Spiking Neural Network by Temporal Model Calibration

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Kull, M., Perello Nieto, M., Kängsepp, M., Silva Filho,
T., Song, H., and Flach, P. Beyond temperature scaling:
Obtaining well-calibrated multi-class probabilities with
dirichlet calibration. Advances in Neural Information
Processing Systems, 32, 2019.

Lee, D., Cheung, K. C., and Zhang, N. Adaptive label
smoothing with self-knowledge in natural language gen-
eration. In Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing, pp. 9781–
9792, 2022.

Li, H., Liu, H., Ji, X., Li, G., and Shi, L. CIFAR10-DVS: An
event-stream dataset for object classification. Frontiers
in Neuroscience, 11:244131, 2017.

Li, Y., Guo, Y., Zhang, S., Deng, S., Hai, Y., and Gu, S.
Differentiable Spike: Rethinking gradient-descent for
training spiking neural networks. Advances in Neural
Information Processing Systems, 34:23426–23439, 2021.

Li, Y., Kim, Y., Park, H., Geller, T., and Panda, P. Neuro-
morphic data augmentation for training spiking neural
networks. In European Conference on Computer Vision,
pp. 631–649. Springer, 2022.

Li, Y., Fan, L., Shen, H., and Hu, D. HR-SNN: An end-to-
end spiking neural network for four-class classification
motor imagery brain-computer interface. IEEE Transac-
tions on Cognitive and Developmental Systems, 2024a.

Li, Y., Geller, T., Kim, Y., and Panda, P. SEENN: Towards
temporal spiking early exit neural networks. Advances in
Neural Information Processing Systems, 36, 2024b.

Li, Y., Lei, Y., and Yang, X. Spikeformer: Training high-
performance spiking neural network with transformer.
Neurocomputing, 574:127279, 2024c.

Liao, Z., Liu, Y., Zheng, Q., and Pan, G. Spiking NeRF:
Representing the real-world geometry by a discontinuous
representation. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pp. 13790–13798,
2024.

Liu, Q., Yan, J., Zhang, M., Pan, G., and Li, H. LitE-
SNN: Designing lightweight and efficient spiking neural
network through spatial-temporal compressive network
search and joint optimization. In Proceedings of the
International Joint Conference on Artificial Intelligence,
pp. 3097–3105, 2024.

Ma, D., Jin, X., Sun, S., Li, Y., Wu, X., Hu, Y., Yang, F.,
Tang, H., Zhu, X., Lin, P., et al. Darwin3: A large-scale
neuromorphic chip with a novel isa and on-chip learning.
National Science Review, 11(5):nwae102, 2024.

Ma, X. and Blaschko, M. B. Meta-Cal: Well-controlled post-
hoc calibration by ranking. In International Conference
on Machine Learning, pp. 7235–7245. PMLR, 2021.

Maass, W. Networks of Spiking Neurons: The third genera-
tion of neural network models. Neural networks, 10(9):
1659–1671, 1997.

Mukhoti, J., Kulharia, V., Sanyal, A., Golodetz, S., Torr, P.,
and Dokania, P. Calibrating deep neural networks using
focal loss. Advances in Neural Information Processing
Systems, 33:15288–15299, 2020.

Müller, R., Kornblith, S., and Hinton, G. E. When does
label smoothing help? Advances in Neural Information
Processing Systems, 32, 2019.

Naeini, M. P., Cooper, G., and Hauskrecht, M. Obtaining
well calibrated probabilities using bayesian binning. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 29, 2015.

Nguyen, K. and O’Connor, B. Posterior calibration and ex-
ploratory analysis for natural language processing models.
In Proceedings of the Conference on Empirical Methods
in Natural Language Processing, pp. 1587–1598, 2015.

Orchard, G., Jayawant, A., Cohen, G. K., and Thakor, N.
Converting static image datasets to spiking neuromorphic
datasets using saccades. Frontiers in Neuroscience, 9:
437, 2015.

Ovadia, Y., Fertig, E., Ren, J., Nado, Z., Sculley, D.,
Nowozin, S., Dillon, J., Lakshminarayanan, B., and
Snoek, J. Can you trust your model’s uncertainty? Evalu-
ating predictive uncertainty under dataset shift. Advances
in Neural Information Processing Systems, 32, 2019.

Pereyra, G., Tucker, G., Chorowski, J., Kaiser, L., and
Hinton, G. Regularizing neural networks by penalizing
confident output distributions. 2017.

Perez-Nieves, N. and Goodman, D. Sparse spiking gradient
descent. Advances in Neural Information Processing
Systems, 34:11795–11808, 2021.

Perez-Nieves, N., Leung, V. C., Dragotti, P. L., and Good-
man, D. F. Neural heterogeneity promotes robust learning.
Nature Communications, 12(1):5791, 2021.

Qiu, H., Song, Z., Chen, Y., Ning, M., Fang, W., Sun, T.,
Ma, Z., Yuan, L., and Tian, Y. Temporal contrastive
learning for spiking neural networks. In International
Conference on Artificial Neural Networks, pp. 422–436.
Springer, 2024.

Ramesh, B., Yang, H., Orchard, G., Le Thi, N. A., Zhang,
S., and Xiang, C. DART: Distribution aware retinal trans-
form for event-based cameras. IEEE Transactions on

11

Training High Performance Spiking Neural Network by Temporal Model Calibration

Pattern Analysis and Machine Intelligence, 42(11):2767–
2780, 2019.

Rathi, N. and Roy, K. DIET-SNN: A low-latency spiking
neural network with direct input encoding and leakage
and threshold optimization. IEEE Transactions on Neural
Networks and Learning Systems, 34(6):3174–3182, 2021.

Ross, T.-Y. and Dollár, G. Focal loss for dense object detec-
tion. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2980–2988, 2017.

Roy, K., Jaiswal, A., and Panda, P. Towards spike-based ma-
chine intelligence with neuromorphic computing. Nature,
575(7784):607–617, 2019.

Savin, C. and Denève, S. Spatio-temporal representations
of uncertainty in spiking neural networks. Advances in
Neural Information Processing Systems, 27, 2014.

Sharma, L., Graesser, L., Nangia, N., and Evci, U. Natural
language understanding with the quora question pairs
dataset. arXiv preprint arXiv:1907.01041, 2019.

She, X., Dash, S., Kim, D., and Mukhopadhyay, S. A hetero-
geneous spiking neural network for unsupervised learning
of spatiotemporal patterns. Frontiers in Neuroscience, 14:
615756, 2021a.

She, X., Dash, S., and Mukhopadhyay, S. Sequence ap-
proximation using feedforward spiking neural network
for spatiotemporal learning: Theory and optimization
methods. In International Conference on Learning Rep-
resentations, 2021b.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 2818–2826,
2016.

Tang, J., Shivanna, R., Zhao, Z., Lin, D., Singh, A., Chi,
E. H., and Jain, S. Understanding and improving knowl-
edge distillation. arXiv preprint arXiv:2002.03532, 2020.

Tomani, C., Gruber, S., Erdem, M. E., Cremers, D., and
Buettner, F. Post-hoc uncertainty calibration for domain
drift scenarios. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 10124–
10132, 2021.

Vasudevan, A., Negri, P., Di Ielsi, C., Linares-Barranco, B.,
and Serrano-Gotarredona, T. SL-Animals-DVS: Event-
driven sign language animals dataset. Pattern Analysis
and Applications, pp. 1–16, 2022.

Wang, B., Zhang, Y., Li, H., Dou, H., Guo, Y., and Deng,
Y. Biologically inspired heterogeneous learning for accu-
rate, efficient and low-latency neural network. National
Science Review, 12(1):nwae301, 2025.

Wu, S., Huang, H., Wang, S., Chen, G., Zhou, C., and
Yang, D. Neural heterogeneity enhances reliable neural
information processing: Local sensitivity and globally
input-slaved transient dynamics. Science Advances, 11
(14):eadr3903, 2025.

Wu, X., Song, Y., Zhou, Y., Jiang, Y., Bai, Y., Li, X., and
Yang, X. STCA-SNN: Self-attention-based temporal-
channel joint attention for spiking neural networks. Fron-
tiers in Neuroscience, 17:1261543, 2023.

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. Spatio-
temporal backpropagation for training high-performance
spiking neural networks. Frontiers in Neuroscience, 12:
331, 2018.

Yan, H., Lu, Z., Chen, Z., Ma, D., Tang, H., Zheng, Q., and
Pan, G. EvSTVSR: Event guided space-time video super-
resolution. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 39, pp. 9085–9093, 2025.

Yan, J., Liu, Q., Zhang, M., Feng, L., Ma, D., Li, H., and
Pan, G. Efficient spiking neural network design via neural
architecture search. Neural Networks, pp. 106172, 2024.

Yao, M., Hu, J., Hu, T., Xu, Y., Zhou, Z., Tian, Y., Bo,
X., and Li, G. Spike-driven Transformer V2: Meta spik-
ing neural network architecture inspiring the design of
next-generation neuromorphic chips. In International
Conference on Learning Representations.

Yao, M., Gao, H., Zhao, G., Wang, D., Lin, Y., Yang, Z., and
Li, G. Temporal-wise attention spiking neural networks
for event streams classification. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 10221–10230, 2021.

Yao, X., Li, F., Mo, Z., and Cheng, J. GLIF: A unified
gated leaky integrate-and-fire neuron for spiking neural
networks. Advances in Neural Information Processing
Systems, 35:32160–32171, 2022.

Yu, C., Gu, Z., Li, D., Wang, G., Wang, A., and Li, E. STSC-
SNN: Spatio-temporal synaptic connection with temporal
convolution and attention for spiking neural networks.
Frontiers in Neuroscience, 16:1079357, 2022.

Zhang, W., Li, Z., Ma, D., Tang, H., Jiang, X., Zheng, Q.,
and Pan, G. Spiking GS: Towards high-accuracy and low-
cost surface reconstruction via spiking neuron-based gaus-
sian splatting. arXiv preprint arXiv:2410.07266, 2024.

Zhao, D., Shen, G., Dong, Y., Li, Y., and Zeng, Y. Improv-
ing stability and performance of spiking neural networks
through enhancing temporal consistency. Pattern Recog-
nition, 159:111094, 2025.

12

Training High Performance Spiking Neural Network by Temporal Model Calibration

Zheng, H., Zheng, Z., Hu, R., Xiao, B., Wu, Y., Yu, F., Liu,
X., Li, G., and Deng, L. Temporal dendritic heterogeneity
incorporated with spiking neural networks for learning
multi-timescale dynamics. Nature Communications, 15
(1):277, 2024.

Zhou, C., Zhang, H., Zhou, Z., Yu, L., Huang, L., Fan, X.,
Yuan, L., Ma, Z., Zhou, H., and Tian, Y. QKFormer: Hier-
archical spiking transformer using qk attention. Advances
in Neural Information Processing Systems, 2024.

Zhu, R.-J., Zhang, M., Zhao, Q., Deng, H., Duan, Y., and
Deng, L.-J. TCJA-SNN: Temporal-channel joint atten-
tion for spiking neural networks. IEEE Transactions on
Neural Networks and Learning Systems, 2024.

Zuo, L., Ding, Y., Jing, M., Yang, K., and Yu, Y. Self-
distillation learning based on temporal-spatial consis-
tency for spiking neural networks. arXiv preprint
arXiv:2406.07862, 2024.

13

Training High Performance Spiking Neural Network by Temporal Model Calibration

A. Details of Experiments
A.1. Datasets and Training Details

CIFAR10/100. CIFAR10/10 (Krizhevsky et al., 2009) contains 10/100 classes and consists of 50k training images and
10k testing images with the size of 32 × 32. The original random horizontal flip and crop are applied to the training image
augmentation. We train ResNet-19 architecture on these two datasets under time step lengths of 2, 4, and 6 for 300 epochs,
respectively. We use an Adam optimizer with a learning rate of 0.01 and apply cosine decay, gradually reducing the learning
rate to 0.

ImageNet. ImageNet (Deng et al., 2009) is the challenging image recognition dataset with 1.28 million training images
and 50k test images from 1000 object classes. We crop the images to 224×224 and use the standard augmentation for the
training data. The detailed experimental settings are the same as Spike-Driven Transformer V2 (Yao et al.) and QKformer
(Zhou et al., 2024).

DVSCIFAR10. DVSCIFAR10 (Li et al., 2017) is converted from CIFAR10. It has 10k images with a size of 128×128. We
apply a 9 : 1 train-test split (i.e. 9k training images and 1k test images) to DVSCIFAR10. In our training, we integrate the
event data into 10 frames and resize the resolution to 48 × 48. Random horizontal flip and random roll within 5 pixels are
taken as augmentation (Li et al., 2022). We train VGG-SNN architecture on DVSCIFAR10 under time step lengths of 10 for
300 epochs and use an Adam optimizer with a learning rate of 0.01 and cosine decay to 0.

N-Caltech101. N-Caltech101 (Orchard et al., 2015) is a neuromorphic version of the Caltech101 dataset, encompassing
101 categories. We train VGG-SNN architecture on DVSCIFAR10 under time step lengths of 10 and 14 for 300 epochs,
respectively. In addition, we use an Adam optimizer with a learning rate of 0.01 and cosine decay to 0.

DVS-Gesture. DVS-Gesture (Amir et al., 2017) is a neuromorphic dataset for gesture recognition. DVS-Gesture contains a
total of 11 event stream samples of gestures, 1176 for training and 288 for testing, with a spatial size of 128×128 for each
sample. For DVS-Gesture data, the event stream is integrated into frames in 30ms units and downsampled to 32 × 32. We
train VGG-SNN architecture on DVS-Gesture under time step lengths of 10 for 300 epochs. In addition, we use an Adam
optimizer with a learning rate of 0.01 and cosine decay to 0.

SL-Animals-DVS. SL-Animals-DVS (Vasudevan et al., 2022) is a event-based Spanish sign language dataset. It is composed
of more than 1100 samples of 59 subjects performing 19 signs in isolation corresponding to animals. We train VGG-SNN
architecture on SL-Animals-DVS under time step lengths of 16 for 300 epochs and use an Adam optimizer with a learning
rate of 0.01 and cosine decay to 0.

Quora Question Pair (QQP). The QQP dataset (Sharma et al., 2019) consists of a training set of 404,290 question pairs,
and a test set of 2,345,795 question pairs and is provided as part of a Kaggle competition. The detailed experimental settings
are the same as SpikingBERT (Bal & Sengupta, 2024).

A.2. Calibration Metrics

ECE. The ECE of SNN at time step t can be defined as:

ECEt = Ep̂t [|P(ŷt = yt|p̂t)− p̂t|]. (A.1)

Since we only have finite samples, an approximate estimation is used to calculate ECEt given a finite sample size of N .
Specifically, we group the probability predictions at time step t into M equispaced bins. Let Bm,t denote the set of samples
with predicted confidence belonging to the mth bin, where the interval is [i−1

M , i
M]. Then, P(ŷt = yt|p̂t) in Equation (A.1)

can be denoted as the accuracy of Bm,t: Am,t =
1

|Bm,t|
∑

i∈Bm,t
1(ŷit = yit), where 1 is the indicator function. Similarly,

p̂t in Equation (A.1) can be represented as the mean confidence of Bm,t, that is the average confidence of all samples in the
bin: Cm,t =

1
|Bm,t|

∑
i∈Bm,t

p̂it. Then, ECEt can be approximated as a weighted average of the absolute difference between
the accuracy and confidence of each bin:

ECEt =

M∑
m=1

|Bm,t|
N

|Am,t − Cm,t|. (A.2)

AdaECE. One disadvantage of ECE is the uniform bin width. For a trained model, most of the samples lie within the highest
confidence bins, and hence these bins dominate the value of the ECE. We thus also consider another metric, AdaECE, for

14

Training High Performance Spiking Neural Network by Temporal Model Calibration

which bin sizes are calculated so as to evenly distribute samples between bins (similar to the adaptive binning procedure in
(Nguyen & O’Connor, 2015)). The AdaECEt of SNN at time step t can be calculated as:

AdaECEt =

M∑
m=1

|Bm,t|
N

|Am,t − Cm,t| s.t.∀i, j · |Bm,t| = |Bj,t|. (A.3)

CECE. The ECE metric only considers the probability of the predicted class, without considering the other scores in the
softmax distribution. A stronger definition of calibration would require the probabilities of all the classes in the softmax
distribution to be calibrated. This can be achieved with a simple classwise extension of the ECE metric. The CECEt of SNN
at time step t can be calculated as:

CECEt =
1

K

M∑
m=1

K∑
j=1

|Bj
m,t|
N

|Aj
m,t − Cj

m,t|, (A.4)

where K is the number of classes, Bj
m,t denotes the set of samples from the j-th class in the m-th bin at time step t,

Aj
m,t =

1

|Bj
m,t|

∑
k∈Bj

m,t
1(j = ykt) and Cj

m,t =
1

|Bj
m,t|

∑
k∈Bj

m,t
pk,j
t .

Note that we set the number of bins for ECE and CECE as 15 in our experiments.

B. Detailed Analysis of the Temporal Heterogeneity in SNNs
B.1. Neuronal Behavior Definition

The behavior of a spiking neuron over continuous time can be formulated as follows:

τ
dut

dt
= −(ut − ureset) + It, ut < Vth, (A.5)

ot =
∑
tf

δ(t− tf), (A.6)

where ut is the membrane potential, τ is the time content, It is the input current, and Vth is the threshold. δ(·) is the Dirac
delta function. The spike train ot is generated when ut reaches Vth at time tf , and ut is reset to the resting potential ureset.

B.2. Neuronal Temporal Heterogeneity Analysis

Firstly, the change of ut is quantified by dut

dt , which is determined by two components:

1) Decay of Membrane Potential −(ut − ureset). This term indicates that the membrane potential naturally decays towards
the resting potential ureset. If ut > ureset, this term is negative, indicating a decrease in membrane potential. If ut < ureset,
this term is positive, indicating an increase in membrane potential.

2) Input Current It. It represents the effect of the external current on the membrane potential. If It is positive, it drives the
membrane potential up. If It is negative, it pushes the membrane potential down.

Secondly, we investigate the temporal dynamic changes of dut

dt :

1) When dut

dt > 0, it means the membrane potential ut is increasing. This could be due to an input current It that is
sufficiently large to overcome the natural decay of the membrane potential, or because the effect of the natural decay is
relatively small at the current moment.

2) When dut

dt < 0, the membrane potential ut is decreasing. This could be because the input current It is small or negative,
not enough to counteract the decay of the membrane potential, or the effect of the natural decay is relatively large at the
current moment.

3) Note that dut

dt = 0 is highly unlikely to occur unless specific conditions are met.

Thus, |dut

dt | > 0 indicates that the membrane potential is continuously changing, either increasing or decreasing. This change
is a direct reflection of the neuron’s response to temporal dependency and input signals and is key evidence of temporal
heterogeneity.

15

Training High Performance Spiking Neural Network by Temporal Model Calibration

C. Proof of Proposition 3.4

Proof. The cumulative logits of the target class, denoted as Z̄k
t can be written as 1

t

∑t
i=1 Zk

i . Thus we can get

Z̄k
t < Z̄k

t+1

⇒ 1

t

t∑
i=1

Zk
i <

1

t+ 1

t+1∑
i=1

Zk
i

⇒ t+ 1

t

t∑
i=1

Zk
i <

t+1∑
i=1

Zk
i

⇒ t+ 1

t

t∑
i=1

Zk
i −

t∑
i=1

Zk
i < Zk

t+1

⇒ 1

t

t∑
i=1

Zk
i < Zk

t+1.

(A.7)

By subtracting Zk
t on both sides of Equation A.7, we get

1

t

t∑
i=1

Zk
i − Zk

t < Zk
t+1 − Zk

t

⇒ 1

t

t∑
i=1

(Zk
i − Zk

t) < Zk
t+1 − Zk

t .

(A.8)

If for any t, t = 1, ..., T − 1, Zk
t < Zk

t+1, it holds that

1

t

t∑
i=1

(Zk
i − Zk

t) ≤ 0 < Zk
t+1 − Zk

t . (A.9)

Hence it satisfies Z̄k
t < Z̄k

t+1.

D. Derivations in Section 3.3
D.1. Derivation of Equation 17

The loss function of our TMC method is:

LTCM
t = LCE(ot,Y) + θλt

t . (A.10)

According to the chain rule, the partial derivative of this loss function with respect to the logit vector at time step t is:

∇ZTCM,i
t =

∂LCE

∂Zi
t

+
∂θλt

t

∂Zi
t

=
∂LCE

∂Zi
t

+
∂θλt

t

∂θt

∂θt

∂P̄k
t

∂P̄k
t

∂Qi
t

∂Qi
t

∂Zi
t

+
∂θλt

t

∂θt

∂θt

∂P̄m
t

∂P̄m
t

∂Qi
t

∂Qi
t

∂Zi
t

,

(A.11)

16

Training High Performance Spiking Neural Network by Temporal Model Calibration

where superscript i is used to separate ∇ZTCM
t by different classes. Superscript k and m refer to the index of the target class

and the index of non-target classes, respectively. For the element of the target class, we have:

∂LCE

∂Zk
t

= Pk
t − Yk,

∂θλt
t

∂θt
= λtθ

λt−1
t ,

∂θt

∂P̄k
t

=
1

1− P̄k
t

,

∂θt

∂P̄m
t

= − P̄k
t

(1− P̄k
t)

2
,

∂P̄k
t

∂Qk
t

=
exp(Qk

t)∑C
j exp(Qj

t)
− exp(Qk

t)
2

[
∑C

j exp(Qj
t)]

2 = P̄k
t − (P̄k

t)
2,

∂P̄m
t

∂Qk
t

= −
exp(Qk

t) ·
∑C,j ̸=k

j exp(Qj
t)

[
∑C

j exp(Qj
t)]

2 = −P̄k
t · (1− P̄k

t),

∂Qk
t

∂Zk
t

=
1

t
.

(A.12)

In Equation A.12, C is the total number of classes. By substituting Equation A.12 into Equation A.11, we have:

∇ZTMC, k
t = Pk

t − Yk + λtθ
λt−1
t · 1

1− P̄k
t

· [P̄k
t − (P̄k

t)
2] · 1

t
+ λtθ

λt−1
t · − P̄k

t

(1− P̄k
t)

2
· −P̄k

t · (1− P̄k
t) ·

1

t

= Pk
t − Yk + λtθ

λt−1
t · P̄k

t

1− P̄k
t

·
(
1− P̄k

t

)
· 1
t
+ λtθ

λt−1
t · P̄k

t

1− P̄k
t

· P̄k
t · 1

t

= Pk
t − Yk + λtθ

λt
t · 1

t

(A.13)

Finally, we have:

∇ZTMC,k
t = Pk

t − Yk +
1

t
λtθ

λt
t . (A.14)

In the same way, we can have:

∇ZTMC,m
t = Pm

t − Ym − 1

t
λtθ

λt
t

P̄m
t

1− P̄k
t

. (A.15)

D.2. Derivation of Equation 18

The gradient rescaling vector gt of our method is defined as:

∇ZTMC
t ⊘∇ZTET

t = gt. (A.16)

Since ∇ZTMC
t has different expressions for the element of the target class and the other elements, gt should also be derived

separately for those two categories. We denote gkt as the gradient rescaling factor of the target class, and gmt as the gradient
rescaling factor of all the other classes.

For the target class, we have:

gkt =
∇ZTMC,k

t

∇ZTET,k
t

=
Pk
t − Yk + 1

tλtθ
λt
t

Pk
t − Yk

= 1 +
1
tλtθ

λt
t

Pk
t − Yk

. (A.17)

The denominator Pk
t − Yk in Equation A.17 can also be written as −(1− Pk

t), so Equation A.17 can be re-written as:

gkt =
∇ZTMC,k

t

∇ZTET,k
t

= 1− 1

t

λtθ
λt
t

1− Pk
t

. (A.18)

17

Training High Performance Spiking Neural Network by Temporal Model Calibration

Similarly, for the non-target classes gmt , we have:

gmt =
∇ZTMC,m

t

∇ZTET,m
t

=
Pm
t − Ym − 1

tλtθ
λt
t

P̄m
t

1−P̄k
t

Pm
t − Ym = 1− 1

t

λtθ
λt
t

1− P̄k
t

P̄m
t

Pm
t

, (A.19)

because Ym = 0.

E. Convergence Analysis of TMC
E.1. Temporally Perfectly Clibrated SNN

Definition 3.1 requires a rate-coding SNN to satisfy the following two properties:

1) Property 1: P̂t = P(ŷ = y|P̂t), t ∈ {1, 2, . . . , T}.

2) Property 2: P̂t < ˆPt+1.

E.2. Optimization Objective

Convert the realization of these two properties into the optimization objective of TMC:

1) Note: Since the predicted outputs of a trained SNN typically have the highest probability for the target class across time
steps, P̂t can be expressed as P̂t = P̄k

t . Here, P̄k
t is the probability of the target class k in the distribution of softmax(Z̄t).

2) Objective 1: During training, the realization of Property 1 can be converted to optimize |P̂t − P(ŷ = y|P̂t)| < ϵ. This can
be achieved by introducing a confidence regularization term, θt, to penalize the under-confidence issue P̂t < P(ŷ = y|P̂t)
and, especially, the over-confidence issue P̂t > P(ŷ = y|P̂t) with high sensitivity.

3) Objective 2: During training, the realization of Property 2, P̂t < ˆPt+1, can be converted to P̂t < ˆPt+1. This can be
achieved by introducing a linearly decreasing exponent, λt, into θt to optimize Zk

t < Zk
t+1, as described in Proposition 3.4.

E.3. Convergence Analysis

With the loss function of TMC, the rescaling factor for the target class k is generated to optimize confidence. Specifically:

gkt =
∇ZTCM,k

t

∇ZCE,k
t

= 1− f(t) ∗ h(t), f(t) =
λtθ

λt
t

t
, h(t) =

1

1− Pk
t

. (A.20)

Here, f(t) decreases with time steps.

1) At the initial training phase, h(t) follows a random uniform distribution, and gkt increases with time steps to optimize
Zk
t < Zk

t+1, thereby meeting Objective 2.

2) During training, at time step t, if Zk
t is high, the probability of the target class k in the distribution of softmax(Zt),

denoted as P k
t , may lead to overconfidence. In this situation, h(t) increases, causing gkt to decrease potentially even to a

negative value, to penalize the overconfidence issue. Conversely, underconfidence occurs when Zk
t is low, and gkt increases

to address this issue, thereby meeting Objective 1.

3) At the end of the training, gkt for different samples will converge to an interval. We have visualized the distribution of gkt
values for 500 samples of a trained SNN in Figure 1. Notably, for most samples with reasonable confidence, their gt values
are centered within an interval that shifts closer to 1 over time. This indicates the achievement of Objective 2. It can be seen
that across time step, some samples’ gkt values are close to 1 or negative numbers. This is consistent with Objective 1, which
aims to penalize particularly underconfident and overconfident samples. Overall, TMC has the effect of realizing these two
optimization objectives and generates temporally calibrated SNNs.

F. Experimental Results
F.1. Performance Comparison on QQP

We apply our method in the direct training phase of SpikingBERT (Bal & Sengupta, 2024) model proposed in () on the
widely used dataset QQP. We compare the classification performance of TMC with SDT (as used in the original paper) and

18

Training High Performance Spiking Neural Network by Temporal Model Calibration

Table A.1. Performance comparison for different methods on QQP.
Dataset Architecture Time Step Method Accuracy

QQP SpikingBERT 80
SDT 71.12
TET 74.72
Ours 78.05

TET. TMC achieves a higher accuracy of 87.86% than SDT(86.82%) and TET(87.03%).

F.2. Performance Comparison on Neuromorphic Datasets

We train VGGSNN with T=10 on DVS-Gesture and compare the performance of TMC with current works in Table A.2.
TMC achieves SOTA performance with an accuracy of 99.12%.

Table A.2. Performance comparison with state-of-the-art methods on DVS-Gesture.
Dataset Model Architecture Time Step Accuracy

DVS-Gesture

STBP-tdBN(Wu et al., 2018) ResNet-17 40 96.87
PLIF(Fang et al., 2021b) 5Conv, 2FC 20 97.57

SEW ResNet(Fang et al., 2021a) 7B-Net 16 97.92
TA-SNN(Yao et al., 2021) TA-SNN 20 98.61

TCJA(Zhu et al., 2024) 5Conv, 2FC 20 99.00
STSC(Yu et al., 2022) 5Conv, 2FC 20 98.96

SLT-TET(Anumasa et al., 2024) VGG-SNN 10 98.43
Spikeformer(Li et al., 2024c) Spikeformer-7/5 × 1 × 3 16 98.96

Ours VGG-SNN 10 99.12

We train VGGSNN with T=16 using TMC on SL-Animals-DVS and compare the performance with SDT and TET in Table
A.3. TMC achieves a higher accuracy of 70.05% against SDT (66.75%) and TET (68.34%), demonstrating the superiority
of TMC.

Table A.3. Performance comparison for different methods on SL-Animals-DVS.
Dataset Architecture Time Step Method Accuracy

SL-Animals-DVS VGG-SNN 16
SDT 66.75
TET 68.34
Ours 70.05

F.3. Training Stability Evaluation of TMC

We compare the trends of test loss variation during the training process among SDT, TET, and TMC on DVSCIFAR10 in
Figure A1. The results demonstrate TMC’s stable training, driving loss to minimal values, unlike SDT and TET, which
suffer from overconfidence-induced oscillations.

0 50 100 150 200 250 300
Epochs

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Lo
ss

TMC
TET
SDT

Figure A1. Training Stability Evaluation on DVSCIFAR10.

19

Training High Performance Spiking Neural Network by Temporal Model Calibration

F.4. Performance Comparison on CIFAR10

Table A.4. Performance comparison with state-of-the-art methods on CIFAR10.
Dataset Model Architecture Time Step Accuracy

CIFAR10

DSpike(Li et al., 2021) ResNet-18 6 94.25
GLIF(Yao et al., 2022) ResNet-19 6 95.03

TEBN(Duan et al., 2022) ResNet-19 6 95.60
RMP-Loss(Guo et al., 2023) ResNet-19 6 96.10

TET(Deng et al.) ResNet-19 6 94.50
TKS(Dong et al., 2024) ResNet-19 4 95.30
TCL(Qiu et al., 2024) ResNet-19 4 95.03

ETC(Zhao et al., 2025) ResNet-19 4 95.87
TSSD(Zuo et al., 2024) VGG-9 2 94.41

Ours ResNet-19
6 95.23±0.12
4 95.08±0.10
2 94.87±0.08

F.5. Calibration Error in CEC Metric on DVSCIFAR10

Table A.5. Calibration error in CECE metric for different methods across time steps on DVSCIFAR10.

Methods T=1 T=2 T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10
SDT 0.13 0.08 0.07 0.06 0.05 0.05 0.05 0.05 0.05 0.05
TET 0.07 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04
Ours 0.06 0.05 0.05 0.04 0.04 0.04 0.03 0.03 0.02 0.03

Compared to SDT and TET, our method achieves lower calibration errors. In particular, the calibration errors of our method
drop significantly in the later time steps. This observation further demonstrates that our method can effectively alleviate the
overfitting issue.

20

