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ABSTRACT

The unsupervised fusion of multi-sensor spectral images is often limited by non-
absolute registration. This misalignment leads to significant differences between
the spectral shape of the fused image and the original hyperspectral signal. To ad-
dress this challenge, we propose the Frequency-Spatial Reciprocal-View Learning
(FSRVL) for unsupervised multi-sensor MSI-HSI fusion. 1) Feature Synchro-
nization: weight-sharing convolutions are employed to process Low-Resolution
Hyperspectral Image (LR-HSI) and High-Resolution Multispectral Image (HR-
MSI) in the frequency domain jointly, achieving an information correspondence
between the two modalities with parameter transfer. 2) Frequency Recalibration:
sub-pixel information is assigned to learnable filters to adaptively refine spatial
distributions across various materials and promote the reestablishment of their
spectral characteristics. The advantages of FSRVL were demonstrated across var-
ious simulated and real-world scenarios, with experiments confirming that FSRVL
outperforms the baselines. The source code will be linked here.
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Figure 1: When using traditional deep learning methods for unsupervised MSI-HSI fusion, it typ-
ically encounters the information mismatch between sensors. Our FSRVL can effectively increase
matched features to mitigate this issue.

1 INTRODUCTION

The unsupervised fusion of Hyperspectral Image (HSI) and Multispectral Image (MSI) is typically
guided by spectral unmixing, wherein the Low-Resolution Hyperspectral Image (LR-HSI) serves as
the source of Endmember Signal Dictionary (ESD), and the High-Resolution Multispectral Image
(HR-MSI) provides the Corresponding Subpixel Abundances (CSAs) (Yang et al., 2024a). A High-
Resolution Hyperspectral Image (HR-HSI) is then reconstructed by combining the two (Xie et al.,
2019). Despite the success of both deep learning-based and handcrafted methods, their practicality is
fundamentally limited by the assumption that ideal correspondence exists between LR-HSI’s ESD
and HR-MSI’s CSAs in the spatial domain. This assumption is rarely satisfied in multi-source
scenarios, severely hindering the quality and reliability of the fusion data (Qu et al., 2025).

Figure 1 highlights the key bottleneck in current deep learning-based unsupervised MSI-HSI fusion,
where most methods rely on the ideal assumption that endmember signals and abundance fractions

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

from HSI and MSI correspond perfectly. For example, the i-th endmember signal in the ESD of the
HSI is assumed to represent the same material as the i-th endmember signal in the ESD of MSI,
and that the abundance vectors obtained from both datasets are also corresponding. However, in
practice, the MSI and HSI do not always correspond ideally, which might lead to low-quality fusion
performance (Dong et al., 2024). Therefore, we develop the Frequency-Spatial Reciprocal-View
Learning (FSRVL) to address the issue of information mismatch for unsupervised MSI-HSI fusion.
Figure 1 adopts a CNN to acquire the results of classic deep learning.

HSIs are data cubes that contain dozens to hundreds of spectral bands (Zhang et al., 2024). Un-
like other types of images, HSIs provide more detailed spectral data, which can reflect the intrinsic
characteristics of various objects (Yang et al., 2024b). However, due to the limitations of imaging
hardware, HSIs have to face a trade-off between spectral resolution and spatial resolution (Zeng
et al., 2025; Wang et al., 2024). Specifically, increasing the spectral resolution leads to a decrease
in spatial resolution, while enhancing spatial resolution causes a reduction in spectral resolution (Su
et al., 2025). To improve the spatial resolution of a single image, one must either use more advanced
sensors or process the image by supervised learning (Li et al., 2024). The former comes with enor-
mous costs, while the latter relies on prior knowledge and some degree of manual expertise (Zhang
et al., 2020; Qu et al., 2024). Conversely, MSIs have fewer spectral channels compared to HSIs, but
offer higher spatial resolution and are generally more cost-effective to obtain (Zhu et al., 2025).

Nowadays, the fusion of an LR-HSI and an HR-MSI can reconstruct a new HR-HSI, which can
achieve HSI super-resolution (Liu et al., 2022; Gao et al., 2023). In response to this demand, nu-
merous HSI-MSI fusion methods have been developed, such as DFMFf (Guo et al., 2023), SSG-
SRL (Liu et al., 2025), and OTIAS (Deng et al., 2025). However, these methods are supervised,
meaning their fusion performance heavily relies on manual sampling, limiting their scalability.
Conversely, unsupervised HSI-MSI fusion is more capable of meeting the user demand for high-
resolution HSI (HR-HSI). This has led to the development of several representative methods, in-
cluding CUCaNet (Yao et al., 2020), DTDNML (Wang et al., 2025), and EDIP (Li et al., 2025).
Currently, most unsupervised fusion approaches assume that the MSI and HSI imaging records un-
der the same scene are identical, and they use spectral mixing models as the linkage between the two
modalities. This manner preserves the spectral information from LR-HSI and the spatial details of
HR-MSI. Note that this requires a perfect correspondence between the CSAs of MSI and the ESD
of HSI. However, this ideal registration assumption is problematic to meet in practical multi-source
data fusion, as distortions cannot be fully eliminated, inevitably leading to issues of information
mismatch between the modalities.

To overcome the technical bottleneck for unsupervised multi-sensor fusion, we design a new ap-
proach, named FSRVL. This novel deep learning framework transforms MSI and HSI into the fre-
quency domain, enabling adaptive fusion by applying frequency filtering. Specifically, we adapt the
discrete Fourier transform to process CSAs corresponding to ESD for both MSI and HSI modal-
ities, where spatial details are encoded in the phase components and global structure is encoded
in the amplitude. FSRVL can adaptively harmonize the CSAs in hidden layers for both MSI and
HSI modalities, thereby improving information matching. ESDs of the two modes correspond to
the weights of abundance features, and they will also become increasingly aligned during learning.
Although this serves as an illustration, all pictures are derived from real experiments. As shown in
Figure 1, FSRVL significantly increases the number of information matches between LR-HSI and
HR-MSI, thereby substantially enhancing the fusion performance.

The main contributions of this paper are summarized as:

• FSRVL introduces the idea of deep frequency filtering to address the misalignment of
modal information within the same scene during unsupervised MSI-HSI fusion, thereby
enhancing performance.

• We analyze the issue of mismatch between the Endmember Signal Dictionary (ESD) of
LR-HSI and the Corresponding Sub-pixel Abundances (CSAs) of HR-MSI, providing a
novel direction for enhancing the effectiveness of unsupervised MSI-HSI fusion.

• This paper not only used a simulated scenario with Ground Truth to quantitatively evaluate
FSRVL, but also validated it using unregistered multi-source datasets.

2
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2 RELATED WORKS

2.1 UNSUPERVISED MSI-HSI FUSION

This paper defines the HR-MSI and LR-HSI using the notations X ∈ RWH×g and Y ∈ Rwh×G, re-
spectively. Here, (W,H) and (w, h) represent the spatial sizes of the HR-MSI and LR-HSI datasets,
and g and G denote the number of bands corresponding to the HR-MSI and LR-HSI, respectively.
Generally, they also should have the following relationship: W ≫ w, H ≫ h, and G≫ g (Li et al.,
2025). When the Linear Spectral Mixing Model (LSMM) is employed, HR-MSI and LR-HSI can
be expressed as:

X = AÊ, Y = ÂE (1)

where Ê ∈ Re×g and E ∈ Re×G denote ESDs of X and Y, respectively. In Eq. (1), A ∈ RWH×e

and Â ∈ Rwh×e represent the CSA matrices. They must satisfy the abundance non-negativity con-
straint (ANC) and the abundance sum-to-one constraint (ASC), ensuring the physical interpretation
of abundance as the fraction of material in a pixel (Deng et al., 2025). The deep learning-based unsu-
pervised fusion typically sets two modalities corresponding to LR-HSI and HR-MSI. One modality
focuses on obtaining ESD, while another concerns CSAs. We integrate A and E as:

Z = AE (2)

where Z ∈ RWH×G is the reconstructed HR-HSI. The effectiveness of fusion in Eq. (2) depends on
whether the row vectors of A correspond to the column vectors of E, representing the same material.
This correspondence plays a crucial role in determining the quality of the fused data. Increasing
matching information between the two modalities is also the main motivation of this paper.

2.2 DEEP FREQUENCY FILTERING

Deep Frequency Filtering (DFF) is a technique introduced to enhance the domain generalization
ability of deep neural networks by explicitly modulating the frequency components of learned fea-
tures (Lin et al., 2023). DFF and Frequency Domain Analysis (FDA) in image processing are closely
related, particularly when it comes to manipulating and enhancing features in the frequency domain.
For image processing, FDA’s basic idea involves transforming an image from the spatial domain to
the frequency domain (Wang et al., 2020). DFF shares a common theoretical foundation with tradi-
tional FDA and applies this concept to deep learning to tackle domain generalization, improving the
model’s performance by modulating its learned features in the frequency domain.

Following the research in (Lin et al., 2023), DFF adopts Fast Fourier Transform (FFT) (Cooley &
Tukey, 1965) to obtain the feature representations in the frequency domain. Let F ∈ RH×W×d be
the intermediate features, and the Discrete FFT (DFFT) is denoted as:

FDFFT (i, j) =
H−1∑
u=0

W−1∑
v=0

F(u, v) · e−p2π(i
u
H +j v

W ) (3)

where FDFFT ∈ R2d×H×(⌊W
2 ⌋+1) is the frequency representation of F, (i, j) denotes the frequency

index, (u, v) defines the spatial index, and p is the imaginary unit. ⌊·⌋ rounds a number down to the
nearest integer less than.

Afterward, the real and imaginary parts of the frequency components are separated for deep feature
representation. The FFT decomposes the signal into its frequency components, which are repre-
sented as complex numbers. Subsequently, the Inverse DFFT (IDFFT) (Katznelson, 2004) is imple-
mented as:

F(u, v) =
1

HW

H−1∑
u=0

W−1∑
v=0

FDFFT (i, j) · ep2π(i
u
H +j v

W ) (4)

By cascading multiple layers of processing, DFF can effectively isolate or amplify specific fre-
quency components, offering enhanced performance in applications in signal, image, audio, and
video processing (Jiang et al., 2024).

3
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Figure 2: The overview of FSRVL. This work employs the discrete fast Fourier transform to transfer
the features from the spatial domain to the frequency domain.

3 METHODOLOGY

3.1 OVERALL PIPELINE

Figure 2 illustrates the overall pipeline of FSRVL for MSI-HSI fusion. This work employs convo-
lutions to achieve the multiscale representation of local correlations and adjust feature dimension.
It adopts the DFFT to transfer the features from the spatial domain to the frequency domain, after
aggregating the local correlations. The frequency recalibration in FSRVL will enhance information
correspondence. As the unsupervised training progresses, the hidden layers generate CSAs with
higher matching values, and their node weights are adjusted accordingly to provide an ESD that
better matches the CSAs. Ultimately, the HR-HSI is reconstructed by the ESD and CSAs. Feature
Synchronization and Frequency Recalibration are two key components of innovation. Despite the
new method allowing their removal in the framework of MSI-HSI fusion, the models’ performance
is expected to drop significantly.

3.2 INITIAL REPRESENTATION

Given the high spatial resolution of HR-MSI, MSI-HSI fusion relies on it to provide spatial details.
To enhance the retention of local relationships between pixels, we combine 2D convolutions and
LeakyReLU (Maas et al., 2013) to achieve multiscale representation, which obtains X3×3 ∈ RWH×d

and X5×5 ∈ RWH×d. LeakyReLU can mitigate the dying neuron issue to ensure training stability.
Corresponding to the left side in Figure 2, the multiscale embedding of HR-MSI is denoted as:

X′ = X3×3 ⊙ X5×5 (5)

where ⊙ defines the Hadamard Product, X′ ∈ RWH×d denotes multiscale features.

Since LR-HSI is utilized to provide ESD, we do not need to pay attention to its spatial information
via a multiscale representation. This part utilizes 1 × 1 convolutions to adjust feature dimensions.
Likewise, we integrate the 1×1 convolutions and LeakyReLU to implement the LR-HSI embedding
Y′ ∈ Rwh×d, and the process is stacked to obtain Y′′ ∈ Rwh×d. Additionally, we utilize 1 ×
1 convolutions and LeakyReLU to further process X′ to acquire X′′ ∈ RWH×d, which enables
consistent modeling of multi-source representation by sharing weights.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Considering that the CSAs reflect the distribution of materials and preserve their spatial information,
this work applies Softmax to ensure the ANC and the ASC:

H = Softmax (Concat(X′,X′′)W0)

Ĥ = Softmax (Concat(Y′,Y′′)W1)
(6)

where H ∈ RWH×d and Ĥ ∈ Rwh×d are the initial representation of CSAs, W0 ∈ R2d×d and
W1 ∈ R2d×d are two learnable weight matrices.

3.3 FEATURE SYNCHRONIZATION

We represent each column vector in H or Ĥ by hidden layer nodes, and the edge matrices connecting
to the next layer are denoted as W or Ŵ. Each row vector in W or Ŵ corresponds to the edge of
a node. To prepare for frequency domain operations, we reshape H and Ĥ as the tensors H ∈
RW×H×d and Ĥ ∈ Rw×h×d. Then, we bilinearly interpolate Ĥ to match the size of H.

Specifically, let Ĥc be the c-th component of Ĥ, and Hc is the c-th component of H, c = 1, 2, . . . , d.
We map the indices (U, V ) of Hc to floating coordinates (u, v) in Ĥc, obtaining u = U

W−1 · (w−1),
v = V

H−1 · (h− 1). The bilinear interpolation of Ĥ is written as:

H′
c[U, V, k] = (1− δu)(1− δv) · Ĥc[u1, v1, k]

+ δu(1− δv) · Ĥc[u2, v1, k]

+ δv(1− δu) · Ĥc[u1, v2, k]

+ δuδv · Ĥc[u2, v2, k]

(7)

where k be the interpolated value of the channel, u1 = ⌊u⌋, u2 = u1 + 1, v1 = ⌊v⌋, v2 = v1 + 1,
δu = u − u1, and δv = v − v1. The tensor H′ ∈ RW×H×d consists of d matrices using Equ. (7).
For convenience, we treat the DFFT in Equ. (3) as a function FDFFT (·). Our FSRVL applies the
DFFT to transfer features from the spatial domain to the frequency domain:

[Re(H), Im(H)] = FDFFT (H)

[Re(H′), Im(H′)] = FDFFT (H′)
(8)

where Re(H) and Re(H′) are the real parts of complex numbers, Im(H) and Im(H′) are the corre-
sponding imaginary part. Considering that both the real part and imaginary parts are in Tensor form,
to facilitate information interaction across feature channels, we apply Fully Connected (FC) layers
to process the real and imaginary parts:

FRe = FC (Re(H)) , FIm = FC (Im(H)) (9)

where FRe ∈ RW×H×d and FIm ∈ RW×H×d represent the frequency embedding with HR-MSI.
Similarly, we also adopt Equ. (9) to process Re(H′) and Im(H′) to acquire the frequency embedding
with LR-HSI, obtaining F′Re ∈ RW×H×d and F′Im ∈ RW×H×d. The bottom left of Figure 2
provides the schematic of the feature synchronization.

3.4 FREQUENCY RECALIBRATION

After conducting the DFFT, if spectral convolution updates a value in the spectral domain, all origi-
nal nodes will be affected globally (Huang et al., 2025). Therefore, we can still employ 2D convo-
lutions as the learnable filters to capture the global frequency features. In the stream with HR-MSI,
the process with the c-th channel can be written as:

QRec = Conm×m(FRec ), QImc = Conm×m(FImc ) (10)

where QRec ∈ RW×H and QImc ∈ RW×H are the Global Frequency Feature (GFF) matrices of the
c-th channel, m defines the size of the convolution kernel. These GFF matrices with all channels
can be combined into the feature tensor of real and imaginary parts: QRe ∈ RW×H×d and QIm ∈
RW×H×d.

5
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For the embedding of LR-HSI, we adopt the same strategy in Equ. (10) to process F′Re and F′Im

for calculating the GFF matrices. Like the above processing, the GFF matrices are integrated as the
tensors of real and imaginary parts: Q′Re ∈ RW×H×d and Q′Im ∈ RW×H×d. We employ Batch
Normalization (BatchNorm) (Ioffe & Szegedy, 2015) to reduce internal covariate shift, thereby sta-
bilizing the training. BatchNorm will generate Recalibrated Feature Embeddings (RFEs) in the fre-
quencey domain: BRe ∈ RW×H×d, BIm ∈ RW×H×d, B′Re ∈ RW×H×d, and B′Im ∈ RW×H×d.
By the IDFFT in Equ. (4), these features are transformed back to the spatial domain:

S = Con1×1
(
FIDFFT [BRe,BIm]

)
,

S′ = Con1×1
(
FIDFFT [B′Re,B′Im]

) (11)

where S ∈ RW×H×e and S′ ∈ RW×H×e are the RFEs in the spatal domain, FIDFFT [·, ·] expresses
implementation of the IDFFT. Moreover, we use a bilinear downsample to address S′, thereby restor-
ing the spatial size of LR-HSI to obtain S′′ ∈ Rw×h×e. Let each component of S and S′′ correspond
to an abundance node, and its weight can represent a vector in the ESD. Consequently, ESDs associ-
ated with S and S′′ will also undergo continuous updates as iterations. The bottom right of Figure 2
illustrates the architectures of the frequency recalibration.

3.5 IMAGE RECONSTRUCTION

Mathematically, Ê and Â in Equ. (1) can be further decomposed as:

Ê = EP, Â = RA (12)

where P ∈ RG×g and R ∈ Rwh×WH are the blurring factor matrices with the spectral and spatial
degradations. Such degradations in the spatial and spectral dimensions are often modeled using
the spectral response function and point spread function, respectively. We treat the spectral signals
E and degraded spectral signals Ê as learnable weight matrices. According to Equ. (2), we can
reconstruct the HR-HSI:

Z = Reshape(S)E, (13)
where Reshape(·) can reshape a tensor to a matrix, Reshape(S) = A. Following the research
in (Liu et al., 2022), if Z exists, X and Y can be deduced in reverse:

Ỹ = Convϕ×ψ(Z), X̃ = XẼ (14)

where Convϕ×ψ is a learnable downsampling convolutional layer, ensuring that the downsampled
HR-HSI has the same spatial resolution as the LR-HSI. Here, ϕ and ψ are two scale factors, ϕ =
⌈H/h⌉, ψ = ⌈W/w⌉. The symbol ⌈·⌉ rounds a number up to the nearest integer more than. As the
spectral degradation matrix, Ẽ can be computed between the downsampled HR-MSI X and LR-HSI
Y, and optimized offline prior to model training:

Ẽ⇐ argminW ∥ Downsample(X)− YW ∥2 . (15)

where W is a learnable weight matrix. In FSRVL, the loss function is written as:

ℓFSRVL =α
(
∥ Y − Ŷ ∥ + ∥ X − X̂ ∥

)
+ β

(
∥ Y − Ỹ ∥ + ∥ X − X̃ ∥

) (16)

where α and β are the balance coefficients.

4 EXPERIMENTS

Table 1 lists five datasets for evaluating fusion performances: the CAVE-Toy, CAVE-Face (Yasuma
et al., 2010), TG-1, GF2-GF5, and SZUTree (Long et al., 2024). The CAVE-Toy, CAVE-Face, and
TG-1 are used for simulated scenarios. Simulated data provide Ground Truth (GT) for quantita-
tive evaluation, but cannot fully reflect real cross-sensor conditions. GF2-GF5 and SZUTree are
real cross-sensor datasets. FSRVL employs Adam (Kingma & Ba, 2015) as the optimizer. The
environment for implementing FSRVL includes PyTorch 2.4.1, Python 3.9, and CUDA 12.1. The
experiments are conducted on a computing server with an NVIDIA RTX 4090 GPU.
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Table 1: Dataset types and acquisition platforms.

TYPE DATASET NAME PLATFORM SOURCE GROUND TRUTH

Registered Data
CAVE-Toy Ground Camera Single Sensor Yes
CAVE-Face Ground Camera Single Sensor Yes

TG-1 Satellite Cross-Sensor Yes

Unregistered Data GF2-GF5 Satellite Cross-Sensor No
SZUTree UAV Cross-Sensor No

Table 2: Left: Initial represents the model with-
out the deep frequency domain filter, FSRVL-S
represents the model without Feature Synchro-
nization, and FSRVL-R represents the model
without Feature Recalibration. Right: Features
of spatial and frequency domain views

Initial FSRVL-S FSRVL-R FSRVL

SAM↓ 0.94 0.69 0.71 0.64
PSNR↑ 45.04 48.05 47.64 48.35
ERGAS↓ 0.22 0.18 0.17 0.15
SSIM↑ 0.98 0.98 0.99 0.99
Para (M) 0.98 0.98 0.99 0.99
Times (H) 0.19 0.50 0.59 0.63

• CAVE Datasets: The CAVE-Toy (512 × 512 × 31) was downsampled into the HR-MSI
(512 × 512 × 3) and the LR-HSI (64 × 64 × 31), and the CAVE-Face follows the same
process.

• TG-1 Dataset: The original data (240 × 240 × 54) was from TianGong01 satellite and
downsampled into the HR-MSI (240× 240× 8) and the LR-HSI (30× 30× 54).

• GF2-GF5 dataset: GaoFen02 satellite provides the GF2 data-HR-MSI (360 × 360 × 4),
while GaoFen05 satellite collects the LR-HSI (60× 60× 330).

• SZUTree Dataset: It was collected by an UAV with a RGB camera and a SPECIM FX10
sensor, yields the HR-MSI (300× 300× 3) and the LR-HSI (150× 150× 98).

Fusion performance is evaluated using five standard metrics: Spectral Angle Mapper (SAM ↓), Peak
Signal-to-Noise Ratio (PSNR ↑), Erreur Relative Globale Adimensionnelle de Synthese (ERGAS ↓),
Structural Similarity Index (SSIM ↑), Mean Relative Absolute Error (MRAE ↓). Here, ↑ indicates
that higher values denote better results, while ↓ signifies lower values are preferable.

Kernels with GFF Balance Coeffcients LR-HSI HR-MSI Fused HR-HSI

Figure 3: Left compares performances when configuring different hyperparameters. Right lists the
classification maps on the SZTree data using FSRVL.
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4.1 ABLATION STUDY AND HYPERPARAMETER ANALYSIS

Table 2 provides the ablation study on the TG-1 dataset that evaluates the contribution of FSRVL’s
three modules: Initialization, Feature Synchronization, and Frequency Recalibration. As shown in
Table 2, each module plays a significant role in improving fusion performance. Figure 3 illustrates
the impact of configuring different hyperparameters on fusion performance. Tests on the CAVE-
Face dataset indicate that the convolution kernel in Equ. (10) is 7 × 7, with α = 100 and β = 10
yielding the best results, and this setting is used throughout all experiments. Figure 3 also illustrates
the classification maps of the SZUTree dataset generated by FSRVL, demonstrating that the fused
HR-HSI can facilitate more accurate land-cover classification.

4.2 COMPARISON WITH BASELINES

FSRVL is compared with baselines, such as CUCaNet (Yao et al., 2020), SSG-SRL (Liu et al., 2025),
DFMFf (Guo et al., 2023), CS2DIPs (Fang et al., 2024), DTDNML (Wang et al., 2025), EDIP (Li
et al., 2025), and OTIAS (Deng et al., 2025). Therein, CUCaNet, CS2DIPs, DTDNML, and EDIP
are unsupervised approaches, whereas SSG-SRL, DFMFf, and OTIAS are supervised methods.

Figure 4 compares FSRVL, EDIP, and OTIAS on the CAVE dataset, showing that FSRVL yields
spectral results closer to the GTs. Figure 5 and Table 3 show that FSRVL outperforms baselines on
the TG-1 dataset. The CAVE and TG-1 datasets are both simulated with ideal conditions where data
across different modalities are perfectly aligned, enabling unsupervised methods to leverage their
full potential. In contrast, supervised methods exhibit slightly inferior fusion performance due to
their reliance on sampling.

CS2DIPs, DTDNML, and EDIP are excluded from tests on GF2-GF5 and SZUTree because their
implementations require strictly aligned data. Figure 6 shows that FSRVL best preserves the spec-
tral/color features of LR-HSI and the spatial details of HR-MSI. We employ a simple classifier with
a fully connected layer followed by a Softmax in the downstream.

HR-MSI

LR-HSI Fusion	Result

SAM	=	6.95
EDIP

Fusion	Result

SAM	=	3.18
FSRVL

MRAE	=	3.26 MRAE	=	1.98

LR-HSI

HR-MSI

Fusion	Result Fusion	Result

SAM	=	4.11MRAE	=	3.55 SAM	=	3.95 MRAE	=	2.18
OTIAS	 FSRVL

C
A
V
E
-T
oy
	D
at
a

C
A
V
E
-F
ac
e	
D
at
a

Figure 4: Comparing fusion results on the CAVE datasets, where the red curves represent the Ground
Truth, and the blue dotted lines represent the estimated spectra.

Table 3: Quantitative evaluation of different methods on the TG-1 dataset. The best and second-best
values are highlighted.

Method CUCaNet SSG-SRL DFMFf CS2DIPs DTDNML EDIP OTIAS FSRVLPublished Year 2020 2025 2023 2024 2025 2025 2025

SAM↓ 1.21 1.14 2.23 1.15 0.99 0.91 0.89 0.64
PSNR↑ 40.35 44.90 44.40 44.08 44.47 45.45 45.71 48.35

TG-1 ERGAS↓ 0.40 0.29 0.51 0.29 0.27 1.44 0.24 0.15
SSIM↑ 0.95 0.96 0.95 0.96 0.97 0.97 0.97 0.99
Para (M) 1.78 3.36 4.82 0.30 0.71 12.25 2.14 0.99
Times (H) 0.54 0.93 0.87 0.10 0.39 0.61 0.66 0.63
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Fu
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LR-HSI

SA
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M
R
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E

HR-MSI CUCaNet SSG-SRL DFMFf CS2DIPs DTDNML EDIP OTIAS FSRVL

Figure 5: Comparing fusion results on the TG-1 dataset. The top row displays the RGB compositions
(R:28, G:18, B:5) of the fused HR-HSIs and the pixels’ spectra. The second and third rows present
the SAM heat map and the MRAE heat map.

Unregistered Data CUCaNet SSG-SRL DFMFf OTIAS FSRVL

Figure 6: Reconstructed HR-HSIs were obtained by different methods using the unregistered
datasets. The two datasets captured the same area within a short time. GTs of spectra are from
the LR-HSI.

5 CONCLUSION

This work presents our FSRVL, a novel framework for cross-sensor fusion of multispectral and
hyperspectral images. We designed the Feature Synchronization module and the Frequency Recal-
ibration module to adaptively modulate frequency features, effectively mitigating spectral-spatial
information mismatches between HR-MSI and LR-HSI. Comprehensive experiments on both simu-
lated and real-world datasets validate its robustness and demonstrate superior performance compared
to existing methods in spectral image fusion. In future work, we plan to extend FSRVL to handle
weakly aligned data and explore its applications in real-time onboard processing. Additionally, I ac-
knowledge that this paper has been revised and polished with the assistance of ChatGPT to improve
its clarity and readability. Upon acceptance of the paper, we will make the experimental datasets
and demos available for download to ensure reproducibility of the study. Further details are shown
in Appendix.
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