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Abstract. Knowledge graph embeddings (KGE) are vector represen-
tations that capture the global distributional semantics of each entity
instance and relation type in a static Knowledge Graph (KG). While
KGEs have the capability to embed information related to an entity into
a single representation, they are not customizable to a specific context.
This is fundamentally limiting for many applications, since the latent
state of an entity can change depending on the current situation and the
entity’s history of related observations. Such context-specific roles an
entity might play cannot be captured in global KGEs, since it requires
to generate an embedding unique for each situation.
This paper proposes a KG modeling template for temporally contextual-
ized observations and introduces the Recurrent Transformer (RETRA), a
neural encoder stack with a feedback loop and constrained multi-headed
self-attention layers. RETRA enables to transform global KGEs into cus-
tom embeddings, given the situation-specific factors of the relation and
the subjective history of the entity.
This way, entity embeddings for down-stream Knowledge Graph Tasks
(KGT) can be contextualized, like link prediction for location recommen-
dation, event prediction, or driving-scene classification. Our experimental
results demonstrate the performance gains standard KGEs can obtain,
if they are customized according to the situational context.

Keywords: Knowledge Graph Embedding · Contextualized Embeddings
· Modeling Temporal Context.

1 Motivation

We all play different roles in our lives. In private settings we might act differ-
ently than in professional settings. What we represent in a situation depends
on contextual factors and there is not a single universally valid representation
that captures all roles of a person equally well. In contrast, standard Knowl-
edge Graph Embedding (KGE) methods produce a single vector representation
for entity instances and relation types in the corresponding Knowledge Graph
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(KG). Each embedding captures the global distributional semantic of the KG
in respect to this entity and is optimized for predicting universally valid facts,
a Knowledge Graph Task (KGT) known as link prediction. This assumption
of universality rarely holds in real-world inference tasks, since the situational
context is crucial for making nuanced predictions. When trying to contextualize
global KGEs to a situation, two Research Questions (RQ) come to mind:

RQ1: How can concrete situations, specifically situational context, be modelled
appropriately within knowledge graphs?

RQ2: How can static knowledge graph embeddings be transformed into contex-
tualized representations, that capture the specifics of a concrete situations?

In this paper we argue, that a single static KGE per entity and relation is
not adequate for many KGTs. Instead, entities and relations need to be put
into context by factors specific to the current situation and their subjective
history.3 This requires a different entity embedding for each situation, not just
one that attempts to be universally valid. Consequently, there is the need to
customize static KGEs to situational and subjective contexts. More precisely,
we argue that current models cannot generate relation embeddings that capture
the situation-specific relational context (we refer to this limitation as (Lim1))
and entity embeddings that contain the subject’s history of related observations
(we refer to this limitation as (Lim2)).

W.r.t. RQ1: We propose temporally contextualized KG facts (tcKG facts) as
a modelling template for situation-specific information in a KG. This adds
a temporal sequence of hyper-edges (time-stamped subject-relation-object
triples where the relation is n-ary in order to capture n contextualizing
factors) to an existing static KG (see Sec. 3).

W.r.t. RQ2: We contribute the deep learning framework RETRA, which trans-
forms static global entity and relation embeddings into temporally contextu-
alized embeddings, given corresponding tcKG facts. This situation-specific
embedding reflects the role an entity plays in a certain context and allows
to make situational predictions (see Sec. 4). RETRA uses a novel recurrent
architecture and a constrained multi-headed self-attention layer that imposes
the relational structure of temporally contextualized KG facts during train-
ing (see Sec. 5).

In order to demonstrate how broadly applicable tcKG and RETRA are we
apply and test them in three diverse scenarios, namely location recommendation,
event prediction and driving-scene classification. Our empirical results indicates
that contextualizing pre-trained KGEs boosts predictive performance in all cases
(see Sec. 6).

3 In psychology and neuroscience this distinction might be referred to as semantics vs.
episodic memory (see [19]).
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2 Related Work

Our work attempts to transfer the success of contextualizing word embeddings
in Natural Language Processing to Knowledge Graph Embeddings (KGE).

2.1 Contextualized Word Embeddings

Word embeddings have been the driving force in Natural Language Processing
(NLP) in recent years. Soon after the learning of static embeddings of lexical
items became popular their drawbacks became apparent since they conflate all
meanings of a word into a single point in vector space. More precisely, static
semantic representations suffer from two important limitations: (Lim1) ignor-
ing the role of situational context in triggering nuanced meanings; (Lim2) due
to restricting the scope of meaning to individual entities, it is difficult to cap-
ture higher order semantic dependencies, such as compositionality and sequential
arrangements between entities. Both limitations were recognized early and ad-
dressed by approaches that generate contextualized word representations given
surrounding words in a sentence. Before the now dominant transformer approach
[20], LSTMs where used to contextualize word embeddings [7]. In the area of
KGE the need for contextualizing embeddings has not gotten much attention
yet, as we will outline next.

2.2 Knowledge Graph Embedding

In recent years KGE has been a very vibrant field in Machine Learning and
Semantic Technologies (see [8] for a survey). KGE methods can be roughly char-
acterized by the representation space and the scoring function:

The representation space is traditionally Euclidean Rd, but many different
spaces like Complex Cd (e.g., in [18]) or Hypercomplex Hd (cmp. [25]) have been
used as well. In this work we focus on Euclidean vector spaces only, since they
are used for Neural Network embedding models like our RETRA.

The scoring function measures the plausibility of an (unknown) subject-
predicate-object triple (referred to as “fact”), given the model parameters. The
function produces a scalar score that is obtained by an additive or a multiplica-
tive combination of subject, predicate and object embedding. In this work we
focus only on optimizing a given KGE without altering its scoring function.

Standard KGE methods don’t take into account temporal information or
contextual factors that may influence the plausibility of a fact. In this work we
are trying to complement static KGEs without replacing them. To the best of
our knowledge there is no existing KGE method that attempts to address both
limitations, but they have been addressed individually, as detailed next.

2.3 Knowledge Hypergraph Embedding

Approaches to embedd contextualized KG facts is not in the center of current
KGE research. However, the use of n-ary relations and the modeling of con-
text as a hypergraph has been proposed before the KGE hype. Such approaches
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from Statistical Relational Learning were based on graphical models and tensor
factorization [16]. A more recent approach extends the current KGE method
SimplE [10] to hypergraphs [4] but does not take into account temporal or se-
quential information. Thus, those approaches address (Lim1), but not (Lim2).
In addition, they don’t allow to input standard KGE models to transform their
embeddings into contextualized KGEs.

2.4 Temporal KGE

Embedding temporal dynamics of a knowledge graph and thus tackling (Lim2)
has seen some attention recently. Basic approaches to temporal KGE, model
facts as temporal quadruples. They are optimized for scoring the plausibility of
(unkown) facts at a given point in time [11], [3]. A more sophisticated approach
is proposed in [14]. It checks the temporal consistency given contextual relations
of the subject and object. Besides the inability of those models to model n-ary
sequential context, we are also taking a different focus by using the temporal
dimension to model the history of experiences of a subject.

A more entity-centric perspective is taken in [17] which attempts to model the
temporal evolution of entities. This comes close to what we attempt regarding
(Lim2), but again, it does not cover n-ary relations and is not intended to
transform given embeddings into contextualized ones, if provided with a history
of subjective experiences. [9] take a relation-specific perspective instead, but still
suffer from the same limitations as the above mentioned techniques.

2.5 Contextualized KGE

Central to our RETRA-approach is its ability to transform static input embed-
dings into contextualized KGEs. A similar approach and the same perspective
is being adopted in [22]. There, entities and relations are expected to appear
in different graph contexts and consequently should change their representation
according to the context (Lim1). We agree with this perspective, but argue that
temporal evolution is equally important (Lim2). [21] attempt a relation-specific
embedding of entities and propose an LSTM-based approach to so. While RE-
TRA is also inspired by Recurrent Neural Networks, we take a more subject-
specific perspective. Besides that, temporal and n-ary relations are not consid-
ered in [21]. The same limitations apply to [24], but the use of a Transformer is
similar to our approach. However, word embeddings are used as inputs to the
transformation function instead of pre-trained static KGEs in RETRA.

Summing up, RETRA offers a unique combination that no previous method
has attempted: n-ary relations (Lim1) and sequential subjective experience (Lim2)
are exploited to transform static KGE into contextualize ones. RETRA achieves
this by two major technical novelties: Modeling KGs with temporally contextu-
alized facts and extending Transformers with a feedback loop and a constrained
self-attention layer.



RETRA: Embedding Temporally Contextualized Knowledge Graphs 5

3 Modeling Subjective Temporal Context

Fig. 1. From subject-predicate-object KG triples, to temporal tKG facts which occur
at time t, to contextualized cKG facts which allow to model influencing factors as an
n-ary relation, to tcKG facts which contextualize the KG observation at a certain time.
This models the observations of a sequence of relations rc the subject eo is involved in.

To address RQ1 we start from the assumption that static KG facts act as
background knowledge but the inference task depends on the situational context
and the subject’s memory. Consequently, we need to extend triples as follows:

KG facts are defined as a triple (es, r, eo) where es, eo ∈ {e1, ..., ene} is from
the set of ne entity instances and r ∈ {r1, ..., rnr} from the set of nr rela-
tion types. KG facts constitute subject-predicate-object statements that are
assumed as being static and stable background knowledge.

tKG facts are quadruples (es, r, eo, t) where t ∈ N indicates a point in a se-
quence when the fact occurred. In many scenarios t is obtained from dis-
cretizing timestamps and thus creates a globally ordered set of facts, where
nt is the total number of points in time (cmp. [17])4. KG facts without a
temporal dimension are considered true for any t.

cKG facts are (n+1)-tuples (es, rc, eo, ec1 , ..., ecnc ) that allow to model context
as an nc-ary relation. ec1 , ..., ecnc are the nc context entities influencing the
relation rc between subject es and object eo. As for KG facts, cKG facts are
considered non-dynamic background knowledge given the current situation.

tcKG facts are (n+ 2)-tuples (es, rc, eo, t, ec1 , ..., ecnc ) which represent sequen-
tially contextualized KG facts by combining the features of tKGs and cKGs.
Intuitively, they capture a specific situation which subject es is experiencing
at time t. ec are influencing factors towards es’s relation to object eo.

4 Please note, that temporal KGs have mostly been using t to model the point in time
when a fact is being observed. Here, we are taking a slightly different perspective
by modeling in which point in time a subject es makes an experience in relation to
similar experiences it has made at previous points in time.
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With tcKG facts as additional building blocks, we can now model task-
specific temporally contextualized KGs as temporal hypergraphs (i.e., relations
are potentially nc-ary and potentially associated with timestamps t). This sub-
jective temporal context is input to RETRA as follows:

Fig. 2. tcKG facts (shown in black) and their relation to static background knowledge
(KG and cKG facts, shown in gray) as a temporally unrolled KG.

1. Given an nc-ary relation rc we first define one entity participating in rc as
the subject es whose perspective is represented in respect to an object eo.5

2. The contexts c1, ..., cnc
are given by the remaining entities involved in the

nc-ary relation. They define the influencing factors in a concrete situation.
3. If available, the context can be extended by entities deterministically depen-

dent on eo. Non-deterministically dependent context of eo or ec or facts that
are not specific to a certain point in time t only, are not explicitly modelled
(see gray edges and gray nodes in Fig. 2).

4. Finally, the temporal context is modeled by nc relation instances of rc that
involve es as the subject. Sorted by time-stamp t, rc defines the sequential
context from the perspective of es towards its relation to eo (see black edges
an black nodes in Fig. 2). Note, that the context entities ec do change in
every step, as does eo, thus eot1 6= eot2 . Consequently, all the facts associated
to ec and eo do change in every step (gray edges and gray nodes in Fig. 2).
Only es and the relation-type of rc stay fixed as defined above.

5 Note, that this is a deliberate modeling choice that is not due to technical limitations.
RETRA can model any sets of subjects and objects since transformers allow variable
numbers of inputs and can mask any subset during training. We chose this restriction,
since this is pragmatically the most common pattern and avoids a cluttered notation.
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With the above selection procedure we obtain a sequence of tcKG facts from
the KG by filtering for relations rc with subject es. Consequently, such a model of
dynamic context consists of a sequence of (es, rc)-tuples with varying sequence-
length nt. In each step rc has an varying object eo and is characterized by nc

contextual factors ec.6

For illustration purposes, Table 1 shows instantiations of the tcKG modelling
pattern according to our three applications domains location recommendation,
event prediction and driving-scene classification (see Sec. 6 for details).

Application Subject es Relation rc Object eo Contexts c1, ..., cnc

Location rec-
ommendation

user checksIn location time of day, weather , day of
week, location type...

Event predic-
tion

source actor eventType involved
target orga-
nizations

target country, source coun-
try, sector,...

Driving-scene
classification

ego vehicle involvedIn conflict-type ego lane, foe road users,
foes’ lanes, signaling, accel-
eration, speed,...

Table 1. Illustrating examples of instantiated tcKG patterns for three applications.

4 Embedding Subjective Temporal Context

So far, the tcKG modelling pattern provides an explicit representation of dy-
namic context of a subject and a relation-type as a sequence of sub-graphs (see
Fig. 2). The second contribution of this paper, addressing RQ2, is a machine
learning method that captures this information in two embeddings, the subjec-
tive context es and the relational context rc.7 Once we obtain those embeddings
we then can use any embeddings-based KGT scoring functions, e.g., for contex-
tualized link prediction.

One way to capture dynamic context in a single embedding is to represent the
history of sequential information in a latent state. As common in Hidden Markov
Models or Recurrent Neural Nets, all t− 1 previous contextualized observation
are reduced into one embedding capturing the latent state up to this point. In
our model, this memory is captured in the es embedding. We thus define the
probability P of the contextualized relation representation rc as being condi-
tioned on P (rc|es, r, eo, ec1 , ..., ecnc ). The subjective context representation es

depends on rc but also on the previous experience est−1 in similar situations:
P (est |est−1, rct , eot ). These conditional dependencies are visualized in Fig. 3.

6 Note, that the arity nc does not need to be fixed in each step and for each es. Variable-
length context, unknown or missing ecs can be modelled and handled efficiently with
RETRA, since transformers can handle variable input lengths.

7 We indicate embedding vectors for nodes e and relations r with bold symbols to
contrast them to symbolic nodes e and relations r from the KG.
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Fig. 3. Sequential context for subject and relation embedding es and r. The object eo

and contextual factors ec refer to a different symbolic KG entity eo and ec in every step.
They are given by (pre-trained) static KGEs. In contrast es and r represent the same
symbolic KG node es and hyper-edge r, regardless of time and context. However, the
embedding is customized with a situation-specific contextualized embedding, depending
on the temporal and relational context.

5 RETRA: The Recurrent Transformer

Learning customized embeddings based on subjective sequential context requires
a novel Neural Network (NN) architecture.

5.1 The RETRA architecture

Encoders Encoders

Fig. 4. Recurrency in the RETRA architecture: In the first step, es is not temporally
contextualized but a static KGE embedding. In t = 2 the contextualized est1 is used as
input to generate the temporally contextualized est2

.

Our model is inspired by the encoder stack of transformers ([20]) and Recur-
rent Neural Networks (RNNs) and can thus be called a Recurrent Transformer
(RETRA). We can’t use common RNN architectures, like LSTMs [7], nor trans-
former models, since both don’t handle multiple variable length inputs per step
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in a temporal sequence. Regarding input and output, RETRA receives the pre-
trained static embeddings es, r, eo, ec1 , ..., ecnc and outputs the contextualized
rc. In addition, es’s previous subjective memory est−1 is passed on to generate
the temporally contextualized embedding est for the current step. Thus, the only
non-pre-trained embedding passed on to the next step is est−1 (cmp. Fig. 4).

The final crucial building block to transform r −→ rc and est−1 −→ est
is handled inside the encoder stack. Similar to [20] we use a stack of encoder
layers, each consisting of a self-attention layer followed by a feed forward net-
work. We adapt each attention head in the self-attention layer to resemble the
structure of the relations defined by a tcKG. Thus, we don’t need to calcu-
late the pairwise attention for all inputs to the encoder, but can attend rc

only to {es, r, eo, ec1 , ..., ecnc }. Similarly, we can constrain the attention of est
to {est−1, rct , eot} only. This is displayed by the diagonal arrows inside the first
encoder layer in Fig. 5.8

Fig. 5. Inside the Encoders in the RETRA architecture (cmp. Fig. 4): Stacked encoder-
layers, each with constrained multi-headed self-attention, followed by the scoring func-
tion which returns a scalar score for (es, r, eo)-triple.

5.2 Training RETRA

To optimize the weight matrices in the feed-forward and self-attention layers
using backpropagation we need to measure the plausibility of predicted facts
(using a scoring function) and its deviation from known facts given in the training
data (using a loss function). In principal RETRA is independent of the choice of
the scoring function and training objective (see Table 5 in [8] for an overview of

8 The constraining inside the attention heads is an engineering choice and acts as an
inductive bias. Any other constraining is possible including no constraining.
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state-of-the-art KGE models and their scoring functions). Any scoring functions
and training objectives can be plugged into RETRA as long as it allows to
calculate a gradient.9 We settle on the most common KGE training objective,
namely link prediction, which we in “transformer terms” refer to as “object
masking”. The training target is to correctly predict eot+1 given est and rct , where
eot+1 is masked out. Thus, the weights need to be adjusted, such that the scoring
function f(est , r

c
t , e

o
t ) outputs a high score for the correct eot+1 from the training

data (and a low score for all other entities). Using a soft-max function on the
predicted scores for each eos allows to calculate the cross-entropy loss against
the correct triple and backprop the error.

In this paper we are only interested in optimizing the embeddings regardless
of the scoring function provided. Thus, we compare the predictive performance
of a given KGE model, including its scoring function, to using the same scoring
function but transforming the embeddings to temporally contextualized KGEs.

6 Implementation and Empirical Testing

This section provides implementation details and reports empirical results from
three diverse application domains. An overview of the features selected in each
domain as tcKG facts is provided in Tab. 1. The SUMO dataset and the param-
eters used for training in the following experimental section are available in our
repository10 on Github.com. Once we get the internal approval, the code to run
the experiments will also be made available there.

The proposed RETRA approach is implemented based on PyTorch’s11 Trans-
former Encoder layer, which provides an internal self-attention layer. As seen in
Figure 5, we use an embedded triple (est1 , r, e

o
t2) plus its contexts ec1 , ..., ecnc

as input and assume the output to contain the contextualized embeddings est2
and rct2 . Of those embeddings, the contextualized subject embedding replaces
or complements the global subject embedding in the next time-step. This is re-
peated over the whole sequence of experiences of es. By doing so, the subject
embedding alters based on the history of previous inputs and its current context.

One key feature of RETRA is its complementarity to existing KGE methods.
In the use-cases we present here, we use the static KGEs and their respective scor-
ing functions from three established baseline KGE techniques, namely TransE
[1], SimplE [10] and HolE [15]. The implementations of the baseline models were
acquired using the OpenKE12 framework, which offers fast implementations of
various KGE approaches. The focus of this work is not to obtain the best overall
predictive performance but to show how temporal contextualization can improve
existing KGEs. For that reason we picked three basic and established baselines.

9 Also, many other self-supervised training objectives are possible. Starting from re-
lation masking to temporal subject masking (mask subject est and condition the
prediction on est−1).

10 https://github.com/siwer/Retra
11 https://pytorch.org/
12 https://github.com/thunlp/OpenKE
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6.1 Location Recommendation

For location recommendation, we use the New York City dataset13 which was
created and used for a different recommendation scenario before [23]. The data
consists of check-ins from Foursquare14, which is a location based social network.
Every check-in consists of various information, including user, location, location
type, country and time. The recommendation target is a location or Pointof
Interest (POI) for a particular user, given background knowledge about the
locations and the history of visits or checkIns of users at POIs. The ranking
is done by using a scoring function f(es, r, eo) provided by the baseline KGE
approaches. The result of a forward step in this scenario is a tensor containing
the scores for every potential location in the data. This information plus the
information about the known target location given in the training data serves
for calculating the cross-entropy loss.

Location Recommendation - Experimental Design: We consider the ’raw’
setting provided in the data set, since we are treating every check-in as one
distinct time-step. The data set contains 104,991 distinct check-ins, 3,626 distinct
locations, 3,754 distinct users and 281 distinct types. For training and testing
we were using a random 80 - 20 split of our data. Users with only one check-in
were not considered because a sequence of at least two check-ins is needed for
contextualization. In addition to the input of a triple (es, r, eo), we explicitly
passed the preceding location and the current location’s type as context. The
check-ins are not uniformly distributed over users. There are many users with
only one or two check-ins, and few users with a lot of check-ins (up to 4,069). The
same pattern can be identified with the locations. This extreme imbalance makes
this a very challenges task, since we assume that a longer sequence provides more
information on a certain user’s behaviour than a short sequence would do.

Basic KGE approaches are unable to incorporate the inherent sequential and
n-ary relational information provided by such a dataset and are thus funda-
mentally limited for this task. For both approaches, we have chosen the default
number of dimensions (130) as the embedding size.

Location Recommendation - Experimental Results: It can be seen in Ta-
ble 2, that all baseline approaches have performance issues, which we attribute
to the skewed distribution. Still, we use these approaches as our global baseline
embeddings to see if it is possible to incorporate more information by mod-
elling the sequence and the context information and thus obtain an increase in
performance. When the baseline KGEs are combined with RETRA we indeed
obtain a huge relative performance increase. Numbers in bold indicate the best
results. While the overall performance is still low, the results show that the usage
of sequential and contextual information for enhancing entity embeddings can
improve the performance of standard KGE approaches by a factor of up to 15.

13 https://github.com/eXascaleInfolab/LBSN2Vec
14 https://foursquare.com
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Approach Hit@10 Hit@3 Hit@1 Imp Hit@10 Imp Hit@3 Imp Hit@1

TransE 0.0100 0.0017 0.0004 - - -

SimplE 0.0077 0.0035 0.0013 - - -

HolE 0.0038 0.0004 0.0 - - -

RETRA+TransE 0.0203 0.0005 0.0001 103% -70% -75%

RETRA+SimplE 0.0592 0.0521 0.0194 668% 1388% 1392%

RETRA+HolE 0.0209 0.0005 0.0 450% 25% 0%

Table 2. Metrics for the best runs of the baseline and combined approaches. “Imp”
refers to the relative percentage of performance change compared to the corresponding
baseline metric.

When testing different combinations of model parameters, we observed that
the learning rate has the strongest influence on the performance. Changing the
number of transformer layers does not seem to have a big impact in general.
Apparently, the interactions between features is not complex enough to require
several attention layers. For all tested scoring functions, the combination with
RETRA led to an improvement in performance.

6.2 Driving Situation Classification

Much progress has been made towards automated driving. One challenging task
in automated driving is to capture relevant traffic participants and integrated
prediction and planning of the next movement by considering the given context
and possible interactive scenarios. Here, we define the problem as predicting
the driving maneuver (e.g. following, merging, overtaking) of a vehicle given the
current state of the driving scene. According to [12] approaches for vehicle motion
prediction can be grouped into physics-based , maneuver-based and interaction-
based . Interaction-based methods extend maneuver-based methods by modelling
the dependencies between pairs of vehicles. Related work based on different deep
neural network approaches and feature combinations for trajectory prediction
has been described in [13] in which surrounding vehicles and their features are
extracted from fixed grid cells. Our approach in comparison uses relational data
between the ego and foe vehicles. Our motivation is that explicit representation
of triples might lead to improved modelling of interactions between vehicles.

Driving Situation Classification - Experimental Design: We use SUMO15

(Simulations of Urban Mobility), an open source, highly portable, microscopic
and continuous multi-modal traffic simulation package to generate driving data.
More than 50′000 driving scenes of a motorway were generated. The vehicle pa-
rameters as well as driving styles were varied widely in order to simulate a large

15 https://www.eclipse.org/sumo/
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variety of vehicles and driving behaviours. This resulted in situations such as
risky driving situations, abandoned driving maneuvers, unexpected stops and
even accidents. We have developed a knowledge graph to represent the simu-
lated data by entities (e.g. scene, situation, vehicle, scenario), relations between
entities (e.g. isPartOf, occursIn, type) and their associated features (e.g. speed,
acceleration, driving direction, time-to-collision). This resulted in more than 900
Mio. RDF-triples with around 2 million scenes which comprise more than 5 mil-
lion Lane Change and Conflict situations, respectively. It represents a valuable
benchmark data-set for driving situation analysis. More information on the de-
sign and creation process of the data-set is available in [6].

Approach Sequence Length Hit@3 Hit@1 MR MRR

HolE 0 0.9366 0.5235 1.76 0.72

TransE 0 0.7668 0.2729 2.56 0.53

SimplE 0 - - - -

RETRA+FF 0 0.9946 0.8060 1.23 0.89

RETRA+FF 5 0.9731 0.8212 1.23 0.90

RETRA+FF 10 0.9672 0.8382 1.17 0.91

RETRA+FF 15 0.9858 0.8455 1.17 0.92

RETRA+FF 20 0.9871 0.8469 1.16 0.92

Table 3. Results for the SUMO Driving Situation Classification data set. The task was
to predict the correct situation type, given surrounding traffic. All performance metrics
(hit@k, mean rank (MR) and mean reciprocal rank (MRR)) indicate that context is
crucial and more previous observations information improves the performance more.

Driving Situation Classification - Experimental Results: We conducted
two sets of experiments on the SUMO data, which both aimed at predicting the
type of a conflict. We needed to make this distinction since the baseline KGE
methods cannot use context and thus have to make predictions based on the
situation-ID. Instead, RETRA learns a dedicated situation embedding based on
the context and previous driving scenes. When experimenting with the different
baseline KGE scoring functions we noticed that a fully connected feed forward
layer (FF) as a trainable scoring function performs better. The results are shown
in the first four rows of Table 3. Since various SimplE implementation we tried
did not scale to the size of this data set, we can’t report any results. Obviously,
RETRA+FF considerably outperforms the baselines, even as a non-recurrent
version. This is mostly due to its ability to contextualize a situation embedding
which avoids the need for explicit situation-IDs.

Since the previous steps in time leading up to the current situation are po-
tentially important in driving scenes, we specifically investigated the influence of
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previous situations on the predictive performance. The last four rows of Table 3
show how RETRA handles different numbers of recurrence steps, by feeding in
the preceding 5 - 20 driving situations leading up to the current point in time.
It can be observed that the longer sequences are the better the results get. This
confirms the assumption that the history is important in driving situations and
RETRA is able to exploit it.

6.3 Event Prediction

The Integrated Crisis Early Warning System [2] contains information on geopo-
litical events and conflicts and is a widely used benchmark for both static and
temporal KGE approaches. We specifically use this dataset to showcase how
contextualizing can improve and generalize binary KGE approaches.

Event Prediction - Data Set: For our experiments, we use the 2014 subset16

of the ICEWS data as described in [5] as a basis, and add contextual information
that we take from the original 2014 data17. In addition to the triples consisting
of Source, Event Text and Target, we use the entities Source Sector, Source
Country, Target Country and Intensity to contextualize the Source.

Event Prediction - Experimental Results: The target is to predict the
target entity, typically the organization involved in the event, given the source
entity, aka actor, and the relation. In both setups, we optimize a cross-entropy
loss by calculating scores for all possible triples in a query (s, r, ?). The target
is to produce the highest score for the original triple given in the ground-truth.
In addition to using only the information presented in triples, we also consider
contextual information for our training. This is achieved by passing all informa-
tion through RETRA and using the contextualized subject entity for the query
(sc, r, ?). In this way, the embeddings are learnt in such a manner that they con-
tribute to the contextualizing given a binary scoring function from our baseline
KGE methods. As shown in Table 4, using the contextual information results in
a huge improvement in performance for all tested baseline scoring functions and
evaluation metrics. This, again, indicates that context is crucial and RETRA is
able to exploit it, regardless of the KGE scoring function used.

7 Conclusion and Future Work

In this paper we propose the modeling template tcKG for temporally contextual-
ized KG facts (addressing RQ1 ) and RETRA, a Deep Learning model intended
to transform static Knowledge Graph Embeddings into temporally contextual-
ized ones, given a sequence of tcKG facts (addressing RQ2 ). With RETRA we
tackle two limitations of current KGE models, namely their lack of taking n-ary

16 https://github.com/nle-ml/mmkb/tree/master/TemporalKGs
17 https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/28075
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Contextualized Non-Contextualized

Metric TransE SimplE HolE TransE SimplE HolE

Hits@1 0.519 0.570 0.537 0.264 0.264 0.299
Hits@3 0.691 0.739 0.703 0.398 0.398 0.463
Hits@10 0.821 0.843 0.822 0.532 0.532 0.623
Hits@100 0.941 0.941 0.940 0.775 0.775 0.840

MR 152.92 91.02 88.00 311.85 311.85 193.13
MRR 0.625 0.669 0.638 0.358 0.358 0.409

Table 4. Contextualized vs. Non-contextualized KGE for different scoring functions
on the ICEWS event prediction data set.

relational context into account (Lim1 ) and capturing the evolution of an entity
embedding, given its subjective history of similar previous events (Lim2 ). Our
experimental results on three data sets from diverse application domains indicate
that existing KGE methods for global embeddings can benefit from using RE-
TRA to contextualize their embeddings. We could also demonstrate that both,
context and history, does boost performance considerably.

Although there have been a number of recent contributions to the area of con-
textualized KGEs, we still see large potential for future work beyond additional
empirical testing and technical improvements to RETRA. From the perspective
of knowledge representation the fundamental question remains how to best cap-
ture influencing factors that contextualize the meaning of an entity or relation.
We see this as a crucial challenge for making KGs more actionable in concrete
real-world situation. Once this is solved efficiently, we expect a similar boost to
KGEs as Transformers generated for word embeddings.
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