HANDPICK: A Nice Defect Prediction In Complex Kinds

Anonymous ACL submission

Abstract

Software defect prediction serves as a critical
precursor task to software defect detection. In
recent years, most research efforts have focused
on leveraging static code metrics for this task,
yet such approaches face cross-project general-
ization challenges due to the absence of code
semantic features. While emerging studies rec-
ognize the importance of code semantics, the
lack of high-quality open-source datasets per-
sists due to the prohibitive costs of large-scale
manual annotation. With the remarkable capa-
bilities demonstrated by Large Language Mod-
els (LLMs) like GPT in data synthesis tasks, we
propose leveraging LLMs for automated soft-
ware defect data synthesis and partially open-
sourcing the generated datasets. Our method-
ology employs Common Weakness Enumera-
tion(CWE) as the defect taxonomy standard, de-
signs structured prompts grounded in software
engineering and defect detection principles for
data sampling and labeling, and systematically
analyzes both model-specific synthesis limita-
tions and dataset quality. The experimental
results reveal intriguing insights that provide
new perspectives for automated software de-
fect annotation research. (For dataset access
inquiries, please contact us via email' at your
convenience.)

1 Introduction

The later latent defects are detected during the soft-
ware development lifecycle, the higher the cost of
remediation becomes. Post-deployment defect de-
tection and repair costs escalate dramatically (Chan
et al., 2023; Weiss et al., 2007). While traditional
static analysis tools (e.g., Semgrep) can identify
patterned defects, they rely on manual rule main-
tenance and exhibit high false-positive rates, strug-
gling to adapt to rapidly evolving programming

'The data that support the findings of this study are avail-
able from the author, XXXXX, upon reasonable request. In-

terested readers may contact the author via email at mail
to: XXXX@XXXX.com to request access to the dataset.

Data preparation

e Remove outliers Brces
Balance eode granularity Cleaned Multi-Language Dataset
Remove duplicate data

Small Batch Data Voting Election Verification

ReviewdRepair BFP

FixEval FixJs
XCodeEval

\4

Judging Model Pool Large Model Pool
—
® ¥ ‘ Y,
Yy v 0
Small Batch Data S
Annotation Results
Evaluate Tripl]
Best Syntheti o
]c)smwM i ;c:c l;:zlcm‘t‘m -« D Cognitive Chain
esults With CWE Knowledge
Data Synthesis
4
|
HANDPICK—— <
A Multilingual Software Defect Triple | ‘ BulkRaw Data
Dataset Cognitive Chain
With CWE Knowledge

Figure 1: How Does TriCogVuln-LLM Work?

practices. For developers, manually addressing de-
tected software vulnerabilities (Britton et al., 2013)
remains non-trivial and time-consuming.

To enhance software quality more effectively, de-
fect prediction techniques should be integrated ear-
lier into the entire software development lifecycle
to minimize both the false positive and false nega-
tive rates of defects.Existing research has achieved
progress in software defect prediction, yet most ef-
forts remain constrained to single programming lan-
guages or lack recognized defect taxonomy frame-
works, limiting adaptability to multilingual or di-
verse development environments.

Recently, LLMs have been successfully applied
to various code-related tasks (Wang et al., 2024;
Zhang et al., 2023a,b). Their exceptional capability
in understanding and generating natural language
explanations positions them as promising candi-
dates for code review automation. Nevertheless,
the application of LLMs to code review — partic-
ularly in automated defect annotation — remains
underexplored.

This research aims to bridge this gap by propos-
ing an LLM-based automated software defect anno-
tation method. We pioneer the integration of CWE

to construct "HandPick", a high-quality multilin-
gual defect dataset, designed to enhance prediction
accuracy and consistency while advancing software
defect prediction research. Key contributions in-
clude:

* TriCogVuln-LLM Framework: We intro-
duce a novel framework, as illustrated in Fig-
ure 1, LLM-Enhanced Triple Cognitive Chain
for Multilingual Code Vulnerability Mining
with CWE Knowledge (TriCogVuln-LLM),
designed to identify and extract vulnerability
patterns in multilingual code;

¢ First LLM-Training-Ready Multilingual
Dataset: We have compiled and released
HandPick, the first open-source multilingual
dataset specifically designed for LLMs train-
ing;

* Multi-Step Prompt Engineering: By em-
ploying multi-step prompt engineering, we
integrate discrete tasks into a cohesive work-
flow, thereby enhancing the accuracy of LLMs
annotations;

» Task-Specific Evaluation Framework:We
have developed tailored evaluation methods
for various tasks, specifically designed for the
assessment of software defect prediction.

2 Related Work

This section reviews two main research areas rele-
vant to this study: software defect prediction and
the application of LLMs in software engineering.

2.1 Software Defect Prediction

Early research efforts primarily focused on the
Within Project Defect Prediction (WPDP) problem,
in practical software development scenarios, the
target project requiring defect prediction may be
newly initiated or have scarce existing training data,
prompting the study of Cross Project Defect Predic-
tion (CPDP).Both WPDP and CPDP predominantly
rely on static data from a single programming lan-
guage (e.g., Java, C/C++)(Wang and Yao, 2013;
Nam et al., 2013; Pradel et al., 2020).

Traditional methods depend on static features
like lines of code and cyclomatic complexity.
Traditional code representation methods leverage
pre-trained models (e.g., CodeBERT, GraphCode-
BERT) to learn syntax and structural features (Feng
et al., 2020; Guo et al., 2020). Wang et al. (Jiang

et al., 2021) explored multimodal approaches com-
bining code with text (comments) for automatic
program repair. Although promising in merging
code and text, these methods still face challenges
in aligning code semantics with structured vulnera-
bility patterns.

Meanwhile, the CWE offers a standardized
defect classification system, facilitating efficient
identification and handling of security vulnerabil-
ities through unified terminology and classifica-
tion methods. While CWE is widely adopted in
industry, its integration with automated defect de-
tection and labeling in academic research remains
nascent, holding significant potential to enhance
the accuracy and consistency of vulnerability detec-
tion(Nguyen et al., 2023; Ashraf et al., 2019; Kim
et al., 2024).

2.2 Large Language Model

The widespread adoption of the Generative Pre-
trained Transformer (GPT) model (Ouyang et al.,
2022) has demonstrated the substantial potential of
LLMs in code-related tasks. Recent studies have
explored the capabilities of LLMs in addressing
various unique software engineering challenges
(Cheng et al., 2024; Fan et al., 2024; Hou et al.,
2024; Kulsum et al., 2024; Zhou et al., 2024b).

Prompt engineering is a critical step in inter-
acting with LLMs to influence their responses.
The characteristics of prompts, such as vocabu-
lary, style, and tone, can significantly impact the
responses generated by LLMs (Zamfirescu-Pereira
et al., 2023). Well-crafted prompts can enhance
the performance of LLMs in specific tasks. For
instance, multi-hop Chain of Thought (CoT) (Wei
et al., 2022) is a common prompt engineering tech-
nique that decomposes prompts into smaller, in-
dividual steps, thereby improving the reasoning
abilities of LLMs. Wei et al. (Wei et al., 2022) in-
troduced the CoT prompting strategy, which guides
LLMs to generate intermediate reasoning steps,
thereby enhancing their ability to solve complex
problems.

Prompt engineering has proven to be highly ef-
fective in code-related tasks, enabling LLMs to
overcome many limitations of earlier techniques
(Hou et al., 2024; Liu et al., 2023). Concurrently,
the power of LLMs has led researchers to leverage
these models for vulnerability-related tasks, with
a majority of prior work focusing on vulnerabil-
ity detection (Zhou et al., 2024a). Notably, while
the aforementioned studies focus on the applica-

tion of LLMs to existing software defect detection
datasets, our work aims to construct a model pool
using high-performance closed-source large mod-
els, achieving data synthesis for code defect pre-
diction and repair suggestions through multi-hop
CoT. This approach not only improves the diversity
and accuracy of annotations but also opens new av-
enues for code analysis as a structured information
processing task.

3 Methodology

3.1 Original Multi-Programming Language
Datasets

The original multi-programming language dataset
we collected consists of code samples from four
programming languages: Java, C (C++), Python,
and JavaScript. This datasets includes both the
original code and the corresponding fixed code. In
this study, we exclusively utilized datasets that con-
tain both pre-fix and post-fix code. For detailed
information, please refer to Appendix A. Due to
inconsistencies in data quality, the datasets under-
went preprocessing, as detailed in Section 4.2.

3.2 Three-Step Chain of Thought Prompt

Traditional software defect prediction typically en-
compasses two main tasks: defect prediction and
defect repair suggestion. Initially, our approach fol-
lowed a two-step design: "CWE defect prediction
— defect repair suggestion generation" to assist
LLMs in fulfilling these tasks. However, code de-
fects are not solely determined by the semantics of
the code; they are also deeply influenced by func-
tional requirements. Recognizing that functional
requirements are often underrepresented or insuf-
ficiently addressed, we introduced an additional
preliminary step: "code function description." By
incorporating this step, we sought to provide richer
contextual information for defect prediction and to
pave the way for further investigations. As a result,
we restructured the original process into three fun-
damental tasks: "function description generation
— CWE defect prediction — defect repair sugges-
tion generation." This decomposition is intended
to improve prediction accuracy and enhance the
utility of the data.

3.2.1 Function Description Generation

In the initial phase of our multi-hop reasoning
chain, the model is tasked with generating a de-
scription of the functionality encapsulated in the

Models Pool
Five Powerful Closed-Source Model

ription CWE Defect ot Repair
Prediction b
J o\ AN

- ~ N L N N —
HandPick Better Suitable ! CWE Defect Four High-Performance
Datasef ts. Models Pool | Prediction Voting Adjudication Models
J) / / -
\ Voting

Figure 2: Flowchart of the Main Methods for Dataset
Construction

provided code. Given that our code operates at
the function/class level granularity, we term this
phase "Function Description Generation." The user
prompt is formulated as: "Please carefully read
the following code and describe its functionality
in no more than thirty words" + the corresponding
code code. The model is expected to infer the orig-
inal functionality of the function based on the code.
Based on our analysis of defect prediction behav-
iors, we find that the set of defect predictions when
the function’s functionality is unknown(¢;) and
when it is known (¢2) should satisfy the relation
1 N ¢o = ¢3 and ¢3 # (). Furthermore, in prac-
tical scenarios, it is often observed that ¢35 € ¢
and ¢3 ¢ ¢2. Consequently, the code requirements
should be provided to the predictor to "delimit a
specific scope" for the defect prediction behavior
and facilitate subsequent code repair steps. This en-
sures that the repaired code adheres to the original
requirements and aligns with real-world engineer-
ing practices.

3.2.2 CWE Defect Prediction

Following the function description generation, we
move to the defect prediction phase within the de-
fined scope ¢3. In this phase, we meticulously
design the system prompt and user prompt, clearly
distinguishing their roles. The system prompt is
responsible for assigning the LLMs a contextual
identity, available techniques, and operational con-
siderations. In contrast, the user prompt provides
detailed instructions, introduces structured domain
knowledge, and specifies the required output for-
mat for the model.

To inform the design of defect prediction tech-
niques and considerations, we conducted inter-
views with several frontline developers, gather-
ing insights on software testing and code reviews.
This practical knowledge was combined with es-

tablished software engineering principles and prior
testing experience, forming the foundation of the
system prompt’s content. Additionally, we ana-
lyzed the CWE-TOP2S5 lists from 2019 to 2024
and identified the ten consistently highest-ranked
CWE types—referred to as the CWE-TOP10—as
the focus for this study. The descriptions of these
selected CWE types were integrated into the user
prompt to enhance prediction accuracy, particularly
for the TOP10. Additionally, we specified in the
user prompt that the model should output the rea-
soning behind its predictions, thereby improving
the interpretability of the defect prediction process.
The output is also structured in JSON format to
ensure it is directly usable.

3.2.3 Defect Repair Suggestion Generation

Given the shared techniques between defect pre-
diction and code repair, we tailored the system
prompt from "CWE Defect Prediction" by refin-
ing the role context, removing unnecessary instruc-
tions, and incorporating supplementary develop-
ment techniques and background details. Addition-
ally, we enhanced the user prompt by specifying a
structured JSON format for the output.

3.3 Model Pool

Given the extensive variety of current LLMs, all of
which claim to excel in understanding and process-
ing code, we propose using a model pool composed
of multiple models to sample synthetic data. This
approach aims to obtain a more diverse datasets
and avoid introducing "noise" due to overly similar
data distributions. After evaluating factors such as
model performance, cost, and processing speed, we
initially selected five powerful closed-source mod-
els. We then conducted a small-scale validation
experiment for each model to identify "unusable
models," ensuring higher quality data when synthe-
sizing large amounts of data.

3.4 Voting

After obtaining the results of the batch validation,
we explored various methods and ultimately chose
the simplest LLMs expert voting method, adher-
ing to Occam’s Razor principle. This method in-
volves having the models vote on "unusable" mod-
els. Since the original datasets lacks ground truth,
we made a strong assumption: the model that di-
verges most significantly from the others is consid-
ered unusable. The problem now reduces to "how
to select an appropriate voting model." We expect

the selected model to balance variance, bias, and
cost, and thus, it should be chosen from the initial
model pool. To mitigate the issue where LLMs
tend to favor data with probability distributions
similar to their own, we introduced an external
expert to assist in the evaluation. Among the high-
performance closed-source models not selected, we
included Qwen-max as an auxiliary external expert
for selecting the judging model, and conducted
further ablation experiments based on the results.

3.5 Evaluation

After applying the voting model, we derived vari-
ous conclusions about the models, focusing primar-
ily on "which models are unusable for which tasks"
and "which model performs relatively well under
the current task settings." Since the final data is syn-
thesized by sampling from the model pool, and in
the absence of real labels for defect prediction data,
we used the output of the best-performing model as
"pseudo-labels," combined with "fix_code" from
the original datasets, to evaluate datasets quality.
Given that the three tasks we designed have distinct
characteristics, we established a set of evaluation
criteria:

1
Score = 1 (cos(sampley, pseudor)

+ Jaccard(samples, pseudos) (1)
+ Similarity(samples, fix_code))

In Equation 1, sample; denotes the outcome of
the i-th round in the model pool sampling process,
while pseudo; refers to the outcome of the i-th
round in the pseudo-labeling model.

Specifically, due to the differing characteristics
of the task outputs, we designed the scoring func-
tion in three parts: he first task, "function descrip-
tion," produces short outputs, so we used an embed-
ding model to convert the model pool’s sampled
output and "pseudo-labels" into embeddings, and
then computed their cosine similarity. The second
task, "CWE defect prediction," generates predic-
tions that can be mapped to specific CWE types,
processed into an [m, n] matrix where m represents
the number of evaluations and n represents the num-
ber of CWE types. Since the matrix is a 0-1 sparse
matrix, we used Jaccard similarity to calculate the
second round’s score. The third task, "defect re-
pair,” involves "fix_code" from the datasets. We
tokenized both fix_code and the synthetic data and

computed their similarity, defined as:
o . 1
Similarity(samples, fiz_code) = —
n
(Z repetition(samples, fiz_code)) (2)

extra(samples, fz'a;_code))

+ min (1,
n
Here, repetition() represents the code matching
rate of the matched defect repair, extra() repre-
sents the additional defect repairs by the LLMs,
and n represents the number of lines modified by
fiz_code.

4 Experiments

In this section, we will present the experimental
setup, describe the data collection methodologies,
detail the implementation specifics, and assess the
quality of the synthetic datasets.

4.1 Experimental Setup

To generate a high-quality software defect datasets,
we meticulously selected five closed-source LLMs
that excel in natural language processing and code
generation. These models have demonstrated
robust performance across multiple benchmarks
and are capable of handling complex program-
ming tasks. The selected models include GPT-4o,
DeepSeek V3, Claude-3.5-Sonnet, Gemini-1.5-Pro-
latest, and Yi-lightning (detailed model settings are
provided in Appendix B).

To enhance the quality and reliability of the an-
notated data, we implemented a voting mechanism
to filter the annotation results from models process-
ing 500 small-batch data samples. This approach
aimed to select large models that offer a balance
between performance and economic cost. In addi-
tion to the voting models GPT-40, DeepSeek V3,
and Yi-lightning, we introduced Qwen-max as an
external expert to vote on the annotation results of
the small-batch data. This inclusion increased the
diversity of the voting models and mitigated the im-
pact of single-model bias on the voting outcomes.

4.2 Data Collection

The datasets utilized in this study was compiled
from multiple publicly available datasets for soft-
ware defect identification and bug2fix(Haque et al.,
2023; Hugq et al., 2022; Tufano et al., 2018; Khan
et al., 2023; Csuvik and Vidécs, 2022), encompass-
ing four mainstream programming languages: Java,
C/C++, Python, and JavaScript. The objective was

to construct a diversified, large-scale defect predic-
tion datasets.

Due to the presence of outliers, duplicate data,
and inconsistent code granularity in the original
code dataset, preprocessing of the dataset is essen-
tial. The preprocessing steps are as follows:

Outlier Removal: Eliminate code segments that
are excessively long or short, and verify the in-
tegrity of the remaining code.

Code Granularity Unification: Utilize regular
expressions to identify and standardize the granu-
larity of classes and functions.

Duplicate Data Removal:Remove duplicate
data entries to ensure uniqueness.

Token Calculation:Estimate the average token
size for each subset of the dataset.

Finally, all data were converted into a unified
JSON format to facilitate subsequent processing
and model input, yielding a clean, standardized
dataset suitable for defect prediction tasks. In sub-
sequent experiments, 500 data points were selected
for small-scale experiments, and 25,000 data points
were chosen for large-scale annotation.

4.3 Implementation Details

This section introduces the data annotation process
and the model voting and selection procedure.

4.3.1 Data Annotation Process

The data annotation process is divided into two
phases: small-batch data annotation and model
evaluation, and large-scale data annotation.

In the small-batch annotation phase, we ran-
domly selected 500 data points from the prepro-
cessed datasets and independently annotated them
using the five LLMs described in Section 4.1. We
designed multi-step CoT prompts for the five mod-
els, directing the model to perform a step-by-step
analysis of the code: first, identify the code’s func-
tionality; then, assess potential vulnerabilities or
issues, providing reasoned judgments and explana-
tions; finally, revise the code in accordance with
its intended functionality and the identified issues.
Consequently, we consistently used multi-step CoT
prompts in subsequent annotation work. Each
model generated corresponding defect labels and
explanations for each code data point based on our
carefully designed multi-step CoT prompts. Af-
ter completing the small-batch annotation, we ob-
tained different annotation results from the five
models for the same batch of data, providing a

foundation for subsequent model evaluation and
selection.

In the large-scale annotation phase, we used the
best model selected through evaluation (detailed in
Section 4.4) to annotate the remaining 25,000 data
points. The annotation process was consistent with
the small-batch phase, also employing multi-step
CoT prompts to ensure the quality of the large-scale
annotated data.

4.3.2 Best Annotation Model Selection

To select a model that strikes the optimal balance
between performance and cost for large-scale an-
notation, we implemented a voting mechanism to
systematically eliminate less effective annotation
models.

The voting process used LLMs as judges, in-
putting the data annotated during the small-batch
validation phase into the LLMs for voting. In the
absence of ground truth, decisions were guided
by the "majority is right" strategy, leveraging the
LLMs’ ability to perform semantic difference iden-
tification. Specifically, for each vote, we provided
the original datasets(code) along with the data
synthesized by the annotation models. The sys-
tem prompt was configured to simulate the role
of a "teacher," tasked with assessing the quality
of the "student"(the LLM used during the anno-
tation phase) and identifying the "least suitable"
item. Additionally, we had three tasks, with the
first "function description" and the second "CWE
defect prediction” as the focus.Since the third task
("defect repair suggestion generation") relied heav-
ily on the outputs of the first two tasks, it was given
lower priority during the voting process. Conse-
quently, each voting session was restricted to two
rounds.Specific user prompts and system prompts
can be found in Appendix D.

Although the tasks in the first and second rounds
of voting both involved "semantic difference identi-
fication," there were subtle differences. The output
of the "function description” task was relatively
simple, so the synthesized data from different mod-
els might be semantically similar. Thus, the vot-
ing model was required to select "at most one"
unsuitable item in this round. The "CWE defect
prediction" task was more challenging, as differ-
ences in model capabilities or inherent probability
distributions might lead to significant differences
in synthesized data. Therefore, the voting model
was required to select "at least one" unsuitable item
in this round.

We aimed for a good voting model to exhibit
low bias and low variance. Since we lacked true
labels, the first vote focused on variance, leading to
a "model unsuitable" candidate conclusion. For the
first attempt, we selected the voting model from
our model pool, preferring cost-effective options.
Thus, we chose "DeepSeek V3" and "Yi-lightning"
for the first vote. Each voting model conducted
three votes, and the results are shown in Figure 3.

Based on the analysis of Figure 3a-d, the follow-
ing preliminary conclusions can be drawn:

The average variance of the three votes in the
first round for D V3 is 15.2, compared to 24.5333
for Yi-lightning. In the second round, the vari-
ance of DeepSeek V3 is 19.15, significantly lower
than 81.5333 for 01, indicating that the variance of
DeepSeek V3 is reliable.

The Claude-3.5-Sonnet model performed poorly
in the first round, and Gemini-1.5-Pro-latest was
deemed "inappropriate” by both voting models.
Consequently, Claude-3.5-Sonnet is unsuitable for
the "function description” task, and Gemini-1.5-
Pro-latest is effectively rejected.

Yi-lightning exhibits a relatively high variance
and was frequently self-voted out, leading to its
elimination. In the voting between the two models,
the GPT-40 model performed better, prompting the
hypothesis that GPT-40 could also serve as a voting
model. If the voting trends of DeepSeek V3 and
GPT-40 are similar, then the bias of DeepSeek V3
may be acceptable. To test this, three votes were
conducted using GPT-40, yielding the following
results:

From Figure 3ef, the following conclusions are
drawn:

The average variances of GPT-4o in the two
rounds are 27.8333 and 64.1833, respectively, with
DeepSeek V3’s variance consistently lower than
that of GPT-4o, further supporting the reliability of
DeepSeek V3’s variance.

The voting trends of DeepSeek V3 and 40 are
similar, suggesting that, under the proposed hypoth-
esis, the bias of DeepSeek V3 as a voting model
can be trusted.

It is concluded that Cluade-3.5-Sonnet should
not be entirely rejected, as it may be usable in the
second round. Additionally, ablation experiments
were conducted, detailed in Appendix E.

The comprehensive voting experiments lead to
the conclusion that DeepSeek V3 is a viable vot-
ing model. Further insights into the composition
of the model pool for subsequent large-scale data

EEEEEEEEEE

deepseck3

nnnnn

© @ & w0 1m0 u0 10

Figure 3: Validation Results of the Voting Model on Small-Scale Datasets

synthesis are as follows:

For the first round of "function description," the
model pool consists of (40, DeepSeek V3), with
a sampling ratio of 1:2, reflecting their compara-
ble performance and adherence to the "low cost"
principle.

For the second round of "CWE defect predic-
tion," the model pool includes (GPT-40, DeepSeek
V3, Cluade-3.5-Sonnet), with a ratio of 4:3:3 as
suggested by the voting model.

For the third round of "defect repair suggestion
generation," which builds upon the previous tasks
and is considered less challenging, Gemini-1.5-Pro-
latest is also included, resulting in a model pool
of (GPT-40, DeepSeek V3, Cluade-3.5-Sonnet,
Gemini-1.5-Pro-latest) with a ratio of 1:1:1:1.

4.4 Evaluation of Synthetic Datasets Quality

After a small-scale validation, we finalized the
model pool for large-scale data synthesis, annotat-
ing a total of 25,000 data entries. We then evaluated
the models using the approach outlined in section
3.5. During the evaluation process, GPT-40 consis-
tently outperformed other models. Consequently,
in the tasks of "function description”" and "CWE
defect prediction," we used GPT-40’s outputs as
"pseudo-labels" for reference. Additionally, we in-
corporated the fix_code from the original datasets
for a third round of scoring to ensure a comprehen-
sive assessment. From the generated datasets, we
selected 500 entries for quality evaluation.

For the "function description" task, we employed
the "m3e" embedding model to process the syn-
thetic data from GPT-40 and the data sampled from
our model pool. We then calculated the pairwise
cosine similarity for the 1000 data entries, resulting

in an average similarity score of 0.74.

In the "CWE defect prediction” task, we ex-
tracted the CWE type numbers from the outputs
of GPT-40 and our model pool. Following the
evaluation method in section 3.5, we first counted
the occurrences of each CWE defect type. Both
GPT-40 and our sampled data contained 34 distinct
CWE types, with 18 types being repeated. The
most frequently occurring CWE type was "CWE-
20 (Improper Input Validation)," indicating that
many programs are vulnerable to "injection at-
tacks." This suggests that developers may overly
rely on "client-side security checks" or "hidden
form fields," which can be bypassed or altered. Ad-
ditionally, "CWE-787 (Out-of-bounds Write)" and
"CWE-125 (Out-of-bounds Read)" were also com-
mon. While these defects may not immediately
cause exceptions, under certain conditions, they
could lead to program crashes, categorizing them
as "undefined exceptions." Some instances in the
defect prediction results were marked as "pass!",
indicating no defects were predicted. We recorded
these instances as "0." This process yielded two bi-
nary sparse matrices of shape (500, 50). We calcu-
lated the Jaccard similarity between these matrices,
resulting in a score of 0.54.

For the "defect repair suggestions” task, we
compared the repair outputs from LLMs, the
fix_code from the original datasets, and the dif-
ferences with the original code at the "line" level.
Following the method in section 3.5, we calcu-
lated the intra-line duplication rate. The scores
for GPT-40 and our model pool were 0.6062
and 0.6190, respectively. This indicates that our
method outperformed GPT-40 when compared to
the ground truth from the original datasets. Addi-

tionally, the number of "pass!" instances in our
model pool’s results was 75, compared to 92
for GPT-4o0, further demonstrating the superior-
ity of our model pool. Given that the code re-
paired by LL.Ms for defect prediction is more com-
plete than the original datasets, it is highly likely
that min(1, extra(sample_3, fix_code)) will be
1. The experimental result was 5.851, yielding a
score of 1.62 for the "defect repair suggestions"
task.

In summary, the overall quality evaluation score
for our dataset is approximately 0.725, indicating a
highly satisfactory dataset.

We posit that the quality of the dataset surpasses
the current evaluation scores, supported by the fol-
lowing rationale: @The SDK (encompassing the
compiler, interpreter, library classes, etc.) utilized
by the data is outdated, and subsequent updates to
the related SDK versions have rendered the issues
obsolete, thereby preventing the LLM from pre-
dicting them; @Certain defects are associated with
functional requirements, for which we lack the nec-
essary data; ®The "CWE defect prediction” task
yielded a low score, as it is inherently challenging,
and our evaluation benchmark, GPT-40, exhibited
high bias during the voting process, suggesting that
GPT-40 may not be suitable as a "pseudo-label".
Consequently, we contend that our dataset is supe-
rior to the current evaluation outcomes. Moreover,
our model pool sampling and the proposed frame-
work facilitate a nuanced equilibrium among the
cost of data synthesis, data quality, and diversity.

5 Conclusion

In this study, we contributed along three key dimen-
sions: (1) developing the chain-of-thought frame-
work TriCogVuln-LLM, designed specifically for
defect prediction tasks, (2) constructing HandPick,
the first bilingual, multi-language dataset for defect
prediction tasks, comprising approximately 25,000
entries and evaluation methodologies tailored to
this framework, and (3) releasing a curated subset
of 100 entries as a benchmark for defect prediction
involving pre-trained models. Notably, our dataset
achieved a high score of 72.5 on our proposed met-
rics, underscoring its effectiveness for defect pre-
diction across diverse programming languages. By
addressing the significant gap in available defect
prediction datasets tailored for LLMs, our work
offers novel perspectives and resources for advanc-
ing defect prediction research. To foster further

collaboration, we have made portions of the Hand-
Pick dataset, along with the benchmark, publicly
available on HuggingFace? and GitHub?.

Moving forward, we will focus on refining the
prompt design within our framework to enhance
dataset quality and scalability. Additionally, we
aim to explore the broader applicability of our
methods to a wider array of programming lan-
guages and software engineering tasks. We hope
that our open-source contributions serve as step-
ping stones for future research and progress in this
critical domain.

6 Limitations

Currently, our dataset covers only four common
programming languages. Given that our primary
application scenario is centered around Chinese
and Java, there is a notable absence of data ex-
ploration in other programming languages and
English. Although we have divided the defect
prediction task into three subtasks, our original
aim was to further refine and decompose this task
into additional, more granular subtasks. Moreover,
while our experimental design and ablation stud-
ies are methodologically robust, we must acknowl-
edge the limitation that the datasets lacks genuine,
human-authenticated labels, which remains an un-
resolved issue. Another limitation stems from the
underlying assumption in the small-batch valida-
tion phase—specifically, that the most dissimilar
instances are the least reliable. This assumption
may introduce biases and affect the evaluation of
the datasets.Additionally, the inherent limitations
of large language models (LLMs), including hallu-
cination and restricted capabilities, further compro-
mise datasets quality. Looking ahead, we plan to
refine our framework tasks and associated prompts,
expand our dataset by incorporating a wider array
of programming languages, and address dataset
quality concerns through an evident strategy: train-
ing LLM with the existing datasets, deploying the
updated LLM in real-world development environ-
ments to collect richer and more varied data, and
applying an iterative self-training approach to en-
hance the LLM’s performance over time.

References

Hafsa Ashraf, Mamdouh Alenezi, Muhammad Nadeem,
and Yasir Javid. 2019. Security assessment frame-

*https://huggingface.co/datasets/pansysy/handdppick
3https://anonymous.4open.science/r/handdppick-5F25/

https://huggingface.co/datasets/pansysy/handdppick
https://anonymous.4open.science/r/handdppick-5F25/

work for educational erp systems. International
Journal of Electrical and Computer Engineering,
9(6):5570.

Tom Britton, Lisa Jeng, Graham Carver, Paul Cheak,
and Tomer Katzenellenbogen. 2013. Reversible de-
bugging software-quantify the time and cost saved
using reversible debuggers. University Cambridge:
Cambridge, UK.

Aaron Chan, Anant Kharkar, Roshanak Zilouchian
Moghaddam, Yevhen Mohylevskyy, Alec Helyar, Es-
lam Kamal, Mohamed Elkamhawy, and Neel Sun-
daresan. 2023. Transformer-based vulnerability de-
tection in code at edittime: Zero-shot, few-shot, or
fine-tuning? arXiv preprint arXiv:2306.01754.

Yiran Cheng, Lwin Khin Shar, Ting Zhang, Shouguo
Yang, Chaopeng Dong, David Lo, Shichao Ly,
Zhiqiang Shi, and Limin Sun. 2024. Llm-enhanced
static analysis for precise identification of vulnerable
oss versions. arXiv preprint arXiv:2408.07321.

Viktor Csuvik and L4szl6 Vidacs. 2022. Fixjs: A dataset
of bug-fixing javascript commits. In Proceedings of
the 19th International Conference on Mining Soft-
ware Repositories, pages 712-716.

Lishui Fan, Jiakun Liu, Zhongxin Liu, David Lo, Xin
Xia, and Shanping Li. 2024. Exploring the capa-
bilities of llms for code change related tasks. ACM
Transactions on Software Engineering and Method-

ology.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, et al. 2020. Codebert: A
pre-trained model for programming and natural lan-
guages. arXiv preprint arXiv:2002.08155.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey
Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcode-
bert: Pre-training code representations with data flow.
arXiv preprint arXiv:2009.08366.

Md Mahim Anjum Haque, Wasi Uddin Ahmad, Is-
mini Lourentzou, and Chris Brown. 2023. Fixe-
val: Execution-based evaluation of program fixes
for programming problems. In 2023 IEEE/ACM In-
ternational Workshop on Automated Program Repair
(APR), pages 11-18. IEEE.

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong
Wang, Li Li, Xiapu Luo, David Lo, John Grundy,
and Haoyu Wang. 2024. Large language models
for software engineering: A systematic literature re-
view. ACM Transactions on Software Engineering
and Methodology, 33(8):1-79.

Faria Huq, Masum Hasan, Md Mahim Anjum Haque,
Sazan Mahbub, Anindya Igbal, and Toufique Ahmed.
2022. Review4repair: Code review aided automatic
program repairing. Information and Software Tech-
nology, 143:106765.

Nan Jiang, Thibaud Lutellier, and Lin Tan. 2021. Cure:
Code-aware neural machine translation for automatic
program repair. In 2021 IEEE/ACM 43rd Interna-
tional Conference on Software Engineering (ICSE),
pages 1161-1173. IEEE.

Mohammad Abdullah Matin Khan, M Saiful Bari,
Xuan Long Do, Weishi Wang, Md Rizwan Parvez,
and Shafiq Joty. 2023. xcodeeval: A large scale multi-
lingual multitask benchmark for code understanding,

generation, translation and retrieval. arXiv preprint
arXiv:2303.03004.

Donghyun Kim, Seungho Jeon, Kwangsoo Kim, Jaesik
Kang, Seungwoon Lee, and Jung Taek Seo. 2024.
Guide to developing case-based attack scenarios and
establishing defense strategies for cybersecurity ex-
ercise in ics environment. The Journal of Supercom-
puting, pages 1-34.

Ummay Kulsum, Haotian Zhu, Bowen Xu, and Marcelo
d’Amorim. 2024. A case study of llm for automated
vulnerability repair: Assessing impact of reasoning
and patch validation feedback. In Proceedings of the
1Ist ACM International Conference on AI-Powered
Software, pages 103-111.

Jiawei Liu, Chungqiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2023. Is your code generated by chatgpt
really correct? rigorous evaluation of large language
models for code generation. Advances in Neural
Information Processing Systems, 36:21558-21572.

Jaechang Nam, Sinno Jialin Pan, and Sunghun Kim.
2013. Transfer defect learning. In 2013 35th inter-
national conference on software engineering (ICSE),
pages 382-391. IEEE.

Dinh Huong Nguyen, Aria Seo, Nnubia Pascal Nnamdi,
and Yunsik Son. 2023. False alarm reduction method
for weakness static analysis using bert model. Ap-
plied Sciences, 13(6):3502.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730-27744.

Michael Pradel et al. 2020. Dynamic software analy-
sis: Challenges and opportunities. In Proceedings
of the 28th ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the
Foundations of Software Engineering, FSE.

Michele Tufano, Cody Watson, Gabriele Bavota, Massi-
miliano Di Penta, Martin White, and Denys Poshy-
vanyk. 2018. An empirical investigation into learn-
ing bug-fixing patches in the wild via neural machine
translation. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software En-
gineering, pages 832-837.

Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu,
Song Wang, and Qing Wang. 2024. Software testing

with large language models: Survey, landscape, and
vision. IEEE Transactions on Software Engineering.

Shuo Wang and Xin Yao. 2013. Using class imbal-
ance learning for software defect prediction. /EEE
Transactions on Reliability, 62(2):434—443.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Cathrin Weiss, Rahul Premraj, Thomas Zimmermann,
and Andreas Zeller. 2007. How long will it take to fix
this bug? In fourth international workshop on min-
ing software repositories (MSR’07: ICSE Workshops
2007), pages 1-1. IEEE.

JD Zamfirescu-Pereira, Richmond Y Wong, Bjoern
Hartmann, and Qian Yang. 2023. Why johnny can’t
prompt: how non-ai experts try (and fail) to design
Ilm prompts. In Proceedings of the 2023 CHI Con-
ference on Human Factors in Computing Systems,
pages 1-21.

Quanjun Zhang, Chunrong Fang, Yang Xie, Yaxin
Zhang, Yun Yang, Weisong Sun, Shengcheng Yu, and
Zhenyu Chen. 2023a. A survey on large language
models for software engineering. arXiv preprint
arXiv:2312.15223.

Ziyin Zhang, Chaoyu Chen, Bingchang Liu, Cong Liao,
Zi Gong, Hang Yu, Jianguo Li, and Rui Wang. 2023b.
Unifying the perspectives of nlp and software en-
gineering: A survey on language models for code.
arXiv preprint arXiv:2311.07989.

Xin Zhou, Sicong Cao, Xiaobing Sun, and David Lo.
2024a. Large language model for vulnerability de-
tection and repair: Literature review and the road
ahead. ACM Transactions on Software Engineering
and Methodology.

Xin Zhou, Kisub Kim, Bowen Xu, DongGyun Han, and
David Lo. 2024b. Out of sight, out of mind: Better
automatic vulnerability repair by broadening input
ranges and sources. In Proceedings of the IEEE/ACM
46th International Conference on Software Engineer-
ing, pages 1-13.

A Data Collection

We gathered datasets from multiple programming
languages, conducted data preprocessing, and the
basic characteristics of the datasets are detailed in
Table 1:

The FixEval datasets(Haque et al., 2023) is de-
signed for evaluating program repair models, fea-
turing pairs of buggy and fixed code in Java and
Python. Data is sourced from programming compe-
tition platforms (e.g., AtCoder, Aizu Online Judge),
with high complexity and problem difficulty levels

10

(A-E). The extensive combinatorial search space
necessitates a thorough understanding of the task
for effective repair.

The Review4Repair datasets(Huq et al., 2022),
targeting Java programs, includes 55,060 training
and 2,961 test data points, leveraging code review
(CR) information to facilitate repair.

Proposed by Tufano et al., the BFP
datasets(Tufano et al., 2018) employs neural
machine translation (NMT) to learn vulnerability
repair models. Researchers extracted commits
with the keyword "bug fix" from GitHub Archive,
identifying around 10 million potential vulnera-
bility repairs. Manual sampling confirmed 97.6%
as genuine repairs, with the datasets focusing on
small methods (50 tokens).

XcodeEval(Khan et al., 2023), the largest multi-
language, multi-task code benchmark, spans 17 pro-
gramming languages and includes approximately
75,000 unique problems. It supports tasks such as
code understanding, generation, translation, and
retrieval, derived from competitive programming
with a focus on advanced programming and mathe-
matics.

Introduced by Viktor Csuvik and Laszlo Vidacs
in 2022, the FixJS datasets (Csuvik and Vidacs,
2022) concentrates on JavaScript bug-fix commits.
It was curated by selecting popular JavaScript
projects from platforms like GitHub and analyz-
ing version control history (e.g., git commits) to
extract relevant bug-fix submissions.

B Three-Step Chain of Thought Prompt

Function description generation involves guiding
the model to infer the intended function based on
the structure and content of the code and gener-
ate a description of the code’s functionality. The
prompts utilized for this task are depicted in Figure
4, with the English version provided as follows:

Function Description
System Prompt

Role: Senior Code Review Expert

Profile Description: As a Senior Code Review
Expert, responsible for conducting manual step-by-
step code reviews, identifying potential security
flaws, and providing specific CWE types. Directly
deliver results in the prescribed format without ad-
ditional explanations.

User Prompt

Language Type Datasets Name Data Size Original Task Type

FixEval 43000 Bugfix
Java Review4Repair 59172 Bugfix

BFP 1190331 Program Repair

XCodeEval 574448 Program Repair

C++ (O) XCodeEval 3409220 Program Repair

Python XCodeEval 461356 Program Repair
JavaScript FixJs 55551 Bugfix

Table 1: Datasets used in the experiment

Function Description

[Role: BARBHELR
il

B — b
description: IBEFARBATER, AMVRBATATRBFES, RABENRS
System Prompt (B8

FHALAKNCWERE, NBAENRENER, FTREMMIRE,

Function Description

((REBRITNEE:\n{code}

IRFEMEUTRE, A
— [FBE=TFRABRER

AL RS RN B R A i
— [H.

User Prompt

Figure 4: Function Descriptions Prompt Terms and Ex-
amples of Model Responses

Please carefully read the following code and de-
scribe its functionality in no more than 30 words:
{code}

A Example Of Model Output

Process the card movement message and update
the card position.

Drawing on both software engineering knowl-
edge and software testing experience, we have de-
veloped specific techniques and guidelines for de-
fect prediction. The prompts utilized for this task
are depicted in Figure 5, with the English version
provided as follows:

CWE Defect Prediction
System Prompt

Role: Senior Code Review Expert

Profile Description: Acting as a senior code re-
view expert, responsible for manually reviewing
code in sequential order, identifying potential se-
curity flaws, specifying the exact CWE (Common

11

CWE Defect Prediction

ole: lﬂRBWI?I
file des WEER, ANRIRB)

BRI
Eh/\ ﬁl‘!il wummig 9,
_) gmnun ICWEXE, HEREATHANGER, T

System Prompt

Background:
ASSERAFAEARBRSFELN
| BERRORAERSMENRT

kills
lﬁﬂml‘lkﬁﬂiﬂ”m(wﬁ (Common Weakness.

Biﬂﬂl&ﬁﬁﬂAIRﬁElﬁ&?]
KBRS HRVESOUERSNE

S HHIEIEA R 2 BRI AHCWERE
SRR LARSRERETH

FMIERBFM’]IM:& Wl
WERERANEE, B
PAXSBRRDIE, ﬂ%ﬂ!‘]ﬂllﬁl

-

CWE Defect Prediction

&

User Prompt

ARELICEARS, SESEEENCORERALI, 0
ERBOAE, H#ETHHETRNCWERE (Cw
CWE-other), BIGIE, L, FERE REEsR

REES: BUEER) @
SBARIE). cw b
B inpu
« (RBREIH — |
R fnput().
E Typepustin G
(r
cw

i ; 39
(BRI RUEARGIE).

=8
ﬁ!!ﬂ)\!!#lh’f] \)I

-

Figure 5: CWE Defect Prediction Prompt Terms and
Examples of Model Responses

Weakness Enumeration) types, and providing re-
sults in a prescribed format without additional ex-
planations.

Skills

Proficient in common software security vulnera-
bilities and the CWE (Common Weakness Enumer-
ation) list.

Capable of conducting static code analysis and
manual code reviews.

Able to identify potential security risks in multi-
ple programming languages.

Able to clearly describe security defects and pro-
vide the corresponding CWE types.

Able to understand and apply secure coding best
practices.

Background:

Several years of experience in software develop-
ment and code security reviews.

Familiarity with common software security stan-
dards and regulations.

Constraints:

Code reviews must strictly follow the order of
code execution.

Review reports need to be clear and concise,
avoiding vague descriptions.

A thorough understanding of the code logic is
required to prevent misjudgment and omissions.

User Prompt

Please analyze the provided code and informa-
tion for potential software vulnerabilities or defects.
If any are identified, please provide a detailed de-
scription of the causes of these vulnerabilities, and
attempt to classify them according to the CWE
(Common Weakness Enumeration) types, focusing
on the Top 10 CWE:s or other notable CWEs. These
include CWE-787 (Out-of-bounds Write), CWE-
79 (Improper Neutralization of Input During Web
Page Generation), CWE-89 (SQL Injection), CWE-
416 (Use After Free), CWE-78 (OS Command
Injection), CWE-20 (Improper Input Validation),
CWE-125 (Out-of-bounds Read), CWE-22 (Path
Traversal), CWE-352 (Cross-Site Request Forgery),
and CWE-434 (Unrestricted File Upload). Your re-
sponse should follow this format:If no defects are
found in the code, output: ‘CWE_Type’:’pass!’.If
defects are present, output:[{ {’TCWE_Type’:” Indi-
cate CWE type’, "CWE_Code’:’ Indicate the code
with defects’, "CWE_Description’:” Provide a Chi-
nese explanation’}},

{{’CWE_Type’’# Indicate CWE type’,
"CWE_Code’’# Indicate the code with de-
fects’, "CWE_Description’:’# Provide a Chinese
explanation’}}]

A Example Of Model Output

[{TCWE_Type’: "CWE-20’, "CWE_Code’: 'n
= int(input()) nb = list(map(int , input().split()))’,
>CWE_Description’: *User input is not validated,
which may lead to invalid input or abnormal behav-
ior.” }]

Building upon the system prompt utilized in
"CWE Defect Prediction" we devised a defect re-
pair suggestion generation step, aiming to leverage
the large model for repairing defective code. The
prompts utilized for this task are depicted in Figure
6, with the English version provided as follows:

Defect Repair Suggestion Generation
System Prompt

Role: Senior Code Repair Expert
Profile Description: You are a senior code repair
expert who needs to fix the identified CWE types

12

Defect Repair Suggestion Generation J

Role: BRORBBEER
ERARIRBBEEER, RN

m: f72—
SEmTE A
JCWE:
—_

IIIQHEEE‘

ﬂ)\l!ﬂ&ﬂﬂﬂﬂ&ﬁi\ﬁﬁ! (CWE), FHHEMEM | ines
[RBIRBRFENR A,

‘!ﬁlﬁiﬁﬁﬁiﬁm\ EXE,
Rﬁémiﬂﬂm& LEFXACWEXR, BEFRH [BERNRBEARSRENEEESRRBRE.

- DAANEESE R ARE.

it owE .
IR BIESER TR,
T EAARESR SRR, WA AT

System Prompt

.
JiE.

R2MRB,

(S

Defect Repair Suggestion Generation]

BTN ENRBRASARSE, HSHSNz
BB (EERTENRE), HEHHENES

EEEGGANEEL, TRERLIE
—> BRI TS ER:

[
{{'repair_code':", # (M EREHNNTE
'repair_method':" # PR

& —

User Prompt

Hon
I

S

Figure 6: Defect Repair Suggestion Generation Prompt
Terms and Examples of Model Responses

in the provided code based on its functionality and
defects. Skills

Proficient in various programming languages,
including but not limited to C/C++, Java, Python,
JavaScript, etc. In-depth understanding of com-
mon code defect types (CWE) and the ability to
accurately identify security vulnerabilities in code.

Ability to propose effective code repair solutions
based on code functionality, context, and CWE
types. Capable of clearly explaining the causes
of code defects and the principles behind repair
solutions. Able to write high-quality, secure code
and conduct thorough testing and validation.

Background:

Several years of experience in software develop-
ment and code security reviews.

Familiarity with common software security stan-
dards and regulations.

Constraints:

Code reviews must strictly follow the order of
code execution.

Review reports need to be clear and concise,
avoiding vague descriptions.

A thorough understanding of the code logic is
required to prevent misjudgment and omissions.

User Prompt

Based on the above code vulnerability analysis
and code, provide the modified code (mainly the
complete code) and a brief description of the re-
pair method (indicating how you fixed it), without
needing additional explanations. Please provide the
answer in the following format: [{ {’repair_code’:”
Complete code after repair ‘repair_method’:”
Explanation in Chinese }}]

A Example Of Model Output

%, 939

[‘repair_code’: = int(input())b = list(map(int,
input().split()))if len(b) != n:print("Input length
does not match")exit()c [i for i in range(l,
n+l)]a [Ifor i in range(n):a.append([bli],
cli]])a.sort(key=lambda x: x[0])s = sum(b)r =
[Ik = Ofor i in range(n):if (s - a[i][0]) a[n-
1][0] * 2:r.append(a[i][1])print(len(r))print(*r)”’,
‘repair_method’: *Added input length validation to
ensure input data matches expectations.’]

C Large Language Model Pool

GPT-40-2024-11-20(OpenAl): GPT-40, developed
by OpenAl, represents the latest advancement
in language models, building upon GPT-4 with
enhanced reasoning capabilities, faster response
times, and improved multimodal understanding.
GPT-40 excels in various NLP and code generation
tasks.

DeepSeek V3 (DeepSeek): DeepSeek V3, the
newest model from DeepSeek, is specifically tai-
lored for code understanding and generation. It
leads in multiple code-related benchmarks, particu-
larly in managing complex code logic and produc-
ing high-quality code.

Claude-3.5-Sonnet-20241022 (Anthropic):
Claude-3.5-Sonnet, part of Anthropic’s Claude
3 series, is renowned for its robust security and
reliability, alongside advanced natural language
understanding and generation capabilities. It
performs exceptionally in tasks demanding high
security and reliability.

Gemini-1.5-Pro-latest (Google): Gemini-1.5-
Pro, Google’s latest multimodal large model, excels
in processing and generating text, images, audio,
and other data types, offering superior performance
in cross-modal understanding tasks.

Yi-lightning (01.Al): Yi-lightning, a high-
performance variant of the Yi series by 01.Al, is cel-
ebrated for its efficient inference speed and strong
performance, with Yi-lightning pushing the bound-
aries in speed without compromising on perfor-
mance.

Qwen-Max (Alibaba): Qwen-Max, the latest it-
eration in the Qwen series developed by Alibaba,
represents a significant enhancement over its pre-
decessors. It boasts superior reasoning capabilities,
enhanced multimodal processing efficiency, and
an expanded range of applications. Qwen-Max ex-
cels in various domains, including natural language

13

nnnnnnnnnn

L('in-“?il‘lfi!k"i IREAEESR
RIRERAXRNCWERN, BERIREY
ERERATHER.

ion: HTRERTOEWER,
REEER, HHRERIRES
RENER, REMTOPEER
WIT—HWSR

aaaaa
P ﬁﬁﬁéiﬂﬁwﬁ

k- ﬂ&ﬂ“ﬁii!mlﬂﬂﬂmﬁgﬂﬁﬁ
CWEZE

L EREXERRBIES . ABATRARAER
et Egg HEMTUISEERPER

3 EXE!IRSIJ
| fREBoH
[REFERBE M
| BOPES

%, LBNHHGI BENEE:
S T
LT e L L

(REEHINEE—te ¥ X T RBINMERNER, K A
i - BEREST R I

((REPIRBMPERBMEWER, WIREL
BE—P BT —BHOER, ERNEIERR
_Jﬂ!ﬁm!ﬁﬁlm#iﬂfi MNEEM

. B, onet
mq@;u Fﬁ
BNERR: | “ER, NHIBNEER:

Al "W FRIMIE SR T E—RRBEBIIRE
#OFEA: \n{function_description}

R .

»nlanmiaﬂii»m&nEMn:nnnl
RS E LU E fEAERETH
w&!ﬁﬁnln1$nﬂ " BRI, @A
. 74T, RIEMEONE, WEASH TR
mxsxn#snuﬁﬁnmﬁxm

User Prompt

wniﬁml

38 w;x -r B

i, mammxwﬂﬂx
ver} |

: &
A RERR: A B! "IATRMRPER
[ESR: {vulnerability_analysis|

Figure 7: Voting Prompt Terms and Examples of Model
Responses

processing, code generation, and multimodal tasks,
with notable proficiency in complex logical rea-
soning and cross-modal comprehension. Beyond
its technical superiority, Qwen-Max demonstrates
exceptional stability and reliability in practical de-
ployments, offering robust support for enterprise-
level users.

D Prompt for Expert Model Election
Voting

We designed a two-round voting process for the
expert model. The first round focused on voting for
the function description, while the second round
targeted the CWE defect prediction. The prompts
utilized for this task are depicted in Figure 7, with
the English version provided as follows:

Voting
System Prompt

Role: Software Development Teacher

Profile Description: Analyze the homework sub-
missions of students. Each student’s submission
consists of two rounds of answers: a function de-
scription and a CWE defect type description. Iden-
tify the most inconsistent answers among the sub-
missions.

Skills

Semantic difference recognitionCode analysis-
Software defect detectionTeaching guidance

Constraints

The following are some students’ homework an-
swers, which are based on CWE defect type predic-
tions. Please directly judge based on the students’
answers.

Workflows

Analyze Student Submissions: Review the func-
tion descriptions and CWE defect type descriptions
provided by the students.Compare Answers: Look
for discrepancies in the function functionality de-
scriptions or CWE types among the students’ an-
swers.Identify Inconsistencies: Use semantic dif-
ference recognition, code knowledge, and software
defect detection abilities to find the most inconsis-
tent answers among the submissions.

User Prompt in Round1

Now evaluate the first round of students’ descrip-
tions regarding the function’s functionality. Please
read the homework answers provided by the four
students and select the one that is the most incon-
sistent, if any. In your response, you need to briefly
analyze the answers of the four students. Your an-
swer should be chosen from A, B, C, D, or None,
where None indicates that the answers from all four
students are basically consistent. Your response
should end with ’So my answer is: !” followed by
your choice, such as ’So my answer is: A!” Below
are the descriptions of the function’s functionality
from the four students regarding the same piece of
code: {function_description}

A Example Of Model Output in Round1

First, let’s analyze each student’s answer:A:
Count the number of special segments with con-
secutive identical elements in the array. -BCount
the number of consecutive identical elements in
the array and calculate the score. C This piece of
code implements an adjacent element grouping and
counting algorithm for an array in C++, and it also
provides a detailed analysis of the safety issues in
the code. D: This code calculates the number of
distinct subarrays in an array, where all elements
in each subarray must be identical. E: Count the
pairs of consecutive identical elements in the ar-
ray that satisfy specific conditions. From these
descriptions, it can be seen that the descriptions
of A, B, D, and E all focus on certain characteris-
tics of consecutive identical elements in an array.
While the details differ, the overall direction is con-
sistent. However, C not only focuses on the function
of the algorithm but also provides a detailed analy-
sis of the safety issues in the code, making it clearly

14

different from the direction of the other students’
descriptions.Therefore, my answer is: C!

User Prompt in Round2

Now conducting the second round of student
CWE type description reviews. Please analyze
the following remaining students’ answers in con-
junction with the information from the first round.
Briefly analyze and identify at least one of the least
consistent assignment answers. info The answers
must be selected from {rest_answer}. If multiple
students show inconsistencies, respond with the
results separated by English commas. For identical
answers, conclude with: "So my answer is: A!" or
"So my answer is: A, B!" as appropriate. Below
are the remaining students’ answers: {vulnerabil-
ity_analysis}.

A Example Of Model Output in Round2

Now let’s analyze the CWE type descriptions of
the remaining students:B : Identified three CWE-
20 issues, primarily focused on insufficient input
validation, which might lead to invalid input or
exceptions. The descriptions are relatively con-
sistent, centering on input validation problems.C
: Identified three CWE issues, including CWE-20
(insufficient input validation) and CWE-125 (array
access not checked for null). The descriptions are
more comprehensive, highlighting not only input
validation but also the security of array access.D :
Incomplete description, mentioning only the CWE-
20 issue, but the description is truncated and cannot
be fully analyzed.E : Identified two CWE issues,
including CWE-125 (array access not checked for
null) and CWE-20 (insufficient input validation).
The descriptions are more specific, addressing both
array access and input validation. From the above
analysis, we can conclude:The descriptions from
B and C are relatively consistent, primarily focus-
ing on input validation issues (CWE-20).The de-
scriptions from C and E are relatively consistent,
addressing not only input validation but also the
security of array access (CWE-125).The descrip-
tion from D is incomplete, making it difficult to
effectively compare with those of the other students.
Thus, D’s description shows significant inconsis-
tency compared to the others.So my answer is: D!

E Ablation Experiments And The
Corresponding Analysis Of Results

Given the critical importance of determining the
voting model, we conducted extensive ablation ex-

Qwen-Max Voting Results Round 1
143

. First Round

Votes

gptdo deepseekv3 claude3.5-10225eminiL.5-pro-latest yi-lightning

Options

Figure 8: Qwen-max Voting Results Round1

periments and analyzed the results. This appendix
presents three ablation experiments and their con-
clusions, along with an additional related result
analysis.

1. Fairness of the Model Voting Mechanisms

The voting models currently employed are
all drawn from the initial model pool (GPT-4o,
DeepSeek V3, Claude-3.5-Sonnet, Gemini-1.5-Pro-
latest, Yi-lightning). Consequently, we are con-
cerned that models may favor data aligning with
their own probability distributions, such as knowl-
edge distribution or syntactic structure, potentially
leading to a reluctance to vote against themselves.
Although we observed that the Yi-lightning model
does not appear to favor its own data during "se-
mantic difference recognition," the risk remains
significant when a model serves as both a partic-
ipant and an evaluator. To address this, we intro-
duced an external expert, Qwen-max, to perform
the same voting task. However, we conducted only
one round of voting to assess whether the afore-
mentioned risk necessitates attention. The results,
depicted in Figure 8, suggest that concerns regard-
ing the fairness of the models are unwarranted.

2. Effects of Including Both Pre-fix and Post-
fix Code

Our datasets includes instances with both pre-fix
and post-fix code, whereas our proposed work fo-
cuses solely on predicting the original code. There-
fore, we explored the potential utility of the post-fix
code. During the initial design of the annotation
prompt, we considered incorporating it, but this
approach poses risks. Including optimized code
might cause the model to focus more on the dif-
ferences between pre-fix and post-fix code rather
than the code itself or functional defects. This
could result in identifying more errors or eliminat-
ing fewer models, deviating from the original goal

15

Qwen-Max Voting Results Round 1

231
223 Second Round

200

150
138

Vot
=
S
@

100

aptdo deepseekv3 claude3.5-10225eminiL.5-pro-latest yi-lightning none

Options

Figure 9: Qwen-max Voting Results Round2

of semantic difference recognition and potentially
compromising annotation quality. Nonetheless, we
proceeded with this ablation experiment. The re-
sults, illustrated in Figure 9, are noteworthy. When
the original code is present, Claude-3.5-Sonnet ex-
hibits a "polarization," becoming a highly "reli-
able" model. While we have speculated on the
underlying reasons, we conclude that Claude-3.5-
Sonnet warrants further exploration and considera-
tion for inclusion in the model pool.

3. Impact of the First Round on the Second
Round

In our previous task setup, models eliminated
in the first round do not participate in the second
round. Given that the voting models rarely vote
"none" in the first round, and our subjective belief
that "function description” is a relatively simple
task, we posed the question: What is the impact of
the first round on the second round? Consequently,
we bypassed the first round of voting and directly
conducted the second round, with the voting results
shown in Figure 10. This outcome is significant
because, in prior model voting, Claude-3.5-Sonnet
was seldom voted out in the second round, with
two potential explanations: First, too many Claudes
were voted out in the first round; Second, Claude-
3.5-Sonnet is indeed "usable" in the second round.
This ablation experiment clarifies that the latter
explanation is accurate.

4. CWE Labeling by Various Models

We conducted a statistical analysis of the second
round of "CWE defect prediction” on a small batch
of annotations, as CWE-type is the only quantifi-
able label. We were particularly interested in the
number of CWE-types generated by each model,
and this statistical analysis provides an additional
perspective on the conclusions drawn by the vot-
ing model. Using regular expression matching, we

200

93

35

gptdo None

claude3.5-10225emini1.5-pro-latest yi-light;
Options

Figure 10: The voting results of the ablation experiment
one on DeepSeekV3

gptdo deepseekv3 claude3.5-1022 geminil.5-pro-latest

Options

yirlightning

Figure 11: The voting results of the ablation experiment
two on DeepSeekV3

obtained the final statistical results, as shown in
Figure 12. The models, from inner to outer in the
figure, are: Gemini-1.5-Pro-latest, DeepSeek V3,
Yi-lightning, GPT-40, and Claude-3.5-Sonnet. This
figure illustrates the overall proportion of CWE-
types labeled by each model, reflecting their pref-
erences. It is evident that the models, from inner
to outer, tend to predict a higher number of CWE-
types and exhibit a greater focus on identifying
code defects.

5. Analysis of Voting Model Eliminations

We also examined the detailed voting patterns
of the voting model to better understand the spe-
cific behaviors of each model. Since the first round
of the voting model required the elimination of at
most one model, we similarly focused on the "CWE
defect prediction." Given the notable discrepancy
in the acceptance of claude’s synthesized data by
the GPT model compared to other models during
the second round of voting, we selected one round
of voting from GPT-40 and analyzed the number
of models eliminated in each voting round. The
results, as depicted in Figure 13, are particularly
noteworthy: (1) The highest probability was for the

16

The sequence from innermost to outermost is: claude3_5_1022, gptdo, yi_lightning, deepseekv3, geminil_5_pro_latest
CWE Count
-0
1
-

“ s w

Figure 12: Statistical results of the CWE-Type from the
small batch data labeling model

model to vote for the elimination of two models,
and based on the voting results from GPT-4o, it is
most likely that Yi-lightning and Gemini-1.5-Pro-
latest were selected; (2) Interestingly, the proba-
bility of eliminating three models was also quite
high.

We further analyzed the cases where three mod-
els were eliminated and found that Claude-3.5-
Sonnet was selected in nearly half of these in-
stances. Additionally, during the analysis of
GPT-4o0, it was observed that Yi-lightning and
Claude-3.5-Sonnet produced similar results, but Yi-
lightning provided additional insights, suggesting
that Yi-lightning should have been favored. How-
ever, in the actual results, Yi-lightning was elim-
inated. These results are noteworthy, and we hy-
pothesize the following reasons: (1) In ablation ex-
periment 4, Claude-3.5-Sonnet’s synthesized data
demonstrated a preference for a higher number of
CWE-types; (2) Claude-3.5-Sonnet had previously
utilized GPT-4 data for RLAIF, which may have
aligned Claude-3.5-Sonnet more closely with the
preferences of GPT models.

Vulnerabilit¥7Ana\ysis Count Distribution
Explanation

= Two Models

- Three Models

= One Model

= vismatch

60

330

Figure 13: Vulenrability Analysis Count Distribution

17

	Introduction
	Related Work
	Software Defect Prediction
	Large Language Model

	Methodology
	Original Multi-Programming Language Datasets
	Three-Step Chain of Thought Prompt
	Function Description Generation
	CWE Defect Prediction
	Defect Repair Suggestion Generation

	Model Pool
	Voting
	Evaluation

	Experiments
	 Experimental Setup
	Data Collection
	Implementation Details
	Data Annotation Process
	Best Annotation Model Selection

	Evaluation of Synthetic Datasets Quality

	Conclusion
	Limitations
	Data Collection
	Three-Step Chain of Thought Prompt
	Large Language Model Pool
	Prompt for Expert Model Election Voting
	Ablation Experiments And The Corresponding Analysis Of Results

