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Abstract

Software defect prediction serves as a critical001
precursor task to software defect detection. In002
recent years, most research efforts have focused003
on leveraging static code metrics for this task,004
yet such approaches face cross-project general-005
ization challenges due to the absence of code006
semantic features. While emerging studies rec-007
ognize the importance of code semantics, the008
lack of high-quality open-source datasets per-009
sists due to the prohibitive costs of large-scale010
manual annotation. With the remarkable capa-011
bilities demonstrated by Large Language Mod-012
els (LLMs) like GPT in data synthesis tasks, we013
propose leveraging LLMs for automated soft-014
ware defect data synthesis and partially open-015
sourcing the generated datasets. Our method-016
ology employs Common Weakness Enumera-017
tion(CWE) as the defect taxonomy standard, de-018
signs structured prompts grounded in software019
engineering and defect detection principles for020
data sampling and labeling, and systematically021
analyzes both model-specific synthesis limita-022
tions and dataset quality. The experimental023
results reveal intriguing insights that provide024
new perspectives for automated software de-025
fect annotation research. (For dataset access026
inquiries, please contact us via email1 at your027
convenience.)028

1 Introduction029

The later latent defects are detected during the soft-030

ware development lifecycle, the higher the cost of031

remediation becomes. Post-deployment defect de-032

tection and repair costs escalate dramatically (Chan033

et al., 2023; Weiss et al., 2007). While traditional034

static analysis tools (e.g., Semgrep) can identify035

patterned defects, they rely on manual rule main-036

tenance and exhibit high false-positive rates, strug-037

gling to adapt to rapidly evolving programming038

1The data that support the findings of this study are avail-
able from the author, XXXXX, upon reasonable request. In-
terested readers may contact the author via email at mail
to:XXXX@XXXX.com to request access to the dataset.

Figure 1: How Does TriCogVuln-LLM Work?

practices. For developers, manually addressing de- 039

tected software vulnerabilities (Britton et al., 2013) 040

remains non-trivial and time-consuming. 041

To enhance software quality more effectively, de- 042

fect prediction techniques should be integrated ear- 043

lier into the entire software development lifecycle 044

to minimize both the false positive and false nega- 045

tive rates of defects.Existing research has achieved 046

progress in software defect prediction, yet most ef- 047

forts remain constrained to single programming lan- 048

guages or lack recognized defect taxonomy frame- 049

works, limiting adaptability to multilingual or di- 050

verse development environments. 051

Recently, LLMs have been successfully applied 052

to various code-related tasks (Wang et al., 2024; 053

Zhang et al., 2023a,b). Their exceptional capability 054

in understanding and generating natural language 055

explanations positions them as promising candi- 056

dates for code review automation. Nevertheless, 057

the application of LLMs to code review – partic- 058

ularly in automated defect annotation – remains 059

underexplored. 060

This research aims to bridge this gap by propos- 061

ing an LLM-based automated software defect anno- 062

tation method. We pioneer the integration of CWE 063
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to construct "HandPick", a high-quality multilin-064

gual defect dataset, designed to enhance prediction065

accuracy and consistency while advancing software066

defect prediction research. Key contributions in-067

clude:068

• TriCogVuln-LLM Framework: We intro-069

duce a novel framework, as illustrated in Fig-070

ure 1, LLM-Enhanced Triple Cognitive Chain071

for Multilingual Code Vulnerability Mining072

with CWE Knowledge (TriCogVuln-LLM),073

designed to identify and extract vulnerability074

patterns in multilingual code;075

• First LLM-Training-Ready Multilingual076

Dataset: We have compiled and released077

HandPick, the first open-source multilingual078

dataset specifically designed for LLMs train-079

ing;080

• Multi-Step Prompt Engineering: By em-081

ploying multi-step prompt engineering, we082

integrate discrete tasks into a cohesive work-083

flow, thereby enhancing the accuracy of LLMs084

annotations;085

• Task-Specific Evaluation Framework:We086

have developed tailored evaluation methods087

for various tasks, specifically designed for the088

assessment of software defect prediction.089

2 Related Work090

This section reviews two main research areas rele-091

vant to this study: software defect prediction and092

the application of LLMs in software engineering.093

2.1 Software Defect Prediction094

Early research efforts primarily focused on the095

Within Project Defect Prediction (WPDP) problem,096

in practical software development scenarios, the097

target project requiring defect prediction may be098

newly initiated or have scarce existing training data,099

prompting the study of Cross Project Defect Predic-100

tion (CPDP).Both WPDP and CPDP predominantly101

rely on static data from a single programming lan-102

guage (e.g., Java, C/C++)(Wang and Yao, 2013;103

Nam et al., 2013; Pradel et al., 2020).104

Traditional methods depend on static features105

like lines of code and cyclomatic complexity.106

Traditional code representation methods leverage107

pre-trained models (e.g., CodeBERT, GraphCode-108

BERT) to learn syntax and structural features (Feng109

et al., 2020; Guo et al., 2020). Wang et al. (Jiang110

et al., 2021) explored multimodal approaches com- 111

bining code with text (comments) for automatic 112

program repair. Although promising in merging 113

code and text, these methods still face challenges 114

in aligning code semantics with structured vulnera- 115

bility patterns. 116

Meanwhile, the CWE offers a standardized 117

defect classification system, facilitating efficient 118

identification and handling of security vulnerabil- 119

ities through unified terminology and classifica- 120

tion methods. While CWE is widely adopted in 121

industry, its integration with automated defect de- 122

tection and labeling in academic research remains 123

nascent, holding significant potential to enhance 124

the accuracy and consistency of vulnerability detec- 125

tion(Nguyen et al., 2023; Ashraf et al., 2019; Kim 126

et al., 2024). 127

2.2 Large Language Model 128

The widespread adoption of the Generative Pre- 129

trained Transformer (GPT) model (Ouyang et al., 130

2022) has demonstrated the substantial potential of 131

LLMs in code-related tasks. Recent studies have 132

explored the capabilities of LLMs in addressing 133

various unique software engineering challenges 134

(Cheng et al., 2024; Fan et al., 2024; Hou et al., 135

2024; Kulsum et al., 2024; Zhou et al., 2024b). 136

Prompt engineering is a critical step in inter- 137

acting with LLMs to influence their responses. 138

The characteristics of prompts, such as vocabu- 139

lary, style, and tone, can significantly impact the 140

responses generated by LLMs (Zamfirescu-Pereira 141

et al., 2023). Well-crafted prompts can enhance 142

the performance of LLMs in specific tasks. For 143

instance, multi-hop Chain of Thought (CoT) (Wei 144

et al., 2022) is a common prompt engineering tech- 145

nique that decomposes prompts into smaller, in- 146

dividual steps, thereby improving the reasoning 147

abilities of LLMs. Wei et al. (Wei et al., 2022) in- 148

troduced the CoT prompting strategy, which guides 149

LLMs to generate intermediate reasoning steps, 150

thereby enhancing their ability to solve complex 151

problems. 152

Prompt engineering has proven to be highly ef- 153

fective in code-related tasks, enabling LLMs to 154

overcome many limitations of earlier techniques 155

(Hou et al., 2024; Liu et al., 2023). Concurrently, 156

the power of LLMs has led researchers to leverage 157

these models for vulnerability-related tasks, with 158

a majority of prior work focusing on vulnerabil- 159

ity detection (Zhou et al., 2024a). Notably, while 160

the aforementioned studies focus on the applica- 161
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tion of LLMs to existing software defect detection162

datasets, our work aims to construct a model pool163

using high-performance closed-source large mod-164

els, achieving data synthesis for code defect pre-165

diction and repair suggestions through multi-hop166

CoT. This approach not only improves the diversity167

and accuracy of annotations but also opens new av-168

enues for code analysis as a structured information169

processing task.170

3 Methodology171

3.1 Original Multi-Programming Language172

Datasets173

The original multi-programming language dataset174

we collected consists of code samples from four175

programming languages: Java, C (C++), Python,176

and JavaScript. This datasets includes both the177

original code and the corresponding fixed code. In178

this study, we exclusively utilized datasets that con-179

tain both pre-fix and post-fix code. For detailed180

information, please refer to Appendix A. Due to181

inconsistencies in data quality, the datasets under-182

went preprocessing, as detailed in Section 4.2.183

3.2 Three-Step Chain of Thought Prompt184

Traditional software defect prediction typically en-185

compasses two main tasks: defect prediction and186

defect repair suggestion. Initially, our approach fol-187

lowed a two-step design: "CWE defect prediction188

→ defect repair suggestion generation" to assist189

LLMs in fulfilling these tasks. However, code de-190

fects are not solely determined by the semantics of191

the code; they are also deeply influenced by func-192

tional requirements. Recognizing that functional193

requirements are often underrepresented or insuf-194

ficiently addressed, we introduced an additional195

preliminary step: "code function description." By196

incorporating this step, we sought to provide richer197

contextual information for defect prediction and to198

pave the way for further investigations. As a result,199

we restructured the original process into three fun-200

damental tasks: "function description generation201

→ CWE defect prediction → defect repair sugges-202

tion generation." This decomposition is intended203

to improve prediction accuracy and enhance the204

utility of the data.205

3.2.1 Function Description Generation206

In the initial phase of our multi-hop reasoning207

chain, the model is tasked with generating a de-208

scription of the functionality encapsulated in the209

Figure 2: Flowchart of the Main Methods for Dataset
Construction

provided code. Given that our code operates at 210

the function/class level granularity, we term this 211

phase "Function Description Generation." The user 212

prompt is formulated as: "Please carefully read 213

the following code and describe its functionality 214

in no more than thirty words" + the corresponding 215

code code. The model is expected to infer the orig- 216

inal functionality of the function based on the code. 217

Based on our analysis of defect prediction behav- 218

iors, we find that the set of defect predictions when 219

the function’s functionality is unknown(ϕ1) and 220

when it is known (ϕ2) should satisfy the relation 221

ϕ1 ∩ ϕ2 = ϕ3 and ϕ3 ̸= ∅. Furthermore, in prac- 222

tical scenarios, it is often observed that ϕ3 ⊈ ϕ1 223

and ϕ3 ⊈ ϕ2. Consequently, the code requirements 224

should be provided to the predictor to "delimit a 225

specific scope" for the defect prediction behavior 226

and facilitate subsequent code repair steps. This en- 227

sures that the repaired code adheres to the original 228

requirements and aligns with real-world engineer- 229

ing practices. 230

3.2.2 CWE Defect Prediction 231

Following the function description generation, we 232

move to the defect prediction phase within the de- 233

fined scope ϕ3. In this phase, we meticulously 234

design the system prompt and user prompt, clearly 235

distinguishing their roles. The system prompt is 236

responsible for assigning the LLMs a contextual 237

identity, available techniques, and operational con- 238

siderations. In contrast, the user prompt provides 239

detailed instructions, introduces structured domain 240

knowledge, and specifies the required output for- 241

mat for the model. 242

To inform the design of defect prediction tech- 243

niques and considerations, we conducted inter- 244

views with several frontline developers, gather- 245

ing insights on software testing and code reviews. 246

This practical knowledge was combined with es- 247
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tablished software engineering principles and prior248

testing experience, forming the foundation of the249

system prompt’s content. Additionally, we ana-250

lyzed the CWE-TOP25 lists from 2019 to 2024251

and identified the ten consistently highest-ranked252

CWE types—referred to as the CWE-TOP10—as253

the focus for this study. The descriptions of these254

selected CWE types were integrated into the user255

prompt to enhance prediction accuracy, particularly256

for the TOP10. Additionally, we specified in the257

user prompt that the model should output the rea-258

soning behind its predictions, thereby improving259

the interpretability of the defect prediction process.260

The output is also structured in JSON format to261

ensure it is directly usable.262

3.2.3 Defect Repair Suggestion Generation263

Given the shared techniques between defect pre-264

diction and code repair, we tailored the system265

prompt from "CWE Defect Prediction" by refin-266

ing the role context, removing unnecessary instruc-267

tions, and incorporating supplementary develop-268

ment techniques and background details. Addition-269

ally, we enhanced the user prompt by specifying a270

structured JSON format for the output.271

3.3 Model Pool272

Given the extensive variety of current LLMs, all of273

which claim to excel in understanding and process-274

ing code, we propose using a model pool composed275

of multiple models to sample synthetic data. This276

approach aims to obtain a more diverse datasets277

and avoid introducing "noise" due to overly similar278

data distributions. After evaluating factors such as279

model performance, cost, and processing speed, we280

initially selected five powerful closed-source mod-281

els. We then conducted a small-scale validation282

experiment for each model to identify "unusable283

models," ensuring higher quality data when synthe-284

sizing large amounts of data.285

3.4 Voting286

After obtaining the results of the batch validation,287

we explored various methods and ultimately chose288

the simplest LLMs expert voting method, adher-289

ing to Occam’s Razor principle. This method in-290

volves having the models vote on "unusable" mod-291

els. Since the original datasets lacks ground truth,292

we made a strong assumption: the model that di-293

verges most significantly from the others is consid-294

ered unusable. The problem now reduces to "how295

to select an appropriate voting model." We expect296

the selected model to balance variance, bias, and 297

cost, and thus, it should be chosen from the initial 298

model pool. To mitigate the issue where LLMs 299

tend to favor data with probability distributions 300

similar to their own, we introduced an external 301

expert to assist in the evaluation. Among the high- 302

performance closed-source models not selected, we 303

included Qwen-max as an auxiliary external expert 304

for selecting the judging model, and conducted 305

further ablation experiments based on the results. 306

3.5 Evaluation 307

After applying the voting model, we derived vari- 308

ous conclusions about the models, focusing primar- 309

ily on "which models are unusable for which tasks" 310

and "which model performs relatively well under 311

the current task settings." Since the final data is syn- 312

thesized by sampling from the model pool, and in 313

the absence of real labels for defect prediction data, 314

we used the output of the best-performing model as 315

"pseudo-labels," combined with "fix_code" from 316

the original datasets, to evaluate datasets quality. 317

Given that the three tasks we designed have distinct 318

characteristics, we established a set of evaluation 319

criteria: 320

Score =
1

4
(cos(sample1, pseudo1) 321

+ Jaccard(sample2, pseudo2) (1) 322

+ Similarity(sample3, fix_code)) 323

In Equation 1, samplei denotes the outcome of 324

the i-th round in the model pool sampling process, 325

while pseudoi refers to the outcome of the i-th 326

round in the pseudo-labeling model. 327

Specifically, due to the differing characteristics 328

of the task outputs, we designed the scoring func- 329

tion in three parts: he first task, "function descrip- 330

tion," produces short outputs, so we used an embed- 331

ding model to convert the model pool’s sampled 332

output and "pseudo-labels" into embeddings, and 333

then computed their cosine similarity. The second 334

task, "CWE defect prediction," generates predic- 335

tions that can be mapped to specific CWE types, 336

processed into an [m,n] matrix where m represents 337

the number of evaluations and n represents the num- 338

ber of CWE types. Since the matrix is a 0-1 sparse 339

matrix, we used Jaccard similarity to calculate the 340

second round’s score. The third task, "defect re- 341

pair," involves "fix_code" from the datasets. We 342

tokenized both fix_code and the synthetic data and 343
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computed their similarity, defined as:344

Similarity(sample3, fix_code) =
1

n
345

(
∑

repetition(sample3, fix_code)) (2)346

+min (1,
extra(sample3, fix_code)

n
)347

Here, repetition() represents the code matching348

rate of the matched defect repair, extra() repre-349

sents the additional defect repairs by the LLMs,350

and n represents the number of lines modified by351

fix_code.352

4 Experiments353

In this section, we will present the experimental354

setup, describe the data collection methodologies,355

detail the implementation specifics, and assess the356

quality of the synthetic datasets.357

4.1 Experimental Setup358

To generate a high-quality software defect datasets,359

we meticulously selected five closed-source LLMs360

that excel in natural language processing and code361

generation. These models have demonstrated362

robust performance across multiple benchmarks363

and are capable of handling complex program-364

ming tasks. The selected models include GPT-4o,365

DeepSeek V3, Claude-3.5-Sonnet, Gemini-1.5-Pro-366

latest, and Yi-lightning (detailed model settings are367

provided in Appendix B).368

To enhance the quality and reliability of the an-369

notated data, we implemented a voting mechanism370

to filter the annotation results from models process-371

ing 500 small-batch data samples. This approach372

aimed to select large models that offer a balance373

between performance and economic cost. In addi-374

tion to the voting models GPT-4o, DeepSeek V3,375

and Yi-lightning, we introduced Qwen-max as an376

external expert to vote on the annotation results of377

the small-batch data. This inclusion increased the378

diversity of the voting models and mitigated the im-379

pact of single-model bias on the voting outcomes.380

4.2 Data Collection381

The datasets utilized in this study was compiled382

from multiple publicly available datasets for soft-383

ware defect identification and bug2fix(Haque et al.,384

2023; Huq et al., 2022; Tufano et al., 2018; Khan385

et al., 2023; Csuvik and Vidács, 2022), encompass-386

ing four mainstream programming languages: Java,387

C/C++, Python, and JavaScript. The objective was388

to construct a diversified, large-scale defect predic- 389

tion datasets. 390

Due to the presence of outliers, duplicate data, 391

and inconsistent code granularity in the original 392

code dataset, preprocessing of the dataset is essen- 393

tial. The preprocessing steps are as follows: 394

Outlier Removal: Eliminate code segments that 395

are excessively long or short, and verify the in- 396

tegrity of the remaining code. 397

Code Granularity Unification:Utilize regular 398

expressions to identify and standardize the granu- 399

larity of classes and functions. 400

Duplicate Data Removal:Remove duplicate 401

data entries to ensure uniqueness. 402

Token Calculation:Estimate the average token 403

size for each subset of the dataset. 404

Finally, all data were converted into a unified 405

JSON format to facilitate subsequent processing 406

and model input, yielding a clean, standardized 407

dataset suitable for defect prediction tasks. In sub- 408

sequent experiments, 500 data points were selected 409

for small-scale experiments, and 25,000 data points 410

were chosen for large-scale annotation. 411

4.3 Implementation Details 412

This section introduces the data annotation process 413

and the model voting and selection procedure. 414

4.3.1 Data Annotation Process 415

The data annotation process is divided into two 416

phases: small-batch data annotation and model 417

evaluation, and large-scale data annotation. 418

In the small-batch annotation phase, we ran- 419

domly selected 500 data points from the prepro- 420

cessed datasets and independently annotated them 421

using the five LLMs described in Section 4.1. We 422

designed multi-step CoT prompts for the five mod- 423

els, directing the model to perform a step-by-step 424

analysis of the code: first, identify the code’s func- 425

tionality; then, assess potential vulnerabilities or 426

issues, providing reasoned judgments and explana- 427

tions; finally, revise the code in accordance with 428

its intended functionality and the identified issues. 429

Consequently, we consistently used multi-step CoT 430

prompts in subsequent annotation work. Each 431

model generated corresponding defect labels and 432

explanations for each code data point based on our 433

carefully designed multi-step CoT prompts. Af- 434

ter completing the small-batch annotation, we ob- 435

tained different annotation results from the five 436

models for the same batch of data, providing a 437
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foundation for subsequent model evaluation and438

selection.439

In the large-scale annotation phase, we used the440

best model selected through evaluation (detailed in441

Section 4.4) to annotate the remaining 25,000 data442

points. The annotation process was consistent with443

the small-batch phase, also employing multi-step444

CoT prompts to ensure the quality of the large-scale445

annotated data.446

4.3.2 Best Annotation Model Selection447

To select a model that strikes the optimal balance448

between performance and cost for large-scale an-449

notation, we implemented a voting mechanism to450

systematically eliminate less effective annotation451

models.452

The voting process used LLMs as judges, in-453

putting the data annotated during the small-batch454

validation phase into the LLMs for voting. In the455

absence of ground truth, decisions were guided456

by the "majority is right" strategy, leveraging the457

LLMs’ ability to perform semantic difference iden-458

tification. Specifically, for each vote, we provided459

the original datasets(code) along with the data460

synthesized by the annotation models. The sys-461

tem prompt was configured to simulate the role462

of a "teacher," tasked with assessing the quality463

of the "student"(the LLM used during the anno-464

tation phase) and identifying the "least suitable"465

item. Additionally, we had three tasks, with the466

first "function description" and the second "CWE467

defect prediction" as the focus.Since the third task468

("defect repair suggestion generation") relied heav-469

ily on the outputs of the first two tasks, it was given470

lower priority during the voting process. Conse-471

quently, each voting session was restricted to two472

rounds.Specific user prompts and system prompts473

can be found in Appendix D.474

Although the tasks in the first and second rounds475

of voting both involved "semantic difference identi-476

fication," there were subtle differences. The output477

of the "function description" task was relatively478

simple, so the synthesized data from different mod-479

els might be semantically similar. Thus, the vot-480

ing model was required to select "at most one"481

unsuitable item in this round. The "CWE defect482

prediction" task was more challenging, as differ-483

ences in model capabilities or inherent probability484

distributions might lead to significant differences485

in synthesized data. Therefore, the voting model486

was required to select "at least one" unsuitable item487

in this round.488

We aimed for a good voting model to exhibit 489

low bias and low variance. Since we lacked true 490

labels, the first vote focused on variance, leading to 491

a "model unsuitable" candidate conclusion. For the 492

first attempt, we selected the voting model from 493

our model pool, preferring cost-effective options. 494

Thus, we chose "DeepSeek V3" and "Yi-lightning" 495

for the first vote. Each voting model conducted 496

three votes, and the results are shown in Figure 3. 497

Based on the analysis of Figure 3a-d, the follow- 498

ing preliminary conclusions can be drawn: 499

The average variance of the three votes in the 500

first round for D V3 is 15.2, compared to 24.5333 501

for Yi-lightning. In the second round, the vari- 502

ance of DeepSeek V3 is 19.15, significantly lower 503

than 81.5333 for 01, indicating that the variance of 504

DeepSeek V3 is reliable. 505

The Claude-3.5-Sonnet model performed poorly 506

in the first round, and Gemini-1.5-Pro-latest was 507

deemed "inappropriate" by both voting models. 508

Consequently, Claude-3.5-Sonnet is unsuitable for 509

the "function description" task, and Gemini-1.5- 510

Pro-latest is effectively rejected. 511

Yi-lightning exhibits a relatively high variance 512

and was frequently self-voted out, leading to its 513

elimination. In the voting between the two models, 514

the GPT-4o model performed better, prompting the 515

hypothesis that GPT-4o could also serve as a voting 516

model. If the voting trends of DeepSeek V3 and 517

GPT-4o are similar, then the bias of DeepSeek V3 518

may be acceptable. To test this, three votes were 519

conducted using GPT-4o, yielding the following 520

results: 521

From Figure 3ef, the following conclusions are 522

drawn: 523

The average variances of GPT-4o in the two 524

rounds are 27.8333 and 64.1833, respectively, with 525

DeepSeek V3’s variance consistently lower than 526

that of GPT-4o, further supporting the reliability of 527

DeepSeek V3’s variance. 528

The voting trends of DeepSeek V3 and 4o are 529

similar, suggesting that, under the proposed hypoth- 530

esis, the bias of DeepSeek V3 as a voting model 531

can be trusted. 532

It is concluded that Cluade-3.5-Sonnet should 533

not be entirely rejected, as it may be usable in the 534

second round. Additionally, ablation experiments 535

were conducted, detailed in Appendix E. 536

The comprehensive voting experiments lead to 537

the conclusion that DeepSeek V3 is a viable vot- 538

ing model. Further insights into the composition 539

of the model pool for subsequent large-scale data 540
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Figure 3: Validation Results of the Voting Model on Small-Scale Datasets

synthesis are as follows:541

For the first round of "function description," the542

model pool consists of (4o, DeepSeek V3), with543

a sampling ratio of 1:2, reflecting their compara-544

ble performance and adherence to the "low cost"545

principle.546

For the second round of "CWE defect predic-547

tion," the model pool includes (GPT-4o, DeepSeek548

V3, Cluade-3.5-Sonnet), with a ratio of 4:3:3 as549

suggested by the voting model.550

For the third round of "defect repair suggestion551

generation," which builds upon the previous tasks552

and is considered less challenging, Gemini-1.5-Pro-553

latest is also included, resulting in a model pool554

of (GPT-4o, DeepSeek V3, Cluade-3.5-Sonnet,555

Gemini-1.5-Pro-latest) with a ratio of 1:1:1:1.556

4.4 Evaluation of Synthetic Datasets Quality557

After a small-scale validation, we finalized the558

model pool for large-scale data synthesis, annotat-559

ing a total of 25,000 data entries. We then evaluated560

the models using the approach outlined in section561

3.5. During the evaluation process, GPT-4o consis-562

tently outperformed other models. Consequently,563

in the tasks of "function description" and "CWE564

defect prediction," we used GPT-4o’s outputs as565

"pseudo-labels" for reference. Additionally, we in-566

corporated the fix_code from the original datasets567

for a third round of scoring to ensure a comprehen-568

sive assessment. From the generated datasets, we569

selected 500 entries for quality evaluation.570

For the "function description" task, we employed571

the "m3e" embedding model to process the syn-572

thetic data from GPT-4o and the data sampled from573

our model pool. We then calculated the pairwise574

cosine similarity for the 1000 data entries, resulting575

in an average similarity score of 0.74. 576

In the "CWE defect prediction" task, we ex- 577

tracted the CWE type numbers from the outputs 578

of GPT-4o and our model pool. Following the 579

evaluation method in section 3.5, we first counted 580

the occurrences of each CWE defect type. Both 581

GPT-4o and our sampled data contained 34 distinct 582

CWE types, with 18 types being repeated. The 583

most frequently occurring CWE type was "CWE- 584

20 (Improper Input Validation)," indicating that 585

many programs are vulnerable to "injection at- 586

tacks." This suggests that developers may overly 587

rely on "client-side security checks" or "hidden 588

form fields," which can be bypassed or altered. Ad- 589

ditionally, "CWE-787 (Out-of-bounds Write)" and 590

"CWE-125 (Out-of-bounds Read)" were also com- 591

mon. While these defects may not immediately 592

cause exceptions, under certain conditions, they 593

could lead to program crashes, categorizing them 594

as "undefined exceptions." Some instances in the 595

defect prediction results were marked as "pass!", 596

indicating no defects were predicted. We recorded 597

these instances as "0." This process yielded two bi- 598

nary sparse matrices of shape (500, 50). We calcu- 599

lated the Jaccard similarity between these matrices, 600

resulting in a score of 0.54. 601

For the "defect repair suggestions" task, we 602

compared the repair outputs from LLMs, the 603

fix_code from the original datasets, and the dif- 604

ferences with the original code at the "line" level. 605

Following the method in section 3.5, we calcu- 606

lated the intra-line duplication rate. The scores 607

for GPT-4o and our model pool were 0.6062 608

and 0.6190, respectively. This indicates that our 609

method outperformed GPT-4o when compared to 610

the ground truth from the original datasets. Addi- 611
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tionally, the number of "pass!" instances in our612

model pool’s results was 75, compared to 92613

for GPT-4o, further demonstrating the superior-614

ity of our model pool. Given that the code re-615

paired by LLMs for defect prediction is more com-616

plete than the original datasets, it is highly likely617

that min(1, extra(sample_3, fix_code)) will be618

1. The experimental result was 5.851, yielding a619

score of 1.62 for the "defect repair suggestions"620

task.621

In summary, the overall quality evaluation score622

for our dataset is approximately 0.725, indicating a623

highly satisfactory dataset.624

We posit that the quality of the dataset surpasses625

the current evaluation scores, supported by the fol-626

lowing rationale: ①The SDK (encompassing the627

compiler, interpreter, library classes, etc.) utilized628

by the data is outdated, and subsequent updates to629

the related SDK versions have rendered the issues630

obsolete, thereby preventing the LLM from pre-631

dicting them; ②Certain defects are associated with632

functional requirements, for which we lack the nec-633

essary data; ③The "CWE defect prediction" task634

yielded a low score, as it is inherently challenging,635

and our evaluation benchmark, GPT-4o, exhibited636

high bias during the voting process, suggesting that637

GPT-4o may not be suitable as a "pseudo-label".638

Consequently, we contend that our dataset is supe-639

rior to the current evaluation outcomes. Moreover,640

our model pool sampling and the proposed frame-641

work facilitate a nuanced equilibrium among the642

cost of data synthesis, data quality, and diversity.643

5 Conclusion644

In this study, we contributed along three key dimen-645

sions: (1) developing the chain-of-thought frame-646

work TriCogVuln-LLM, designed specifically for647

defect prediction tasks, (2) constructing HandPick,648

the first bilingual, multi-language dataset for defect649

prediction tasks, comprising approximately 25,000650

entries and evaluation methodologies tailored to651

this framework, and (3) releasing a curated subset652

of 100 entries as a benchmark for defect prediction653

involving pre-trained models. Notably, our dataset654

achieved a high score of 72.5 on our proposed met-655

rics, underscoring its effectiveness for defect pre-656

diction across diverse programming languages. By657

addressing the significant gap in available defect658

prediction datasets tailored for LLMs, our work659

offers novel perspectives and resources for advanc-660

ing defect prediction research. To foster further661

collaboration, we have made portions of the Hand- 662

Pick dataset, along with the benchmark, publicly 663

available on HuggingFace2 and GitHub3. 664

Moving forward, we will focus on refining the 665

prompt design within our framework to enhance 666

dataset quality and scalability. Additionally, we 667

aim to explore the broader applicability of our 668

methods to a wider array of programming lan- 669

guages and software engineering tasks. We hope 670

that our open-source contributions serve as step- 671

ping stones for future research and progress in this 672

critical domain. 673

6 Limitations 674

Currently, our dataset covers only four common 675

programming languages. Given that our primary 676

application scenario is centered around Chinese 677

and Java, there is a notable absence of data ex- 678

ploration in other programming languages and 679

English. Although we have divided the defect 680

prediction task into three subtasks, our original 681

aim was to further refine and decompose this task 682

into additional, more granular subtasks. Moreover, 683

while our experimental design and ablation stud- 684

ies are methodologically robust, we must acknowl- 685

edge the limitation that the datasets lacks genuine, 686

human-authenticated labels, which remains an un- 687

resolved issue. Another limitation stems from the 688

underlying assumption in the small-batch valida- 689

tion phase—specifically, that the most dissimilar 690

instances are the least reliable. This assumption 691

may introduce biases and affect the evaluation of 692

the datasets.Additionally, the inherent limitations 693

of large language models (LLMs), including hallu- 694

cination and restricted capabilities, further compro- 695

mise datasets quality. Looking ahead, we plan to 696

refine our framework tasks and associated prompts, 697

expand our dataset by incorporating a wider array 698

of programming languages, and address dataset 699

quality concerns through an evident strategy: train- 700

ing LLM with the existing datasets, deploying the 701

updated LLM in real-world development environ- 702

ments to collect richer and more varied data, and 703

applying an iterative self-training approach to en- 704

hance the LLM’s performance over time. 705
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A Data Collection862

We gathered datasets from multiple programming863

languages, conducted data preprocessing, and the864

basic characteristics of the datasets are detailed in865

Table 1:866

The FixEval datasets(Haque et al., 2023) is de-867

signed for evaluating program repair models, fea-868

turing pairs of buggy and fixed code in Java and869

Python. Data is sourced from programming compe-870

tition platforms (e.g., AtCoder, Aizu Online Judge),871

with high complexity and problem difficulty levels872

(A-E). The extensive combinatorial search space 873

necessitates a thorough understanding of the task 874

for effective repair. 875

The Review4Repair datasets(Huq et al., 2022), 876

targeting Java programs, includes 55,060 training 877

and 2,961 test data points, leveraging code review 878

(CR) information to facilitate repair. 879

Proposed by Tufano et al., the BFP 880

datasets(Tufano et al., 2018) employs neural 881

machine translation (NMT) to learn vulnerability 882

repair models. Researchers extracted commits 883

with the keyword "bug fix" from GitHub Archive, 884

identifying around 10 million potential vulnera- 885

bility repairs. Manual sampling confirmed 97.6% 886

as genuine repairs, with the datasets focusing on 887

small methods (50 tokens). 888

XcodeEval(Khan et al., 2023), the largest multi- 889

language, multi-task code benchmark, spans 17 pro- 890

gramming languages and includes approximately 891

75,000 unique problems. It supports tasks such as 892

code understanding, generation, translation, and 893

retrieval, derived from competitive programming 894

with a focus on advanced programming and mathe- 895

matics. 896

Introduced by Viktor Csuvik and Laszlo Vidács 897

in 2022, the FixJS datasets (Csuvik and Vidács, 898

2022) concentrates on JavaScript bug-fix commits. 899

It was curated by selecting popular JavaScript 900

projects from platforms like GitHub and analyz- 901

ing version control history (e.g., git commits) to 902

extract relevant bug-fix submissions. 903

B Three-Step Chain of Thought Prompt 904

Function description generation involves guiding 905

the model to infer the intended function based on 906

the structure and content of the code and gener- 907

ate a description of the code’s functionality. The 908

prompts utilized for this task are depicted in Figure 909

4, with the English version provided as follows: 910

911

Function Description 912

System Prompt 913

Role: Senior Code Review Expert 914

Profile Description: As a Senior Code Review 915

Expert, responsible for conducting manual step-by- 916

step code reviews, identifying potential security 917

flaws, and providing specific CWE types. Directly 918

deliver results in the prescribed format without ad- 919

ditional explanations. 920

User Prompt 921
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Language Type Datasets Name Data Size Original Task Type

Java

FixEval 43000 Bugfix
Review4Repair 59172 Bugfix

BFP 1190331 Program Repair
XCodeEval 574448 Program Repair

C++ (C) XCodeEval 3409220 Program Repair
Python XCodeEval 461356 Program Repair

JavaScript FixJs 55551 Bugfix

Table 1: Datasets used in the experiment

Figure 4: Function Descriptions Prompt Terms and Ex-
amples of Model Responses

Please carefully read the following code and de-922

scribe its functionality in no more than 30 words:923

{code}924

A Example Of Model Output925

Process the card movement message and update926

the card position.927

928

Drawing on both software engineering knowl-929

edge and software testing experience, we have de-930

veloped specific techniques and guidelines for de-931

fect prediction. The prompts utilized for this task932

are depicted in Figure 5, with the English version933

provided as follows:934

935

CWE Defect Prediction936

System Prompt937

Role: Senior Code Review Expert938

Profile Description: Acting as a senior code re-939

view expert, responsible for manually reviewing940

code in sequential order, identifying potential se-941

curity flaws, specifying the exact CWE (Common942

Figure 5: CWE Defect Prediction Prompt Terms and
Examples of Model Responses

Weakness Enumeration) types, and providing re- 943

sults in a prescribed format without additional ex- 944

planations. 945

Skills 946

Proficient in common software security vulnera- 947

bilities and the CWE (Common Weakness Enumer- 948

ation) list. 949

Capable of conducting static code analysis and 950

manual code reviews. 951

Able to identify potential security risks in multi- 952

ple programming languages. 953

Able to clearly describe security defects and pro- 954

vide the corresponding CWE types. 955

Able to understand and apply secure coding best 956

practices. 957

Background: 958

Several years of experience in software develop- 959

ment and code security reviews. 960

Familiarity with common software security stan- 961

dards and regulations. 962

Constraints: 963

Code reviews must strictly follow the order of 964

code execution. 965

11



Review reports need to be clear and concise,966

avoiding vague descriptions.967

A thorough understanding of the code logic is968

required to prevent misjudgment and omissions.969

User Prompt970

Please analyze the provided code and informa-971

tion for potential software vulnerabilities or defects.972

If any are identified, please provide a detailed de-973

scription of the causes of these vulnerabilities, and974

attempt to classify them according to the CWE975

(Common Weakness Enumeration) types, focusing976

on the Top 10 CWEs or other notable CWEs. These977

include CWE-787 (Out-of-bounds Write), CWE-978

79 (Improper Neutralization of Input During Web979

Page Generation), CWE-89 (SQL Injection), CWE-980

416 (Use After Free), CWE-78 (OS Command981

Injection), CWE-20 (Improper Input Validation),982

CWE-125 (Out-of-bounds Read), CWE-22 (Path983

Traversal), CWE-352 (Cross-Site Request Forgery),984

and CWE-434 (Unrestricted File Upload). Your re-985

sponse should follow this format:If no defects are986

found in the code, output: ’CWE_Type’:’pass!’.If987

defects are present, output:[ {{’CWE_Type’:’ Indi-988

cate CWE type’, ’CWE_Code’:’ Indicate the code989

with defects’, ’CWE_Description’:’ Provide a Chi-990

nese explanation’}},991

{{’CWE_Type’:’# Indicate CWE type’,992

’CWE_Code’:’# Indicate the code with de-993

fects’, ’CWE_Description’:’# Provide a Chinese994

explanation’}} ]995

A Example Of Model Output996

[{’CWE_Type’: ’CWE-20’, ’CWE_Code’: ’n997

= int(input()) nb = list(map(int , input().split()))’,998

’CWE_Description’: ’User input is not validated,999

which may lead to invalid input or abnormal behav-1000

ior.’}]1001

1002

Building upon the system prompt utilized in1003

"CWE Defect Prediction" we devised a defect re-1004

pair suggestion generation step, aiming to leverage1005

the large model for repairing defective code. The1006

prompts utilized for this task are depicted in Figure1007

6, with the English version provided as follows:1008

1009

Defect Repair Suggestion Generation1010

System Prompt1011

Role: Senior Code Repair Expert1012

Profile Description: You are a senior code repair1013

expert who needs to fix the identified CWE types1014

Figure 6: Defect Repair Suggestion Generation Prompt
Terms and Examples of Model Responses

in the provided code based on its functionality and 1015

defects. Skills 1016

Proficient in various programming languages, 1017

including but not limited to C/C++, Java, Python, 1018

JavaScript, etc. In-depth understanding of com- 1019

mon code defect types (CWE) and the ability to 1020

accurately identify security vulnerabilities in code. 1021

Ability to propose effective code repair solutions 1022

based on code functionality, context, and CWE 1023

types. Capable of clearly explaining the causes 1024

of code defects and the principles behind repair 1025

solutions. Able to write high-quality, secure code 1026

and conduct thorough testing and validation. 1027

Background: 1028

Several years of experience in software develop- 1029

ment and code security reviews. 1030

Familiarity with common software security stan- 1031

dards and regulations. 1032

Constraints: 1033

Code reviews must strictly follow the order of 1034

code execution. 1035

Review reports need to be clear and concise, 1036

avoiding vague descriptions. 1037

A thorough understanding of the code logic is 1038

required to prevent misjudgment and omissions. 1039

User Prompt 1040

Based on the above code vulnerability analysis 1041

and code, provide the modified code (mainly the 1042

complete code) and a brief description of the re- 1043

pair method (indicating how you fixed it), without 1044

needing additional explanations. Please provide the 1045

answer in the following format: [ {{’repair_code’:”, 1046

# Complete code after repair ’repair_method’:” # 1047

Explanation in Chinese }}] 1048

12



A Example Of Model Output1049

[’repair_code’: ”’n = int(input())b = list(map(int,1050

input().split()))if len(b) != n:print("Input length1051

does not match")exit()c = [i for i in range(1,1052

n+1)]a = []for i in range(n):a.append([b[i],1053

c[i]])a.sort(key=lambda x: x[0])s = sum(b)r =1054

[]k = 0for i in range(n):if (s - a[i][0]) == a[n-1055

1][0] * 2:r.append(a[i][1])print(len(r))print(*r)”’,1056

’repair_method’: ’Added input length validation to1057

ensure input data matches expectations.’]1058

1059

C Large Language Model Pool1060

GPT-4o-2024-11-20(OpenAI): GPT-4o, developed1061

by OpenAI, represents the latest advancement1062

in language models, building upon GPT-4 with1063

enhanced reasoning capabilities, faster response1064

times, and improved multimodal understanding.1065

GPT-4o excels in various NLP and code generation1066

tasks.1067

DeepSeek V3 (DeepSeek): DeepSeek V3, the1068

newest model from DeepSeek, is specifically tai-1069

lored for code understanding and generation. It1070

leads in multiple code-related benchmarks, particu-1071

larly in managing complex code logic and produc-1072

ing high-quality code.1073

Claude-3.5-Sonnet-20241022 (Anthropic):1074

Claude-3.5-Sonnet, part of Anthropic’s Claude1075

3 series, is renowned for its robust security and1076

reliability, alongside advanced natural language1077

understanding and generation capabilities. It1078

performs exceptionally in tasks demanding high1079

security and reliability.1080

Gemini-1.5-Pro-latest (Google): Gemini-1.5-1081

Pro, Google’s latest multimodal large model, excels1082

in processing and generating text, images, audio,1083

and other data types, offering superior performance1084

in cross-modal understanding tasks.1085

Yi-lightning (01.AI): Yi-lightning, a high-1086

performance variant of the Yi series by 01.AI, is cel-1087

ebrated for its efficient inference speed and strong1088

performance, with Yi-lightning pushing the bound-1089

aries in speed without compromising on perfor-1090

mance.1091

Qwen-Max (Alibaba): Qwen-Max, the latest it-1092

eration in the Qwen series developed by Alibaba,1093

represents a significant enhancement over its pre-1094

decessors. It boasts superior reasoning capabilities,1095

enhanced multimodal processing efficiency, and1096

an expanded range of applications. Qwen-Max ex-1097

cels in various domains, including natural language1098

Figure 7: Voting Prompt Terms and Examples of Model
Responses

processing, code generation, and multimodal tasks, 1099

with notable proficiency in complex logical rea- 1100

soning and cross-modal comprehension. Beyond 1101

its technical superiority, Qwen-Max demonstrates 1102

exceptional stability and reliability in practical de- 1103

ployments, offering robust support for enterprise- 1104

level users. 1105

D Prompt for Expert Model Election 1106

Voting 1107

We designed a two-round voting process for the 1108

expert model. The first round focused on voting for 1109

the function description, while the second round 1110

targeted the CWE defect prediction. The prompts 1111

utilized for this task are depicted in Figure 7, with 1112

the English version provided as follows: 1113

1114

Voting 1115

System Prompt 1116

Role: Software Development Teacher 1117

Profile Description: Analyze the homework sub- 1118

missions of students. Each student’s submission 1119

consists of two rounds of answers: a function de- 1120

scription and a CWE defect type description. Iden- 1121

tify the most inconsistent answers among the sub- 1122

missions. 1123

Skills 1124

Semantic difference recognitionCode analysis- 1125

Software defect detectionTeaching guidance 1126
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Constraints1127

The following are some students’ homework an-1128

swers, which are based on CWE defect type predic-1129

tions. Please directly judge based on the students’1130

answers.1131

Workflows1132

Analyze Student Submissions: Review the func-1133

tion descriptions and CWE defect type descriptions1134

provided by the students.Compare Answers: Look1135

for discrepancies in the function functionality de-1136

scriptions or CWE types among the students’ an-1137

swers.Identify Inconsistencies: Use semantic dif-1138

ference recognition, code knowledge, and software1139

defect detection abilities to find the most inconsis-1140

tent answers among the submissions.1141

User Prompt in Round11142

Now evaluate the first round of students’ descrip-1143

tions regarding the function’s functionality. Please1144

read the homework answers provided by the four1145

students and select the one that is the most incon-1146

sistent, if any. In your response, you need to briefly1147

analyze the answers of the four students. Your an-1148

swer should be chosen from A, B, C, D, or None,1149

where None indicates that the answers from all four1150

students are basically consistent. Your response1151

should end with ’So my answer is: !’ followed by1152

your choice, such as ’So my answer is: A!’ Below1153

are the descriptions of the function’s functionality1154

from the four students regarding the same piece of1155

code: {function_description}1156

A Example Of Model Output in Round11157

First, let’s analyze each student’s answer:A:1158

Count the number of special segments with con-1159

secutive identical elements in the array. -BCount1160

the number of consecutive identical elements in1161

the array and calculate the score. C This piece of1162

code implements an adjacent element grouping and1163

counting algorithm for an array in C++, and it also1164

provides a detailed analysis of the safety issues in1165

the code. D: This code calculates the number of1166

distinct subarrays in an array, where all elements1167

in each subarray must be identical. E: Count the1168

pairs of consecutive identical elements in the ar-1169

ray that satisfy specific conditions. From these1170

descriptions, it can be seen that the descriptions1171

of A, B, D, and E all focus on certain characteris-1172

tics of consecutive identical elements in an array.1173

While the details differ, the overall direction is con-1174

sistent.However, C not only focuses on the function1175

of the algorithm but also provides a detailed analy-1176

sis of the safety issues in the code, making it clearly1177

different from the direction of the other students’ 1178

descriptions.Therefore, my answer is: C! 1179

User Prompt in Round2 1180

Now conducting the second round of student 1181

CWE type description reviews. Please analyze 1182

the following remaining students’ answers in con- 1183

junction with the information from the first round. 1184

Briefly analyze and identify at least one of the least 1185

consistent assignment answers. info The answers 1186

must be selected from {rest_answer}. If multiple 1187

students show inconsistencies, respond with the 1188

results separated by English commas. For identical 1189

answers, conclude with: "So my answer is: A!" or 1190

"So my answer is: A, B!" as appropriate. Below 1191

are the remaining students’ answers: {vulnerabil- 1192

ity_analysis}. 1193

A Example Of Model Output in Round2 1194

Now let’s analyze the CWE type descriptions of 1195

the remaining students:B : Identified three CWE- 1196

20 issues, primarily focused on insufficient input 1197

validation, which might lead to invalid input or 1198

exceptions. The descriptions are relatively con- 1199

sistent, centering on input validation problems.C 1200

: Identified three CWE issues, including CWE-20 1201

(insufficient input validation) and CWE-125 (array 1202

access not checked for null). The descriptions are 1203

more comprehensive, highlighting not only input 1204

validation but also the security of array access.D : 1205

Incomplete description, mentioning only the CWE- 1206

20 issue, but the description is truncated and cannot 1207

be fully analyzed.E : Identified two CWE issues, 1208

including CWE-125 (array access not checked for 1209

null) and CWE-20 (insufficient input validation). 1210

The descriptions are more specific, addressing both 1211

array access and input validation. From the above 1212

analysis, we can conclude:The descriptions from 1213

B and C are relatively consistent, primarily focus- 1214

ing on input validation issues (CWE-20).The de- 1215

scriptions from C and E are relatively consistent, 1216

addressing not only input validation but also the 1217

security of array access (CWE-125).The descrip- 1218

tion from D is incomplete, making it difficult to 1219

effectively compare with those of the other students. 1220

Thus, D’s description shows significant inconsis- 1221

tency compared to the others.So my answer is: D! 1222

1223

E Ablation Experiments And The 1224

Corresponding Analysis Of Results 1225

Given the critical importance of determining the 1226

voting model, we conducted extensive ablation ex- 1227
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Figure 8: Qwen-max Voting Results Round1

periments and analyzed the results. This appendix1228

presents three ablation experiments and their con-1229

clusions, along with an additional related result1230

analysis.1231

1. Fairness of the Model Voting Mechanisms1232

The voting models currently employed are1233

all drawn from the initial model pool (GPT-4o,1234

DeepSeek V3, Claude-3.5-Sonnet, Gemini-1.5-Pro-1235

latest, Yi-lightning). Consequently, we are con-1236

cerned that models may favor data aligning with1237

their own probability distributions, such as knowl-1238

edge distribution or syntactic structure, potentially1239

leading to a reluctance to vote against themselves.1240

Although we observed that the Yi-lightning model1241

does not appear to favor its own data during "se-1242

mantic difference recognition," the risk remains1243

significant when a model serves as both a partic-1244

ipant and an evaluator. To address this, we intro-1245

duced an external expert, Qwen-max, to perform1246

the same voting task. However, we conducted only1247

one round of voting to assess whether the afore-1248

mentioned risk necessitates attention. The results,1249

depicted in Figure 8, suggest that concerns regard-1250

ing the fairness of the models are unwarranted.1251

2. Effects of Including Both Pre-fix and Post-1252

fix Code1253

Our datasets includes instances with both pre-fix1254

and post-fix code, whereas our proposed work fo-1255

cuses solely on predicting the original code. There-1256

fore, we explored the potential utility of the post-fix1257

code. During the initial design of the annotation1258

prompt, we considered incorporating it, but this1259

approach poses risks. Including optimized code1260

might cause the model to focus more on the dif-1261

ferences between pre-fix and post-fix code rather1262

than the code itself or functional defects. This1263

could result in identifying more errors or eliminat-1264

ing fewer models, deviating from the original goal1265

Figure 9: Qwen-max Voting Results Round2

of semantic difference recognition and potentially 1266

compromising annotation quality. Nonetheless, we 1267

proceeded with this ablation experiment. The re- 1268

sults, illustrated in Figure 9, are noteworthy. When 1269

the original code is present, Claude-3.5-Sonnet ex- 1270

hibits a "polarization," becoming a highly "reli- 1271

able" model. While we have speculated on the 1272

underlying reasons, we conclude that Claude-3.5- 1273

Sonnet warrants further exploration and considera- 1274

tion for inclusion in the model pool. 1275

3. Impact of the First Round on the Second 1276

Round 1277

In our previous task setup, models eliminated 1278

in the first round do not participate in the second 1279

round. Given that the voting models rarely vote 1280

"none" in the first round, and our subjective belief 1281

that "function description" is a relatively simple 1282

task, we posed the question: What is the impact of 1283

the first round on the second round? Consequently, 1284

we bypassed the first round of voting and directly 1285

conducted the second round, with the voting results 1286

shown in Figure 10. This outcome is significant 1287

because, in prior model voting, Claude-3.5-Sonnet 1288

was seldom voted out in the second round, with 1289

two potential explanations: First, too many Claudes 1290

were voted out in the first round; Second, Claude- 1291

3.5-Sonnet is indeed "usable" in the second round. 1292

This ablation experiment clarifies that the latter 1293

explanation is accurate. 1294

4. CWE Labeling by Various Models 1295

We conducted a statistical analysis of the second 1296

round of "CWE defect prediction" on a small batch 1297

of annotations, as CWE-type is the only quantifi- 1298

able label. We were particularly interested in the 1299

number of CWE-types generated by each model, 1300

and this statistical analysis provides an additional 1301

perspective on the conclusions drawn by the vot- 1302

ing model. Using regular expression matching, we 1303
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Figure 10: The voting results of the ablation experiment
one on DeepSeekV3

Figure 11: The voting results of the ablation experiment
two on DeepSeekV3

obtained the final statistical results, as shown in1304

Figure 12. The models, from inner to outer in the1305

figure, are: Gemini-1.5-Pro-latest, DeepSeek V3,1306

Yi-lightning, GPT-4o, and Claude-3.5-Sonnet. This1307

figure illustrates the overall proportion of CWE-1308

types labeled by each model, reflecting their pref-1309

erences. It is evident that the models, from inner1310

to outer, tend to predict a higher number of CWE-1311

types and exhibit a greater focus on identifying1312

code defects.1313

5. Analysis of Voting Model Eliminations1314

We also examined the detailed voting patterns1315

of the voting model to better understand the spe-1316

cific behaviors of each model. Since the first round1317

of the voting model required the elimination of at1318

most one model, we similarly focused on the "CWE1319

defect prediction." Given the notable discrepancy1320

in the acceptance of claude’s synthesized data by1321

the GPT model compared to other models during1322

the second round of voting, we selected one round1323

of voting from GPT-4o and analyzed the number1324

of models eliminated in each voting round. The1325

results, as depicted in Figure 13, are particularly1326

noteworthy: (1) The highest probability was for the1327

Figure 12: Statistical results of the CWE-Type from the
small batch data labeling model

model to vote for the elimination of two models, 1328

and based on the voting results from GPT-4o, it is 1329

most likely that Yi-lightning and Gemini-1.5-Pro- 1330

latest were selected; (2) Interestingly, the proba- 1331

bility of eliminating three models was also quite 1332

high. 1333

We further analyzed the cases where three mod- 1334

els were eliminated and found that Claude-3.5- 1335

Sonnet was selected in nearly half of these in- 1336

stances. Additionally, during the analysis of 1337

GPT-4o, it was observed that Yi-lightning and 1338

Claude-3.5-Sonnet produced similar results, but Yi- 1339

lightning provided additional insights, suggesting 1340

that Yi-lightning should have been favored. How- 1341

ever, in the actual results, Yi-lightning was elim- 1342

inated. These results are noteworthy, and we hy- 1343

pothesize the following reasons: (1) In ablation ex- 1344

periment 4, Claude-3.5-Sonnet’s synthesized data 1345

demonstrated a preference for a higher number of 1346

CWE-types; (2) Claude-3.5-Sonnet had previously 1347

utilized GPT-4 data for RLAIF, which may have 1348

aligned Claude-3.5-Sonnet more closely with the 1349

preferences of GPT models. 1350
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Figure 13: Vulenrability Analysis Count Distribution
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