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Abstract

The rapid advancement of Large Language001
Models (LLMs) has driven growing demand002
for processing extended context sequences in003
contemporary applications. However, this004
progress faces two major challenges: perfor-005
mance degradation due to sequence lengths out-006
of-distribution, and excessively long inference007
times caused by the quadratic computational008
complexity of attention. These issues hinder009
the application of LLMs in long-context sce-010
narios. In this paper, we propose Dynamic011
Token-Level KV Cache Selection (TokenSe-012
lect), a training-free method for efficient and013
accurate long-context inference. TokenSelect014
builds upon the observation of non-contiguous015
attention sparsity, using Query-Key dot prod-016
ucts to measure per-head KV Cache criticality017
at token-level. By per-head soft voting mech-018
anism, TokenSelect selectively involves a few019
critical KV cache tokens in attention calcula-020
tion without sacrificing accuracy. To further021
accelerate TokenSelect, we design the Selection022
Cache based on observations of consecutive023
Query similarity and implemented efficient dot024
product kernel, significantly reducing the over-025
head. A comprehensive evaluation of TokenS-026
elect demonstrates up to 23.84× speedup in027
attention computation and up to 2.28× accel-028
eration in end-to-end latency, while providing029
superior performance compared to state-of-the-030
art long-context inference methods.031

1 Introduction032

With the rapid development of large language mod-033

els (LLMs), the number of parameters is no longer034

the sole factor significantly affecting model perfor-035

mance. The ability to effectively process longer036

context information has become one of the key037

metrics for evaluating LLMs’ capabilities. The038

latest applications such as cross-document under-039

standing (Bai et al., 2024), LLM-powered search040

systems (Sharma et al., 2024), and complex rea-041

soning (OpenAI) have all placed higher demands042
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Figure 1: Distribution of tokens participating in atten-
tion computation under different sparsity patterns (in-
dicated by blue dots). TokenSelect can more accurately
select critical tokens for attention computation.

on the long-context abilities of LLMs. There are 043

two main difficulties in using pre-trained LLMs for 044

long-context inference. On one hand, LLMs are 045

limited by their context length during pre-training 046

(e.g. Llama 3 only has 8192 tokens). Directly in- 047

ferencing on longer sequences can lead to severe 048

performance degradation due to reasons including 049

sequence lengths out-of-distribution (Xiao et al., 050

2024b; Han et al., 2024). On the other hand, even 051

if LLMs possess sufficiently large context lengths, 052

the quadratic computational complexity of atten- 053

tion with respect to sequence length makes the re- 054

sponse time for long-context inference unbearable. 055

Previous works have made numerous attempts 056

to address these difficulties. To extend the context 057

length of LLMs, the current common practice is 058

to perform post-training on long texts (Team et al., 059

2024; Yang et al., 2024a; GLM et al., 2024). How- 060

ever, this approach comes with significant com- 061

putational costs, particularly in two aspects: the 062

synthesis of high-quality long-text data and the 063

training process on extended sequences. To accel- 064

erate long-context inference, many studies focus on 065

the sparsity of attention, attempting to reduce the 066

scale of KV Cache involved in computation. The 067

key to this type of method lies in designing sparse 068

patterns for attention, which can be mainly divided 069

into two categories: one uses predefined sparse pat- 070

terns (Wang et al., 2019; Zaheer et al., 2020; Xiao 071

et al., 2024b; Han et al., 2024), while the other 072

estimates the potential importance of KV Cache 073
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during the inference process (Zhang et al., 2024c;074

Oren et al., 2024; Xiao et al., 2024a; Tang et al.,075

2024b; Jiang et al., 2024), attempting to select rele-076

vant KV Cache tokens into attention calculations.077

However, the design of these sparse patterns is078

often heuristically based on historical criticality079

or coarse-grained criticality estimation of tokens,080

making it difficult to ensure that the selected to-081

kens are truly critical, thus resulting in sub-optimal082

performance, as shown in Fig. 1.083

In this paper, we further observe the non-084

contiguous sparsity of attention, revealing the im-085

portance of designing more fine-grained dynamic086

sparse patterns. To this end, we propose TokenS-087

elect, a training-free approach that utilizes token-088

level selective sparse attention for efficient long-089

context inference and length extrapolation. Specifi-090

cally, for each Query, TokenSelect dynamically cal-091

culates token-level per-head criticality for the past092

KV Cache and selects the k most critical tokens093

through our head soft vote mechanism, involving094

them in the attention calculation. This reduces the095

scale of attention calculation to a constant length096

familiar to the model, while maintaining almost all097

of the long-context information, thereby simultane-098

ously addressing the two main difficulties for long-099

context inference. To reduce the overhead of token100

selection, TokenSelect manages the KV Cache in101

token-level pages (Zheng et al., 2024) and design102

efficient kernel for token selection based on paged103

KV Cache management through Triton (Tillet et al.,104

2019). Furthermore, based on our observation of105

high similarity between consecutive queries, we106

have designed the Selection Cache, which allows107

consecutive similar queries to share token selection108

results, thereby reducing the selection frequency109

while ensuring its effectiveness.110

We evaluate the performance and efficiency of111

TokenSelect on three representative long-context112

benchmarks using three open-source LLMs. The113

experimental results demonstrate that our TokenS-114

elect can achieve up to 23.84× speedup in atten-115

tion computation compared to FlashInfer (flashin-116

fer ai), and up to 2.28× acceleration in end-to-end117

inference latency compared to state-of-the-art long-118

context inference method (Xiao et al., 2024a). Si-119

multaneously, it provides superior performance on120

three long-text benchmarks. In summary, we make121

the following contributions:122

• An observation on the non-contiguous sparsity of123

attention that highlights the importance of token-124

level KV Cache selection.125

• TokenSelect, a training-free method that achieves 126

accurate and efficient long-context inference and 127

length extrapolation, which is compatible with 128

mainstream LLM serving systems. 129
• Comprehensive evaluations of our method, show- 130

ing up to 23.84× speedup in attention computa- 131

tion and up to 2.28× acceleration in end-to-end 132

latency while exhibiting superior performance. 133

2 Preliminaries 134

In this section, we introduce the inference of LLMs 135

and define the Selective Sparse Attention Problem. 136

2.1 LLMs Inference 137

Nowadays, mainstream LLMs are primarily based 138

on the Decoder-only Transformer architecture. 139

Each transformer layer includes a multi-head atten- 140

tion (MHA) and a feed-forward networks (FFN). 141

The inference process of LLMs can be divided into 142

two stages: the Prefill Stage and the Decode Stage. 143

The Prefill Stage is the preparatory phase of the 144

inference process. In this stage, the user’s input is 145

processed layer by layer through a single forward 146

pass of LLMs, generating KV Cache for each layer. 147

The generation of KV Cache is completed by the 148

MHA module. Assuming Xprefill ∈ Rnin×d is the 149

input of a transformer layer, where nin is the num- 150

ber of tokens in user’s input sequence and d is the 151

hidden size. The MHA computation in the Prefill 152

Stage is as follows (simplified to single head): 153

[Qprefill,Kprefill,Vprefill] = Xprefill · [Wq,Wk,Wv] , (1) 154

Oprefill = softmax
(
Qprefill ·Kprefill

⊤
√
d

)
·Vprefill, (2) 155

where Wq,Wk,Wv are linear projections, [·] 156

represents tensor concatenation operation, and 157

Eq.(2) is also known as Scaled Dot-Product At- 158

tention (SDPA). After these computation, Kprefill 159

and Vprefill are stored as the KV Cache for cur- 160

rent layer Kcache and Vcache, and Oprefill is used for 161

subsequent calculations. 162

The Decode Stage is the phase where LLMs ac- 163

tually generate the response. In the Decode Stage, 164

LLMs load the KV Cache and generate nout out- 165

put tokens autoregressively through nout forward 166

passes. Assuming Xdecode ∈ R1×d is the input of 167

a transformer layer in a forward pass, the compu- 168

tation of MHA in the Decode Stage is as follows 169

(The calculation of Qprefill and Oprefill is consistent 170

with that in the Prefill Stage): 171

Kdecode = [Kcache, Xdecode ·Wk] , Kcache ← Kdecode,

Vdecode = [Vcache, Xdecode ·Wv] , Vcache ← Vdecode,
(3) 172

where Kdecode,Vdecode are composed of the KV 173

Cache and the KV corresponding to the current 174
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Figure 2: Motivations for token-level selection. (a) Visualization of attention scores sparsity. (b) Attention scores
and critical token recalled by 1K token budget. (c) The L1 norm of attention logits in each attention head.

input, which are then used to update the KV Cache175

of the current layer for use in the next forward pass.176

LLMs inference, unlike training, is memory-177

bound, necessitating frequent GPU I/O operations178

between HBM and SRAM while underutilizing179

processing units. This bottleneck is particularly180

evident in SDPA computation. Optimizing for I/O181

is crucial for enhancing LLMs inference efficiency,182

especially in long-context scenarios.183

2.2 Selective Sparse Attention184

As discussed in the Sec. 1, the high attention spar-185

sity in LLMs suggests sparse attention as a promis-186

ing solution for long-context inference challenges.187

Sparse attention can keep the number of tokens188

participating in attention computations at a con-189

stant scale, rather than increasing with sequence190

length. Given that predefined sparse patterns are191

detrimental to performance, we aim to dynamically192

select crucial tokens at each step during the infer-193

ence process. Therefore, we formalize this problem194

according to the following definition.195

Definition 1 (Selective Sparse Attention Problem,196

informal). For current input of length C (C = 1197

in the Decode Stage) and KV Cache of length N ,198

assuming there are H attention heads with size of199

dh, let O be the output of the SDPA:200

O =

[
σ

(
Qh·[Kh

cache, Kh
current]

⊤
√
d

)
· [Vh

cache, V
h
current]

]H
h=1

,

(4)201
where σ denotes softmax, Qh,Kh

current,V
h
current ∈202

RC×dh are Query, Key, Value matrices of current203

input for head h and Kh
cache,V

h
cache ∈ RN×dh rep-204

resent the KV Cache. Let Ô be the output of the205
Selective Sparse Attention:206

Ô =

[
σ

(
Qh·[Kh

select, Kh
current]

⊤
√

d

)
· [Vh

select, V
h
current]

]H
h=1

,

(5)207
where Kh

select,V
h
select ∈ Rk×dh are k selected KV208

Cache (k ≪ N ). The selection of Kselect,Vselect is209
performed by selection function S:210

S (Q, Kcache) = I, where I ∈ P({1, · · · , N}),
Kselect = [(Kcache)i]i∈I , Vselect = [(Vcache)i]i∈I ,

(6) 211

where I is the set of selected indices. The objective 212

is to find an appropriate selection function S that 213

minimizes the difference between the outputs of the 214

SDPA and the selective sparse attention: 215

min
S

∥∥∥O− Ô
∥∥∥2
2
. (7) 216

Existing works on long-context inference can 217

be categorized under the Selective Sparse Atten- 218

tion Problem, with variations in the design of the 219

selection function S. Zaheer et al. (2020); Xiao 220

et al. (2024b) have developed input-independent 221

selection functions S(), while Zhang et al. (2024c); 222

Oren et al. (2024); Li et al. (2024) propose 223

Query-independent functions S(Kcache) for im- 224

proved performance. Current state-of-the-art meth- 225

ods (Xiao et al., 2024a; Tang et al., 2024b; Jiang 226

et al., 2024) utilize Query-aware selection func- 227

tions S(Q,Kcache). However, these approaches 228

typically operate at a block-level, which limits their 229

effectiveness and overall performance. 230

3 Motivations and Observations 231

Attention is Sparse, Non-contiguous and Head- 232

Distinctive. Previous works on long-context in- 233

ference have demonstrated the sparsity of atten- 234

tion scores in LLMs, particularly when processing 235

long texts. Recent approaches (Xiao et al., 2024a; 236

Jiang et al., 2024; Tang et al., 2024b) partition the 237

KV Cache into non-overlapping blocks, estimating 238

block criticality for sparse attention calculations. 239

These methods assume that tokens with higher at- 240

tention scores tend to be contiguous. However, 241

our further observations reveal that this assumption 242

does not always hold true in practice. As illustrated 243

in Fig. 2a, attention scores are sparsely distributed 244

at the token-level, with critical tokens not neces- 245

sarily contiguous. This non-contiguity leads to 246

significant omissions in block-level token selection. 247

Fig. 2b demonstrates that finer selection granularity 248

3



NQA Qasper MFQA HQA 2WikiMQA Musique GovReport QMSum MultiNews
Dataset

0.900

0.925

0.950

0.975

C
os

in
e 

Si
m

ila
ri

ty

(a) Consecutive queries show consistent similarity patterns across datasets. (b) Selection overlaps with similar queries.
Figure 3: Observations on similarity of consecutive queries. (a) Cosine similarity distribution between consecutive
queries. (b) The token selection overlap rate ( |Ii∩Ii+1|

|Ii+1| ) with respect to consecutive Query similarity.

improves recall of critical tokens, motivating us to249

perform token-level selection. For token-level se-250

lection, an intuitive approach would be to directly251

select the top-k tokens with the highest attention252

logits. However, observation in Fig. 2c reveals253

considerable disparity in the L1 norm of attention254

logits across attention heads. As a result, the selec-255

tion result tends to be dominated by a few heads256

with disproportionately large attention logits, driv-257

ing us to design a more robust selection function258

that maintains the independence of heads.259

Consecutive Queries are Similar. As sparsity of260

attention is dynamic (Jiang et al., 2024), token se-261

lection should be performed for every Query, which262

inevitably increases the computational overhead of263

selective sparse attention. Fortunately, we observe264

that consecutive Queries exhibit high similarity, as265

shown in Fig. 3a. Intuitively, when two consecutive266

Queries are highly similar, their dot products with267

the Keys will also be similar, leading to substantial268

overlap in the token selection results. Due to space269

constraints, we provide an informal lemma about270

this below. The formal version and corresponding271

proof can be found in the Appendix D.272

Lemma 1 (Informal). Consider Queries Q1,Q2 ∈273

R1×d that are consecutive and a Key set {Ki}Ni=1.274

Let I1, and I2 be the sets of indices of the top-275

k Keys selected by dot product for Q1, and Q2276

respectively. If cos(Q1,Q2) > ϵ, where ϵ is a277

threshold, then I1 = I2.278

Fig. 3b illustrates this lemma experimentally. It279

shows that the overlap rate of token selection tends280

to increase with Query similarity. This key in-281

sight motivates us to reuse selection results for sim-282

ilar queries, improving computational efficiency.283

Moreover, the similarity distribution of consecutive284

Queries remains consistent across different tasks,285

as demonstrated in Fig. 3a, allowing us to apply a286

global similarity threshold across all scenarios.287

4 Designs of TokenSelect 288

In this section, we will introduce the design details 289

of TokenSelect, primarily encompassing the Selec- 290

tion Function, the Selection Cache, and efficient 291

implementation of TokenSelect. The overall work- 292

flow of TokenSelect is illustrated in the appendix 293

(Fig. 9) due to space limitations. 294

4.1 Selection Function 295

The simplest selection function is to determine the 296

criticality of the tokens through the dot product of 297

Q and Kcache, then select the top-k critical ones 298

as Kselect,Vselect. The selected indices I are calcu- 299

lated as follow: 300

Itopk = TopK
(
Q ·Kh

cache
⊤)

. (8) 301

However, as discussed in Sec. 3, this approach 302

is prone to inaccuracies due to disparities in norm 303

of attention logits between heads. To maintain in- 304

dependence between heads, a better approach is 305

to have each head select the top-k most critical to- 306

kens, and then determine the final selection through 307

voting among the heads: 308

Ihead-vote = TopK

(
H∑

h=1

I
(
i ∈ TopK

(
Qh ·Kh

cache
⊤)))

,

(9) 309

where I is the indicator function. Unfortunately, 310

despite better performance, this method relies on 311

scatter_add and multiple topk operations, result- 312

ing in low efficiency on GPUs. Additionally, the 313

0/1 voting ignores the relative importance of tokens 314

for each head. Therefore, we propose a head soft 315

vote approach that offers better performance and 316

efficiency. Specifically, we first calculate the per- 317

head criticality, then normalize through softmax, 318

and sum the results for all heads: 319

Ihead-soft-vote = TopK

(
H∑

h=1

σ
(
Qh ·Kh

cache
⊤))

. (10) 320

4



4.2 Optimizing Selection Frequency321

Although the aforementioned selection function322

can reduce the complexity of attention from O(N2)323

to O(k2), k ≪ N , while maintaining performance,324

the execution time of the selection function itself325

still affects the latency of inference. To further ac-326

celerate long-context inference, based on our obser-327

vations of the similarity of consecutive queries, we328

design optimization strategies for both the Prefill329

Stage and the Decode Stage to reduce the selection330

frequency while ensuring its effectiveness.331

In the Prefill Stage, Qprefill ∈ Rnin×d is inputed.332

In long-context scenarios, the number of tokens333

in the user’s input sequence nin may reach up to334

1M, making it impractical to perform selection for335

each Query token. Considering the similarity of336

consecutive Queries, we use chunk-wise token se-337

lection, inputting 1
c

∑c
i=1(QC)i into the selection338

function, where QC ∈ Rc×d is the Query chunk339

and c is the chunk size. This method helps maintain340

the compute-intensive nature of the Prefill Stage,341

preventing it from becoming memory bound.342

In the Decode Stage, due to the auto-regressive343

characteristic of LLMs, we need to frequently per-344

form selection for Qdecode, and this process cannot345

be executed chunk-wise like in the Prefill Stage. To346

reduce the frequency of token selection in the De-347

code Stage, we propose the Selection Cache. Con-348

secutive similar Queries will hit the cache, thereby349

directly loading the cached selection results for the350

previous Query. The Selection Cache allows us to351

reduce decode latency while maintaining the per-352

formance. The formal formulation of the Selection353

Cache is detailed in Appendix C (Algorithm 1).354

4.3 Efficient Implementation355

To ensure that our proposed TokenSelect is ready356

for real-world applications, efficient implementa-357

tion is crucial. We first analyze the time breakdown358

of representative block-level selective sparse atten-359

tion method, InfLLM (Xiao et al., 2024a). From360

(1)(2)(3) in Fig. 4, we can observe that although361

selective sparse attention can significantly reduce362

the complexity of attention calculations, the ac-363

tual computation time is still highly dependent on364

the implementation. The incompatibility with effi-365

cient attention implementations such as Flash At-366

tention has resulted in methods requiring historical367

attention scores (Zhang et al., 2024c; Oren et al.,368

2024; Li et al., 2024; Xiao et al., 2024a) being dif-369

ficult to be applied in real-world Web applications.370

Through the analysis of InfLLM’s Flash Attention-371

Figure 4: Time breakdown for single chunk prefill step
under different attention implementations (chunk size:
512, KV Cache length: 128K, attended tokens: 4K).

compatible version, we make several discoveries. 372

The initial motivation for estimating token critical- 373

ity at the block-level is to reduce the overhead of 374

selection function (mainly considering dot product 375

calculation). However, we find that dot product is 376

not the primary performance bottleneck. Instead, 377

a significant portion of the overhead comes from 378

indexing the KV Cache using selected indices and 379

making them contiguous in GPU memory, which 380

frequently occurs during the updating of KV blocks 381

and the concatenation of selected KV Cache. The 382

extensive I/O required for this operation further ex- 383

acerbates the memory-bound in LLMs inference. 384

Based on this, we propose that Paged Attention is a 385

more suitable implementation for selective sparse 386

attention. Using Paged KV Cache management 387

(with page size=1 for TokenSelect), we can reduce 388

the I/O volume for selection results from the scale 389

of all selected KV Caches O(2kd) to the scale of 390

their indices O(k). However, by observing (4) in 391

Fig. 4, we find that we encounter another bottle- 392

neck under Paged KV Cache management. Since 393

logically contiguous KV Cache is not entirely con- 394

tiguous in GPU memory, it also needs to be made 395

contiguous before performing computational oper- 396

ations. To address this issue, we draw inspiration 397

from the concept of Paged Attention and implement 398

a Paged Dot Product Kernel using Triton (Tillet 399

et al., 2019), which significantly improves the over- 400

all efficiency of TokenSelect. 401

5 Experiments 402

In this section, we introduce the experimental setup 403

and evaluate the performance and efficiency of our 404

TokenSelect on long-context inference benchmarks. 405

5.1 Experimental Settings 406

Datasets. To evaluate TokenSelect’s performance 407

on long-context inference, we use three representa- 408

tive datasets: InfiniteBench (Zhang et al., 2024a), 409

RULER (Hsieh et al., 2024), and LongBench (Bai 410

et al., 2024). Detailed descriptions and the evalua- 411

tion metrics used are provided in Appendix F. 412

5



Methods En.Sum En.QA En.MC En.Dia Code.D Math.F R.PK R.Num R.KV Avg.

Qwen2-7B 23.80 14.92 54.59 8.50 28.17 19.71 28.81 28.64 19.00 25.13
NTK 18.73 15.34 41.28 7.50 24.87 27.71 99.15 97.46 59.80 43.54
SelfExtend 3.76 4.44 20.09 5.00 8.12 2.29 0.00 0.00 0.00 4.86
StreamingLLM 19.60 13.61 48.03 3.50 27.92 19.43 5.08 5.08 2.40 16.07
InfLLM 19.65 15.71 46.29 7.50 27.41 24.00 70.34 72.20 5.40 32.06
TokenSelect 22.62 18.86 54.31 7.50 30.20 21.71 100.00 100.00 86.60 49.08

Llama-3-8B 24.70 15.50 44.10 7.50 27.92 21.70 8.50 7.80 6.20 18.21
NTK 6.40 0.40 0.00 0.00 0.50 2.60 0.00 0.00 0.00 1.10
SelfExtend 14.70 8.60 19.70 0.00 0.00 22.60 100.00 100.00 0.20 29.53
StreamingLLM 20.40 14.30 40.60 5.00 28.43 21.40 8.50 8.30 0.40 16.37
InfLLM 24.30 19.50 43.70 10.50 27.41 23.70 100.00 99.00 5.00 39.23
TokenSelect 26.99 21.32 45.85 8.00 27.41 28.29 100.00 97.29 48.40 43.90

Yi-1.5-6B 18.78 10.48 39.74 5.00 29.95 16.00 5.08 5.08 0.00 14.45
NTK 4.66 0.58 0.87 0.00 0.00 1.43 0.00 0.00 0.00 0.83
SelfExtend 5.62 1.07 1.31 0.00 0.00 1.14 0.00 0.00 0.00 1.01
StreamingLLM 15.35 9.26 35.81 5.00 27.41 14.29 5.08 4.92 0.00 13.01
InfLLM 16.98 8.93 34.06 3.00 27.41 16.86 100.00 96.61 0.00 33.76
TokenSelect 21.13 12.32 40.61 5.50 30.71 20.86 100.00 99.83 0.00 36.77

Table 1: Comparison of different methods with different origin models on InfiniteBench.

Baselines. To conduct a comprehensive eval-413

uation of TokenSelect’s performance, we carry414

out benchmarks on three mainstream open-source415

LLMs - Qwen2-7B-Instruct (Yang et al., 2024a),416

Llama-3-8B-Instruct (Dubey et al., 2024), and417

Yi-1.5-6B-Chat (AI et al., 2024) - comparing418

against the following state-of-the-art long-context419

inference methods: NTK-aware scaled RoPE, Self-420

Extend, StreamingLLM, InfLLM and MInference.421

Detailed descriptions of these methods are pro-422

vided in Appendix E. It’s worth noting that since423

MInference doesn’t support length extrapolation,424

we use an alternative evaluation method, applying425

it to Llama-3-8B-Instruct-262k (Llama3 after426

long-text post-training). Additionally, we do not427

include another state-of-the-art method, QUEST,428

as it does not support Grouped Query Attention.429

Implementation details. In all experiments in430

this paper, we employ greedy decoding to ensure431

the reliability of the results. For our TokenSelect,432

we implement it on SGLang (Zheng et al., 2024),433

which is a fast serving framework based on Flasher-434

infer (flashinfer ai). We implement our method us-435

ing PyTorch (Paszke et al., 2019) and Triton (Tillet436

et al., 2019). We follow the baseline approach, in-437

cluding 128 initial tokens and nlocal most recent438

tokens in the attention computation in addition to439

the k selected tokens. For NTK and SelfExtend,440

we extend the model’s context length to 128K. For441

StreamLLM, we set nlocal = 4K . For InfLLM, we442

set k = 4K, nlocal = 4K. For our TokenSelect, we443

set k = 2K, nlocal = 512 to demonstrate our token-444

level KV Cache selection allows us to achieve bet-445

ter performance with a smaller token budget. Due446

to the need to demonstrate the method under dif-447

ferent nlocal and k, we denote the specific token448

budgets in the form of k+ nlocal if they differ from449

the aforementioned settings. For InfiniteBench and 450

LongBench, we set the threshold θ of the Selection 451

Cache to 0.9. We use NVIDIA A100 to conduct 452

all experiments. When inferencing sequences over 453

1M tokens, we additionally employee tensor paral- 454

lelism, which is transparent to our TokenSelect. 455

5.2 Performance Comparisons 456

InfiniteBench. As shown in Table 1, our TokenS- 457

elect achieves significantly superior overall per- 458

formance on InfiniteBench compared to all base- 459

line methods, even though TokenSelect uses the 460

smallest token budget (<3K). The fact that it sig- 461

nificantly outperforms the original models demon- 462

strates TokenSelect’s strong length extrapolation 463

capability. We analyze that this is due to our adop- 464

tion of a fine-grained KV Cache selection strat- 465

egy, while considering the equal contribution of 466

each head to selection, which ensures that we can 467

select most critical tokens. Observing the perfor- 468

mance of other methods, we find that RoPE in- 469

terpolation methods (NTK, SelfExtend) generally 470

perform poorly unless used on specially trained 471

models such as Qwen2-7B-Instruct. The better 472

performance of Qwen2-7B-Instruct on the origi- 473

nal model can also be attributed to this. The sparse 474

attention method StreamingLLM, based on fixed 475

sparse patterns, can guarantee some of the model’s 476

capabilities, but due to discarding a large amount 477

of long-context information, it performs poorly 478

on retrieval-related tasks (R.PK, R.Num, R.KV). 479

The block-level selection method InfLLM can re- 480

tain more long-context information compared to 481

StreamingLLM. However, due to its sub-optimal 482

block-level selection, it results in lower perfor- 483

mance on most tasks compared to TokenSelect, 484

even though we set a larger token budget for In- 485

fLLM. It is worth noting that Yi-1.5-6B does not 486
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Methods 4K 8K 16K 32K 64K 128K Avg.
Qwen2-7B 90.74 84.03 80.87 79.44 74.37 64.13 78.93
StreamingLLM 94.41 54.59 33.54 22.40 15.38 10.88 38.53
InfLLM (2K+512) 52.85 36.09 29.36 23.52 18.81 18.29 29.82
InfLLM (4K+4K) 55.22 52.10 40.53 29.77 21.56 18.64 36.30
Ours (2K+512) 94.11 81.81 68.68 60.62 51.81 42.75 66.63
Ours (4K+4K) 94.42 90.22 82.06 70.40 59.66 54.28 75.17
Llama-3-8B 93.79 90.23 0.09 0.00 0.00 0.00 30.69
StreamingLLM 93.68 54.48 33.77 20.35 14.88 11.47 38.11
InfLLM (2K+512) 79.79 52.43 40.12 33.60 25.68 23.39 42.50
InfLLM (4K+4K) 93.79 86.11 64.33 45.39 33.13 27.81 58.43
Ours (2K+512) 93.73 82.92 71.92 65.38 59.35 33.39 67.78
Ours (4K+4K) 93.88 90.29 70.13 57.72 48.36 39.38 66.63
Yi-1.5-6B 73.12 9.09 0.37 0.01 0.00 0.01 13.77
StreamingLLM 72.10 33.03 21.69 15.39 12.58 12.61 27.90
InfLLM (2K+512) 59.66 36.77 27.41 24.49 21.49 21.17 31.83
InfLLM (4K+4K) 74.81 52.57 27.65 22.83 20.19 19.48 36.26
Ours (2K+512) 75.93 59.55 49.69 42.36 34.68 31.36 48.93

Table 2: Performance comparison on RULER.

Methods InfiniteBench LongBench
En.Sum En.QA Code.D Math.F R.KV Avg.

Llama-3-8B-262K 20.2 12.4 22.1 26.6 14.4 33.9
+ MInference 20.5 12.9 22.3 33.1 12.8 38.4

Ours (w/ Llama-8K) 26.9 21.3 27.4 28.2 48.4 44.0

Table 3: Comparison of different methods on post-
trained models on InfiniteBench and LongBench.

perform normally on the R.KV task, as it is unable487

to correctly recite strings like the UUID.488

RULER. To further demonstrate the capability489

of TokenSelect, we conduct evaluation on the more490

challenging long-context benchmark RULER. Con-491

sidering the increased difficulty of RULER and its492

substantial computational requirements, we include493

only comparable baseline methods. As shown in494

Table 2, our TokenSelect maintains significantly495

superior overall performance compared to other496

long-context inference methods. For all models, To-497

kenSelect achieves length extrapolation while pre-498

serving the model’s original capabilities, benefiting499

from our efficient utilization of the model’s limited500

context length. Notably, due to the constraints of501

model’s context length, TokenSelect experiences502

performance degradation with larger token budgets503

(4K+4K) on Llama and Yi. However, its perfor-504

mance with smaller token budgets still significantly505

surpasses other baseline methods.506

LongBench. Due to space constraints, the results507

of LongBench are presented in the Appendix H.508

Although its relatively shorter text length makes509

it less suitable for evaluating state-of-the-art long-510

context inference methods, our TokenSelect still511

demonstrates superior overall performance com-512

pared to most baseline methods.513

Comparing to methods based-on post-trained514

model. In Table 3, we present the performance of515

the post-trained model and long-context inference516

method (Jiang et al., 2024) based on it. It shows517

that even compared to length extrapolation meth-518

S En.QA En.MC Code.D R.PK R.Num R.KV

Itopk 15.15 45.85 28.43 100.00 98.47 16.60
Ihead-vote 17.01 45.85 28.68 100.00 100.00 22.40
Ihead-soft-vote 18.86 54.31 30.20 100.00 100.00 86.60

Table 4: Ablation study of the Selection Function S on
InfiniteBench using Qwen2-7B-Instruct.

k En.Sum En.QA En.Mc Math.F R.Num R.KV

128 21.23 10.46 41.48 18.00 100.00 13.40
256 22.01 11.66 41.92 19.71 100.00 20.00
512 21.60 13.31 40.17 21.71 100.00 45.60
1K 21.35 15.13 44.10 21.71 100.00 73.00
2K 22.62 18.86 54.31 21.71 100.00 86.60
4K 24.09 21.11 51.53 21.71 100.00 88.00
8K 25.32 22.93 58.52 23.71 100.00 85.40
16K 26.54 23.04 62.88 28.16 100.00 72.00

Table 5: Performance vs. Number of selected tokens k
on InfiniteBench using Qwen2-7B-Instruct.

ods requiring additional training, the training-free 519

TokenSelect still exhibits superior performance on 520

most tasks. Although Minference can improve the 521

performance of the original model, it fails to re- 522

verse the negative impact of long-text post-training 523

on shorter text tasks (LongBench). 524

5.3 Ablation Studies 525

In ablation studies, we primarily analyze the impact 526

of different Selection Functions S on performance. 527

To compare the performance of different Selection 528

Functions S under low token budgets (i.e., token 529

efficiency), we maintain the 2K+512 configuration. 530

From Table 4, we can observe that our proposed 531

head soft vote mechanism performs significantly 532

better across all tasks. This indicates that using the 533

head soft vote mechanism to balance each head’s 534

contribution to token selection results can help us 535

avoid the domination of selection by few heads 536

with large attention logits. 537

5.4 Hyper-parameter Analysis 538

Number of selected tokens k. As shown in Table 539

5, we fix nlocal to a small value (512) to compare 540

the performance when selecting different numbers 541

of tokens. First, we observe that even selecting a 542

very small number of tokens (e.g., 128, 256), our 543

TokenSelect still demonstrates very comparable per- 544

formance. Then, as k increases, the effectiveness of 545

TokenSelect further improves, indicating that more 546

moderately critical tokens also contribute to the 547

retention of long-context information. Finally, we 548

find that when k is set to larger values (e.g., 16K), 549

our TokenSelect shows significant improvements 550

in most tasks, further advancing the performance 551

landscape of long-context inference methods. 552

Similarity threshold of the Selection Cache θ. 553

Fig. 5 shows that the Selection Cache hit rate in- 554
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Figure 5: Performance and Cache Rate with different threshold θ of the Selection Cache on Qwen2-7B-Instruct.
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Figure 6: Computation time vs. KV Cache lengths for single chunk prefill step using Qwen2-7B-Instruct. The
vertical axis represents the number of attended tokens. SDPA denotes full attention by Flashinfer (chunk size: 512).

2.28x 4.70x

Figure 7: End to end latency per sample with different
methods on InfiniteBench using Qwen2-7B-Instruct.

creases significantly as the similarity threshold θ555

decreases, converging around θ = 0.5. This sug-556

gests potential for further acceleration of TokenS-557

elect’s Decode Stage by reducing θ. Performance558

sensitivity to θ varies across tasks. While most559

tasks exhibit slight performance degradation with560

decreasing θ, and R.PK in InfiniteBench shows no561

degradation, more challenging retrieval tasks like562

R.KV demonstrate significant performance deteri-563

oration. This indicates higher dynamicity require-564

ments for token selection in these tasks.565

5.5 Efficiency Comparisons566

Efficiency of selective sparse attention. Fig. 6567

demonstrates the significant acceleration of atten-568

tion computation achieved by TokenSelect during569

long-context inference. With a KV Cache length of570

1M, TokenSelect can provide up to 23.84× speedup571

compared to FlashInfer, which is the inference ker-572

nel library we based on. This substantial improve-573

ment is attributed to our efficient kernel design.574

End-to-end efficiency. Fig. 7 compares the end-575

to-end latency of TokenSelect, InfLLM, and SDPA576

across various tasks. TokenSelect significantly ac-577

celerates long-context inference in real-world sce-578

narios, achieving a maximum speedup of 4.70×579

over SDPA and 2.28× over the state-of-the-art580
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Figure 8: Performance comparison on extended R.PK
and R.KV using Qwen2-7B-Instruct.

long-context inference method while also deliv- 581

ering superior overall performance. 582

5.6 Scaling Beyond 1 Million Context Length 583

To further explore TokenSelect’s performance in 584

extreme long-context scenarios, we design an ex- 585

tended benchmark with different text lengths fol- 586

lowing InfiniteBench. As illustrated in the Fig. 587

8, our TokenSelect demonstrates the ability to ac- 588

curately capture critical information with a small 589

token budget in contexts up to 2M tokens, under- 590

scoring its potential in more application scenarios. 591

6 Conclusion 592

In this paper, we introduces TokenSelect, a training- 593

free approach for efficient long-context inference 594

and length extrapolation. TokenSelect addresses the 595

two major challenges faced by LLMs in process- 596

ing long texts: the context length limitation from 597

pre-training and the computational complexity of 598

attention. This is achieved through a novel token- 599

level selective sparse attention mechanism. Exper- 600

imental results demonstrate that TokenSelect can 601

achieve up to 23.84× speedup in attention compu- 602

tation and up to 2.28× acceleration in end-to-end 603

inference latency, while exhibiting superior perfor- 604

mance across multiple long-context benchmarks. 605
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7 Limitations606

Our approach has inherent limitations that present607

opportunities for future work. A primary limi-608

tation of our method is that its training-free de-609

sign—a significant advantage—acts as a double-610

edged sword, as its absolute performance is inher-611

ently tied to the quality of the underlying LLMs.612

Although our experiments demonstrate robustness613

of TokenSelect across various LLMs, some inher-614

ent shortcomings—such as the misrecognition of615

UUID strings by Yi-1.5-6B-Chat—indicate that616

certain issues may still require training to resolve.617

Moreover, while our method currently achieves618

state-of-the-art performance in long-context infer-619

ence, recent long-text post-training techniques in620

the LLM community have shown impressive per-621

formance; notably, our TokenSelect is orthogonal622

to these approaches and can be employed dur-623

ing inference to trade a slight performance drop624

for significant efficiency gains. Finally, although625

our method achieves state-of-the-art efficiency im-626

provements in long-context inference, the task re-627

mains inherently resource-intensive. For instance,628

even with a 8B-parameter model, complex bench-629

marks (e.g., RULER) can require approximately630

8×A100 GPUs for nearly one day of runtime, and631

the computational cost is expected to increase sub-632

stantially for larger models. We hope that our work,633

together with the community’s advances in model634

design, algorithm development, and infrastructure635

optimization, will help pave the way for further636

mitigating these computational challenges.637
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A Related Works 964

Long-context LLMs Due to computational com- 965

plexity constraints, current LLMs based on Trans- 966

formers often utilize limited context lengths dur- 967

ing pre-training (Touvron et al., 2023; Dubey 968

et al., 2024; Jiang et al., 2023; Yang et al., 2024a; 969

GLM et al., 2024; AI et al., 2024). To extend 970

the long-context capabilities of LLMs, current 971

methods can be broadly categorized into three ap- 972

proaches (Huang et al., 2024; Zhou et al., 2024; 973

Zhao et al., 2024): 1) Modifying positional en- 974

codings: A widely adopted method is positional 975

interpolation (Chen et al., 2023). Chen et al. first 976

proposed linear scaling of RoPE (Su et al., 2024) 977

to map longer positional ranges within the original 978

training window. Subsequent works (bloc97, 2023; 979

emozilla, 2023) further improved this method us- 980

ing Neural Tangent Kernel (NTK) theory (Jacot 981

et al., 2018), achieving longer context windows 982

while maintaining model performance. Methods 983

like YaRN (Peng et al., 2024) and Giraffe (Pal 984

et al., 2023) optimize interpolation effects by ad- 985

justing frequency components or introducing tem- 986

perature parameters. 2) Long-context post-training: 987

This approach extends the model’s context length 988

through additional training steps on longer docu- 989

ments after pre-training (Yang et al., 2024c; Tian 990

et al., 2024). It has been widely adopted by lead- 991

ing LLMs (Team et al., 2024; Yang et al., 2024a; 992

GLM et al., 2024) with the support of sequence par- 993

allelism techniques (Shoeybi et al., 2020; Jacobs 994

et al., 2023; Liu et al., 2024b). 3) Incorporating 995

additional memory modules: Notable examples 996

include Transformer-XL (Dai* et al., 2019), Com- 997

pressive Transformer (Rae et al., 2020), RMT (Bu- 998

latov et al., 2022) and Infini-attention (Munkhdalai 999

et al., 2024). Although these methods have ex- 1000

panded the context length of LLMs, long-context 1001

inference still faces the challenge of high computa- 1002

tional costs. 1003

Efficient Long-context Inference In state-of- 1004

the-art LLMs serving systems (Kwon et al., 1005

2023; Huggingface, 2024; NVIDIA, 2024; Zheng 1006

et al., 2024), technologies such as Flash Atten- 1007

tion (Dao et al., 2022; Dao, 2024) and Paged At- 1008

tention (Kwon et al., 2023) have greatly optimized 1009

LLMs inference efficiency by improving GPU I/O 1010

bottlenecks. However, in long-context inference 1011

scenarios, the quadratic computational complexity 1012

of attention with respect to sequence length poses 1013

new challenges for LLMs inference. Numerous 1014
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Figure 9: The illustration of TokenSelect, which involves calculating per-head criticality using the Paged Dot Product
Kernel, performing head soft vote to get selected indices, and executing selective sparse attention via the Paged
Attention Kernel.

studies focus on the sparsity of attention, select-1015

ing partial KV Cache for attention calculations to1016

improve long-context inference efficiency. Sliding1017

window (Wang et al., 2019; Zaheer et al., 2020)1018

is one of the most widely used sparse patterns,1019

reducing complexity to linear by executing atten-1020

tion computations within localized windows. Re-1021

cent works like StreamingLLM (Xiao et al., 2024b)1022

and LM-infinite (Han et al., 2024) retain the ini-1023

tial tokens of the sequence in addition to sliding1024

windows, effectively maintaining LLMs’ perfor-1025

mance when processing long sequences. While1026

these approaches are simple to implement, they1027

cannot retain information from long contexts. An-1028

other approach focuses on dynamic KV Cache se-1029

lection during inference. Methods like H2O (Zhang1030

et al., 2024c), TOVA (Oren et al., 2024), Fast-1031

Gen (Ge et al., 2024), Scissorhands (Liu et al.,1032

2023), and SnapKV (Li et al., 2024) evaluate to-1033

ken criticality based on historical attention scores,1034

selecting tokens within a limited budget. How-1035

ever, these methods permanently discard parts of1036

the KV Cache, causing information loss from long1037

contexts. To address this, InfLLM (Xiao et al.,1038

2024a) introduces Block Memory Units for KV1039

Cache management, retrieving information from1040

long contexts and offloading less-used blocks to1041

CPU. Similarly, QUEST (Tang et al., 2024b) pro-1042

poses query-aware sparsity at page granularity, 1043

while MInference (Jiang et al., 2024) optimizes 1044

long-context inference using three sparse patterns. 1045

Apart from considering all attention heads, some 1046

other works (Ribar et al., 2024; Lee et al., 2024; 1047

Tang et al., 2024a) attempt to focus on only a sub- 1048

set of attention heads. Beyond selection, some 1049

other research focuses on KV Cache quantiza- 1050

tion (Liu et al., 2024c; Yang et al., 2024b; He et al., 1051

2024; Kang et al., 2024) and merging (Liu et al., 1052

2024a; Wan et al., 2024; Zhang et al., 2024b; Wang 1053

et al., 2024). While existing methods have shown 1054

progress, opportunities for further improvement 1055

remain in achieving optimal accuracy and compu- 1056

tational efficiency for real-world deployment. 1057

B The Illustration of TokenSelect 1058

The workflow of TokenSelect are illustrated in 1059

Fig. 9. 1060
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C The Selection Cache Algorithm1061

Algorithm 1 Selection Cache Algorithm
Require: Q: current Query, k: number of selected tokens,

CQ: Query cache, CI : selection cache,
θ: similarity threshold,
S: selection function (Eq.(10)),
f : first query flags (default True)

Ensure: I: selected indices
1: if f or cos(Q,CQ) < θ then
2: I ← S(Q, k)
3: CI ← I
4: CQ ← Q
5: f ← False
6: else
7: I ← CI
8: end if
9: return I

D Formal Statement and Proof of Lemma1062

Lemma 1 (Invariant Top-k Key Selection under1063

Cosine Similarity Threshold, Formal).1064

Assumptions:1065

1. Let q1,q2 ∈ Rd be two query vectors.1066

2. Let {ki}Ni=1 ⊂ Rd be a finite set of key vec-1067

tors.1068

3. Let k be a positive integer such that 1 ≤ k ≤1069

N .1070

4. Define the cosine similarity between vectors1071

a,b ∈ Rd as:1072

cos(a,b) =
ab

∥a∥2∥b∥2
,1073

where ∥ · ∥2 denotes the Euclidean norm.1074

5. Define the top-k selection function based1075

on dot product similarity as: I(q) =1076

argmaxS⊆{1,2,...,N},|S|=k

∑
i∈S q · ki. As-1077

sume that for any query vectors q, the top-k1078

set I(q) is uniquely determined.1079

6. Let ϵ ∈ (0, 1] be a predefined threshold.1080

Lemma Statement: If the cosine similarity be-1081

tween the two query vectors q1 and q2 satisfies1082

cos(q1,q2) > ϵ,1083

then the indices of the top-k keys selected by q11084

and q2 are identical, i.e.,1085

I(q1) = I(q2).1086

Proof: We start with the given condition: 1087

min
1≤i≤k

q1ki −max
j>k

q1kj > η, 1088

which we aim to use to demonstrate that: 1089

min
1≤i≤k

q2ki −max
j>k

q2kj > 0. 1090

To facilitate our analysis, we introduce the follow- 1091

ing notations: 1092

η̂ =
η

∥q1∥
, q̂1 =

q1

∥q1∥
, q̂2 =

q2

∥q2∥
. 1093

With these definitions, the original condition be- 1094

comes: 1095

min
1≤i≤k

q̂1ki −max
j>k

q̂1kj > η̂, 1096

and our goal transforms to showing: 1097

min
1≤i≤k

q̂2ki −max
j>k

q̂2kj > 0. 1098

Next, let θ denote the angle between q1 and q2, 1099

cos θ = q̂1 · q̂2. We can further define: 1100

p1 = q2 − q1 cos θ, p̂1 =
p1

∥p1∥
, 1101

then sin θ = p̂1 · q̂2, and 1102

q̂2 = q̂1 cos θ + p̂1 sin θ. 1103

Then we have: 1104

min
1≤i≤k

q̂2ki = min
1≤i≤k

(q̂1 cos θ + p̂1 sin θ)ki, 1105

≥ min
1≤i≤k

q̂1ki cos θ + min
1≤i≤k

p̂1ki sin θ, 1106

≥ q̂1kk cos θ − ∥k∥max sin θ, 1107

and 1108

max
j>k

q̂2kj = max
j>k

(q̂1 cos θ + p̂1 sin θ)kj 1109

≤ max
j>k

q̂1ki cos θ +max
j>k

p̂1ki sin θ, 1110

≤ q̂1kp+1 cos θ + ∥k∥max sin θ. 1111

Therefore, 1112

min
1≤i≤k

q̂2ki −max
j>k

q̂2kj ≥ q̂1kp cos θ − ∥k∥max sin θ 1113

− (q̂1kp+1 cos θ + ∥k∥max sin θ) 1114

= (q̂1kp cos θ − q̂1kp+1 cos θ) 1115

− 2∥k∥max sin θ 1116

≥ η̂ cos θ − 2∥k∥max sin θ. (11) 1117
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In order to have Eqn. (11) > 0, we require1118

η̂ cos θ > 2∥k∥max sin θ,1119

⇒ sin θ

cos θ
<

η̂

2∥k∥max
,1120

⇒ 1− cos2 θ

cos2 θ
<

( η̂

2∥k∥max

)2
,1121

⇒ cos θ ≥ 1√
1 +

(
η̂

2∥k∥max

)2
.1122

This final inequality establishes a sufficient con-1123

dition for the original statement to hold, thereby1124

completing the proof.1125

E Detailed Descriptions on Baselines1126

In this paper, we use the following baselines:1127

• NTK-Aware Scaled RoPE (bloc97, 2023): A1128

nonlinear RoPE interpolation method.1129

• SelfExtend: A RoPE interpolation method that1130

reuses the position ids of neighboring tokens.1131

• StreamingLLM (Xiao et al., 2024b): The1132

state-of-the-ar method for long-context infer-1133

ence with predefined sparse patterns. Similar1134

approaches include LM-Infinite (Han et al.,1135

2024).1136

• InfLLM (Xiao et al., 2024a): The state-of-1137

the-art method for long-context inference and1138

length extrapolation using a block-level selec-1139

tive sparse attention method.1140

• MInference (Jiang et al., 2024): The state-of-1141

the-ar method for long-context prefilling accel-1142

eration, utilizing three sparse patterns including1143

block-level sparse attention.1144

F More Information on Datasets1145

In this paper, we use the following datasets:1146

• InfiniteBench (Zhang et al., 2024a): The main-1147

stream long-context benchmark consisting of1148

multi-tasks. The average length of it exceeds1149

200K tokens.1150

• RULER (Hsieh et al., 2024): A challenging1151

long-context benchmark containing 13 differ-1152

ent tasks, with subsets of varying lengths up to1153

128K tokens.1154

• LongBench (Bai et al., 2024): Another main- 1155

stream long-context benchmark comprising 6 1156

types of tasks. The 95% percentile for its 1157

lengths is 31K tokens. 1158

For InfiniteBench (Zhang et al., 2024a), we use 1159

longbook_sum_eng (En.Sum), longbook_qa_eng 1160

(En.QA), longbook_choice_eng (En.MC), longdi- 1161

alogue_qa_eng (En.Dia), code_debug (Code.D), 1162

math_find (Math.F), passkey (R.PK), num- 1163

ber_string (R.Num) and kv_retrieval (R.KV) as 1164

evaluation datasets. The corresponding evaluation 1165

metrics are shown in Table 7. RULER (Hsieh et al., 1166

2024) consists of various evaluation tasks: Single 1167

NIAH (needle in a haystack), Multi-keys NIAH, 1168

Multi-values NIAH, Multi-values NIAH, Multi- 1169

queries NIAH, Variable Tracking, Common Words 1170

Extraction, Frequent Words Extraction and Ques- 1171

tion Answering. The evaluation metric is match 1172

rate. For LongBench, we use all English tasks with 1173

evaluation metrics in Table 8. 1174

G Effiency Comparison with MInference 1175

We note that Minference (Jiang et al., 2024) has 1176

gained widespread adoption in real-world long- 1177

context inference applications due to its novel de- 1178

sign of attention sparse patterns and efficient im- 1179

plementation based on vLLM. In the main text, 1180

we demonstrated TokenSelect’s performance advan- 1181

tages. To further prove its efficiency readiness for 1182

real-world applications, we followed Minference’s 1183

approach by comparing the end-to-end prefill la- 1184

tency under paged KV Cache management for dif- 1185

ferent input token lengths on Llama-3-8B using a 1186

single A100, with results shown in Table 6. The 1187

results indicate that TokenSelect demonstrates sig- 1188

nificant advantages with shorter input token lengths, 1189

while maintaining efficiency comparable to MIn- 1190

ference as input token lengths increase.

Length FlashAttention-2
(vLLM)

MInference
(vLLM) TokenSelect

1K 0.081 3.017 0.092
10K 0.832 2.762 1.290
50K 7.717 7.540 5.712
100K 21.731 14.081 12.088
128K 32.863 18.827 15.920
200K OOM OOM 26.500
300K OOM OOM 43.406

Table 6: Comparison of end-to-end prefill latency (s).

1191
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H Experimental Results on LongBench1192

Compared to InfiniteBench and RULER, Long-1193

Bench has much shorter text lengths. The 95% per-1194

centile for its lengths is 31K tokens. Considering1195

that recent LLMs after SFT generally have context1196

lengths of up to 32K tokens (Yang et al., 2024a),1197

LongBench is less suitable for evaluating state-of-1198

the-art long-context inference methods. Neverthe-1199

less, as shown in Table 9, our TokenSelect still1200

demonstrates superior overall performance com-1201

pared to most baseline methods. It’s worth noting1202

that Yi-1.5-6B did not yield effective results on1203

the SAMSum task because it failed to correctly1204

follow instructions.1205
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Datasets En.Sum En.QA En.MC En.Dia Code.D Math.F R.PK R.Num R.KV
Metrics Rouge-L-Sum QA F1 Score Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy

Table 7: Evaluation metrics of different datasets on InfiniteBench.

Datasets NQA Qasper MFQA HQA 2WikiMQA Musique GovReport QMSum
Metrics QA F1 Score QA F1 Score QA F1 Score QA F1 Score QA F1 Score QA F1 Score Rouge-L Rouge-L

Datasets MultiNews TREC TQA SAMSum PsgCount PsgRetrieval LCC RepoBench-P
Metrics Rouge-L Accuracy QA F1 Score Rouge-L Accuracy Accuracy Code Sim Score Code Sim Score

Table 8: Evaluation metrics of different datasets on LongBench.

Methods NQA Qasper MFQA HQA 2WikiMQA Musique GovReport QMSum MultiNews

Qwen2-7B 24.24 45.42 47.79 42.76 44.38 24.16 33.80 23.78 26.17
NTK 26.25 45.94 50.76 53.20 50.31 30.83 32.75 23.21 25.94
SelfExtend 7.15 20.37 24.06 14.91 13.73 4.75 16.92 16.53 18.74
StreamLLM 19.49 42.56 39.63 42.43 44.67 15.22 31.51 20.57 26.00
InfLLM 27.47 41.44 46.99 47.47 49.29 25.62 32.68 23.10 26.77
TokenSelect 24.18 42.29 45.77 48.62 49.08 27.85 33.69 23.03 26.35

Llama-3-8B 19.85 42.36 41.03 47.38 39.20 22.96 29.94 21.45 27.51
NTK 9.90 45.35 49.41 48.86 29.22 24.56 34.31 23.82 27.27
SelfExtend 1.72 8.90 20.80 8.65 6.97 3.27 13.99 15.36 17.66
StreamLLM 20.05 42.46 39.54 43.69 37.89 19.68 29.17 21.33 27.56
InfLLM 22.64 43.70 49.03 49.04 35.61 26.06 30.76 22.70 27.57
TokenSelect 22.44 40.74 47.73 50.33 31.38 24.53 32.56 23.50 27.92

Yi-1.5-6B 17.18 32.56 39.06 36.26 39.25 16.32 30.53 20.21 26.20
NTK 0.80 35.06 29.05 7.47 24.38 0.73 13.66 6.25 25.43
SelfExtend 3.29 19.03 26.00 17.11 11.88 7.73 20.38 17.46 21.79
StreamLLM 15.05 33.27 38.31 34.91 36.92 16.33 29.38 20.02 26.14
InfLLM 17.65 36.25 45.40 41.25 35.89 16.94 30.22 20.85 26.04
TokenSelect 19.36 33.98 48.14 45.05 40.13 22.98 31.59 21.51 26.48

Methods TREC TQA SAMSum PsgCount PsgRetrieval LCC RepoBench-P Average

Qwen2-7B 78.50 88.77 46.33 5.50 70.00 62.40 61.95 45.37
NTK 79.50 89.51 46.03 5.50 60.00 59.36 59.69 46.17
SelfExtend 16.50 27.54 29.42 4.50 0.00 41.42 41.89 18.65
StreamLLM 75.50 87.19 46.27 3.50 27.50 61.18 61.12 40.27
InfLLM 70.50 87.51 44.53 4.00 46.50 55.08 57.53 42.90
TokenSelect 74.00 89.26 45.94 5.00 42.50 61.48 59.33 43.64

Llama-3-8B 74.00 90.50 42.30 8.50 62.50 60.83 49.14 42.46
NTK 73.00 88.74 42.51 8.87 99.50 33.62 35.04 42.12
SelfExtend 20.50 16.82 25.39 5.75 7.50 26.24 31.22 14.42
StreamLLM 73.50 90.08 41.55 5.00 49.00 60.35 48.95 40.61
InfLLM 73.50 90.91 42.43 7.17 84.00 59.88 46.48 44.46
TokenSelect 67.50 92.22 42.16 4.54 87.00 58.86 51.24 44.04

Yi-1.5-6B 71.50 48.79 0.79 3.00 28.50 57.10 52.53 32.48
NTK 40.00 12.71 1.34 0.50 3.35 54.55 37.24 18.28
SelfExtend 23.75 30.61 2.58 2.75 13.50 43.17 35.45 18.53
StreamLLM 69.00 73.36 0.82 2.50 18.50 56.37 49.05 32.49
InfLLM 71.50 71.49 1.01 4.00 10.50 56.88 46.28 33.25
TokenSelect 62.50 69.70 0.62 3.50 41.50 54.32 54.99 36.02

Table 9: Comparison of different methods with different origin models on LongBench.
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