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ABSTRACT

We introduce Graph Concept Bottleneck (GCB) as a new paradigm for self-
explainable Graph Neural Networks. GCB maps graphs into a concept space—a
concept bottleneck—where each concept is a natural language phrase, and pre-
dictions are made based on these concepts. Unlike existing interpretable GNNs
that primarily rely on subgraphs as explanations, the concept bottleneck provides a
more human-understandable form of interpretation. To refine the concept space,
we apply the information bottleneck principle to encourage the model to focus on
causal concepts instead of spurious ones. This not only yields more compact and
faithful explanations but also explicitly guides the model to think toward the correct
decision. We empirically show that GCB achieves intrinsic interpretability with
accuracy on par with black-box GNNs. Moreover, it delivers better performance
under distribution shifts and data perturbations, demonstrating improved robustness
and generalizability as a natural byproduct of concept-based reasoning.

1 INTRODUCTION

As Graph Neural Networks (GNNs) Kipf & Welling (2017); Veličković et al. (2018); Yun et al.
(2019); Xu et al. (2019) demonstrate strong performance in a wide range of real-world applications,
including high-stakes domains Wu et al. (2021)—trustworthiness has emerged as a critical concern.
One of the most effective ways to enhance trust is to provide transparent interpretations of the
prediction process Kakkad et al. (2023). In this context, intrinsic interpretability, which enables
models to explain their predictions directly without relying on post-hoc explanations, becomes a
particularly desirable property for GNN-based models Miao et al. (2022). Most self-explanable
GNNs (SE-GNNs) Miao et al. (2023); Yu et al. (2022); Wu et al. (2022); Dai & Wang (2021); Azzolin
et al. (2025); Dai & Wang (2025); Liu et al. (2025); Peng et al. (2024) focus on extracting the most
informative yet compressed causal subgraphs, which is assumed to be responsible for the prediction
and is used for both decision-making and explanation. However, while such subgraphs are typically
smaller and contain less redundant information, they are still graphs—often complex and difficult to
interpret. It remains challenging for humans to understand these explanations, especially in domains
where expert knowledge is lacking or the graph structure is intricate.

We aim to narrow the gap between model predictions and human understanding by introducing
an intermediate representation that is more interpretable than subgraphs. To this end, we propose
inserting a concept bottleneck layer into the neural network. Specifically, the input graph is mapped
to a concept layer that captures its activations over a set of semantically meaningful concepts. These
concept activations are then mapped to the label space through a few feedforward layers for label
prediction. In this way, the concept activations serve a dual purpose: they drive the prediction and si-
multaneously provide explanations for it. Although the general workflow is straightforward, adapting
it to graph prediction tasks is non-trivial and introduces several challenges: (1) Concept selection: It
is labor-intensive to predefine concept sets relevant to the prediction task, and graphs often represent
abstract structures (e.g., social networks), making it difficult to define and select meaningful, human-
interpretable concepts. (2) Concept alignment: It remains unclear how to effectively map the input
domain (graphs) to the concept domain (language). Unlike in vision-language tasks—where models
like CLIP Radford et al. (2021) provide off-the-shelf alignment—graphs exhibit irregular structures
and high variability across domains, and no such readily applicable model exists. Consequently, a
concept predictor that minimizes information leakage Havasi et al. (2022); Sun et al. (2024) must be
carefully designed to ensure faithful explanations.
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In light of these challenges, we propose Graph Concept Learning (GCB) as a new paradigm
for interpretable graph learning. GCB consists of three modules. First, we pre-train a universal
graph encoder using self-supervised Contrastive Concept–Graph Pretraining, which aligns graph
representations to the concept space. The resulting encoder can be applied across different downstream
datasets. Next, we construct an initial concept space through LLM-enhanced Concept Retrieval,
eliminating the need for manual annotation. This space is further refined by filtering out spurious
concepts while retaining causal ones via Information-Constrained Bottleneck Optimization. Finally,
we train a predictor that operates over the refined concept space to make task-specific predictions.

We conduct extensive experiments to evaluate the effectiveness of GCB. Supported by strong empiri-
cal evidence, we highlight two major contributions of GCB: (1) A language-based interpretable graph
learning framework. To the best of our knowledge, GCB is the first self-explainable graph learning
framework that projects graph inputs into a language space during prediction. This demonstrates
the potential of actively incorporating natural language as an integral part of the reasoning process,
enabling more interpretable and transparent deep learning on graph-structured data. Importantly, the
explanations provided are faithful to the model’s decision process and accurately reflect the semantic
meaning of the language concepts, without information leakage from labels to the concept space. (2)
A robust baseline for node-level classification. We show that GCB performs competitively with SOTA
GNNs in standard settings, and its advantages become more pronounced under distribution shifts and
data perturbations, establishing a strong baseline for robust and generalizable graph learning.

2 RELATED WORK

In recent years, there has been growing interest in self-explainable GNNs Miao et al. (2022; 2023);
Yu et al. (2021; 2022); Wu et al. (2020; 2022); Dai & Wang (2021); Feng et al. (2022); Azzolin et al.
(2025); Dai & Wang (2025); Liu et al. (2025); Peng et al. (2024), where the explainability component
is integrated into the prediction process. These methods typically generate informative subgraphs
that serve both as explanations and as the basis for predictions. One line of work Miao et al. (2022;
2023); Yu et al. (2021; 2022); Wu et al. (2020) leverages the information bottleneck principle, aiming
to extract the most informative yet compact subgraph by optimizing a graph information bottleneck
objective. Other approaches Wu et al. (2022); Dai & Wang (2021); Feng et al. (2022) introduce
structural constraints to promote interpretability. For example, DIR Wu et al. (2022) decomposes the
input graph into causal and non-causal components, enforcing that predictions depend only on the
causal part. Despite these advances, most existing methods still rely on subgraphs as explanations,
whose interpretability is not always guaranteed. More recently, researchers have begun exploring
alternative forms of explanation. For instance, Bechler-Speicher et al. (2024) proposes Graph Neural
Additive Networks, where the relationships between the input graph and the target variable can be
directly visualized. Sengupta & Rekik (2025) encodes interpretable cues (e.g., degrees, centrality)
into a context vector, which is then mapped into an explanation vector. Müller et al. (2023) employs
decision trees to build rule-based predictors that are understandable to humans. However, none of
these works employ natural language as a medium for explanations.

3 GRAPH CONCEPT BOTTLENECK

3.1 CONTRASTIVE CONCEPT–GRAPH PRETRAINING

We propose Contrastive Concept–Graph Pretraining (CCGP), which pretrains a multimodal model
to align graph and text representations in a shared space. CCGP is specifically designed to enhance
graph-to-concept alignment and can be applied universally across diverse datasets and domains.

Pretraining data. We collect unlabeled graph data from diverse domains to construct the pre-
training dataset for CCGP. Prior work Wang et al. (2024); Chen et al. (2024); Tang et al. (2024)
has demonstrated the remarkable ability of LLMs to understand and reason over graph-structured
data. Motivated by this, we leverage LLMs to generate self-supervised concept annotations. For
each dataset, we sample m instances; for each instance xi, we query GPT-3.5 Brown et al. (2020)
to generate a list of associated concepts (see Appendix B.1 for prompt details). We collect all
instance–concept list pairs {(xi, Ci)} for future procedures.
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We augment the pretrained data to improve the robustness of the pretrained model against noise
and structural perturbations. For each instance xi we create a set of perturbed graphs X aug

i ={
x̃
(1)
i , x̃

(2)
i , . . . , x̃

(M)
i

}
, where each x̃

(m)
i is constructed by perturbing the k-hop neighborhood of vi.

Each augmented view is obtained by randomly dropping/adding edges with ratios ρadd and ρdrop from
the original graph, and the augmented instance–concept list pairs are obtained as {(X aug

i , Ci)}
Encoders. The pretrained model consists of a graph encoder and a text encoder. The graph encoder
fGNN
θ (·) with trainable parameter θ is responsible for capturing both the feature attributes and

topological structure of the graph, and it should generalize well to downstream graph data, potentially
from different datasets. More expressive architectures, such as Graph Transformers, are capable of
modeling rich semantics and complex patterns, but they are more prone to overfitting than smaller
GNNs like GCN. We adopt a pretrained Sentence-BERT Reimers & Gurevych (2019) model as the
text encoder fLM(·), with parameters kept frozen throughout training. This choice leverages the
model’s strong general semantic capabilities, while avoiding the computational cost and overfitting
risks associated with fine-tuning large language models on limited data.

Set2set contrastive learning. For each graph (node) instance xi, we have a set of augmented views
X aug
i =

{
x̃
(1)
i , x̃

(2)
i , . . . , x̃

(M)
i

}
and a set of concepts Ci = {ci1, ci2, . . . , ciK}. This results in a

set-to-set alignment problem, where each augmented graph view x̃
(m)
i is semantically aligned with

every concept cij in Ci. During training, we construct positive pairs by sampling from the Cartesian
product of the augmented views and the concept set. Specifically, for each instance xi, we sample a
subset of positive pairs: Pi =

{(
x̃
(m)
i , cij

)
| m ∈ Mi, j ∈ Ki

}
where Mi ⊆ {1, 2, . . . ,M} and

Ki ⊆ {1, 2, . . . ,K} are sampled subsets of augmented views and concepts, respectively. For each
pair (x̃(m)

i , cij) ∈ Pi, we compute embeddings the graph embedding z
(m)
i = fGNN

θ (x̃
(m)
i ) and the

text embedding zconcept
ij = fLM(cij). We then apply a contrastive loss based on the InfoNCE van den

Oord et al. (2018) formulation to maximize the similarity between positive pairs while minimizing
similarity to negative pairs in the batch. The contrastive loss for each positive pair is defined as:

L(m)
i,j = − log

exp
(

sim
(
z
(m)
i , zconcept

ij

)
/τ

)
∑

(k,l,n)∈B
exp

(
sim

(
z
(m)
i , z

concept(n)
kl

)
/τ

) , (1)

where sim(·, ·) denotes cosine similarity, τ is the temperature parameter, and B is the set of all (view,
concept) pairs in the current batch. Overall, we formulate the learning objective as minimizing the
following contrastive loss with respect to model parameters θ:

θ∗ = argmin
θ

L(θ) = 1∑
i |Mi||Ki|

∑
i

∑
m∈Mi

∑
j∈Ki

L(m)
i,j (θ). (2)

This set-to-set sampling and contrastive learning ensure that the model learns to robustly align
multiple augmented views of each graph with multiple semantically meaningful concepts, improving
its generalization across diverse graph data. We donate the optimized graph encoder as fGNN(·). The
parameters of fGNN(·) are frozen during the subsequent training process to ensure independence from
label supervision, thereby minimizing potential information leakage and preserving the faithfulness
of the explanations.

3.2 LLM-EMPOWERED CONCEPT RETRIEVAL

Given the strong ability of LLMs in domain knowledge Lee et al. (2024), abstraction & pattern
recognition Lee et al. (2025b), and contextual reasoning Zhang et al. (2024), we construct the concept
space through two complementary approaches:

Global Concept Proposal. We expect LLMs to identify concepts to distinguish between classes
when instructed appropriately. Specifically, we provide detailed description of the dataset and ask the
LLM to generated an initial set of revelent concepts for each class. See B.1 for prompt details.

Instance-Based Concept Extraction. While Global Concept Proposal offers broader semantic
coverage and reflects domain-level priors, it may overlook dataset-specific nuances or generate
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abstract concepts that lack clear anchoring in the input graphs. Observing the richness of the training
data and LLMs’ ability to perform contextual reasoning and summarize fine-grained patterns on graph
data Wang et al. (2024); Chen et al. (2024); Tang et al. (2024), we propose to ask LLMs to recognize
relevant concepts given sampled graph instances (see Appendix B.1 for prompt details). Specifically,
we sample m graph instances from each class and apply the prompt to each sampled graph instance,
resulting in a large set of candidate concepts. We then identify a subset of concepts that are highly
relevant to each class, distinct from those used by other classes, and useful for improving class
discrimination. Please refer to the Appendix B.2 for the details of this process.

To control the quality and size of the concept set we perform several filtering steps to remove
redundant or irrelevant concepts. Details of the filtering process are provided in B.2. We denote the
filtered concepts from the Global Concept Proposal and Instance-Based Concept Extraction Cglob and
Cglob, separately. We combine Cglob and C inst as the candidate concept set as Ccandidate.

3.3 INFORMATION-CONSTRAINED CONCEPT OPTIMIZATION

The retrieved concept space in Section 3.2 may contain too many concepts, and some of them could
be irrelevant or spurious, hindering both the explanablity and the generalizability of the model. To
address this, we adopt the Information Bottleneck (IB) Alemi et al. (2017) criteria to encourage the
model to rely on a sparse set of concepts that are causal to the prediction.

Definition 1 The Information Bottleneck criteria is generally formulated as I(Z;Y )− βI(Z;X),
which seeks a representation Z that is both informative and compressed: maximizing mutual infor-
mation with the label Y while minimizing mutual information with the input X . A larger β results in
stronger compression, encouraging Z to retain only the most essential information for predicting Y .

In our model, we apply the IB objective to learn a gate vector g over the fixed concept space.
Specifically, for each concept j, we learn a soft gate:

gj = σ
(
MLPgate

ϕ (fLM(cj))
)
, (3)

where MLPgate
ϕ (·) is a learnable multi-layer perceptron applied to the concept embedding fLM(cj),

and σ(·) denotes the sigmoid activation function. We then apply the gate vector to the concept
activation vector of each instance i as zi = g ⊙ ci, where ⊙ denotes element-wise multiplication,
ci is the concept activation vector for instance i, and zi is the masked concept vector passed to the
classifier. Following the IB principle, we optimize the following objective:

min
1

N

N∑
i=1

Eϵ∼p(ϵ) [− log q(yi | zi)] + β KL (p(zi | xi) ∥ r(zi)) , (4)

where the first term promotes predictive accuracy, and the second term minimizes the Kull-
back–Leibler (KL) divergence between the concept representation zi and the input xi, effectively
penalizing their mutual information and encouraging a more compressed and focused representation.
In our framework, the prediction function q(yi | zi) is parameterized by a trainable multi-layer
perceptron MLPcls

ψ , which takes the masked concept vector zi as input. The gate vector g, which de-
termines the masking over the concept activations, is computed by a separate network parameterized
by ϕ. Since zi is deterministically computed and we do not model a distribution over p(zi | xi), we
approximate the KL divergence term with a deterministic sparsity regularizer. In particular, we use an
L1 penalty, which encourages the gate values to shrink toward zero, effectively suppressing irrelevant
concepts. This results in a sparse, interpretable concept selection, aligning with the Information
Bottleneck’s objective of compressing the intermediate representation while retaining task-relevant
information. Thus, the training objective in Equation 4 becomes:

min
ϕ,ψ

1

N

N∑
i=1

LCE
(
MLPcls

ψ (zi), yi
)
+ β ∥g∥1, (5)

where LCE denotes the cross-entropy loss between the predicted label distribution and the ground-
truth label. While the gates are continuous and soft during training, for interpretability, we require a
discrete selection of concepts. To achieve this, after the IB training phase, we freeze the learned gate
vector g and select the top-K concepts with the highest gate values Cselected = Top-Kj(gj), where
Cselected denotes the final set of selected concepts.

4
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3.4 PREDICTOR LEARNING

We use the selected concept set Cselected to make final predictions. For each instance xi, we compute a
concept activation vector xC

i ∈ R|Cselected|, where each element is defined as:

x
C,(j)
i = sim

(
fGNN(xi), f

LM(cj)
)
,

with cj ∈ Cselected denoting the j-th selected concept. sim(·, ·) denotes a similarity metric such as
cosine similarity. We then train a predictor using only the concept activation vector xC

i as input.
Specifically, we use a multi-layer perceptron (MLP) classifier MLPgate

θ , parameterized by θ, to predict
the label yi. The optimization objective is to minimize the cross-entropy loss over the training set:

θ∗ = argmin
θ

1

N

N∑
i=1

LCE
(
MLPgate

θ

(
xC
i

)
, yi

)
,

where LCE denotes the standard cross-entropy loss, and N is the number of training instances.

4 EXPERIMENTS

We investigate the robustness and interpretability of GCB. First, we evaluate its utility across datasets
from different domains and under varying conditions to assess robustness and generalizability to
distribution shifts and data perturbations (see Section 4.2). We then analyze the sensitivity of GCB
to concept size and the choice of graph encoders (Section 4.3). Next, we take a closer look at how
the relevance of concepts may affect model performance and potentially lead to information leakage
(Section 4.4). Finally, we conduct a case study to visualize how GCB provides intuitive explanations
for its predictions via the concept bottleneck layer (Section 4.5).

4.1 DATASETS

Following the practice in GraphCLIP (Zhu et al., 2025), we use non-overlapping datasets from diverse
domains to pretrain the Graph-Concept Alignment model. The graph data used for pre-training is
required to be of the same type as the downstream datasets to ensure transferability. In this work, we
focus on text-attributed graphs, where node attributes are textual descriptions of their contents.

Source datasets. We employ five source datasets: Pubmed (Sen et al., 2008) is citation net-
work in Biomedicine domain, Ele-Computers, Sports-Fitness, Books-Children, and
Books-History (Yan et al., 2023) are co-purchasing networks in e-commerce. For each dataset,
we sample 1,000 nodes and query GPT-3.5 Turbo to generate 10 concepts/keywords that appear in
each node’s ego network, serving as ground truth for the Graph-Concept Alignment task.

Target datasets. We use Cora (Sen et al., 2008), Citeseer (Sen et al., 2008),
Instagram (Huang et al., 2024), Reddit (Huang et al., 2024), and WikiCS (Mernyei & Cangea,
2020) as our target datasets. Cora and Citeseer are citation networks in the Computer Science
domain; Instagram and Reddit are social networks; and WikiCS is a Wikipedia article network.
We ensure that all target datasets are from different domains than the source datasets to evaluate
model generalizability and prevent any data leakage. We evaluate them under three settings:

• Regular setting. We randomly split each dataset into training, validation, and test sets such that all
sets follow the same data distribution.

• OOD setting. We split the dataset to induce distribution shifts between training and test sets.
Following (Han et al., 2025), we divide the data into majority and minority classes. During splitting,
instances from the majority class are γ times more likely to be included in the training/validation
set compared to those from the minority class, where γ is the upsampling ratio. A higher γ results
in a greater distribution shift between training and test sets. We set γ ∈ {2, 3, 5, 10}.

• Adversarial setting. Using the same split as the regular setting, we perturb the edges in the training
set by randomly dropping and adding edges for each node with a perturbation ratio ρ. We set
ρ ∈ {0.05, 0.1, 0.2, 0.3, 0.5}.

For all datasets and settings, we adopt a default train/validation/test split of 20%/20%/50%. We use
an inductive setting, where test nodes are entirely unseen during training and vice versa. We report the
Macro F1 scores and Balanced Accuracy Score (BACC) to evaluate model performance to account
for class imbalance. See C.1 and C.2 for further details on the datasets and experimental settings.
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4.2 MAIN RESULTS

We evaluate GCB on target datasets under three different settings. The regular setting assesses
whether GCB can provide intrinsic interpretability to GNNs with minimal loss in model utility. The
OOD setting contains distribution shifts, and the perturbation setting includes structural or feature
perturbations. For each setting, we also evaluate a set of SOTA GNN and MLP models, including
MLP, GCN Kipf & Welling (2017), GAT Veličković et al. (2018), GraphSAGE (SAGE) Hamilton
et al. (2017), and Graph Transformer (GT) Yun et al. (2019), as baselines for comparison. We
also compare with self-explainable GNNs including GIB Yu et al. (2021), VGIB Yu et al. (2022),
DIRGNN Wu et al. (2022), and SEGNN Dai & Wang (2021).

Table 1: Node classification performance in OOD settings with upsampling ratio γ = 5. The best-
performing interpretable GNN is underlined, and the overall best-performing method is bolded.

Cora Citeseer Instagram Reddit WikiCS

Method F1 (%) BACC (%) F1 (%) BACC (%) F1 (%) BACC (%) F1 (%) BACC (%) F1 (%) BACC (%)

MLP 50.00(0.63) 60.81(0.50) 38.44(0.99) 54.34(1.10) 35.42(0.58) 51.69(0.26) 16.38(0.52) 51.33(0.51) 54.31(0.31) 65.30(0.35)
GCN 55.10(0.66) 64.03(1.05) 46.52(0.92) 59.64(0.92) 36.98(0.84) 50.01(0.70) 12.91(0.38) 48.48(0.21) 59.04(1.66) 68.38(1.73)
GAT 51.30(1.27) 61.52(1.15) 45.62(1.01) 58.77(0.87) 33.31(0.59) 50.18(0.41) 12.93(0.30) 49.34(0.18) 57.05(1.00) 64.53(0.85)
SAGE 44.26(1.78) 53.95(1.65) 30.87(0.41) 48.42(0.47) 31.46(0.20) 48.27(0.18) 13.38(0.17) 49.18(0.47) 51.87(1.24) 62.06(1.37)
GT 38.26(1.64) 48.66(1.36) 28.38(1.58) 48.22(0.77) 30.90(0.43) 48.06(0.37) 12.64(0.54) 48.62(0.26) 54.06(0.84) 62.50(0.77)

DIR-GNN 23.07(2.70) 43.18(2.13) 15.31(1.33) 42.93(1.00) 26.74(0.00) 50.00(0.00) 8.46(0.00) 50.00(0.00) 22.93(1.35) 42.11(0.42)
GIB 19.23(4.10) 40.24(3.48) 15.52(1.79) 42.31(1.19) 26.75(0.01) 50.00(0.01) 8.47(0.03) 50.01(0.01) 24.98(1.27) 39.15(1.12)
VGIB 44.56(6.43) 57.06(4.66) 22.26(6.35) 47.72(3.26) 26.74(0.00) 50.00(0.00) 8.46(0.00) 50.00(0.00) 56.02(1.76) 64.14(1.25)
SEGNN 30.68(2.91) 48.75(1.96) 19.92(2.80) 42.89(1.55) 26.74(0.00) 50.00(0.00) 8.46(0.00) 50.00(0.00) 34.97(1.26) 50.71(1.01)
GCB 56.63(1.38) 66.71(0.99) 60.19(0.61) 67.12(0.60) 56.80(0.23) 58.47(0.38) 48.16(0.25) 63.07(0.99) 56.36(0.46) 67.57(0.73)

Table 2: Node classification performance in perturbation settings with upsampling ratio ρ = 0.3. The
best-performing interpretable GNN is underlined, and the overall best-performing method is bolded.

Cora Citeseer Instagram Reddit WikiCS

Method F1 (%) BACC (%) F1 (%) BACC (%) F1 (%) BACC (%) F1 (%) BACC (%) F1 (%) BACC (%)

MLP 43.08(0.45) 56.55(0.37) 37.77(0.53) 53.77(0.59) 36.69(0.45) 52.57(0.19) 16.75(0.84) 51.11(0.44) 53.70(0.32) 64.95(0.45)
GCN 56.21(1.25) 66.49(0.85) 46.45(1.42) 58.14(1.61) 43.87(3.28) 54.11(0.85) 16.64(0.77) 50.43(0.76) 61.45(0.38) 65.64(0.87)
GAT 52.64(1.33) 61.70(0.71) 46.55(0.87) 60.54(0.58) 37.07(1.09) 52.38(0.43) 19.23(1.76) 52.20(0.84) 59.34(0.90) 66.75(1.21)
SAGE 53.15(2.06) 57.70(2.21) 39.37(1.30) 56.60(0.90) 38.45(2.14) 52.79(0.90) 16.51(0.49) 51.64(0.39) 61.58(0.44) 69.76(0.49)
GT 46.13(2.23) 55.15(1.80) 33.36(1.69) 52.65(0.93) 35.36(0.78) 51.70(0.27) 17.29(0.50) 51.31(0.12) 57.88(0.95) 62.61(1.60)

DIR-GNN 70.78(2.43) 70.20(2.49) 62.03(0.86) 64.65(0.70) 55.56(1.43) 56.45(0.64) 54.13(1.52) 56.35(0.57) 57.07(3.45) 56.34(1.97)
GIB 32.94(18.33) 37.41(15.43) 47.23(15.64) 52.91(11.58) 38.55(6.36) 50.74(0.95) 39.96(7.82) 51.54(1.85) 21.62(10.37) 25.78(9.43)
VGIB 20.15(26.58) 26.24(23.92) 54.92(20.60) 57.43(17.87) 39.13(0.61) 50.09(0.17) 34.79(3.10) 50.20(0.39) 58.67(24.39) 59.70(22.48)
SEGNN 52.58(4.71) 56.78(3.34) 59.76(1.11) 62.69(1.06) 55.15(0.64) 55.40(0.43) 55.44(0.85) 55.77(0.71) 38.08(1.10) 42.11(1.15)
GCB 70.98(0.73) 71.36(1.07) 63.44(0.29) 63.84(0.32) 56.65(0.26) 56.61(0.27) 55.56(0.74) 55.58(0.77) 66.08(0.53) 70.43(0.75)

(1) GCB can improve the model generalizability in OOD data. We evaluate GCB under the OOD
setting across different upsampling ratios. Due to space constraints, we report the test results in
Table 1 for the upsampling ratio γ = 5; the complete results for all upsampling ratios are provided in
E. The results show that GCB not only significantly outperforms all self-explainable graph learning
methods, but also consistently surpasses state-of-the-art GNNs. We attribute this to GCB’s reliance
on causal concepts for prediction, which makes it less susceptible to distribution shifts. GCB is
therefore a strong baseline for improving OOD generalizability in graph learning.

(2) GCB improves model robustness under training data perturbations. We evaluate GCB under the
Adversarial setting with different perturbation ratios. We only report the test results in Table 2 for
perturbation ratio ρ = 0.3; full results for all perturbation ratios are provided in Appendix E. We
observe that while most GNNs perform well under clean conditions, their performance degrades
significantly when trained on perturbed data, highlighting their vulnerability to evasion attacks.
In contrast, GCB demonstrates strong robustness against perturbed train data, while maintaining
performance comparable to the model trained on clean data. We attribute this robustness to the use of
a pretrained graph encoder trained on augmented data from diverse domains.

(3) GCB incurs minimal cost in model utility on clean in-distribution data. We evaluate GCB and
baseline methods under the regular setting, and report the test BACC scores (averaged over 5 trials)
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in Table 4. On three out of five datasets, GCB achieves the best performance (in at least one metric)
among interpretable GNN methods. Moreover, compared to the overall best-performing model, GCB
delivers competitive results with only small performance gaps, demonstrating its ability to retain high
predictive utility while offering interpretability.
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Figure 1: Performance of GCB across different concept sizes (K) and training ratios (%) on regular
splits (top row) and OOD splits (bottom row).

4.3 SENSITIVITY ANALYSIS
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Figure 2: Performance of GCB variations using different graph encoders.

Size of concept set. The size of the concept set is a critical parameter to consider. Too many concepts
can negatively impact the model’s interpretability, while too few may reduce its utility by lacking
enough information to make accurate predictions. We examine the sensitivity of GCB to different
concept set sizes K, across varying training ratios for each dataset. The results are visualized in
Figure 1, where the x-axis represents the training ratio and the y-axis shows the number of concepts.
We observe a general trend where the model’s performance improves rapidly as the number of
concepts increases, but the rate of improvement gradually slows down, eventually plateauing. In the
out-of-distribution (OOD) setting, however, increasing the number of concepts may actually hurt
performance, particularly at smaller training ratios. Including too many concepts may also hinder the
model’s generalizability.

Graph encoders. We investigate how different graph-text alignment models affect performance.
First, we compare various versions of GCB using different graph encoders: GCN (the default),
GAT, and Graph Transformer (GT). We also explore the effect of removing the graph structure by
replacing the graph encoder with a simple MLP for decoding the concept map. Additionally, we
evaluate a pretrained graph foundation model, GraphCLIP, which includes both a graph encoder and
a text encoder for graph-text alignment. All results are shown in Figure 2. We observe that GCN
consistently performs well across all datasets compared to GAT and GT, suggesting that a simpler
architecture may be more stable when pretraining data is limited. The model’s performance drops
significantly when using the MLP encoder, highlighting the importance of leveraging graph structure
for mapping input graphs into the concept space. GraphCLIP performs slightly better on Instagram
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and Reddit but considerably worse on the other three datasets. We hypothesize that this is because
GraphCLIP aligns graphs to free-form summaries that contain noisy information, which can lead to
inaccurate mappings between graphs and their underlying concepts. Moreover, since GraphCLIP
jointly trains both the graph and text encoders, the large number of parameters in the text encoder
may cause overfitting, especially when the training corpus is small or domain-specific. This limitation
could explain why GraphCLIP performs well on Instagram and Reddit—social networks that likely
share overlapping topics with its training corpus—but poorly on Cora, Citeseer, and WikiCS, which
have little to no topic overlap with the training data.
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GCB GCB-RC Difference

Figure 3: Performance of the original GCB compared to its variant with random concepts (GCB-RC)
across different concept set sizes, on regular splits (top row) and OOD splits (bottom row).

4.4 FAITHFULNESS & INFORMATION LEAKAGE.

While the quality and relevance of the retrieved concept set can be partially validated by the model’s
decent performance due to its self-explainable nature, there remains a concern about information
leakage, which can undermine interpretability and faithfulness Havasi et al. (2022); Sun et al. (2024).
When the concept learning model is trained, the label predictor might exploit spurious signals from
the concept activations produced by the concept predictor rather than relying on the true semantics
of the concepts. In other words, even if the concepts are meaningless or unrelated, the model could
still achieve high accuracy by assigning higher activation scores to arbitrary concepts that correlate
with the label, providing no true explainable value. Inspired by Mahinpei et al. (2021), although there
is no straightforward way to directly measure information leakage, we can evaluate it indirectly by
replacing the concepts with random ones. Intuitively, if the model maintains strong performance with
random concepts, it suggests the presence of information leakage. We report the performance of GCB
using both retrieved concepts (“GCB”) and random concepts (“GCB-RC”) across different numbers
of selected concepts K, under regular and OOD settings, shown in Figure 3. The difference between
the two is plotted as a gray bar. For the regular split, we observe a general pattern: the performance
gap gradually decreases as the concept size increases. Specifically, GCB-RC performs significantly
worse with smaller concept sizes but gradually approaches GCB’s performance as the concept size
grows. This suggests that when the concept set is large enough, the model may rely more on spurious
correlations between concept activation patterns and labels. Conversely, when the concept set is small,
the spurious patterns are harder to exploit, and the relevance of actual concepts plays a more critical
role. For the OOD split, random concepts fail across all concept sizes, highlighting the inability of
random concepts to generalize beyond the training distribution. These findings indicate that although
random concepts can achieve reasonable performance with a sufficiently large concept set under
in-distribution data, they fail when the concept set is limited or when distribution shifts occur. This
leaves little opportunity for information leakage, suggesting that the model’s performance reliably
reflects both the relevance of concepts and the faithfulness of explanations.

4.5 CASE STUDY

We investigate how GCB explains model predictions through a case study. For each dataset, we
sample test instances that are predicted to belong to each class and examine the corresponding
concept activation vectors. This allows us to analyze which concepts are (in)active in relation to the
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Class 2: Operating systems Class 3: Computer architecture Class 4: Computer security

W
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S

Figure 4: The average concept activations of 10 sampled instances per class across all selected
concepts (K = 30) as word clouds on WikiCS.

predicted labels. Specifically, we visualize the average concept activations of 10 sampled instances
per class across all selected concepts (K = 30) as word clouds. Figure 4 presents the word clouds for
three classes from WikiCS, where concepts like “Live USB,” “Baikal CPU,” and “Encryption” are
prominently activated for three different predicted classes. We also use Sankey diagrams to visualize
the concept activations for three classes in Figure 15, showing how the model distinguishes between
different classes. The complete set of word clouds and Sankey diagrams for all datasets is provided
in E.2. They illustrate that the concept activations provide an intuitive and class-discriminative
explanation of the model’s decision-making process.

5 FURTHER DISCUSSION

Operating systemsOperating systemsOperating systemsOperating systemsOperating systems

Computer architectureComputer architectureComputer architectureComputer architectureComputer architecture
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Live USBLive USBLive USBLive USBLive USB

Virtual memoryVirtual memoryVirtual memoryVirtual memoryVirtual memory

Samsung Galaxy seriesSamsung Galaxy seriesSamsung Galaxy seriesSamsung Galaxy seriesSamsung Galaxy series

MalwareMalwareMalwareMalwareMalware

NTFSNTFSNTFSNTFSNTFS

InodesInodesInodesInodesInodes
Upper memory areaUpper memory areaUpper memory areaUpper memory areaUpper memory area

SecureworksSecureworksSecureworksSecureworksSecureworks

EncryptionEncryptionEncryptionEncryptionEncryption

Memory managementMemory managementMemory managementMemory managementMemory management

Electronic signaturesElectronic signaturesElectronic signaturesElectronic signaturesElectronic signatures

Security ExpertSecurity ExpertSecurity ExpertSecurity ExpertSecurity Expert

BusyBoxBusyBoxBusyBoxBusyBoxBusyBox
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Figure 5: Sankey diagram for
WikiCS (partial classes).

GCB vs. LLM-as-predictor methods. While some LLM-as-
predictor approaches Wang et al. (2024); Chen et al. (2024);
Tang et al. (2024) can produce predictions accompanied by
natural language explanations that may appear more informa-
tive than those from concept bottleneck models, they are fun-
damentally different. (1) Their explanations are inherently
post-hoc: the generated text is not guaranteed to faithfully
reflect the actual reasoning process, and how these explana-
tions are produced remains another black box. In contrast,
GCB makes predictions directly based on the semantics of
human-interpretable concepts, ensuring that explanations
are faithful by construction and intrinsically aligned with
the model’s decision process. (2) GCB requires access to
LLMs only during training. At inference time, no LLM
queries are needed. In comparison, LLM-as-predictor meth-
ods rely on querying the LLM for each prediction, which
incurs substantial computational and monetary costs.

GCB’s applicability on different graph types. The performance of GCB largely depends on the quality
of the proposed concept space and the effectiveness of the graph-concept alignment model—both
of which rely on LLMs for semantic understanding and reasoning over graph instances. To date,
LLM-based graph reasoning has primarily focused on text-attributed graphs, which motivates our
choice of such graphs as the starting point for exploring GCB. Nevertheless, we argue that GCB holds
strong potential for broader applicability to diverse graph types, such as molecular and biomedical
graphs, provided that suitable LLM-driven interfaces Wang et al. (2025); Lee et al. (2025a); Bran
et al. (2023) are available to bridge domain-specific graph structures with high-level concepts. We
plan to explore this direction as part of our future work.

6 CONCLUSION

We present GCB as a novel solution for interpretable and robust graph learning. GCB maps graph
inputs into a human-interpretable concept space, where each concept is expressed in natural language
and carries clear semantics. Predictions are then made directly based on these concepts. We conduct
extensive experiments and case studies on five real-world datasets from diverse domains, each with
distinct challenges, to demonstrate the effectiveness of GCB.
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APPENDIX

A ADDITIONAL RELATED WORK

A.1 CONCEPT BOTTLENECK MODEL

Concept Bottleneck Models (CBMs) aim to improve model transparency by first mapping inputs into
an interpretable set of human-defined concepts (the concept bottleneck), and then making predictions
based on those concepts. The original CBM framework Koh et al. (2020) is trained on datasets where
each input is annotated with both class labels and corresponding concept labels. At test time, the
model predicts concepts from the input and uses them as intermediate representations to produce the
final output via a classifier or regressor. This process enhances interpretability and enables human
intervention by allowing concept-level edits. However, original CBM Koh et al. (2020) requires
substantial human effort to define the concept space and annotate each training sample with concept
labels, which can be both time-consuming and labor-intensive. Moreover, they often suffer from
suboptimal predictive performance. To address these limitations, Yuksekgonul et al. Yuksekgonul
et al. (2023) propose a post-hoc CBM that converts any pretrained model into a concept bottleneck
model. Their approach leverages multimodal approaches such as CLIP Radford et al. (2021) to
align the input space (e.g., images) with a concept space (e.g., text), thereby reducing the need for
explicitly labeled concept data. Nevertheless, this method still requires human expertise or additional
learning steps to define the concept subspace. In a concurrent work, Oikarinen et al. Oikarinen et al.
(2023) build upon similar ideas but go further by proposing a label-free CBM. They also utilize
CLIP’s image and text encoders to map inputs to concepts, while fully automating the construction of
the concept space using large language models (LLMs). Both approaches Oikarinen et al. (2023);
Yuksekgonul et al. (2023) report maintaining competitive predictive performance while improving
interpretability.

In addition to these, several works explore specific challenges and extended settings of CBMs. Shang
et al. Shang et al. (2024) address the concept completeness problem by proposing to recover missing
concepts through transforming complemented vectors with unclear semantics into potential concepts.
Shin et al. Shin et al. (2023) conduct in-depth analyses of intervention strategies in CBMs; for
instance, they investigate which concept selection criteria are most cost-efficient yet effective in
improving task performance. Kim et al. Kim et al. (2023) propose a probabilistic Concept Bottleneck
Model to tackle ambiguity in concept prediction, which can undermine model reliability. Their
approach explicitly models uncertainty in the concept space and provides explanations incorporating
both the predicted concepts and their associated uncertainties. It is also worth mentioning that Xu
et al. Xu et al. (2025) introduce a Graph Concept Bottleneck Model that facilitates the modeling of
concept relationships by constructing a graph of latent concepts. Although it shares a similar name
with our model, it tackles fundamentally different challenges. All of the aforementioned works focus
on Euclidean input spaces such as images, and how to adapt Concept Bottleneck Models to graph
data remains largely unexplored.

B ADDITIONAL DETAILS ON METHODOLOGY

B.1 PROMPT DETAILS

Prompt for self-supervised concept annotations

Given {graphML} and {dataset-details}.
1. Provide summary and context analysis on the graph.
2. Identify a list of key concepts and themes presented in

the graph.

GraphML refers to the graph markup language used for describing the graph (or ego-net if
the instance is a node). dataset-details provides a detailed description of the graph
dataset, including what each node/edge represents and relevant contextual information.
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Prompt for Global Concept Proposal

In the domain of {dataset-domain}, list the related
concepts/keywords for classifying the item as {category}.

Dataset-domain briefly describes the dataset’s domain or context, and category is
the name of a class label from the downstream classification task. We apply this prompt to
each class label and aggregate the generated concepts to form the initial concept pool.

Prompt for Instance-Based Concept Extraction

Given a {graphML} and {dataset-details}.
1. Provide summary and context analysis on the graph.
2. Identify a list of key concepts presented in the

graph that are most important for determining its
classification within the {dataset-domain}, which
includes the following categories: {category-list}.

GraphML refers to the graph markup language used for describing the graph (or ego-net if the
instance is a node). dataset-details provides a detailed description of the graph dataset,
dataset-domain briefly describes the dataset’s domain or context. category-list is
the complete list of categories for the classification task to guide the LLM toward generating
concepts that are helpful in predicting class labels. Only the outputted concept list from the
second step is collected.

B.2 DETAILED PROCEDURES

Instance-Based Concept Extraction. We sample m graph instances from each class and apply
the prompt to each sampled graph instance, resulting in a large set of candidate concepts. We then
identify a subset of concepts that are highly relevant to each class, distinct from those used by other
classes, and useful for improving class discrimination. Specifically, for each class y, we calculate the
class-wise concept activation score as:

C̄y =
1

|Dy|
∑
xi∈Dy

Ci, (6)

where Dy denotes the set of instances belonging to class y, and Ci is the concept activation vector for
instance xi. Each element C(j)

i represents the activation score (e.g., cosine similarity) between the
instance representation fGNN

θ (xi) and the embedding of the j-th concept fLM(cj).

We then compute the discriminative score of concept j for class y as:

scorej(y) = C̄(j)
y − 1

|Y| − 1

∑
y′ ̸=y

C̄
(j)
y′ , (7)

where Y is the set of all class labels, and C̄
(j)
y denotes the average activation of concept j for class y.

Finally, for each class, we select the top-k concepts with the highest discriminative scores:

C inst = Top-kj(scorej(y)). (8)

Details of Concept Filtering Process. Following similar procedures to Oikarinen et al. (2023), we
apply a post-processing pipeline to refine the set of candidate concepts. The pipeline consists of the
following steps:

(1) Removing overly long concepts. Long concepts may reduce both interpretability and generaliz-
ability. We therefore tokenize each concept and discard those containing more than 10 tokens.

(2) Removing concepts overly similar to class labels. Concepts that are identical or highly similar
to class labels undermine the purpose of explanation. To mitigate this issue, we compute the cosine
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Table 3: Summary statistics of source and target datasets.

Dataset #Nodes #Edges Type Domain #Class

Computers 87,229 721,081 Co-purchase E-commerce 10
PubMed 19,717 44,338 Citation Biomedicine 3
Books-History 41,551 358,574 Co-purchase E-commerce 12
Books-Children 76,875 1,554,578 Co-purchase E-commerce 24
Sports-Fitness 173,055 1,773,500 Co-purchase E-commerce 13

Cora 2,708 5,429 Citation Computer Science 7
CiteSeer 3,186 4,277 Citation Computer Science 6
Instagram 11,339 144,010 User-Post Social Media 2
Reddit 33,434 198,448 Post-Comment Social Media 2
WikiCS 11,701 215,863 Article Link Wikipedia 10

similarity between the Sentence-BERT embeddings of each concept and each class label, and filter
out any concept with a similarity score greater than 0.85.

(3) Removing redundant concepts. To reduce redundancy, we compute pairwise cosine similarity
among concepts and remove any concept whose similarity with a retained concept exceeds 0.85.

C SUPPLEMENTAL EXPERIMENT SETUPS

C.1 DETAILS OF THE DATASETS

In this section, we summarize the basic statistics of the datasets in our experimental evaluation
in Table 3. All datasets used in our study are publicly available and come from diverse domains,
including social media networks, citation graphs, and e-commerce graphs. Each node is associated
with a class label, and most datasets contain more than two classes. The class distributions are
imbalanced in these datasets. Therefore, in our experiments, we report node classification performance
using the (Macro-)F1 score and balanced accuracy (BACC).

C.2 IMPLEMENTATION DETAILS

For all GNN-based methods, including those that use GNNs as backbones, we set the hidden
dimension to 64 and the number of GNN layers to 2. For GAT and GT models, we use 4 attention
heads. For SEGNN Dai & Wang (2021), the original implementation requires access to all training
nodes at test time in order to identify the closest neighbors and make predictions based on their labels.
However, this approach is incompatible with our inductive setting, where the model is not permitted
to access training instances during inference. To address this, we modify the implementation by
introducing a small memory buffer that stores 5 representative nodes per class from the training
set. During testing, the model is restricted to retrieving neighbors only from this buffer. For all
self-explainable graph learning baselines, we follow the default hyperparameter settings provided in
their open-source implementations. All experiments are conducted on four NVIDIA L40S GPUs. We
access GPT-3.5 via the OpenAI API and set the temperature to 0 during graph summary and concept
generation to avoid randomness.

D COMPLEXITY ANALYSIS

The primary overhead of GCB lies in the pretraining stage, where a graph encoder is aligned with
a semantically meaningful concept space using large language models (LLMs). However, this
pretraining is performed once and can be reused across downstream datasets without incurring
additional cost. During the main training phase, where we optimize the nformation bottleneck criteria,
the dominant cost comes from computing the gate vector g (via a lightweight MLP) and training the
classifier MLPcls on the masked concept representations. This results in a per-step complexity of
O(BKH), where B is the batch size, K is the number of candidate concepts, and H is the hidden
dimension of the MLP. The final predictor, after concept selection, operates on a reduced concept
set and is simply a small MLP, which is highly efficient in both training and inference. At inference
time, GCB consists of a frozen graph encoder (e.g., a GNN) followed by a fixed MLP classifier over
selected concepts, making its runtime complexity comparable to that of a standard GNN model.
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Table 4: Node classification performance in regular settings. The best-performing interpretable GNN
on each dataset is underlined, and the overall best-performing method is bolded.

Cora Citeseer Instagram Reddit WikiCS

Method F1 (%) BACC (%) F1 (%) BACC (%) F1 (%) BACC (%) F1 (%) BACC (%) F1 (%) BACC (%)

MLP 68.00(0.89) 67.49(0.76) 63.81(0.37) 64.29(0.34) 53.78(0.59) 53.76(0.58) 53.34(0.77) 53.39(0.76) 69.22(0.51) 69.25(0.57)
GCN 72.38(0.58) 71.95(0.49) 62.47(0.29) 63.05(0.33) 53.63(0.84) 53.62(0.82) 54.49(1.19) 54.64(1.03) 67.45(1.76) 68.84(1.82)
GAT 74.58(0.95) 74.42(0.90) 63.92(0.92) 64.47(0.91) 55.71(1.06) 55.74(1.10) 56.29(0.60) 56.30(0.59) 67.54(1.68) 68.14(1.59)
SAGE 70.59(0.68) 70.66(0.80) 65.09(0.62) 65.52(0.64) 54.49(0.46) 54.50(0.46) 55.33(0.38) 55.33(0.38) 72.96(0.30) 72.74(0.40)
GT 72.36(1.96) 72.18(1.56) 64.40(0.76) 64.93(0.68) 54.79(0.40) 54.77(0.39) 56.15(0.39) 56.15(0.39) 72.27(0.52) 72.46(0.56)

DIR-GNN 73.03(2.62) 72.51(1.90) 62.10(0.58) 64.67(0.50) 56.76(1.24) 57.37(0.95) 55.34(1.81) 57.18(0.48) 67.14(3.60) 66.26(3.83)
GIB 66.81(4.23) 67.23(4.02) 49.28(14.03) 53.88(11.42) 40.72(8.44) 51.52(1.86) 38.84(8.18) 51.49(2.11) 45.30(18.50) 45.38(14.85)
VGIB 63.46(28.19) 64.59(25.11) 53.90(19.24) 56.99(16.88) 39.64(1.64) 50.29(0.58) 33.68(1.13) 50.12(0.22) 61.44(25.27) 62.90(22.46)
SEGNN 49.90(4.09) 53.07(3.30) 52.12(5.51) 55.67(4.11) 44.71(2.56) 51.04(0.49) 53.53(1.66) 54.59(0.90) 28.87(3.57) 34.71(2.78)
GCB 70.54(1.33) 71.41(0.88) 63.22(0.50) 63.54(0.49) 56.76(0.55) 56.71(0.51) 55.06(0.72) 55.11(0.72) 68.82(0.41) 70.64(0.82)

Table 5: Node classification performance in OOD settings with upsampling ratio γ = 2. The best-
performing interpretable GNN on each dataset is underlined, and the overall best-performing method
is bolded.

Cora Citeseer Instagram Reddit WikiCS

Method F1 (%) BACC (%) F1 (%) BACC (%) F1 (%) BACC (%) F1 (%) BACC (%) F1 (%) BACC (%)

MLP 46.52(0.59) 57.50(0.69) 44.89(0.70) 60.49(0.77) 35.55(0.59) 51.54(0.20) 17.03(0.51) 51.28(0.56) 53.82(0.42) 63.23(0.40)
GCN 56.10(0.46) 64.04(0.52) 41.06(0.43) 56.08(0.57) 39.36(3.25) 52.54(0.86) 16.65(0.73) 50.74(0.20) 53.80(0.55) 60.37(1.37)
GAT 52.54(1.48) 63.29(1.31) 44.71(0.68) 60.63(0.56) 33.42(0.37) 51.49(0.12) 13.06(0.28) 49.78(0.39) 56.41(2.24) 64.32(1.67)
SAGE 40.39(1.19) 50.69(1.08) 40.99(0.99) 56.02(0.78) 35.71(0.42) 51.76(0.31) 15.97(0.35) 50.74(0.51) 49.65(0.64) 60.20(0.83)
GT 42.83(1.35) 51.62(1.59) 40.57(1.22) 56.93(0.90) 33.83(0.60) 51.47(0.28) 13.22(0.33) 50.14(0.34) 51.10(0.69) 59.51(0.99)
DIR-GNN 18.54(2.90) 40.48(2.24) 15.18(0.70) 42.44(0.52) 26.74(0.00) 50.00(0.00) 8.46(0.00) 50.00(0.00) 23.41(1.92) 42.89(0.55)
GIB 21.45(3.55) 40.93(1.77) 16.98(4.91) 43.81(3.24) 26.76(0.02) 50.01(0.01) 8.53(0.06) 49.99(0.06) 23.93(1.12) 41.10(1.63)
VGIB 45.60(4.00) 58.19(2.70) 15.61(1.75) 44.07(1.00) 26.74(0.00) 50.00(0.00) 8.46(0.00) 50.00(0.00) 54.31(0.90) 63.54(0.66)
SEGNN 40.04(2.47) 51.44(2.36) 25.59(2.76) 45.69(1.58) 26.74(0.00) 50.00(0.00) 8.46(0.00) 50.00(0.00) 37.26(1.18) 49.80(0.91)
GCB 54.23(0.00) 62.97(1.15) 57.46(0.85) 65.48(0.65) 53.20(0.81) 55.89(0.82) 43.74(0.77) 57.99(0.71) 55.19(0.72) 66.36(0.62)

E ADDITIONAL RESULTS

E.1 ROBUSTNESS EVALUATION

We report the results for all additional upsampling ratios γ ∈ {2, 3, 10} in Table 5, Table 6, and
Table 7, respectively. Results for different perturbation ratios ρ ∈ {0.05, 0.1, 0.2, 0.5} are shown in
Table 8, Table 9, Table 10, and Table 11.

We emphasize that the test splits used for different upsampling ratios are not aligned, making
direct comparison across these settings inappropriate. While a larger upsampling ratio increases
the distribution shift between the training and test sets, it may also lead to a more balanced class
distribution in the training or test data, which can sometimes improve test performance. Regarding
the perturbation setting, we observe that GCB is the least affected by structural perturbation. We
attribute this to the use of a fixed pretrained encoder, which is not updated during task-specific
training. As a result, perturbing the training graph does not alter the graph embedding function.
Moreover, the data augmentation used during pretraining also contributes to GCB’s robustness under
structural noise. Interestingly, across all baseline methods, we do not observe a consistent trend
correlating performance with increasing perturbation ratio. One possible explanation is that, for
perturbation-sensitive models, even a small perturbation (e.g., ρ = 0.05) significantly degrades
performance, and the marginal impact of further perturbation is limited. Furthermore, recent studies
such as Han et al. (2023) have shown that some GNNs can perform well even when trained without
graph structure—effectively functioning like MLPs—and still generalize well when tested with full
graph connectivity. When the perturbation ratio is large, models may similarly learn to disregard
noisy structure, exhibiting behavior consistent with such MLP-based approaches and mitigating the
negative effects of edge pertubation.
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Table 6: Node classification performance in OOD settings with upsampling ratio γ = 3. The best-
performing interpretable GNN on each dataset is underlined, and the overall best-performing method
is bolded.

Cora Citeseer Instagram Reddit WikiCS

Method F1 (%) BACC (%) F1 (%) BACC (%) F1 (%) BACC (%) F1 (%) BACC (%) F1 (%) BACC (%)

MLP 43.78(0.52) 54.85(0.57) 45.73(0.59) 58.72(0.71) 37.04(0.67) 52.33(0.25) 16.37(0.61) 51.37(0.32) 55.01(0.33) 65.33(1.15)
GCN 57.28(1.35) 67.86(0.98) 41.59(0.68) 56.90(0.80) 37.73(3.06) 51.58(0.59) 16.00(0.35) 49.23(0.48) 54.99(1.28) 61.65(2.33)
GAT 52.81(1.43) 60.66(1.28) 43.09(1.45) 58.16(1.39) 34.77(1.08) 51.50(0.38) 13.85(0.44) 49.44(0.28) 56.99(0.10) 65.85(0.84)
SAGE 51.40(1.77) 62.46(1.54) 36.25(1.39) 52.63(1.14) 35.04(0.55) 51.47(0.27) 14.36(0.17) 48.96(0.40) 52.43(0.78) 60.92(0.97)
GT 47.70(1.31) 58.26(1.19) 36.12(1.62) 53.10(1.23) 33.16(0.47) 50.15(0.37) 14.18(0.15) 49.59(0.21) 54.83(0.89) 62.58(1.07)
DIR-GNN 20.13(2.75) 41.89(1.50) 14.70(0.34) 43.15(0.38) 26.74(0.00) 50.00(0.00) 8.46(0.00) 50.00(0.00) 23.60(1.40) 42.84(0.57)
GIB 22.43(5.91) 41.53(4.24) 17.72(5.88) 44.14(4.31) 26.74(0.00) 50.00(0.01) 8.48(0.04) 50.01(0.02) 20.30(7.70) 35.16(9.59)
VGIB 44.05(2.53) 57.14(1.92) 17.14(4.35) 44.50(2.44) 26.74(0.00) 50.00(0.00) 8.46(0.00) 50.00(0.00) 54.74(1.32) 63.15(1.20)
SEGNN 29.92(1.05) 46.62(0.81) 25.15(9.17) 43.70(6.98) 26.74(0.00) 50.00(0.00) 8.46(0.00) 50.00(0.00) 27.85(1.02) 43.33(1.50)
GCB 54.99(0.00) 65.00(0.00) 57.85(0.27) 65.62(0.79) 54.54(0.17) 56.39(0.36) 45.82(0.31) 60.65(0.83) 54.97(0.37) 66.70(0.40)

Table 7: Node classification performance in OOD settings with upsampling ratio γ = 10. The
best-performing interpretable GNN on each dataset is underlined, and the overall best-performing
method is bolded.

Cora Citeseer Instagram Reddit WikiCS

Method F1 (%) BACC (%) F1 (%) BACC (%) F1 (%) BACC (%) F1 (%) BACC (%) F1 (%) BACC (%)

MLP 47.58(0.44) 59.14(0.61) 41.44(0.42) 56.87(0.70) 35.38(0.66) 51.29(0.43) 16.08(0.42) 50.69(0.34) 52.72(0.50) 62.79(0.50)
GCN 62.08(1.59) 69.26(1.83) 43.58(0.45) 54.79(0.34) 47.15(4.10) 55.23(1.48) 17.35(0.97) 49.91(0.17) 62.47(1.15) 64.89(1.38)
GAT 60.32(1.56) 68.94(1.15) 48.46(0.66) 61.74(0.80) 35.80(0.67) 51.70(0.30) 15.35(1.35) 51.40(0.38) 57.17(1.59) 60.82(1.69)
SAGE 50.49(1.06) 57.96(1.12) 35.75(1.49) 53.22(0.90) 37.94(0.94) 52.14(0.40) 16.70(0.73) 52.08(0.22) 62.88(0.18) 72.40(1.02)
GT 47.31(2.61) 56.27(1.92) 30.80(1.22) 50.68(0.82) 37.51(0.46) 52.90(0.16) 17.33(0.79) 51.58(0.24) 62.18(0.80) 68.79(1.87)
DIR-GNN 22.04(3.39) 42.60(2.67) 15.56(1.05) 42.93(0.37) 26.74(0.00) 50.00(0.00) 8.46(0.00) 50.00(0.00) 23.89(0.58) 42.04(0.65)
GIB 26.30(8.89) 44.06(5.96) 14.94(0.54) 42.42(0.68) 26.92(0.31) 50.06(0.13) 8.46(0.02) 49.98(0.05) 25.39(2.25) 38.19(1.06)
VGIB 60.87(3.20) 69.42(3.04) 24.29(6.80) 48.20(3.96) 26.74(0.00) 50.00(0.00) 8.46(0.00) 50.00(0.00) 61.85(1.81) 69.02(1.35)
GCB 61.68(1.63) 69.55(1.11) 58.08(0.34) 65.52(0.25) 52.17(2.34) 55.57(1.15) 44.77(1.34) 55.75(0.43) 60.66(0.97) 71.22(1.43)

Table 8: Node classification performance in adversarial settings with perturbation ratio ρ = 0.05.
The best-performing interpretable GNN on each dataset is underlined, and the overall best-performing
method is bolded.

Cora Citeseer Instagram Reddit WikiCS

Method F1 (%) BACC (%) F1 (%) BACC (%) F1 (%) BACC (%) F1 (%) BACC (%) F1 (%) BACC (%)

MLP 46.79(0.88) 58.83(0.84) 38.16(0.41) 53.71(0.37) 37.69(0.44) 52.53(0.15) 16.19(0.46) 51.58(0.44) 53.96(0.34) 64.83(0.25)
GCN 58.93(1.32) 67.16(1.38) 46.96(0.95) 58.48(1.13) 42.47(4.66) 52.11(1.09) 15.95(0.86) 50.46(0.68) 62.44(0.37) 68.39(0.49)
GAT 55.01(1.93) 61.57(1.94) 43.59(1.57) 57.78(1.21) 34.32(1.37) 51.16(0.53) 17.03(0.95) 51.28(0.42) 58.93(2.81) 66.43(2.35)
SAGE 53.45(2.23) 57.21(2.34) 42.45(1.44) 57.74(0.95) 40.93(6.08) 52.32(0.67) 16.00(0.61) 51.42(0.61) 61.58(0.22) 68.96(1.30)
GT 38.25(2.04) 45.19(1.18) 39.80(3.32) 55.30(2.16) 34.43(1.15) 51.44(0.30) 14.35(0.74) 51.02(0.27) 56.30(1.16) 64.35(1.49)
DIR-GNN 73.48(1.08) 72.72(1.37) 62.03(0.64) 64.60(0.54) 55.78(2.54) 56.70(1.42) 54.64(2.70) 57.12(1.00) 65.05(1.45) 63.77(1.50)
GIB 58.60(15.18) 59.17(14.38) 45.60(17.26) 50.91(13.49) 40.96(8.68) 51.59(1.93) 38.57(7.79) 51.70(2.56) 40.07(16.67) 40.14(12.96)
VGIB 21.17(26.63) 26.65(23.68) 53.90(19.09) 57.17(16.80) 38.99(0.34) 50.07(0.14) 34.58(2.56) 50.29(0.47) 72.78(1.07) 72.45(1.37)
SEGNN 55.79(1.48) 59.39(1.03) 60.06(0.69) 62.95(0.74) 54.75(1.01) 55.22(0.91) 55.58(0.36) 55.99(0.30) 37.35(0.71) 41.85(1.12)
GCB 70.75(0.85) 71.34(1.05) 63.20(0.76) 63.52(0.78) 56.79(0.60) 56.72(0.59) 54.93(0.78) 54.98(0.79) 68.70(0.42) 70.60(0.46)
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Table 9: Node classification performance in adversarial settings with perturbation ratio ρ = 0.1. The
best-performing interpretable GNN on each dataset is underlined, and the overall best-performing
method is bolded.

Cora Citeseer Instagram Reddit WikiCS

Method F1 (%) BACC (%) F1 (%) BACC (%) F1 (%) BACC (%) F1 (%) BACC (%) F1 (%) BACC (%)

MLP 45.04(1.20) 57.94(0.91) 41.94(0.33) 57.38(0.21) 34.65(0.60) 51.57(0.30) 18.09(0.43) 51.09(0.58) 54.13(0.30) 64.72(0.64)
GCN 65.19(1.66) 67.62(1.61) 46.43(1.13) 58.40(1.17) 38.56(1.38) 51.96(0.60) 18.17(1.20) 50.51(0.67) 63.15(2.44) 68.98(2.14)
GAT 63.56(1.59) 68.88(1.40) 43.79(1.41) 58.11(0.90) 35.94(2.11) 51.83(0.55) 17.30(1.53) 51.83(0.72) 58.79(1.66) 67.83(1.26)
SAGE 47.78(0.92) 55.17(0.52) 40.60(0.80) 56.65(0.63) 38.86(1.28) 52.61(0.62) 16.93(0.48) 51.67(0.34) 59.90(0.67) 66.69(0.61)
GT 40.32(1.93) 46.77(1.27) 27.14(1.44) 46.19(1.04) 35.26(0.73) 51.95(0.35) 16.80(1.02) 51.26(0.49) 60.67(0.99) 67.86(1.05)
DIR-GNN 71.70(2.79) 71.04(2.08) 61.84(1.36) 64.42(1.24) 55.55(2.17) 56.66(1.28) 55.41(1.29) 57.48(0.53) 64.30(4.20) 63.15(4.09)
GIB 55.55(16.26) 58.38(11.63) 58.99(4.11) 61.91(3.36) 41.53(9.29) 51.81(2.20) 40.23(8.43) 52.11(2.82) 30.36(14.24) 32.54(12.21)
VGIB 22.42(26.34) 28.23(23.26) 52.91(22.73) 55.81(19.19) 38.86(0.07) 50.02(0.03) 33.92(1.58) 50.16(0.30) 59.83(24.76) 60.32(22.57)
SEGNN 56.89(0.75) 60.23(0.64) 59.55(0.62) 62.66(0.62) 54.67(0.70) 55.42(0.77) 55.91(1.85) 56.70(1.09) 36.78(1.67) 41.06(1.82)
GCB 70.54(1.54) 71.31(2.31) 63.02(0.40) 63.38(0.44) 56.75(0.36) 56.70(0.38) 54.91(0.40) 54.95(0.38) 68.80(0.30) 70.45(0.43)

Table 10: Node classification performance in adversarial settings with perturbation ratio ρ = 0.2.
The best-performing interpretable GNN on each dataset is underlined, and the overall best-performing
method is bolded.

Cora Citeseer Instagram Reddit WikiCS

Method F1 (%) BACC (%) F1 (%) BACC (%) F1 (%) BACC (%) F1 (%) BACC (%) F1 (%) BACC (%)

MLP 49.30(0.81) 59.94(0.97) 42.01(0.43) 57.97(0.22) 37.57(3.23) 51.27(0.41) 15.37(0.09) 51.51(0.29) 52.92(0.41) 61.84(0.70)
GCN 60.24(0.83) 68.81(1.01) 47.16(1.29) 58.67(1.02) 37.70(2.16) 51.52(0.53) 17.24(1.82) 50.60(0.84) 59.73(0.71) 62.88(0.35)
GAT 57.88(2.24) 64.39(1.85) 44.69(1.35) 58.83(1.13) 37.82(1.08) 52.08(0.46) 14.93(1.04) 50.50(0.56) 58.14(2.12) 62.40(2.18)
SAGE 50.26(1.95) 57.82(1.43) 29.81(2.27) 49.99(1.55) 36.98(0.47) 52.00(0.08) 17.10(0.40) 50.99(0.43) 62.87(0.63) 70.36(0.31)
GT 51.12(2.34) 56.14(2.39) 32.63(1.41) 51.08(0.71) 35.34(0.86) 51.61(0.50) 16.19(0.68) 50.84(0.28) 60.47(0.47) 66.23(0.77)
DIR-GNN 71.30(2.36) 71.11(1.94) 62.54(0.34) 65.12(0.38) 55.77(2.23) 56.87(1.32) 54.68(2.36) 56.99(0.90) 61.70(3.35) 60.60(3.45)
GIB 37.52(19.90) 42.46(16.75) 52.91(12.84) 57.50(9.10) 40.83(8.60) 51.53(1.89) 41.45(9.60) 51.65(2.13) 24.40(11.79) 27.94(10.41)
VGIB 34.11(32.96) 38.47(29.40) 52.05(22.62) 55.80(19.34) 40.36(3.07) 50.41(0.81) 33.09(0.08) 50.00(0.02) 59.54(24.67) 61.20(21.58)
SEGNN 55.76(1.87) 59.44(1.21) 59.94(0.64) 62.98(0.54) 55.07(1.63) 55.27(1.65) 54.56(0.07) 55.35(0.37) 35.77(0.70) 40.40(0.89)
GCB 70.40(1.32) 71.03(0.60) 63.14(0.74) 63.47(0.70) 56.81(0.28) 56.76(0.30) 55.05(0.44) 55.10(0.45) 68.71(0.55) 70.64(0.59)

Table 11: Node classification performance in adversarial settings with perturbation ratio ρ = 0.5.
The best-performing interpretable GNN on each dataset is underlined, and the overall best-performing
method is bolded.

Cora Citeseer Instagram Reddit WikiCS

Method F1 (%) BACC (%) F1 (%) BACC (%) F1 (%) BACC (%) F1 (%) BACC (%) F1 (%) BACC (%)

MLP 47.76(0.43) 58.52(0.43) 44.65(0.39) 58.45(0.41) 35.26(0.57) 51.72(0.39) 16.78(0.31) 50.46(0.59) 55.24(0.16) 65.36(1.10)
GCN 52.19(1.00) 61.01(0.95) 46.07(1.23) 56.61(1.12) 42.37(1.34) 53.07(0.85) 16.20(1.08) 50.73(0.48) 65.21(0.63) 68.76(1.02)
GAT 54.25(2.86) 63.55(1.63) 46.58(0.47) 60.72(0.81) 37.55(1.31) 52.63(0.43) 18.61(0.96) 51.83(0.37) 59.33(2.20) 65.94(1.80)
SAGE 44.04(1.28) 50.19(0.89) 32.53(2.83) 50.50(1.70) 36.20(0.84) 52.24(0.19) 16.29(0.46) 51.15(0.41) 62.65(0.42) 70.73(0.50)
GT 42.25(1.81) 52.13(2.09) 31.04(2.55) 49.44(2.11) 35.67(0.87) 51.02(0.17) 13.85(0.83) 50.82(0.54) 62.95(1.19) 70.35(1.05)
DIR-GNN 71.44(0.96) 69.95(1.33) 62.32(0.72) 64.97(0.63) 52.83(7.05) 55.64(3.03) 54.60(2.34) 56.17(1.02) 53.83(4.77) 54.12(3.56)
GIB 25.59(18.05) 31.80(16.51) 40.56(16.48) 46.87(13.35) 38.11(5.95) 50.56(0.69) 38.93(8.60) 51.73(2.61) 17.64(8.56) 23.25(8.04)
VGIB 20.64(27.56) 26.54(24.51) 54.25(20.38) 56.74(17.96) 39.00(0.29) 50.06(0.13) 36.58(7.07) 50.60(1.19) 45.45(31.44) 47.58(27.67)
SEGNN 56.47(0.72) 59.51(0.94) 60.23(0.68) 63.10(0.72) 54.32(0.52) 54.61(0.75) 55.81(1.45) 56.36(1.57) 35.41(0.52) 39.84(0.52)
GCB 70.48(2.31) 70.80(1.28) 63.39(0.37) 63.76(0.38) 56.95(0.18) 56.91(0.19) 55.02(0.67) 55.12(0.68) 69.17(0.45) 70.45(0.51)
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Class 0: Case Based Class 1: Genetic Algorithms Class 2: Neural Networks

Class 3: Probabilistic Methods Class 4: Reinforcement Learning Class 5: Rule Learning

Class 6: Theory

Figure 6: The average concept activations of 10 sampled instances per class across all selected
concepts (K = 30) as word clouds on Cora.

Class 0: Agents Class 1: Machine Learning Class 2: Information Retrieval

Class 3: Database Class 4: Human Computer Interaction Class 5: Artificial Intelligence

Figure 7: The average concept activations of 10 sampled instances per class across all selected
concepts (K = 30) as word clouds on Citeseer.

E.2 INTERPRETABILITY STUDY

We present word clouds in Figures 6, 7, 8, 9, and 10 to visualize the activation of all concepts from
sampled instances across all classes and datasets. Additionally, we provide the complete versions of
the Sankey diagrams for all datasets in Figures 11, 12, 13, 14, and 15.
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Class 0: Commercial user Class 1: Regular user

Figure 8: The average concept activations of 10 sampled instances per class across all selected
concepts (K = 30) as word clouds on Instagram.

Class 0: Top 50% popular user Class 1: Non-top 50% popular user

Figure 9: The average concept activations of 10 sampled instances per class across all selected
concepts (K = 30) as word clouds on Reddit.
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Class 0: Computational linguistics Class 1: Databases Class 2: Operating systems

Class 3: Computer architecture Class 4: Computer security Class 5: Internet protocols

Class 6: Computer file systems Class 7: Distributed computing architecture Class 8: Web technology

Class 9: Programming language topics

Figure 10: The average concept activations of 10 sampled instances per class across all selected
concepts (K = 30) as word clouds on WikiCS.
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Figure 11: Sankey diagram for Cora
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Figure 12: Sankey diagram for Citeseer
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Figure 14: Sankey diagram for Reddit
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Figure 15: Sankey diagram for WikiCS
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F THE USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this paper, we used large language models (LLMs) solely as a general-purpose tool
to improve writing fluency and polish the presentation of the text. All ideas, experimental designs,
analyses, and conclusions are our own, and the responsibility for the content rests entirely with the
authors.
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