
On the Feasibility of Single-Pass Full-Capacity Learning
in Linear Threshold Neurons with Binary Input Vectors

Ruipeng Liu * 1 Borui He * 1 Naveed Tahir * 1 Garrett Ethan Katz 1

Abstract
Known learning rules tend to fall near one of two
extremes: single-pass associative learning with
low complexity and capacity, and multi-pass iter-
ative learning with high complexity and capacity.
In this work we investigate the mathematical fea-
sibility of learning rules that are both single-pass
and achieve the theoretical upper bound on capac-
ity. We consider a fairly broad family of learning
rules we call “span rules,” which include known
rules such as Hebbian learning, perceptron learn-
ing, and backpropagation as special cases. To
our knowledge, previous work has not determined
whether single-pass, full-capacity span rules ex-
ist, even in the most fundamental case of a linear
threshold neuron with binary input vectors, which
is the focus of this study. We derive a necessary
condition for the existence of such learning rules,
which takes the form of a linear program, and
show that the linear program is infeasible. This
establishes an impossibility result that span rules
can not be both single-pass and full-capacity.

1. Introduction
Classical associative learning rules for linear threshold neu-
rons, such as linear associative networks (Anderson, 1972;
Kohonen, 1972) and Hopfield networks (Hopfield, 1982),
can store training data with very low computational com-
plexity. They require only one pass over the training exam-
ples, and each weight update calculates the new weights as
a simple linear combination of the old weights and the cur-
rent example. Their main disadvantage is their low storage
capacity: The number of examples they can effectively store
is no greater than the input dimension.

*Equal contribution 1Department of Electrical Engineer-
ing and Computer Science, Syracuse University, Syracuse,
New York, USA. Correspondence to: Garrett Ethan Katz
<gkatz01@syr.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

On the other hand, iterative methods such as perceptron
learning (Rosenblatt, 1958) and support vector machines
(Boser et al., 1992) have the capacity to fit any linearly-
separable data (Elizondo, 2006). However, they may require
multiple passes over the data and have higher computational
complexity. More recent approaches to associative mem-
ory (Krotov & Hopfield, 2016; Demircigil et al., 2017) and
single-pass learning (Liu & Xu, 2016) fall between these
two extremes, trading some amount of computational effi-
ciency for higher capacity, or vice versa.

This paper investigates the feasibility of single-pass learning
rules with the low computational complexity of classical as-
sociative methods, but the full capacity of iterative methods.
As a starting point, we focus on the simplest case of a single
linear threshold neuron with binary input vectors. To our
knowledge, even for this case, previous work has not yet de-
termined whether such learning rules can exist. Specifically,
we consider learning rules satisfying two constraints: (i)
The new weights must lie in the span of the old weights and
the current example (which holds for many known learning
rules), and (ii) the new weights must immediately fit the
current example without changing the neuron’s output on
previous examples, as long as the examples remain linearly
separable. Constraint (i) defines the family of learning rules
we consider, and (ii) is the single-pass, full-capacity require-
ment. We investigate the mathematical feasibility of rules
satisfying (i) and (ii), deriving a necessary condition for
their existence which takes the form of a linear program.
It turns out that this linear program is feasible for input
dimension N ≤ 7, but infeasible for N ≥ 8. Therefore, it is
mathematically impossible for learning rules in the family
we consider to be both single-pass and full-capacity.

2. Learning Model
We consider linear threshold functions over the vertices of
the N -dimensional hypercube defined by

ϕ(w, x) = sign(w⊤x), (1)

where ϕ models a neuron with weight vector w ∈ RN

receiving binary input vector x ∈ {−1,+1}N . Since
ϕ(w,−x) = −ϕ(w, x), the neuron’s output on one half
of the hypercube fully determines its output on the other

1

On the Feasibility of Single-Pass Full-Capacity Learning in Linear Threshold Neurons with Binary Input Vectors

half. Therefore we limit our attention to the half cube

HN = {x ∈ {−1,+1}N : x[1] = −1}, (2)

where v[i] denotes the ith component of a vector v using
1-based indexing. This avoids redundancy and also encap-
sulates non-zero firing thresholds, since x[1] is constant and
w[1] · x[1] = −w[1] therefore acts as a bias.

A learning process for ϕ involves an initial weight vector
w(0) and a stream of training examples over time. At time-
step t ≥ 1, an input x(t) ∈ HN is presented with a target
output or “label” y(t) ∈ {−1,+1}. In response, the weights
are updated from w(t−1) to w(t). We focus on learning rules
where the new weights lie in the span of the old weights and
the current input, which we call “span rules,” i.e.:

Definition 2.1. A learning rule for ϕ is a span rule if it can
be written in the form

w(t) = α(t)w(t−1) + β(t)x(t), (3)

where α(t) > 0 and β(t) ∈ R are scalars that may depend
on w(t−1), x(t), and y(t).

Many known learning methods are span rules, including per-
ceptron learning, Widrow-Hoff learning (Widrow & Hoff,
1960), and backpropagation (Linnainmaa, 1970; Rumelhart
et al., 1985), where α ∈ (0, 1) is used to model weight decay.
Span rules also relate to representer theorems, which in their
simplest form state that an optimal solution to a learning
problem is a linear combination of inner products with the
training examples (Schölkopf et al., 2001). However, these
theorems do not address whether the linear combination
coefficients can be computed online in a single pass.

We say a rule is single-pass for a given training set if, after
one presentation of each example, the resulting weights fit
all of the examples. We say that the single-pass rule is also
full-capacity if it is single-pass for every linearly separable
training set. Formally:

Definition 2.2. A learning rule for ϕ is single-pass, full-
capacity provided that, for any linearly separable training
stream ⟨(x(1), y(1)), ..., (x(t), y(t))⟩, the resulting weights
w(t) at time-step t satisfy

∀ 1 ≤ s ≤ t ϕ(w(t), x(s)) = y(s). (4)

To simplify notation and derivations in this paper, we restrict
our attention to finite training streams with no repeated
examples, i.e., t ≤ |HN | and x(s) ̸= x(t) for s ̸= t. A more
general formulation could allow an infinite data stream in
which the same input vector x can appear more than once,
potentially even with different labels at different times: For
example, if the task changes or some associations should
eventually be “overwritten” with new information. In this

formulation, if we still require the neuron to immediately
fit each new example without changing its response on any
other inputs, then it is still single-pass and a harder learning
problem than standard multi-pass learning. The finite stream
assumption does not weaken our results, because if the finite
stream variant is infeasible (as we will show), then certainly
the more general variant is infeasible also.

3. Related Work
3.1. Learning Model Capacity

Existing literature has defined capacity in multiple ways. In
the context of associative memory, “storage capacity” is the
maximum number of training examples that a model can
reliably store and recall. For N -dimensional input vectors,
storage capacity of the Hopfield model is approximately
0.14N (Amit et al., 1985), although higher capacity is possi-
ble with other learning procedures and training distributions.
Storage capacity is exactly N when the input vectors are
orthogonal and stored with linear associative learning, or
linearly independent and stored using the pseudo-inverse
(Kohonen, 2012). It can be much larger when the input
vectors are correlated (Gardner, 1988). For input vectors
in general position, the average number of examples that
can be linearly separated is 2N , irrespective of the learning
rule used to find the decision surface (Cover, 1965). Mod-
ern Hopfield networks have very high storage capacity, but
equally high computational complexity, since all training ex-
amples must be stored explicitly and accessed by the recall
process (Krotov & Hopfield, 2016; Demircigil et al., 2017).

“Cardinal capacity” measures the number of distinct func-
tions a model architecture can represent, irrespective of
learning rule (Baldi & Vershynin, 2019). For the linear
threshold model ϕ, this is precisely the number of linearly
separable dichotomies of HN , where a “dichotomy” is a
partition of HN into two sets: one containing examples as-
signed y = +1, and the other containing examples assigned
y = −1. This number of linearly separable dichotomies
is known to be on the order of 2N

2(1+o(1)) (Zuev, 1989).
We focus on full cardinal capacity in this paper, as it con-
stitutes the theoretical limit on ϕ’s data-fitting capability,
irrespective of the learning rule used to fit the data.

3.2. Enumerating Linearly Separable Dichotomies

Enumerating the number of distinct linearly separable di-
chotomies of HN is a well-studied problem in linear thresh-
old logic (Chow, 1961; Ojha, 2000; Picton, 2016; Rao &
Zhang, 2018). Winder (1966) gave a combinatoric proce-
dure that determines the precise number for any N . This
body of work characterizes the number of such dichotomies,
but not how they relate to any particular learning rule.

Any dichotomy may be checked for linear separability by

2

On the Feasibility of Single-Pass Full-Capacity Learning in Linear Threshold Neurons with Binary Input Vectors

3 4 5 6 7 8
Input dimension N

100

101

102

N
u

m
b

er
of

P
as

se
s

Figure 1. Left: Regions in weight space for each linearly separable
dichotomy of H3. Arrows are coordinate axes and shaded disks are
nullplanes of each vertex x of the cube (black wireframe). Right:
Passes to convergence (log scale) vs. input dimension N for the
perceptron, one dot per canonical region (small noise added for
legibility). Black line and gray envelope show mean and standard
deviation, weighted by region equivalence class sizes.

solving a linear program for w. Specifically, the con-
straint ϕ(w, x) = y is equivalent to the linear inequal-
ity w⊤xy > 0, since w⊤x has the same sign as y when
their product is positive. Geometrically, the nullplane of
each x separates RN into two half-spaces, and a constraint
w⊤xy > 0 confines w to one of those two half-spaces.
When constraints for every (x, y) in a dichotomy are com-
bined, w is confined to a polyhedral cone region. Therefore,
when taken together, the nullplanes of the x’s in HN par-
tition RN into a set of regions, one per linearly separable
dichotomy, as visualized in Figure 1 (left) for N = 3.

One can enumerate all the linearly separable dichotomies
by checking feasibility of a series of such linear programs,
which has been done for N ≤ 9 (Winder, 1965; Muroga
et al., 1970). A key ingredient in scaling to N = 9 was
to leverage the symmetries of the hypercube, which corre-
spond to the hyperoctahedral symmetry group (Todd, 1931).
In particular, given a weight vector w in one region, w’s
in many other regions can be identified by permuting the
entries of w and/or changing their signs (Goto & Takahasi,
1962). Regions related in this way can be grouped into
equivalence classes (Slepian, 1953). For example, in Fig-
ure 1 (left), there are two equivalence classes: one for the
three-sided regions, and one for the four-sided regions. Prior
work only explicitly enumerates one representative region
of each equivalence class, by imposing an additional (linear)
constraint that the weight vectors contain non-negative en-
tries in sorted order. These representative regions and their
dichotomies are called “canonical.”

3.3. Single- and Multi-Pass Learning

Single-pass learning is one instance of streaming algorithms,
in which a data stream must be summarized efficiently with-
out storing many datapoints in memory. Common applica-
tions of streaming algorithms include moment estimation
(Alon et al., 1996), clustering (Charikar et al., 2003), and

graph characterization (McGregor, 2014).

Linear associative networks (Anderson, 1972; Kohonen,
1972) and Hopfield networks (Hopfield, 1982) are clas-
sical single-pass learning models. They have also been
called “one-shot,” but in a different sense than recent “few-
shot” methods, which focus on one or few examples per
class rather than one presentation of each example (Vinyals
et al., 2016; Brown et al., 2020; Lake et al., 2015; Fei-Fei
et al., 2006). Classical single-pass models are quite efficient:
Their weight updates tend to be span rules, in which the
calculation of α and β is dominated by a single dot product.
Hence their complexity tends to be O(N) per weight update.
However, their main drawback is their low capacity.

Support vector machines (Boser et al., 1992) and percep-
tron learning (Rosenblatt, 1958; Murphy et al., 2017) are
classical multi-pass learning methods. They achieve higher
capacity by saving and accessing examples multiple times
during training, which incurs space complexity linear in
the size of the training data, and can also be very time-
consuming. For example, perceptron convergence time is
inversely related to a quantity called the “margin” of the
training data (Block, 1962), which is exponentially small
for some dichotomies of HN in the worst and even average
case. This is apparent in Figure 1 (right), where a separate
perceptron was trained on every canonical dichotomy up to
N = 8. Training generally required multiple passes over
the “training examples,” i.e., the vertices of HN and their
assigned labels. Before every pass of every training run,
the examples were shuffled independently and identically at
random. Training was halted as soon as every example was
fit correctly (potentially midway through a pass).

Subsequent research has developed single-pass versions
of support vector machines (Rai et al., 2009; Liu & Xu,
2016; Li & Long, 1999) and other learning models such as
decision trees (Domingos & Hulten, 2000), the Winnow al-
gorithm (Carvalho & Cohen, 2006), and orthogonal gradient
descent (Min et al., 2022). Compared to iterative learning,
these methods have lower running time, competitive empir-
ical performance, and formal approximation error bounds.
However, their learning rules tend to involve non-trivial al-
gorithms that are substantially more complex than classical
span rules. Hence, while existing methods strike a useful
middle ground, they may not have achieved the theoreti-
cally optimal trade-off between capacity and complexity.
The impossibility result contributed by this paper helps to
characterize that theoretically optimal trade-off.

4. Theoretical Results
We conjectured that single-pass, full-capacity learning might
be possible with a span rule, which turns out to be false. First
we will formalize this conjecture, then we will derive a nec-

3

On the Feasibility of Single-Pass Full-Capacity Learning in Linear Threshold Neurons with Binary Input Vectors

essary condition entailed by this conjecture. The necessary
condition takes the form of a linear program, which we show
to be infeasible. By contrapositive, this shows the conjec-
ture to be false, which means that single-pass full-capacity
learning is mathematically impossible using span rules.

To formalize the conjecture, we must consider all possible
training streams. We can treat each possible stream as a
different path through a large tree, where each edge cor-
responds to the presentation of a new example. The new
example, and the new weights after the example is pro-
cessed, are associated with the edge’s destination node. For
example, a small sub-graph of this tree is shown in Fig-
ure 2. Note that different nodes in the tree could contain
the same training example, and that the sharing of nodes
across paths precludes the weight updates from depending
on downstream examples that have not been presented yet.

Formally, the set of possible length-T streams is (HN ×
{−1,+1})T , since we choose one x ∈ HN and its label
y ∈ {−1,+1} at each of T time-steps. We arrange these
streams in a tree T , where the nodes at depth T are in one-to-
one correspondence with the streams in (HN×{−1,+1})T .
For any node n with parent p(n), the edge between them
corresponds to presentation of one new training example,
which we denote (xn, yn). We also let Dn denote the stream
of all samples “seen so far” at node n, i.e.,

Dn = ⟨(xn1
, yn1

), ..., (xnT
, ynT

)⟩, (5)

where T is the depth of node n, and nodes n0, n1, ..., nT

are the nodes along the path from the root to n, with n0

being the root, nT−1 = p(n), and nT = n. We restrict
our attention to the sub-graph T of T in which each Dn is
linearly separable, has length at most |HN |, and contains
no x ∈ HN more than once. Lastly, we let wn denote the
weight vector produced by a learning process after present-
ing the stream Dn. At the root, w0 represents the initial
weights before learning begins.

Given this notation, the existence of a full-capacity, single-
pass span rule can be formalize as:

Supposition 4.1. There exist a set of vectors wn and scalars
αn > 0, βn ∈ R, such that for every non-root node n in T ,

∀(x, y) ∈ Dn w⊤
n xy > 0, (6)

wn = αnwp(n) + βnxn. (7)

As mentioned earlier, condition (6) is equivalent to
ϕ(wn, x) = y, but expressed as a linear inequality in wn.
Condition (7) is the span rule constraint.

We will show theoretically that Supposition 4.1 entails fea-
sibility of a certain linear program, and then show that the
linear program is infeasible. We find the infeasible lin-
ear program numerically, but also certify its infeasibility

0 1 2 3 4 5 6 7 8

9 10 11

xn

−
−
+

+

+

−
+

+

−
−
+

+

+

+

−
+

−
−
+

+

+

+

+

−

−
+

−
−
+

+

+

+

−
+

−
+

−
+

+

+

−
+

−
+

+

−
+

+

−
+

+

−
−
−
+

+

−
+

+

−
−
+

+

+

−
+

+

−
+

−
−
−

−
+

+

+

−
−
−
−

−
+

+

+

+

−
−
−

yn − + + − − + + −

+ − −

Figure 2. A small sub-graph of T for N = 8. Circles are nodes
with their index n written inside, and arcs are edges. The square
immediately below each node n indicates the label yn, and the
column vectors further below indicate the input xn. To reduce
clutter we omit the “1” in each ±1, only showing the sign.

through a manual analysis. Consequently, Supposition 4.1
must be false by contrapositive, and we obtain the result
that full-capacity, single-pass learning is not possible with a
span rule.

First we remove the non-linear terms αnwp(n) with:

Proposition 4.1. If Supposition 4.1 holds, then there exist a
set of vectors un and scalars γn, such that for every non-root
node n in T ,

∀(x, y) ∈ Dn u⊤
n xy > 0, (8)

un = up(n) + γnxn. (9)

Proof. Start by fixing the set of wn, αn > 0, and βn that
exist under Supposition 4.1. Now for each node n in T with
path n0, ..., nt from the root, where nt = n, take

γn =
βn∏t

s=1 αns

, (10)

which is well-defined since all α’s are non-zero. Next, con-
struct un recursively according to (9), starting with u0 = w0.
By constructing un this way, (9) is automatically satisfied,
but we need to show that (8) is also satisfied. To do so, we
will prove by induction that wn is a positive scalar multiple
of un for every n, so that our supposition w⊤

n xy > 0 in (6)
entails our goal u⊤

n xy > 0 in (8). The base case holds at the
root since we have assigned u0 = w0 in our construction of
the un. For the inductive case, we will show that

wn =

(
t∏

s=1

αns

)
un, (11)

4

On the Feasibility of Single-Pass Full-Capacity Learning in Linear Threshold Neurons with Binary Input Vectors

for every non-root node n, which is a positive scalar multiple
of un since all α’s are positive. (11) holds because

wnt
= αnt

wnt−1
+ βnt

xnt
(12)

= αnt

(
t−1∏
s=1

αns

)
unt−1 + βntxnt (13)

=

(
t∏

s=1

αns

)(
unt−1

+ γnt
xnt

)
(14)

=

(
t∏

s=1

αns

)
unt

, (15)

where (13) follows by the inductive hypothesis, (14) follows
by factoring and the choice of γn in (10), and (15) follows
by the construction of un according to (9).

Next we note that if conditions (8) and (9) are true for all
nodes in T , they are also true for any finite sub-graph T̂
of T . Given an arbitrary such T̂ , let P(ϵ) denote the linear
program with parameter ϵ and variables un and γn given by

min
∑
n

∑
(x,y)∈Dn

u⊤
n xy − ϵ s.t. (16)

∀n∀(x, y) ∈ Dn u⊤
n xy ≥ ϵ (17)

∀n ̸= 0 un = up(n) + γnxn. (18)

The objective (16) minimizes the total slack in constraint
(17) to ensure that the problem is bounded. n ̸= 0 indicates
non-root node. If there exist un and γn that satisfy (8) and
(9), then they are also feasible solutions to P(ϵ) when

ϵ = min
n

min
(x,y)∈Dn

u⊤
n xy. (19)

Furthermore, dividing through by ϵ in (16-18) shows that
if un and γn are feasible solutions to P(ϵ), then un/ϵ and
γn/ϵ are feasible solutions to P(1). Therefore, feasibility of
P(1) for all T̂ is a necessary condition for Supposition 4.1
to hold. By contrapositive, if P(1) is infeasible for some T̂ ,
then Supposition 4.1 must be false. The following sections
confirm existence of one such T̂ in dimension N = 8.

Finally, we show that if constraints (8-9) are infeasible in a
given dimension N , then they are also infeasible in dimen-
sion N + 1. Consequently, using N = 8 as a base case,
infeasibility for all N ≥ 8 follows by induction. In order
to formally state this result, let T N denote the tree of all
linearly separable streams in dimension N . We say that T N

is “feasible” if and only if the corresponding constraints
(8-9) are feasible. Then we have:
Proposition 4.2. For any arbitrary N ∈ N, if T N is infea-
sible, then T N+1 is infeasible.

Proof. By way of contrapositive, we will suppose T N+1 is
feasible, and then show that T N must be feasible as well.

Consider any node n in T N with training stream Dn =
⟨z1, z2, ..., zn⟩, where we set zt = xt · yt to simplify nota-
tion. By definition of T N this stream is linearly separable,
meaning there exists some w such that w⊤zt > 0 for each
zt ∈ Dn. This implies that the (N + 1)-dimensional vector
[w; 0], which is w concatenated with a 0 at the end, also
separates the stream

Dn̂ =

〈[
z1
−1

]
,

[
z1
+1

]
, ...,

[
zn
−1

]
,

[
zn
+1

]〉
,

where each [zt;±1] is zt concatenated with ±1 at the end.
Therefore Dn̂ is also linearly separable, and hence there is a
node n̂ in T N+1 with stream Dn̂. Likewise, the parent p of
n in T N has a corresponding node p̂ in T N+1 which is the
grandparent of n̂, and Dp̂ is Dn̂ with the last two examples
removed.

Having supposed that T N+1 is feasible, we have

un̂ = up̂ + γn̂−

[
zn
−1

]
+ γn̂+

[
zn
+1

]
(20)

for some vectors un̂, up̂ and scalars γn̂− , γn̂+ , which also
satisfy

u⊤
n̂

[
zt
−1

]
> 0 and u⊤

n̂

[
zt
+1

]
> 0 (21)

for each pair [zt;−1] and [zt; +1] in Dn̂. Adding the two
inequalities in (21), the ± terms cancel, leaving ǔ⊤

n̂ zt > 0,
where ǔn̂ ∈ RN is the vector containing the first N entries
of the (N + 1)-dimensional vector un̂. This means that
the vectors ǔn̂ satisfy constraint (8). Inspecting the first N
dimensions of (20) we find that ǔn̂ = ǔp̂ + (γn̂− + γn̂+

)zn,
so they also satisfy constraint (9). Therefore, by setting
u0 = ǔ0̂ and γn = (γn̂− + γn̂+

) for every n, we obtain a
feasible solution for T N .

5. Numerical Methods
Using similar methods to (Winder, 1965; Muroga et al.,
1970), we first enumerated all canonical linearly separable
dichotomies of HN up to N = 9. These methods also return
weight vectors that separate their respective dichotomies.
Henceforth, for brevity we will simply write “dichotomies”
to mean canonical linearly separable dichotomies, unless
otherwise stated. We let Xk denote the kth vertex in HN , let
Yi,k denote the label assigned to Xk by the ith dichotomy,
and let Wi denote the returned weight vector for that di-
chotomy. We arbitrarily chose to index vertices of HN

in lexicographic order (i.e., viewing Xk as the number k
expressed in base 2, with 0’s replaced by −1’s). As an
example, X and Y are shown in Figure 3 for N = 5.

We then constructed a sub-graph T̂ of T with one leaf
per dichotomy, with examples along the path to the leaf

5

On the Feasibility of Single-Pass Full-Capacity Learning in Linear Threshold Neurons with Binary Input Vectors

− − − − − − − − − − − − − − − −
− − − − − − − −
− − − − − − − −
− − − − − − − −
− − − − − − − −

+ + + + + + + +

+ + + + + + + +

+ + + + + + + +

+ + + + + + + +

XT

− − − − − − − − − − − − − − − −
− − − − − − − − − − − − − − −
− − − − − − − − − − − − − −
− − − − − − − − − − − − −
− − − − − − − − − − − −
− − − − − − − − − − −
− − − − − − − − − − − −

+

+ +

+ + +

+ + + +

+ + + + +

+ + + +

i

Y

F F F F F F F F F F F

F F F F F F F F

F F F F F F F F F F F

F F F F F F F F F

F F F F F F

F F F F

T T T T T T T T T T T T T T T T

T T T T T

T T T T T T T T

T T T T T

T T T T T T T

T T T T T T T T T T

T T T T T T T T T T T T

k

B

Figure 3. X⊤ (top), Y (middle), and B (bottom) for N = 5. In-
dices i and k range over rows and columns, respectively.

presented again in lexicographic order. To reduce P(1) to
a manageable size, we did not include all x ∈ HN along
the path to the leaf, but only the “boundary” or “support
vectors” of the dichotomy corresponding to irredundant
constraints. Geometrically, these are the x’s whose null-
planes form the boundary of the dichotomy’s region. For
example, in Figure 1 (left), each three-sided region has only
three boundary x’s, even though there are four x’s in H3.
A shown by Fisher & Dearholt (1973), Xk is a boundary
vector of region i precisely when there exists another (not
necessarily canonical) region j which agrees with i on every
input except Xk (i.e., when Yi,k = −Yj,k, but Yi,k′ = Yj,k′

for all other k′ ̸= k). We checked this condition by brute
force to form a boolean boundary matrix B, where Bi,k is
True if Xk is a boundary of region i and False otherwise.
Figure 3 (bottom) shows B in the case N = 5.

Since our theoretical results depend on the correctness of
our code, instead of presenting algorithmic pseudocode,
we show our core Python implementation in Listing 1 and
explain it here.

First, we check on lines 1-5 that X and Y are ±1 matrices,
the rows of X are unique vertices in HN , and the rows in
Y are unique dichotomies. Next, on lines 9-18, we build
the node set V and edge set E of T̂ . The outer loop (line
10) creates one leaf per dichotomy, and the inner loop (line
12) creates nodes along the path from root to leaf. Since
multiple paths may have overlapping leading portions, care
was taken to ensure there were no duplicate nodes where
n ̸= n′ but Dn = Dn′ . This was done by implementing

V as a key-value lookup table, using each unique Dn as
a key that maps to the corresponding node index n as its
value (along with current dichotomy i, for later use). D0

is initialized empty on line 11 and examples are appended
to it on line 14 as the path is traversed. We used the index
k rather than input vector Xk in the key, since the former
could be stored directly as a key in a Python dictionary. New
nodes and edges were only allocated on lines 16-18 if they
were not duplicates of previously constructed leading paths,
which was checked by the if-statement on line 15. Finally,
lines 20-24 reconstruct the input vectors Xk in each Dn

from their k’s in the corresponding key.
1 N = X.shape[1]
2 assert (np.fabs(X) == 1).all()
3 assert (np.fabs(Y) == 1).all()
4 assert len(X) == len(np.unique(X, axis=0))
5 assert len(Y) == len(np.unique(Y, axis=0))
6
7 print("Building the tree...")
8
9 V, E = {(): (0, 0)}, []

10 for i in range(len(Y)):
11 D = ()
12 for k in np.flatnonzero(B[i]):
13 p, _ = V[D]
14 D += ((k, Y[i,k]),)
15 if D not in V:
16 n = len(V)
17 V[D] = (n, i)
18 E.append((n, p, X[k], Y[i,k]))
19
20 D = [(X[[]], np.empty(0), 0)]
21 for (Dn, (n, i)) in V.items():
22 if n == 0: continue
23 ks, y = map(np.int64, zip(*Dn))
24 D.append((X[ks], y, i))
25
26 print("Checking the tree...")
27
28 for (Xn, yn, i) in D:
29 assert (np.sign(W[i] @ Xn.T) == yn).all()
30 for (n, p, x, y) in E:
31 Xn, yn, _ = D[n]
32 Xp, yp, _ = D[p]
33 assert (Xp == Xn[:-1]).all()
34 assert (yp == yn[:-1]).all()
35 assert (x == Xn[-1]).all()
36 assert (y == yn[-1]).all()
37
38 print("Running the linear program...")
39
40 u = cp.Variable((len(D), N))
41 g = cp.Variable(len(E))
42
43 span_constraints = [
44 u[n] == (u[p] + g[e] * x)
45 for e, (n, p, x, _) in enumerate(E)]
46
47 data_constraints = [
48 u[n] @ (Xn.T * yn) >= 1
49 for n, (Xn, yn, _) in enumerate(D) if n > 0]
50
51 c = np.stack([
52 (Xn.T * yn).sum(axis=1)
53 for n, (Xn, yn, _) in enumerate(D) if n > 0])
54
55 constraints = span_constraints + data_constraints
56 objective = cp.Minimize(cp.sum(cp.multiply(u[1:],c)))
57
58 problem = cp.Problem(objective, constraints)
59 problem.solve(solver=solver, verbose=verbose)

Listing 1. Tree construction and feasibility check

6

On the Feasibility of Single-Pass Full-Capacity Learning in Linear Threshold Neurons with Binary Input Vectors

Since the correctness of the code on lines 9-24 may not be
obvious, we perform additional checks that the constructed
tree is indeed a sub-graph of T . The assertions on lines 28-
29 show that each Dn is indeed linearly separable. Here we
made use of the separating vector Wi which was previously
identified during region enumeration, using the methods of
Winder (1965) and Muroga et al. (1970). This check was
the sole purpose of saving each i along with node index n
earlier on line 17; after this point i and Wi are not used.

The second set of assertions on lines 30-36 confirm that
each node’s data stream Dn is indeed equivalent to its par-
ent’s data stream Dp(n), with the one new training example
(xn, yn) for the current edge appended at the end.

Finally, lines 40-59 encode and solve P(1) using CVXPY
(Diamond & Boyd, 2016; Agrawal et al., 2018). We com-
pared several commercial and open-source solvers, includ-
ing Gurobi, MOSEK, CBC (Lougee-Heimer, 2003), ECOS
(Domahidi et al., 2013), and the HiGHS solver in SciPy
(Huangfu & Hall, 2018; Virtanen et al., 2020).

For N = 8 where full-capacity learning turned out to be
infeasible, we also gauged the extent to which “high” (but
not full) capacity learning was possible using Monte-Carlo
experiments. Specifically, we randomly sampled a subset of
the dichotomies and constructed T̂ using only that subset.
In other words, we randomly discarded many rows of Y and
B before passing them to the code in Listing 1. The subset
size was an experimental parameter that we varied between
2 and 2470 (the latter is the total number of dichotomies
for N = 8). The sizes we checked were spaced equally
across that range (excluding 2470, which was already found
infeasible in the full-capacity check). To quantify capacity
we define the “feasibility rate” at each subset size as the
fraction of 30 independent random repetitions where P(1)
was feasible. Only Gurobi was used here because it was one
of the fastest and most reliable solvers on our problem.

Since several solvers had occassional numerical issues, we
deemed it necessary to also check an infeasible sub-graph
by hand and certify that it was indeed infeasible. This check
is covered in Section 7. For this purpose, it was important to
identify a very small infeasible sub-graph, which we did as
follows. First, we sorted the dichotomies by their number of
boundary vectors in ascending order, since fewer boundary
vectors tend to produce smaller sub-trees. Next, we iterated
over all size-2 subsets of dichotomies according to this order,
so that pairs whose dichotomies had fewer boundary vectors
would be checked earlier in the iteration. We checked pairs
rather than singletons because individual dichotomies are
always feasible, due to their linear separability and the span
coefficients guaranteed by the representer theorem. It turned
out that an infeasible pair of dichotomies did exist. We
terminated the search once this pair was found numerically,
and certify its infeasibility by hand in Section 7.

3 4 5 6 7 8
N

10−1

101

103

R
u

n
ti

m
e

(s
)

GUROBI

MOSEK

ECOS

CBC

3 4 5 6 7 8
N

0

1

2

3

4

5

|γ|

Figure 4. Left: Running times to solve P(1) for 3 ≤ N ≤ 8.
Right: Numerical values of |γn|, one dot per node n in T̂ , at the
optimal solutions found by Gurobi (N = 8 was infeasible).

0 250 500 750 1000 1250 1500 1750 2000
Dichotomy sample size

0.0

0.2

0.4

0.6

0.8

1.0

F
ea

si
b

il
it

y
R

at
e

Figure 5. For N = 8, fraction of repetitions (“feasibility rate”)
where P(1) was reported feasible by Gurobi, when constructing
T̂ using a random subset of canonical dichotomies. Subset sizes
were equally spaced at 5 points between 2 and the total number of
canonical dichotomies. For each subset size, 30 repetitions were
used to estimate the feasibility rate.

All experiments were done on a workstation with 8-core
Intel i7 CPU and 32GB of RAM, Fedora 39 Linux, Python
3.11.7, NumPy 1.26.3, SciPy 1.11.1, CVXPY 1.4.1, Gurobi
11.0.0, and MOSEK 10.1. Run-times depended on N and
the solver used, but for Gurobi the full set of experiments
completed in roughly two days. All experiment code is
open-source (MIT license) and freely available online.1

6. Numerical Results
Figure 4 (left) shows the running times for various solvers
on each input dimension tested. While run times varied,
all solvers that terminated agreed that P(1) was feasible
for N ≤ 7 and infeasible for N = 8. The HiGHS solver
ran indefinitely at N = 8 so we exclude it from the figure.
Numerical values of |γn| at the feasible solutions found
by Gurobi for N ≤ 7 are shown in Figure 4 (right). We
confirmed separately that, using these numerical solutions
for N ≤ 7, the maximum residual error in any constraint
was near machine precision.

1https://github.com/garrettkatz/slim

7

https://github.com/garrettkatz/slim

On the Feasibility of Single-Pass Full-Capacity Learning in Linear Threshold Neurons with Binary Input Vectors

Figure 5 shows the results of our high-capacity experiments,
using random sub-samples of dichotomies in P(1). The
results in Figure 5 are consistent with the existence of an
infeasible size-2 subset. For example, the probability that a
random half of the dichotomies includes a particular size-2
subset is roughly 0.25, and we observe a feasibility rate less
than 0.25 when roughly half of the 2470 dichotomies are
in the sample. In fact, the feasibility rate for a random half
is closer to 0.1, suggesting the existence of other infeasible
subsets in addition to the one that we found.

That said, it was not practical to double-check infeasibility
of each sample “by hand” since there are 30 × 5 samples
and most are very large. Therefore, the results in Fig. 5 are
suggestive but not conclusive, given the occassional numer-
ical mistakes made by the solvers. On the other hand, we
do hand-check one infeasible size-2 subset in the following
section, so our main results in Section 4 stand.

7. Infeasibility Certificate
In principle, linear programming is a convex optimization
problem that can be solved with strong formal guarantees.
For example, the simplex method is guaranteed to terminate
under appropriate pivoting rules that account for degener-
acy (Bertsimas & Tsitsiklis, 1997). Similar guarantees are
known for interior point methods. However, in practice,
modern solvers may implement more complex variants of
these approaches and are not always open source; so it is
difficult to determine precise guarantees for the specific
solvers we used. Numerical issues in these solvers, though
rare, did occur. Therefore our theoretical results are not
fully established unless we prove “by hand” that P(1) truly
is infeasible, for at least one sub-graph T̂ of T . Although
HiGHS was the only solver that ran indefinitely, we found at
various stages of the process (region enumeration, boundary
identification, full and high capacity checks) that ECOS oc-
cassionally produced false positives (reported an infeasible
program as “feasible”), and CBC occasionally produced
false negatives (reported a feasible program as “infeasible”).
We were able to detect these issues when the outputs of two
solvers disagreed. MOSEK occasionally reported that it
could not solve certain instances.

Gurobi was the only solver for which we did not detect any
inconsistencies. However, given the foregoing issues, it was
still important to certify the infeasibility claims by hand.
In this section we present an infeasibility certificate for a
specific infeasible pair of dichotomies at N = 8: namely,
the pair whose sub-graph was shown previously in Figure 2.

Specifically, we will show that the sub-graph rooted at node
6 in Figure 2 is infeasible. To simplify the notation, let Zn

denote the matrix whose columns are the products xy for
each (x, y) ∈ Dn. Next, to reduce P(1) to a reasonable size

for manual analysis, we eliminate the variables un for n > 6
by rewriting them in terms of u6 and the γn’s, according to
condition (9), which gives the system:

(u6)⊤Z6 ≥ 1

(u6 + γ7x7)⊤Z7 ≥ 1

(u6 + γ7x7 + γ8x8)⊤Z8 ≥ 1

(u6 + γ9x9)⊤Z9 ≥ 1

(u6 + γ9x9 + γ10x10)⊤Z10 ≥ 1

(u6 + γ9x9 + γ10x10 + γ11x11)
⊤Z11 ≥ 1

Each row of this system corresponds to condition (8) at one
node in the sub-graph. We can reorganize this system into
the form Av ≥ 1, where 1 is a vector of all 1’s and v is the
concatenation of u6 with γ7 through γ11. In this form, A
is a block matrix whose blocks include copies of Z⊤

n and
various products Z⊤

n xm for certain node pairs (n,m), such
as Z⊤

8 x7 and Z⊤
8 x8 from the third inequality in the system.

The full matrix A is shown in Figure 6.

It remains to show that the system of inequalities Av ≥ 1
is infeasible. If there existed a v satisfying this system,
then it would also satisfy s⊤Av ≥ s⊤1 for any vector s
with non-negative entries, since a non-negative scaling of
any inequality does not change the direction of the inequal-
ity. However, in Figure 6 we exhibit one such s for which
s⊤A = 0, where 0 is a vector of all 0’s, but s⊤1 = 20. This
would imply s⊤Av = 0 and hence 0 ≥ 20, a contradiction.
Therefore, no v satisfying Av ≥ 1 can exist, certifying that
P(1) is indeed infeasible on this particular sub-graph of T .

8. Discussion and Limitations
Our results help characterize the theoretical limits of linear
threshold learning with binary input vectors. In particular,
any learning process taking the form of a span rule can not
be both single-pass and full-capacity. The upshot is that this
result imposes a design constraint on single-pass learning
processes. When researching new methods for single-pass
full-capacity learning, candidates that take the form of span
rules can be removed from consideration to avoid wasted
search effort. This applies to manual analyses as well as au-
tomated search methods, e.g., symbolic regression (La Cava
et al., 2021). Automated search for learning rules is a chal-
lenging problem, but some inroads have been made in recent
years, such as (Lindsey & Litwin-Kumar, 2020).

One limitation of our work is that many real-world datasets
are not binary. Strictly speaking, since HN ⊆ RN , we
have also provided a counter-example to single-pass, full-
capacity span learning in the case of real-valued input. How-
ever, these counterexamples might be rare when consider-
ing typical statistical distributions over real-valued training
data, such as vectors in general position, or the highly non-

8

On the Feasibility of Single-Pass Full-Capacity Learning in Linear Threshold Neurons with Binary Input Vectors

uniform distribution of natural images. One avenue for fu-
ture work is therefore extending our approach to real-valued
input vectors from various statistical distributions.

Another limitation is our focus on learning in a single linear
threshold unit, as opposed to deep multi-layer networks of
such units, or other architectures such as attention-based
models. The single-unit case was a natural starting point,
since it already proved to be fairly complicated, and to our
knowledge even in this case the feasibility question had not
been previously answered. That said, it is well-known that
multi-layer networks have higher cardinal capacity and can
fit non-linearly-separable data (Baldi & Vershynin, 2019).
So another avenue for future work is to investigate the fea-
sibility of single-pass span rule learning in a multi-layer
context, including the overparameterized regime, and incor-
porate recent work in that area such as (Min et al., 2022;
Zhu & Xu, 2021). Extending our methods to multi-layer
networks appears challenging, due to the hidden layer non-
linearities. However, there is some recent progress on using
numerical techniques to interpret multi-layer networks with
real-valued (ReLU) activations, such as (Rolnick & Kord-
ing, 2020). In our case we believe something similar may
be possible, although we will most likely have to resort to
mixed-integer or otherwise non-linear optimization.

We also note several real-world applications for binary in-
put and/or single-layer networks. For example, discrete as
opposed to continuous input is relevant to quantized models
on low-memory edge devices (Hubara et al., 2018). Even
when memory is not constrained, discrete representation
learning (i.e., VQ-VAE (Van Den Oord et al., 2017)) has
certain benefits and is a widely-used technique. Single-layer
linear associative networks also have utility in certain set-
tings, such as neural program induction architectures, in
which they are used to emulate random-access computer
memory (Katz et al., 2020).

Lastly, future work should address not only the model’s
data-fitting capacity, but also its generalization performance.
One possible approach is to augment the linear constraints
with margin-maximization objectives. In constructing the
sub-graph T̂ , we only included irredundant constraints, i.e.,
the “support vectors” of each dichotomy, which are relevant
to efficient margin maximization. So there is some basis to
believe our methodology could be extended in this direction.

Acknowledgements
This work is partially supported by the National Science
Foundation I/UCRC ASIC (Alternative Sustainable and In-
telligent Computing) Center (CNS-1822165), and the Center
for Advanced Systems and Engineering at Syracuse Uni-
versity, a New York State Center for Advanced Technology.
Thanks also to the reviewers for their helpful feedback.

+ + - - - + - -

- - + + + + - +

- - + + + + + -

+ - + + - - - -

+ - + - + - - -

- + - + + - + +

+ + - - - + - -

- - + + + + - +

- - + + + + + -

+ - + + - - - - -4

+ - + - + - - - -4

- + - + + - + +

- + + - - + + + 8

+ + - - - + - - -2

- - + + + + - + 2

- - + + + + + - 2

+ - + + - - - - -4 2

+ - + - + - - - -4 2

- + - + + - + + 2

- + + - - + + + 8 -2

+ - - - - + + + 2 -8

+ + - - - + - - -2

- - + + + + - + -2

- - + + + + + - -2

+ - + + - - - - -2

+ - + - + - - - -2

- + - + + - + + 2

- + + - - - + + 8

+ + - - - + - - -2

- - + + + + - + -2

- - + + + + + - -2

+ - + + - - - - -2

+ - + - + - - - -2 4

- + - + + - + + 2

- + + - - - + + 8 2

+ - - + - + + + -2 -8

+ + - - - + - - -2

- - + + + + - + -2

- - + + + + + - -2

+ - + + - - - - -2 4

+ - + - + - - - -2 4

- + - + + - + + 2

- + + - - - + + 8 2 2

+ - - + - + + + -2 -8 -4

+ - - - + + + + -2 -4 -8

u6

γ7

γ8

γ9

γ10

γ11

1

2

1

4

2

1

1

2

4

2

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

A v ≥ 1s

sTA 20

Figure 6. Certificate that Av ≥ 1 is infeasible. The large matrix
in the center is A; the short column vector to its right shows the
arrangement of u6 and the γn’s in v. The column vectors on far
left and right are s and 1. The row vector at bottom center is
s⊤A, and the scalar at bottom right is s⊤1. To reduce clutter, zero
entries are unlabeled, and for ±1 entries only the sign is displayed.

9

On the Feasibility of Single-Pass Full-Capacity Learning in Linear Threshold Neurons with Binary Input Vectors

Impact Statement
This work makes a small contribution to the field of single-
pass machine learning, and more generally, efficient ma-
chine learning. Reducing the computational costs of ma-
chine learning can have positive impacts on the environment
as well as under-resourced researchers and practitioners
of AI. On the other hand, faster learning can also further
accelerate the advancement of AI towards human-level intel-
ligence and beyond, which has numerous associated risks.

References
Agrawal, A., Verschueren, R., Diamond, S., and Boyd, S.

A rewriting system for convex optimization problems.
Journal of Control and Decision, 5(1):42–60, 2018.

Alon, N., Matias, Y., and Szegedy, M. The space complexity
of approximating the frequency moments. In Proceedings
of the twenty-eighth annual ACM symposium on Theory
of computing, pp. 20–29, 1996.

Amit, D. J., Gutfreund, H., and Sompolinsky, H. Storing in-
finite numbers of patterns in a spin-glass model of neural
networks. Physical Review Letters, 55(14):1530, 1985.

Anderson, J. A. A simple neural network generating an
interactive memory. Mathematical Biosciences, 14(3-4):
197–220, 1972.

Baldi, P. and Vershynin, R. The capacity of feedforward
neural networks. Neural Networks, 116:288–311, 2019.

Bertsimas, D. and Tsitsiklis, J. N. Introduction to linear
optimization, volume 6. Athena Scientific Belmont, MA,
1997.

Block, H.-D. The perceptron: A model for brain functioning.
I. Reviews of Modern Physics, 34(1):123, 1962.

Boser, B. E., Guyon, I. M., and Vapnik, V. N. A training
algorithm for optimal margin classifiers. In Proceedings
of the fifth annual workshop on Computational learning
theory, pp. 144–152, 1992.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry,
G., Askell, A., Agarwal, S., Voss, A. H., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. Advances in Neural Infor-
mation Processing Systems, 33:1877–1901, 2020.

Carvalho, V. R. and Cohen, W. W. Single-pass online learn-
ing: Performance, voting schemes and online feature

selection. In Proceedings of the 12th ACM SIGKDD in-
ternational conference on Knowledge discovery and data
mining, pp. 548–553, 2006.

Charikar, M., O’Callaghan, L., and Panigrahy, R. Better
streaming algorithms for clustering problems. In Pro-
ceedings of the thirty-fifth annual ACM symposium on
Theory of computing, pp. 30–39, 2003.

Chow, C.-K. On the characterization of threshold func-
tions. In 2nd Annual Symposium on Switching Circuit
Theory and Logical Design (SWCT 1961), pp. 34–38.
IEEE, 1961.

Cover, T. M. Geometrical and statistical properties of sys-
tems of linear inequalities with applications in pattern
recognition. IEEE Transactions on Electronic Computers,
(3):326–334, 1965.

Demircigil, M., Heusel, J., Löwe, M., Upgang, S., and
Vermet, F. On a model of associative memory with huge
storage capacity. Journal of Statistical Physics, 168(2):
288–299, 2017.

Diamond, S. and Boyd, S. CVXPY: A Python-embedded
modeling language for convex optimization. Journal of
Machine Learning Research, 17(83):1–5, 2016.

Domahidi, A., Chu, E., and Boyd, S. ECOS: An SOCP
solver for embedded systems. In European Control Con-
ference (ECC), pp. 3071–3076, 2013.

Domingos, P. and Hulten, G. Mining high-speed data
streams. In Proceedings of the sixth ACM SIGKDD in-
ternational conference on Knowledge discovery and data
mining, pp. 71–80, 2000.

Elizondo, D. The linear separability problem: Some testing
methods. IEEE Transactions on Neural Networks, 17(2):
330–344, 2006.

Fei-Fei, L., Fergus, R., and Perona, P. One-shot learning of
object categories. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 28(4):594–611, 2006.

Fisher, L. T. and Dearholt, D. W. Boundary points of thresh-
old functions. IEEE Transactions on Computers, 100(12):
1132–1139, 1973.

Gardner, E. The space of interactions in neural network
models. Journal of physics A: Mathematical and general,
21(1):257, 1988.

Goto, E. and Takahasi, H. Some theorems useful in thresh-
old logic for enumerating boolean functions. In IFIP
congress, pp. 747–752, 1962.

10

On the Feasibility of Single-Pass Full-Capacity Learning in Linear Threshold Neurons with Binary Input Vectors

Hopfield, J. J. Neural networks and physical systems with
emergent collective computational abilities. Proceedings
of the National Academy of Sciences, 79(8):2554–2558,
1982.

Huangfu, Q. and Hall, J. J. Parallelizing the dual revised
simplex method. Mathematical Programming Computa-
tion, 10(1):119–142, 2018.

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and
Bengio, Y. Quantized neural networks: Training neu-
ral networks with low precision weights and activations.
Journal of Machine Learning Research, 18(187):1–30,
2018.

Katz, G. E., Gupta, K., and Reggia, J. A. Reinforcement-
based program induction in a neural virtual machine. In
2020 International Joint Conference on Neural Networks
(IJCNN), pp. 1–8. IEEE, 2020.

Kohonen, T. Correlation matrix memories. IEEE Transac-
tions on Computers, 100(4):353–359, 1972.

Kohonen, T. Self-organization and associative memory,
volume 8. Springer Science & Business Media, 2012.

Krotov, D. and Hopfield, J. J. Dense associative memory
for pattern recognition. Advances in Neural Information
Processing Systems, 29, 2016.

La Cava, W., Orzechowski, P., Burlacu, B., de Franca, F. O.,
Virgolin, M., Jin, Y., Kommenda, M., and Moore, J. H.
Contemporary symbolic regression methods and their
relative performance. In Thirty-fifth Conference on Neu-
ral Information Processing Systems Datasets and Bench-
marks Track (Round 1), 2021.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B.
Human-level concept learning through probabilistic pro-
gram induction. Science, 350(6266):1332–1338, 2015.

Li, Y. and Long, P. The relaxed online maximum margin
algorithm. Advances in neural information processing
systems, 12, 1999.

Lindsey, J. and Litwin-Kumar, A. Learning to learn with
feedback and local plasticity. Advances in Neural Infor-
mation Processing Systems, 33:21213–21223, 2020.

Linnainmaa, S. The representation of the cumulative round-
ing error of an algorithm as a Taylor expansion of the
local rounding errors. PhD thesis, Master’s Thesis (in
Finnish), Univ. Helsinki, 1970.

Liu, Y. and Xu, J. One-pass online SVM with extremely
small space complexity. In 2016 23rd International Con-
ference on Pattern Recognition (ICPR), pp. 3482–3487.
IEEE, 2016.

Lougee-Heimer, R. The common optimization interface
for operations research: Promoting open-source software
in the operations research community. IBM Journal of
Research and Development, 47(1):57–66, 2003.

McGregor, A. Graph stream algorithms: a survey. ACM
SIGMOD Record, 43(1):9–20, 2014.

Min, Y., Ahn, K., and Azizan, N. One-pass learning via
bridging orthogonal gradient descent and recursive least-
squares. In 2022 IEEE 61st Conference on Decision and
Control (CDC), pp. 4720–4725. IEEE, 2022.

Muroga, S., Tsuboi, T., and Baugh, C. R. Enumeration of
threshold functions of eight variables. IEEE Transactions
on Computers, 100(9):818–825, 1970.

Murphy, C., Gray, P., and Stewart, G. Verified perceptron
convergence theorem. In Proceedings of the 1st ACM
SIGPLAN International Workshop on Machine Learning
and Programming Languages, pp. 43–50, 2017.

Ojha, P. C. Enumeration of linear threshold functions from
the lattice of hyperplane intersections. IEEE Transactions
on Neural Networks, 11(4):839–850, 2000.

Picton, P. Threshold logic: Is there finally a solution? In
2016 International Joint Conference on Neural Networks
(IJCNN), pp. 45–51. IEEE, 2016.

Rai, P., Daumé, H., and Venkatasubramanian, S. Streamed
learning: one-pass SVMs. In Proceedings of the 21st
International Joint Conference on Artificial Intelligence,
pp. 1211–1216, 2009.

Rao, Y. and Zhang, X. The characterizations of hyper-star
graphs induced by linearly separable boolean functions.
Chinese Journal of Electronics, 27(1):19–25, 2018.

Rolnick, D. and Kording, K. Reverse-engineering deep
relu networks. In International conference on machine
learning, pp. 8178–8187. PMLR, 2020.

Rosenblatt, F. The perceptron: a probabilistic model for
information storage and organization in the brain. Psy-
chological Review, 65(6):386, 1958.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learn-
ing internal representations by error propagation. Tech-
nical report, California Univ San Diego La Jolla Inst for
Cognitive Science, 1985.

Schölkopf, B., Herbrich, R., and Smola, A. J. A general-
ized representer theorem. In International conference on
computational learning theory, pp. 416–426. Springer,
2001.

11

On the Feasibility of Single-Pass Full-Capacity Learning in Linear Threshold Neurons with Binary Input Vectors

Slepian, D. On the number of symmetry types of boolean
functions of n variables. Canadian Journal of Mathemat-
ics, 5:185–193, 1953.

Todd, J. The groups of symmetries of the regular polytopes.
In Mathematical Proceedings of the Cambridge Philo-
sophical Society, volume 27, pp. 212–231. Cambridge
University Press, 1931.

Van Den Oord, A., Vinyals, O., et al. Neural discrete rep-
resentation learning. Advances in neural information
processing systems, 30, 2017.

Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.
Matching networks for one shot learning. Advances in
Neural Information Processing Systems, 29, 2016.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,
Reddy, T., Cournapeau, D., Burovski, E., Peterson, P.,
Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,
Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J.,
Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ.,
Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D.,
Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A.,
Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa,
F., van Mulbregt, P., and SciPy 1.0 Contributors. SciPy
1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261–272, 2020. doi:
10.1038/s41592-019-0686-2.

Widrow, B. and Hoff, M. E. Adaptive switching circuits.
Technical report, Stanford Univ Ca Stanford Electronics
Labs, 1960.

Winder, R. O. Enumeration of seven-argument threshold
functions. IEEE Transactions on Electronic Computers,
(3):315–325, 1965.

Winder, R. O. Partitions of n-space by hyperplanes. SIAM
Journal on Applied Mathematics, 14(4):811–818, 1966.

Zhu, H. and Xu, J. One-pass stochastic gradient descent in
overparametrized two-layer neural networks. In Interna-
tional Conference on Artificial Intelligence and Statistics,
pp. 3673–3681. PMLR, 2021.

Zuev, Y. A. Asymptotics of the logarithm of the number
of threshold functions of the algebra of logic. In Soviet
Math Dokl, volume 39, pp. 512–513, 1989.

12

