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Abstract
Recent advancements in pretraining have001
demonstrated that modern Large Language002
Models (LLMs) possess the capability to effec-003
tively learn arithmetic operations. However, de-004
spite acknowledging the significance of digit or-005
der in arithmetic computation, current method-006
ologies predominantly rely on sequential, step-007
by-step approaches for teaching LLMs arith-008
metic, resulting in a conclusion where obtain-009
ing better performance involves fine-grained010
step-by-step. Diverging from this conventional011
path, our work introduces a novel strategy that012
not only reevaluates the digit order by prioritiz-013
ing output from the least significant digit but014
also incorporates a step-by-step methodology015
to substantially reduce complexity. We have016
developed and applied this method in a com-017
prehensive set of experiments. Compared to018
the previous state-of-the-art (SOTA) method,019
our findings reveal an overall improvement020
of 11.1% in accuracy while requiring only a021
third of the tokens typically used during train-022
ing. For the purpose of facilitating replica-023
tion and further research, we have made our024
code and dataset publicly available at https://025
anonymous.4open.science/r/RAIT-9FB7/.026

1 Introduction027

Large language models (LLMs), though proficient028

in a range of tasks (Ouyang et al., 2022; Achiam029

et al., 2023; Anil et al., 2023), encounter challenges030

in arithmetic operations due to their inherent design031

limitations, such as reliance on next-token predic-032

tion methods and limited working memory (Bubeck033

et al., 2023). Despite their capability to utilize034

external tools for circumventing direct arithmetic035

computations during inference (Gao et al., 2023;036

Imani et al., 2023; Schick et al., 2023), efficiently037

and effectively incorporating arithmetic proficiency038

within LLMs is an unresolved issue. However,039

previous studies have demonstrated that LLMs040

can learn arithmetic effectively through pretrain-041

ing (Yang et al., 2023). This suggests that it might042
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Figure 1: Reversing the numbers in training enables
models to better learn to do arithmetic operations.

be feasible to efficiently teach LLMs arithmetic 043

operations through fine-tuning alone, without the 044

need external tool such as calculators. 045

The prevailing challenge in employing Large 046

Language Models for arithmetic tasks is intricately 047

linked to their next-token prediction mechanism. 048

This mechanism often leads to a reversed com- 049

putation order, where more significant digits are 050

calculated before less significant ones, a flaw at- 051

tributed to LLMs’ inherent limitation in forward 052

planning (Bubeck et al., 2023). This characteristic 053

has led to the perception that arithmetic in LLMs is 054

akin to other complex symbolic and logical tasks, 055

necessitating a similar approach (Nye et al., 2021). 056

Consequently, prior research has predominantly 057

focused on the necessity of a step-by-step method- 058

ology, breaking down arithmetic into a series of 059

sub-steps, as a critical strategy for addressing these 060

challenges (Wei et al., 2022; Lee et al., 2023). 061

Such a technique achieves significant gains in 062

performance but introduces a trade-off between ef- 063

ficiency and effectiveness, necessitating a balance 064

between the number of tokens per training case and 065

the total number of training cases. To enhance both 066

efficiency and effectiveness without resorting to a 067

brute-force integration of step-by-step processes, 068
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Product Sum Split Sum

18082 * 45788 =
2 * 45788 = 91576;                 0+91576   = 91576;                  9157 6
8 * 45788 = 366304;     9157 + 366304   = 375461 6;         37546 16
0 * 45788 = 0;             37546 + 0             = 37546 16;         3754 616
8 * 45788 = 366304;     3754 + 366304   = 370058 616; 37005 8616
1 * 45788 = 45788;     37005 + 45688     = 82793 8616; 8279 38616
827938616

 Example Case In Multiplication 
Human Method

28081 * 88754 =
2 * 88754 = 67519;                            67519   = 67519;    6 7519
8 * 88754 = 403663;   6       7519   + 403663 = 164573;  61 64573
0 * 88754 = 0;             61     64573 + 0           = 64573;    616 4573
8 * 88754 = 403663;   616   4573   + 403663 = 850073;  6168 50073
1 * 88754 = 88754;     6168 50073 + 88754   = 39728;    61683 9728
616839728

Our Method

 Ordering in Intermediate Product 

Step-By-Step  Intermediate Step 

ai * B = Uprod

Intermediate Product

8*45788=366304

Cumulative Sum
Ulow(Uhigh+Uprod=Uhigh)

616(4573+403663=850073)

Resplit Sum
Append(Pop(Uhigh)Ulow)

6168 50073

8 * 88754

a4 * b0b1b2b3b4 = u0u1u2u3u4u5

= 403663

Print Order Decoding Order

8 * 45788

a4 * b4b3b2b1b0 = u5u4u3u2u1u0

= 366304

Figure 2: Example training data for Multiplication. Where the task is solved using a step-by-step process. During
the ith intermediate step, the intermediate product is first computed. Then, inspired by the human process, we set
the least significant digits(Uhigh) unchanged and directly added the product to the remaining digits(Ulow) of the
cumulative sum. Finally, we pop the least significant digit from the updated Uhigh and append it into Ulow as it will
not be added with non-zero digits in later steps. During decoding, we express all numbers in Little-Endian, where
the least significant digit goes first. We convert all the numbers back to Big-Endian before printing.

we adopt a novel approach termed LEFT (Little-069

Endian Fine-Tuning). Rather than incrementally070

integrating step-by-step mechanisms, we employ071

a strategy that reverses the number representation,072

prioritizing the computation of less significant dig-073

its. This approach utilizes the concept of Little-074

Endian, where numbers are represented with the075

least significant digits first, while maintaining the076

position of any negative signs. In contrast, the077

standard numeral representation is referred to as078

Big-Endian. Figure 1 demonstrates that initiating079

output generation with the most significant digit080

may result in carry-related errors. In contrast, em-081

ploying a Little-Endian format, where the model082

produces the number 100863 as 368001, simplifies083

carry operations resulting in a correct solution. We084

present experimental results (Sec. 5) showcasing085

that LEFT not only improves accuracy by 11.1%086

against the current state-of-the-art (SOTA) for large087

digit inputs but also demonstrates efficiency by uti-088

lizing just 5.2% of the training tokens required by089

the previous SOTA for addition and subtraction090

tasks. Specifically, in multiplication, LEFT records091

a 35.7% performance gain while consuming only092

56.6% of the training tokens used by prior SOTA.093

The key contributions of this paper include:094

• We proposed a novel method, LEFT , leverag-095

ing Little-Endian to reduce the complexity of096

learning arithmetic operations.097

• We conduct detailed evaluation and demon-098

strate LEFT achieves better performance with 099

lesser token used during training. 100

• Observations from our experiments indicate 101

that, by reversing digit order, LLMs are capa- 102

ble of solving addition in human alike manner. 103

2 Problem Formulation 104

Consider the simple case where the input (I) con- 105

sists of two numbers, A and B, combined with 106

an operator op. We denote the digits of A as 107

A =
∑m−1

i=0 10iai, where each ai is a single-digit 108

integer (0 ≤ ai ≤ 9), and am−1 ̸= 0 to ensure 109

no leading zeros. Similarly, for B, we express 110

its digits as B =
∑n−1

i=0 10ibi, where each bi is a 111

single-digit integer (0 ≤ bi ≤ 9), and bn−1 ̸= 0. 112

We assume the ground truth output is a k-digit 113

number, C =
∑k−1

i=0 10ici (for C < 0, we usec−1 114

to represent the negative sign). The trained LLM 115

outputs an ordered sequence O = {o1,o2, . . .}, 116

which includes the output number C ⊆ O. 117

As step-by-step designs often incorporate inter- 118

mediate results, we denote the ith intermediate re- 119

sult as Ui. Finally, we define the remaining output 120

as auxiliary tokens (X = O \ {Ui | ∀i} ∪ {C}). 121

3 Little-Endian Fine-Tuning 122

In order to effectively and efficiently teach LLMs 123

arithmetic, we need to address three crucial ques- 124

tions: 1. What is the complexity in standard Big- 125

Endian training(where no step-by-step is applied)? 126
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2. Are there spaces for optimizing the standard127

method? 3. How to optimize cases when step-128

by-step is required? In the remaining parts of this129

section, we tackle such questions one by one.130

3.1 Learning Complexity of Arithmetic131

Autoregressive LLMs are interpreted as probabilis-132

tic models that predict output sequences by max-133

imizing the likelihood of generating the correct134

output. In operations such as addition, this process135

of prediction can be formalized as follows:136

argmax
ci

P (ci|a0∼n−1, b0∼m−1, ci+1∼k)137

Considering the specific nature of addition,138

where the outcome of each digit is influenced only139

by digits of equal or lesser significance, the process140

is refined to concentrate on pertinent inputs:141

argmax
ci

P (ci|a0∼i, b0∼i) (1)142

Assuming that all numbers involved possess an143

identical number of digits simplifies the analysis.144

Under this assumption, during the generation of145

each digit, there exist 10 potential inputs from each146

of the two numbers, resulting in 102i+2 possible147

input combinations. Given that the output digit148

can assume 10 possible values, the complexity of149

predicting a single digit’s value transitions from150

102i+2 input conditions to 10 output conditions.151

The overall learning complexity is quantified by152

summing the probabilities of accurately predicting153

each digit, based on the inputs up to that digit:154

LBig = −
n∑

i=0

logP (ci|a0∼i, b0∼i) (2)155

Accordingly, the cumulative learning complex-156

ity, denoted as CBig, is conceptualized as the ag-157

gregate of complexities across all digits, with the158

input variations providing a lower bound:159

CBig =

n∑
i=0

102i+2 ≥ 102n+2 (3)160

This model illustrates the exponential increase161

in learning complexity with the increment of digit162

count n, presenting a significant scalability chal-163

lenge in teaching arithmetic to LLMs.164

3.2 Optimizing Complexity via Little-Endian165

In addressing the complexity of arithmetic oper-166

ations, it is noted that the output token with the167

greatest complexity is typically the most significant 168

digit. Interestingly, unlike computational models, 169

humans often do not consider all input digits simul- 170

taneously. Instead, they start from the least signifi- 171

cant digit, using any carry-over to simplify the com- 172

putation. Assuming the model can similarly infer 173

the carry from the previous digit (ai−1, bi−1, ci−1), 174

we can streamline the optimization target by focus- 175

ing on this simplified context: 176

argmax
ci

P (ci|ai, ai−1, bi, bi−1, ci−1) 177

Such adjustment leads to a significant reduction 178

in input complexity, now quantified as 105. By 179

adopting this revised generating order, the task be- 180

comes markedly less challenging: 181

CLittle =
n∑

i=0

105 ≤ n · 105 182

For cases where n ≥ 2, this model showcases a 183

substantial decrease in learning complexity com- 184

pared to the conventional approach (CLittle ≤ 185

n · 105 < 102n+2 ≤ CBig). Such findings illu- 186

minate the potential benefits of inverting the de- 187

coding order to mitigate complexity. Motivated 188

by this insight, we propose abandoning the classic, 189

step-by-step design prevalent in previous method- 190

ologies in favor of revising addition and subtraction 191

training to leverage this more efficient strategy. 192

Addition. In addressing addition within LEFT , 193

the traditional approach of processing numbers 194

from the most significant digit to the least signif- 195

icant is reimagined. By reversing both the input 196

and output numbers, the calculation aligns with the 197

Little-Endian format, where operations commence 198

from the least significant digit and progress towards 199

the most significant. Such conversion simplifies the 200

decoding order, making it more intuitive and akin to 201

human arithmetic practices. We hypothesized that 202

the model can autonomously recompute the neces- 203

sary carry for the subsequent significant digit. This 204

method eliminates the need for a step-by-step de- 205

sign or the introduction of auxiliary tokens, stream- 206

lining the addition process without necessitating 207

any extra tokens beyond the sum itself. 208

Subtraction. For subtraction, the model simpli- 209

fies the process by first determining if the result 210

will be negative, then applying the operation in 211

Little-Endian order. This approach, which keeps 212

the negative sign’s position unchanged (e.g., -256 213
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becomes -652), enhances efficiency by eliminat-214

ing the need for intermediate results that assume215

a non-negative outcome. This streamlined method216

contrasts with traditional digit-wise subtraction, of-217

fering a more straightforward computation strategy.218

3.3 Augmenting Step-by-Step219

The application of Little-Endian formatting extends220

beyond the realms of addition and subtraction, of-221

fering substantial benefits in operations that inher-222

ently require a step-by-step approach due to their223

complexity. One prime example of such an opera-224

tion is multiplication, where the intricacies of the225

computation process are significantly amplified.226

Multiplication. Traditional methods often in-227

volve breaking down the solving process into man-228

ageable chunks, typically computing the product of229

a single digit with a multi-digit number, and then230

summing these intermediate products. This con-231

ventional approach, however, often operates under232

the Big-Endian framework, starting with the most233

significant digits and potentially complicating the234

computation of intermediate products.235

In contrast, the use of Little-Endian proposes a236

significant optimization. By reversing the order237

of digits—starting from the least significant—this238

method aligns with the natural flow of human com-239

putation, simplifying both the computation of inter-240

mediate product and subsequent sums.241

4 Implementation242

In this section, we delve into the detailed imple-243

mentation of LEFT and explore the methodologies244

applied in our experiments, along with the base-245

lines for comparison. Our discussion spans from246

the step-by-step design utilized in the experiments247

(Sec. 4.1) to dataset generation (Sec. 4.2) and other248

settings for the experiments(Sec. 4.3).249

4.1 Step-By-Step Design250

Addition/Subtraction. While our hypothesis251

posits that the step-by-step process might not be es-252

sential for efficiently learning addition and subtrac-253

tion, we incorporate it as a comparative measure254

to validate our assumption. We adopt the step-by-255

step design from the chain-of-thought methodol-256

ogy (Wei et al., 2022), as reproduced in previous257

studies (Zhou et al., 2022), for LEFT’s addition and258

subtraction tasks when necessary for evaluation.259

Addition/Subtraction. Contrary to our initial hy- 260

pothesis that a step-by-step process may not be 261

crucial for efficiently mastering addition and sub- 262

traction, we included it for comparative analysis 263

to test our theory. Thus, we utilized the Chain-Of- 264

Thought approach (Wei et al., 2022), as previously 265

replicated (Zhou et al., 2022), in evaluating LEFT 266

joined with step-by-step on addition/subtraction. 267

Multiplication. We previously outlined the key 268

features of the step-by-step approach for multipli- 269

cation within LEFT , yet a direct implementation 270

was not provided. As shown in Figure 2, with the 271

reversal of all numbers, the task is divided into nu- 272

merous substeps. Each substep iterates over the 273

digits of the first input number, ai ∈ A, starting 274

from the least significant digit. In each iteration, 275

the process begins by multiplying the current digit 276

with the second input number to generate an in- 277

termediate product. This intermediate product is 278

then added to the cumulative sum of products from 279

previous iterations. Since the lower i digits of the 280

product are always zero, these are not explicitly 281

represented; instead, the product is directly added 282

to the higher section of the cumulative sum. The 283

higher section is defined as the part of the cumula- 284

tive sum obtained in the last step of the previous 285

iteration, which considers the lower i-digits as a 286

fixed result and defines the remaining digits as the 287

higher section of the cumulative sum. 288

This refined step-by-step design for multiplica- 289

tion highlights the efficiency and adaptability of 290

the Little-Endian approach in managing complex 291

arithmetic operations. By streamlining the inte- 292

gration of intermediate products into a simplified 293

cumulative sum, this method not only improves 294

the performance and clarity of the model but also 295

showcases the extensive utility of Little-Endian for- 296

matting in enhancing computational processes. 297

4.2 Dataset 298

The inherent characteristics of arithmetic calcula- 299

tions, which do not necessitate human-generated 300

labels, enable the automated generation of training 301

and testing sets in our study. Our primary objective 302

is to create a dataset that is fair, isolated, and bal- 303

anced, facilitating a comprehensive evaluation of 304

the LEFT’s effectiveness and efficiency. 305

Fairness. Given that different methods may op- 306

erate on varied data inputs, we aim to minimize 307

the variance in performance attributable to differ- 308

ent inputs as much as possible. To achieve this, 309
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we initiate the process by generating a set of meta310

data during the data generation phase. Each piece311

of meta data is conceptualized as a triplet in the312

form (A, op,B). This triplet serves as a unified313

seed for generating training and testing data for314

each method, ensuring that the same set of input315

is utilized across methods. Then, each triplet is316

expanded and formatted to suit the specific require-317

ments of each method’s data format.318

Isolation. Recognizing the critical importance319

of preventing data leakage, we take meticulous320

steps to ensure the uniqueness of input number sets,321

denoted by {A,B}. This strategy guarantees that322

the test set contains no identical input number pairs323

as found in the training set, thereby also ensuring324

the uniqueness of each training and testing set.325

Digit Distribution Balancing. Echoing previous326

methods that have highlighted the importance of327

balanced data distribution (Lee et al., 2023), we en-328

sure that both the training and test sets are balanced329

such that the maximum quantity of any single num-330

ber in each data slice falls within the digit range of331

[5, 12]. Specifically, we generate in total of 15K332

training data and 3K test data, with 5K points333

for each operation, accompanied by 1K test data334

points for each operation, to maintain this balance.335

4.3 Experiment Setup336

Baseline. We first include End-To-End training337

used in during pretraining methods (Yang et al.,338

2023) as a ground to compare performance in pre-339

vious methods. We then include Scratchpad(Nye340

et al., 2021), one of the early founders in using341

step-by-step approaches to break down arithmetic342

into multiple steps. We also include Chain-Of-343

Thought (Wei et al., 2022) which provided a gen-344

eral approach of breaking step-by-step to a wide345

range of complex tasks. In addition, we include the346

Detailed-Scratchpad method introduced in (Zhou347

et al., 2022). (Zhou et al., 2022) also introduces348

Algorithmic-Prompting technique but as it requires349

too many auxiliary tokens making it hard to fit 12-350

digit training into the context length. As a result,351

we exclude it during our evaluation.352

Metric. As arithmetic reasoning is strongly af-353

fected by error propagation, solutions with interme-354

diate errors are almost impossible to provide the355

correct solution. As a result, we directly use the356

accuracy (ACC) of the predicted output to evalu-357

ate the effectiveness of the methods. As the dis-358

cussion for efficiency is aimed at training better- 359

performed models using fewer resources, we record 360

the amount of tokens used for training and observe 361

the change in accuracy as more tokens are used. 362

Backbone Model. The base checkpoint for our 363

experimental framework is Llama2-13B (Touvron 364

et al., 2023), chosen for its status as a well-regarded 365

and openly accessible LLM. To address the need 366

for processing longer sequences, the model’s con- 367

text length has been extended to 4, 096 tokens. 368

5 Experiments 369

We now turn to a systematic evaluation of the pro- 370

posed method. Specifically, we design and conduct 371

a series of comprehensive analysis which seeks to 372

answer the following research questions: 373

Q1 Is LEFT effective and efficient?(Sec. 5.1) 374

Q2 What grants LEFT the ability to effectively 375

tackles the provided task?(Sec. 5.2) 376

Q3 What can be further done on LEFT?(Sec. 5.3) 377

5.1 Direct Evaluation Over Performance 378

We began our analysis with the overall perfor- 379

mance of LEFT against previous methods for 380

jointly trained and evaluated addition, subtraction, 381

and multiplication performance. We then conduct 382

operation-by-operation analysis to observe the re- 383

sults of training when jointly training is opt-out. 384

Observation 1: LEFT Learns Faster Than Base- 385

lines. Table 1 shows the resulting performance of 386

each method after training. We order the baselines 387

according to token used during training. LEFT 388

used the least amount of training token among all 389

the step-by-step methods, yet achieving 11.1% per- 390

formance improvement over previous SOTA. 391

Specifically, LEFT’s accuracy on addition and 392

subtraction is slightly below Scratchpad-Detailed. 393

However, LEFT only used 160K and 161K to- 394

kens for learning addition and subtraction. But 395

Scratchpad-Detailed used 2, 936K and 3, 254K 396

for training. This means LEFT uses only 1/20 of 397

training data yet still achieves similar performance. 398

LEFT also achieved 35.7% accuracy improvement 399

over previous SOTA on multiplication, further high- 400

lighting LEFT’s effectiveness and efficiency. 401

Observation 2: Using Little-Endian Alone Ob- 402

tains Better Efficiency On Addition/Subtraction. 403

During method design(Sec. 3.2), we proposed that 404

Little-Endian is a better substitute than existing 405
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Method Endian StepByStep + − × Overall Token Usage

End-To-End Big No 63.3 32.3 00.0 31.9 494,815
Chain-of-Thought Big Yes 88.0 83.5 08.2 59.9 4,938,148
Scratchpad Big Yes 94.8 73.1 00.0 56.0 5,747,670
Scratchpad-Detailed Big Yes 99.8 97.3 52.8 83.3 10,995,191

LEFT (Our) Little Mix 98.8 95.9 88.5 94.4 3,040,616

Table 1: Performance comparison between methods, trained with 5K data for each operation with randomly
generated data. The maximum digits of input numbers for each data are equally distributed in the range of [5, 12]
for each operation. The test set is generated in a similar manner but with only 1K data per operation. LEFT uses
Little-Endian to represent all numbers and excludes the step-by-step process for addition and subtraction.

methods, which leverage step-by-step to reduce406

the complexity required for arithmetic. However,407

we have not yet examined such a statement. This408

raised two major questions: (1) Would it be better409

to contain step-by-step? (2) How does step-by-step410

itself perform? As a result, we apply step-by-step411

for closer observation. We scale down the training412

data to half and a quarter of training cases than the413

joint evaluation and observe the change in perfor-414

mance. To omit influences caused by joint training,415

we train addition and subtraction separately.416

As shown in Figure 3, we observe that the use417

of Little-Endian outperforms other settings in both418

operations, despite the use of fewer tokens when419

compared to the step-by-step settings.420

Moreover, we observe that the conventional421

Chain-Of-Thought approach, which does not incor-422

porate Little-Endian formatting, also significantly423

lags behind the LEFT configuration. This outcome424

suggests that employing a step-by-step methodol-425

ogy does not invariably enhance performance. Par-426

ticularly in addition, both the presence and absence427

of Little-Endian in the settings lead to inferior re-428

sults compared to employing Little-Endian without429

a step-by-step approach. This implies that reversing430

the endian inherently captures critical information,431

which the step-by-step process aimed to convey in432

digit generation. Consequently, not only does the433

step-by-step application decrease efficiency, but it434

also deteriorates model performance by introduc-435

ing additional chance of error propagation.436

On the other hand, by taking a closer observation437

of subtraction, we see whether the use of step-by-438

step is integrated or not, the integration of Little-439

Endian brings much better performance. However,440

the learning curve of Little-Endian without step-by-441

step is smoother than in addition. We believe this442

could be related to the pretraining setting, where443

the model is trained with Big-Endian. On addition,444

when the carry is not occurring, knowing what en-445

Figure 3: Performance when integrating step-by-step.
BE stands for Big-Endian and LE stands for Little-
Endian. The graph on the left shows the results after
training on addition. The the right figure shows results
for trained and evaluated on subtraction.

dian is involved doesn’t have a strong effect on the 446

result, the model could falsely interpret the task as 447

aligning the numbers with the leftmost digit and 448

still achieve some level of performance. However, 449

on subtraction, the endian greatly affects the result, 450

as whether the result is negative is affected by the 451

most significant digit, which is strongly related to 452

the endian. Such difference resulted in poor per- 453

formance in the beginning, as the model will have 454

a great chance of failing unless it actually under- 455

stands the task. But it also brings faster learning as 456

the chance for the model to falsely understand the 457

task reduces. We believe such case highlights that 458

the arithmetic ability of a fine-tuned model could 459

be further improved with a backbone model that is 460

pretrained with Little-Endian representation. 461

Observation 3: Little-Endian And Step-by-Step 462

Are Both Crucial For Multiplication. We now 463

conduct a detailed examination for multiplication. 464

We re-evaluate our backbone model to examine our 465

designs on multuplication. For better comparison, 466

we include two additional settings other than the 467

standard End-To-End. We first include a similar 468

design as we proposed for solving addition and sub- 469

traction, where the model directly outputs the result 470
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Method # of Epochs Token
1 2 3 Usage

End-To-End - - - 186K

Detailed-Scratchpad 24.9 32.6 39.3 4,805K

LEFT 61.1 89.1 91.6 2,719K
w/o Step-by-Step - - - 186K
w/ Big-Endian 24.2 42.8 52.7 2,719K

Table 2: Multiplication scores by different epochs and
token usage. We observe settings without step-by-step
solution failed to learn the task.

but the input and output are both in Little-Endian.471

We then include LEFT’s step-by-step design but472

convert the numbers into Big-Endian. We also473

measure the different performances after different474

epochs of training to observe the convergence for475

the same amount of training cases.476

The results are shown in Table 2. We first ob-477

serve that when the use of step-by-step is removed,478

it becomes impossible to learn multiplication. This479

demonstrates the need for step-by-step to break480

down the complexity in solving multiplication is481

still needed when only 5K of training data is avail-482

able. We also observe that when Little-Endian is483

removed, the performance further improves over484

the step-by-step setting. The model also converges485

much faster, as the performance after 2 epochs of486

training is already close to the performance of the487

last epoch, an accuracy of 91.6%. We are amazed488

that LEFT achieves better performance when the489

model is trained only on multiplication, suggesting490

the potential for further optimization.491

We also observe the number of tokens used dur-492

ing LEFT’s training in multiplication is approx-493

imately half of the tokens used by Scratchpad-494

Detailed. In addition and subtraction training, to-495

kens are better off with a factor of 20. This shows496

that LEFT with better performance achieves even497

greater improvement in token efficiency.498

5.2 Case Studies499

We now conduct a detailed study of the results ob-500

tained in the previous section, seeking to discover501

findings that can help future studies.502

Finding 1: Little-Endian Reduces Step-By-Step503

Errors. In this section, we conduct an error anal-504

ysis for the errors in our main experiment in or-505

der to find an explanation of the performance gain506

caused by changing the endian. To do so, we first507

selected the place where the first error occurred as508

an indication of the error of each falsely inferred 509

test case. This is because error propagation is criti- 510

cal in arithmetic. We then focused on two crucial 511

parts during each inference step, calculating the 512

intermediate 1-by-n product and the cumulative 513

sum. As a result, we find that among the 417 errors 514

that occurred during intermediate calculations in 515

Scratchpad-Detailed: 1. 140 errors occurred dur- 516

ing calculating the intermediate product; 2. 236 517

errors occurred during accumulating sum. Both 518

operations had much better performance in LEFT , 519

where only 77 errors were observed during com- 520

puting the intermediate product and only 22 errors 521

were observed when updating the cumulative sum. 522

The error occurrence is decreased by a factor of 10 523

for summation and by a factor of 2 for the interme- 524

diate product. We believe this is because the carry 525

is easier than to compute when the less significant 526

digits are already shown, which possibly could re- 527

duce the complexity in computing the result for the 528

current digit. The error for the intermediate sum is 529

reduced by a greater factor as the addition training 530

is transferable when accumulating sum on LEFT , 531

whereas in Scratchpad-Detailed, the addition task 532

stands more on its own. Despite slightly better 533

performing while evaluated on addition, it cannot 534

transfer its ability to other tasks like multiplication. 535

Finding 2: LEFT Conducts Addition Just Like 536

Humans We now take a closer observation of 537

how LEFT conducts addition. By logging the atten- 538

tion (Vaswani et al., 2017) scores in the model, we 539

observe a correlation between the output digit and 540

related digits from the input numbers, as shown in 541

Figure 4. We observe that the input digits are rec- 542

ognized when computing the corresponding output 543

during generation in some attention heads. We also 544

observed that, in the 22th layer, shown traits sug- 545

gest the fine-tuned LLM has learned to re-compute 546

the carry from the previous digits. Adressing our 547

hypothesized during the method design, this proofs 548

the assumption that the model can recover the carry 549

when it’s used (Sec. 3.2). This is a interesting in- 550

dication because it suggests Little-Endian might 551

be conducting training in a manner similar to how 552

humans conduct addition without a draft paper. 553

5.3 Additional Error Analysis 554

Finally, we look at the errors occurred in LEFT’s 555

joint experiment in the perspective of different max- 556

imum amount of input digits. As shown in Table 3, 557

LEFT is able to perform well in lower digits, but 558
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Figure 4: Visualization of attention weights during inference, with rows representing output tokens and columns
indicating input tokens involved in generation. Attention weights are square-root transformed for enhanced visibility
of correlations. The attention on the left(layer 14) reveals output digits are correlate with their inputs, while
attention(right) from layer 22 suggests carry information reconstruction.

Max Digit 5 6 7 8 9 10 11 12

+ 100.0 98.4 100.0 99.2 97.6 97.6 98.4 99.2
− 92.0 96.8 93.6 96.8 100.0 100.0 93.6 94.4
× 93.6 96.0 86.4 96.0 88.0 86.4 84.8 76.8

Table 3: Accuracy trends with increasing max input
digits. We observe a steeper decline in multiplication’s
performance compared to other operations.

when it is challenged towards higher digits of in-559

puts, it loses part of its performance. Such a drop in560

performance is mostly significant when it comes to561

higher-digit multiplications, the digits being oper-562

ated become much more complicated comparing to563

addition and subtraction. This stated that, despite564

well in performance, LEFT still faces challenges565

when inputted with larger digits, highlighting the566

need for future studies to not only focus on effec-567

tiveness and efficiency but also continue to narrow568

the gap for the LLMs’ inability to scale towards569

larger inputs and the amazing capability in humans.570

6 Related Works571

Previous methods that seek to teach LLMs to learn572

arithmetic mainly focus on the use of step-by-step573

processes. Scratchpad (Nye et al., 2021) was one of574

the early founders that recognized the use of step-575

by-step arithmetic solving. Zhou et al. focused576

on in-context learning and showed that a detailed577

version of Scratchpad could significantly improve578

the accuracy. Qian et al. recognized the challenger579

where LLM performance drops as repeated sym-580

bols increase. Goat (Liu and Low, 2023) classified581

tasks discussed the learnability of different opera-582

tions and conducted supervised fine-tuning. Lee583

and Kim proposed the Recursion of Thought to 584

divide the solving process into short contexts. 585

On the other hand, some works also focus on 586

analyzing arithmetic learning. Yuan et al. pro- 587

posed MATH 401 to evaluate LLM’s arithmetic 588

ability. Jelassi et al. discussed the length general- 589

ization ability in arithmetic. Muffo et al. evaluated 590

the ability of Transformer to perform arithmetic 591

operations following a pipeline that decomposes 592

numbers in decimal before performing computa- 593

tions and demonstrated that this method was 60% 594

more accurate than GPT-3 on 5-digit addition and 595

subtraction tasks, but was inferior to GPT-3 on 2- 596

digit multiplication tasks. Lee et al. conducted 597

a compressive analysis on training strategies and 598

discussed that reversing the output of addition can 599

speed up the learning process. 600

7 Conclusion 601

In this study, we introduced a novel approach for 602

teaching arithmetic to LLMs by reversing the num- 603

ber order to emphasize the least significant digit. 604

This strategy, which aligns with human arithmetic 605

practices, significantly reduces computational com- 606

plexity and training data requirements, demonstrat- 607

ing an 11.1% increase in overall accuracy over pre- 608

vious SOTA and showcasing efficiency in token 609

usage during training. The success of our method 610

suggests the potential for broader applications in 611

mathematical problem-solving and in environments 612

with limited resources. We hope this study of ours 613

paves the way for future investigations into op- 614

timizing LLM training techniques for numerical 615

reasoning and arithmetic precision. 616
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Limitations617

Our study introduces a novel approach to arith-618

metic learning in LLMs but is not without limita-619

tions. Firstly, our focus on basic arithmetic opera-620

tions such as addition, subtraction, and multiplica-621

tion leaves unexplored territories in more complex622

arithmetic and mathematical problem-solving areas.623

Secondly, the generalizability of our method to do-624

mains beyond arithmetic is yet to be determined. A625

critical consideration is the reliance on LLMs pre-626

trained with standard numeral expressions; our ex-627

periments did not explore the potential benefits of628

pretraining models directly with reversed numeral629

expressions. Addressing these limitations could630

further enhance the applicability and efficiency of631

LLMs in numerical reasoning and arithmetic pre-632

cision, suggesting a promising direction for future633

research to broaden the scope of operations cov-634

ered and to investigate the impact of pretraining635

strategies.636

Ethics Statement637

Our research contributes to the field of artificial638

intelligence by proposing an innovative approach639

to improve the efficiency and accuracy of LLMs640

in performing arithmetic operations. This advance-641

ment has the potential to positively impact areas642

where numerical understanding is crucial, includ-643

ing but not limited to, educational technologies,644

data analysis, and automated reasoning systems.645

By improving the capability of LLMs to process646

and understand arithmetic, our work aims to sup-647

port further developments in technology that can648

assist in educational settings, enhance scientific re-649

search, and provide more reliable computational650

tools for industries relying on accurate numerical651

data processing.652

We are mindful of the importance of conducting653

our research with a commitment to ethical princi-654

ples, ensuring that our methodologies and results655

are transparent, reproducible, and contribute con-656

structively to the academic community and society657

at large. While our work primarily focuses on the658

technical aspects of improving LLMs’ arithmetic659

abilities, we recognize the broader implications of660

AI and machine learning advancements. Therefore,661

we encourage the responsible use and continuous662

ethical evaluation of AI technologies, emphasiz-663

ing the importance of using such advancements to664

foster positive societal outcomes.665
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