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ABSTRACT

Video-to-audio generation has emerged as a promising frontier for enriching multi-
modal understanding and synthesis. However, most existing approaches operate
under closed-set assumptions, restricting training and evaluation to predefined
categories and limiting generalization in open-world scenarios. Prior methods
primarily rely on pre-trained vision-language or audio-language encoders such as
CLIP and CLAP, overlooking the strong inherent video–audio correspondence that
can directly guide cross-modal grounding. In this work, we present OpenFoley ,
a novel framework for open-set video-to-audio generation that enforces semantic
fidelity and rhythmic synchronization across modalities. Our approach intro-
duces a modality-aware dynamic masking strategy, where audio segments are
reconstructed from masked video frames and vice versa, enabling the model to
capture fine-grained temporal alignment without relying solely on external en-
coders. Furthermore, we design a generalized masked flow-based module that
conditions generation on selectively sampled video frames, significantly improving
efficiency and fidelity while preserving cross-modal coherence. Comprehensive
experiments on VGGSound and a newly curated open-set benchmark demonstrate
that OpenFoley consistently outperforms state-of-the-art baselines in both objec-
tive and perceptual metrics, achieving superior Fréchet Audio Distance (FAD)
and Kullback–Leibler (KL) divergence scores. The project page can be found at:
https://openfoley.github.io.

1 INTRODUCTION

The ability to generate realistic audio from visual input is a fundamental challenge in multimodal
learning, with broad applications spanning virtual reality, accessibility, immersive entertainment,
and creative media production. Video-to-audio generation requires not only capturing semantic
cues from visual scenes but also synthesizing temporally aligned and perceptually plausible sounds.
While recent years have seen encouraging progress, most existing approaches operate under a closed-
set assumption, where training and evaluation are restricted to predefined categories. This setup
limits their capacity to generalize to the diverse and unpredictable nature of real-world scenarios.
In practice, effective video-to-audio generation demands open-set generalization: the ability to
synthesize synchronized and semantically consistent audio for previously unseen visual content.

Early advances in video-to-audio generation have largely relied on cross-modal encoders such
as CLIP (Radford et al., 2021) and CLAP (Wu et al., 2023), which align vision-language and
audio-language modalities, respectively. These encoders provide strong priors for semantic reasoning,
enabling models to capture high-level correspondences between what is seen and what is heard (Iashin
& Rahtu, 2021; Sheffer & Adi, 2023; Kreuk et al., 2023; Luo et al., 2023). However, their reliance on
language as an intermediary introduces fundamental limitations. Since CLIP and CLAP are optimized
for text-mediated associations, they fail to capture the intrinsic video–audio correspondence that arises
naturally from co-occurring motion and sound. As a result, current models often produce audio that is
semantically plausible but poorly synchronized with fine-grained visual dynamics, such as footsteps
lagging behind walking motions or mismatched timing between object interactions and sound effects.
Furthermore, language-based encoders tend to emphasize global semantics, overlooking the rhythmic
and temporal patterns essential for perceptually convincing video-to-audio generation.
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The challenges of open-set video-to-audio generation exacerbate these limitations. In contrast to
closed-set training, where category-specific priors can be memorized, open-set scenarios require
models to adapt to unseen scenes, objects, and motion patterns without explicit supervision. Achiev-
ing this goal entails learning robust cross-modal representations that remain generalizable while
preserving temporal synchronization. Moreover, unseen content may introduce novel environmen-
tal contexts, background sounds, and interaction dynamics that demand flexible modeling beyond
category-dependent alignment. Existing methods, with their reliance on indirect language-based
mappings and category-constrained training, fall short of addressing these requirements.

To overcome these challenges, we propose OpenFoley , a novel framework for open-set video-
to-audio generation that directly enforces both semantic coherence and temporal synchronization
between modalities. Our key innovation is a modality-aware dynamic masking strategy, in which
masked audio segments are reconstructed from video frames, and masked video features are predicted
from audio. This bidirectional masking encourages the model to discover fine-grained temporal
correspondences by leveraging the natural co-occurrence of visual and auditory cues, rather than
relying solely on language supervision. In addition, we introduce a generalized masked flow-based
module, which conditions audio generation on selectively sampled video frames. This flow-based
conditioning not only improves generation efficiency and fidelity but also enhances the model’s ability
to remain synchronized with the video stream across diverse and unseen scenarios.

We validate OpenFoley on the widely used VGGSound dataset and introduce a new open-set bench-
mark specifically designed to evaluate generalization beyond predefined categories. Experimental
results demonstrate that OpenFoley achieves state-of-the-art performance, significantly improving
metrics such as Fréchet Audio Distance (FAD) and Kullback–Leibler (KL) divergence compared
to existing baselines. Qualitative analyses further confirm that OpenFoley generates audio that is
both semantically consistent and temporally aligned, even when faced with novel visual content. By
highlighting the importance of direct video–audio alignment and robust multimodal representation
learning, our work establishes a new direction for open-set video-to-audio generation and lays the
groundwork for future research in this emerging domain.

Overall, we summarize our contributions below:

• We introduce OpenFoley , a novel framework for open-set video-to-audio generation that
directly enforces semantic coherence and temporal synchronization between modalities,
moving beyond prior methods that rely solely on language-mediated alignment.

• We propose two key components: (i) Modality-aware Masking Alignment (MMA), which
enforces cross-modal reconstruction and captures fine-grained synchronization patterns, and
(ii) Modality-aware Flow Generation (MFG), which provides a flexible prior for efficient
and high-fidelity audio synthesis.

• We curate a new open-set benchmark from AudioSet and Panda70M, and demonstrate
that OpenFoley achieves state-of-the-art performance across KLD, FAD, and alignment
accuracy, with ablations confirming the complementary benefits of MMA and MFG.

2 RELATED WORK

Video-to-Audio Generation. Video-to-audio generation, the task of translating visual information
into corresponding audio outputs, has advanced rapidly with the rise of generative modeling. SpecVQ-
GAN (Iashin & Rahtu, 2021) employs vector quantized GANs to transform visual features into audio
spectrograms, while Im2Wav (Sheffer & Adi, 2023) leverages CLIP embeddings to directly generate
audio waveforms from images. Diff-Foley (Luo et al., 2023) combines Contrastive Audio-Visual
Pre-training (CAVP) with diffusion models to refine synchronization between modalities. Foley-
Gen (Mei et al., 2023) uses a neural audio codec for waveform-to-token conversion and models audio
generation as a language modeling problem. Recent work has shifted toward multimodal pre-training
and cross-modal alignment. Seeing & Hearing (Xing et al., 2024) employs the pre-trained ImageBind
model (Girdhar et al., 2023) as a latent aligner for cross-modal diffusion-based generation. VAB (Su
et al., 2024) introduces masked audio token prediction conditioned on visual features for pre-training
without diffusion. MaskVAT (Pascual et al., 2024) combines a sequence-to-sequence masked genera-
tive model with a neural codec to improve temporal synchronicity. VATT (Liu et al., 2024) integrates
large language models such as Gemma-2B (Team et al., 2024) and LLaMA-2-7B (Touvron et al.,
2023) with projection layers to map video features into audio tokens.
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While these methods demonstrate impressive progress, they primarily operate under closed-set
assumptions and rely on language-mediated embeddings (CLIP/CLAP) for alignment. As a result,
they capture global semantics but struggle with fine-grained synchronization and fail to generalize to
unseen categories. In contrast, OpenFoley introduces modality-aware masking alignment to directly
enforce cross-modal reconstruction and modality-aware flow generation to learn a flexible audio prior.
Together, these components enable robust temporal alignment and perceptual quality in both closed-
and open-set video-to-audio generation.

Diffusion Models. Diffusion models have emerged as a powerful paradigm for generative modeling
across multiple domains. The foundational denoising diffusion probabilistic models (DDPMs) (Ho
et al., 2020; Song et al., 2021) introduced a forward–reverse process of noise corruption and de-
noising, and have since powered breakthroughs in image synthesis (Saharia et al., 2022), image
restoration (Saharia et al., 2021), speech synthesis (Kong et al., 2021), and video generation (Ho
et al., 2022). Building on these foundations, diffusion models have been extended to cross-modal
generation tasks. AudioGen (Kreuk et al., 2023) explores diffusion for text-to-audio generation, while
DiffSound (Yang et al., 2022) applies diffusion to conditional sound synthesis. In the video–audio
domain, Diff-Foley (Luo et al., 2023) integrates contrastive audio-visual pre-training with diffusion
decoding to generate synchronized audio from video.

Our work builds on this line of research but diverges in two crucial ways. First, rather than relying
exclusively on diffusion with Gaussian priors, we incorporate flow-based generation to learn a more
expressive and adaptive latent distribution, improving perceptual realism and efficiency. Second, we
pair this with modality-aware masking, which enforces bidirectional reconstruction across video and
audio, ensuring synchronization even in open-set conditions. By combining masking-based alignment
with flow-based generation, OpenFoley establishes a new paradigm for generalizable synthesis.

3 METHOD

In this section, we introduce OpenFoley , a novel framework for open-set video-to-audio generation
that enforces both semantic coherence and temporal synchronization through modality-aware masking
alignment and flow-based audio generation. We first provide preliminaries in Section 3.1, then present
Modality-aware Masking Alignment in Section 3.2 to learn semantic and rhythmic coherence, and
finally introduce Modality-aware Flow Generation in Section 3.3 to accelerate the video-to-audio
generation process while preserving fidelity.

3.1 PRELIMINARIES

In this section, we first describe the problem setup and notations, and then revisit the video/audio
masked pre-training and the flow-based denoising diffusion probabilistic models.

Problem Setup and Notations. Let V = {vt}Tt=1 denote a sequence of video frames, where
vt ∈ RH×W×C represents the t-th frame with height H , width W , and C color channels. Similarly,
let A = {at}Tt=1 denote the corresponding audio waveform segments. Given an input video sequence
V , our goal is to generate a plausible audio sequence Â that aligns semantically and temporally with
the visual content. We model this generation as a conditional probabilistic process: P (Â|V; θ), where
θ represents the learnable parameters of the model. Unlike previous works that rely on pre-trained
vision-language and audio-language encoders, our method directly learns video-audio alignment
through structured masking and flow-based modeling.

Flow-Based Diffusion Model. Diffusion probabilistic models (DPMs) (Ho et al., 2020) have achieved
decent performance in generative modeling, particularly for speech and audio synthesis. In a standard
diffusion model, the forward process gradually adds Gaussian noise to an audio signal A over T
timesteps:

q(at|at−1) = N (at;
√
αtat−1, (1− αt)I), (1)

where αt controls the noise schedule. The goal of the reverse process is to denoise the signal step by
step to recover the original data:

pθ(at−1|at) = N (at−1;µθ(at, t),Σθ(at, t)). (2)

3
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However, diffusion models suffer from slow inference speeds, as generating a single sample requires
iterating through hundreds or thousands of denoising steps. To accelerate this, a flow-based model
has been explored as an alternative. Normalizing flows learn an invertible transformation between the
data space and a simpler latent distribution:

z = fθ(A), A = f−1
θ (z), (3)

where z follows a known distribution (e.g., Gaussian). This allows for fast sampling and efficient
representation learning. Hybrid approaches that combine diffusion models with flow-based priors
have shown promise in reducing the number of required denoising steps while preserving high-
fidelity synthesis. Despite these advances, existing audio diffusion models lack explicit temporal
synchronization mechanisms with video inputs. Most prior work conditions audio synthesis on
category labels or text descriptions, which do not capture the fine-grained motion and rhythmic cues
present in videos. This motivates the need for a modality-aware approach that can enforce direct
video-audio alignment.

3.2 MODALITY-AWARE MASKING ALIGNMENT

Inspired by masked modeling objectives in self-supervised learning, we introduce a modality-
aware dynamic masking strategy to jointly learn semantic coherence and rhythmic synchronization
between video and audio. Unlike traditional masked modeling that reconstructs inputs within the
same modality, our approach enforces cross-modal reconstruction, where the masked segments in
one modality must be predicted from the other. This design ensures that the model captures intrinsic
video–audio correspondences rather than relying on indirect textual embeddings or category priors.

Formally, given a masked video sequence Ṽ and its corresponding masked audio sequence Ã, the
model is trained to reconstruct the missing content using cross-modal cues:

Lmask = EV,A

[
∥Â − A∥22 + ∥V̂ − V∥22

]
, (4)

where Â and V̂ are the reconstructed audio and video features, respectively. This objective aligns the
learning signal across modalities, encouraging the network to capture synchronization patterns that
emerge from natural co-occurrence.

Bidirectional Masking. To explicitly enforce video–audio alignment, we adopt a bidirectional
masking strategy:

1. Audio Reconstruction from Video: A random subset of the audio sequence A is masked
(indices Ma), and the model predicts the missing waveforms or spectral features conditioned
on visual context V .

2. Video Prediction from Audio: Conversely, a random subset of video frames V is masked
(indices Mv), and the model predicts the missing visual features using surrounding frames
and unmasked audio A.

The corresponding loss is:

Lma-mask = EV,A

[ ∑
t∈Ma

∥ât − at∥22 +
∑

t∈Mv

∥v̂t − vt∥22

]
, (5)

where Ma and Mv denote the sets of masked audio and video indices, respectively.

Dynamic and Modality-Specific Masking. Instead of masking uniformly, OpenFoley employs
dynamic masking tailored to each modality:

• For audio, we mask contiguous segments in the time domain to simulate dropouts in
rhythmic or environmental cues, forcing the model to infer missing sound dynamics from
video motion.

• For video, we mask both random individual frames and temporally contiguous clips, ensuring
the model learns to interpolate motion from auditory patterns and neighboring frames.

4
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This dynamic masking reflects real-world uncertainty where visual or auditory information may be
partially occluded or absent. By making the masking modality-aware, we ensure that the learned
cross-modal representations are robust and adaptable.

Benefits for Open-Set Generalization. Unlike category-dependent supervision, modality-aware
masking teaches the model to reason across modalities rather than memorize closed-set categories.
This makes OpenFoley inherently more capable of handling novel or unseen categories: the model
relies on learned synchronization cues (e.g., footsteps matching walking motion, collision sounds
following impact) instead of fixed semantic labels. As a result, modality-aware masking acts as a
strong inductive bias for open-set video-to-audio generation, improving temporal coherence, semantic
fidelity, and robustness to unseen content.

3.3 MODALITY-AWARE FLOW GENERATION

While modality-aware masking alignment enforces cross-modal grounding, it does not directly
address the challenge of generating high-fidelity audio efficiently. Diffusion-based methods often
require hundreds of denoising steps and rely on Gaussian priors that do not capture the rich variability
of natural sounds. To improve both efficiency and quality, we integrate a flow-based generative
module that reshapes the audio latent space into a more structured distribution, enabling more accurate
sampling and faster convergence.

Normalizing Flow for Audio Latents. Instead of assuming a standard Gaussian prior, we employ an
invertible transformation fθ to map audio features A into a tractable latent distribution:

z = fθ(A), A = f−1
θ (z), (6)

where fθ is implemented as a stack of bijective flow layers (e.g., affine coupling or continuous-
time flows). This formulation allows exact likelihood estimation and enables us to learn a data-
adaptive prior that captures the multimodal nature of real-world audio. In practice, this improves
the expressiveness of the generative model, especially in open-set scenarios where unseen audio
categories may not conform to Gaussian assumptions.

Selective Frame Conditioning. To reduce the complexity of full-sequence modeling, we introduce a
modality-aware conditioning mechanism that leverages only key video frames. Instead of conditioning
on all frames, which is computationally redundant and may introduce noise, our method identifies
salient frames that correspond to strong motion or scene transitions. This selective conditioning
reduces redundancy while ensuring that temporal anchors (e.g., object collisions, footsteps, or speech
articulation) are preserved.

Iterative Flow Refinement. Given an initial latent z0 sampled from the flow prior, audio generation
is refined iteratively by incorporating video-conditioned updates:

zt+1 = zt + λ · gθ(vt), (7)

where gθ is a learned transformation conditioned on the selected video frame vt, and λ is a scaling
factor that controls the strength of visual guidance. This iterative refinement can be seen as a
residual correction process that progressively aligns audio dynamics with visual cues. Unlike global
conditioning approaches, this localized refinement explicitly synchronizes transient events in the
audio with corresponding visual signals.

Training Objective. The flow-based module is trained jointly with the masking alignment strategy
by minimizing a conditional likelihood objective:

Lflow = EV,A [− log pθ(fθ(A) | V)] , (8)

which encourages the flow to model the distribution of audio latents conditioned on video context.
This complements the reconstruction-based losses in Section 3.2, yielding both robust cross-modal
representations and efficient generation.

By learning a structured latent distribution via flows, the model avoids over-reliance on closed-
set category priors and instead focuses on flexible mappings between visual and auditory domains.
Selective frame conditioning ensures synchronization with visual dynamics, while iterative refinement
reduces sampling overhead. Together, these properties make the flow-based module especially
effective for open-set video-to-audio generation, where efficiency, fidelity, and generalization to
unseen scenarios are equally critical.

5
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Table 1: Comparison results on VGGSound test set for video-to-audio generation. The KLD, FAD, and Align
Acc values are reported.

Method KLD ↓ FAD ↓ Align Acc ↑
SpecVQGAN (Iashin & Rahtu, 2021) 3.78 6.63 48.79
Im2Wav (Sheffer & Adi, 2023) 2.54 6.32 74.31
Diff-Foley (Luo et al., 2023) 3.15 6.40 82.47
FoleyGen (Mei et al., 2023) 2.89 2.59 73.83
V2A-Mapper (Wang et al., 2024) 2.78 0.99 74.37
Seeing & Hearing (Xing et al., 2024) 2.62 2.63 78.95
MaskVAT (Pascual et al., 2024) 2.65 1.51 63.87
VAB (Su et al., 2024) 2.58 2.69 76.83
VATT (Liu et al., 2024) 2.25 2.35 82.81
OpenFoley (ours) 0.86 0.45 99.38

4 EXPERIMENTS

We evaluate OpenFoley on standard and newly curated benchmarks to demonstrate its effectiveness
in open-set video-to-audio generation. Our experiments aim to answer three key questions: (1) Can
OpenFoley generate realistic audio that is semantically coherent and temporally synchronized with
video input? (2) Does modality-aware masking alignment improve cross-modal grounding over
existing encoder-based approaches? (3) Does the flow-based generation module enhance efficiency
and fidelity, particularly in open-set scenarios?

4.1 EXPERIMENTAL SETUP

Datasets. We conduct experiments on two widely used multimodal datasets. VGGSound (Chen et al.,
2020): A large-scale dataset of 200k YouTube video clips, each 10 seconds long, spanning 309 diverse
sound categories including animals, vehicles, human speech, dancing, and musical instruments.
We follow the official training and test splits for evaluation. Open-Set Benchmark: To evaluate
generalization beyond closed categories, we construct a curated benchmark from AudioSet (Gemmeke
et al., 2017) and Panda70M (Chen et al., 2024), totaling 10M YouTube videos. We remove overlapping
categories with VGGSound and retain only clips from unseen classes, ensuring that models are tested
strictly in an open-set regime.

Evaluation Metrics. To assess both fidelity and alignment of generated audio, we report: Kull-
back–Leibler Divergence (KLD): Measures distributional similarity between generated and ground-
truth (GT) audio features based on PaSST (Koutini et al., 2022), reflecting semantic coherence.
Fréchet Audio Distance (FAD) (Kilgour et al., 2018): Quantifies perceptual quality by comparing
feature distributions of generated audio and real samples. Alignment Accuracy (Align Acc) (Luo
et al., 2023): Evaluates temporal synchronization between generated audio and video events, a key
measure of cross-modal alignment.

Implementation. Video frames are resized to 224× 224 resolution, while audio is represented as log
spectrograms from 10-second clips sampled at 8kHz. Spectrograms are extracted with a 50ms STFT
window and 25ms hop size, yielding 128× 128 inputs (128 frequency bands × 128 timesteps). We
initialize the video encoder (Zhai et al., 2023) with WebLI-pretrained weights (Chen et al., 2023) and
the audio encoder (Huang et al., 2022) with AudioSet-pretrained weights (Gemmeke et al., 2017).
Models are trained for 100 epochs using the Adam optimizer (Kingma & Ba, 2014) with learning
rate 3× 10−4 and batch size 128.

4.2 COMPARISON TO PRIOR WORK

In this work, we propose a novel and effective framework called OpenFoley , for close-set and
open-set video-to-audio generation. Table 1 reports quantitative results on the VGGSound test set,
comparing OpenFoley with recent state-of-the-art video-to-audio generation methods. We observe
several key findings:
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Table 2: Comparison results on the open-set benchmark (AudioSet + Panda70M) for video-to-audio generation.
The KLD, FAD, and Align Acc values are reported. Lower KLD and FAD indicate better semantic coherence
and perceptual quality, while higher Align Acc reflects better synchronization.

Method KLD ↓ FAD ↓ Align Acc ↑
SpecVQGAN (Iashin & Rahtu, 2021) 4.12 7.05 42.16
Im2Wav (Sheffer & Adi, 2023) 3.38 6.74 65.42
Diff-Foley (Luo et al., 2023) 3.61 6.81 70.25
FoleyGen (Mei et al., 2023) 3.29 3.18 64.87
V2A-Mapper (Wang et al., 2024) 3.15 1.89 68.03
Seeing & Hearing (Xing et al., 2024) 3.02 3.11 71.46
MaskVAT (Pascual et al., 2024) 3.18 2.45 60.12
VAB (Su et al., 2024) 3.01 3.26 69.27
VATT (Liu et al., 2024) 2.81 2.72 73.04
OpenFoley (ours) 1.12 0.63 88.72

Overall Performance. OpenFoley achieves the best results across all three evaluation metrics.
In particular, it reduces KLD from 2.25 (VATT (Liu et al., 2024)) to 0.86, indicating significantly
improved semantic coherence. Similarly, it lowers FAD to 0.45, substantially outperforming the
previous best (0.99 from V2A-Mapper (Wang et al., 2024)), highlighting the perceptual quality of
generated audio. Moreover, OpenFoley achieves a remarkable Align Acc of 99.38%, demonstrating
near-perfect synchronization between visual events and generated sound.

Semantic Fidelity. Methods relying on CLIP/CLAP embeddings (e.g., Im2Wav (Sheffer & Adi,
2023), Diff-Foley (Luo et al., 2023)) capture coarse semantic relations but often fail to generate
temporally coherent sounds, leading to higher KLD values. In contrast, modality-aware masking in
OpenFoley enforces direct video–audio reconstruction, enabling finer semantic grounding without
relying on intermediate language-based embeddings.

Temporal Synchronization. Prior approaches such as MaskVAT (Pascual et al., 2024) and VAB (Su
et al., 2024) improve generalization but exhibit degraded alignment accuracy (below 80%), indicating
difficulties in capturing temporal correspondence. Our bidirectional masking strategy explicitly
enforces temporal consistency, resulting in a significant improvement in Align Acc over all baselines.

Perceptual Quality. Flow-based priors in OpenFoley provide a flexible and expressive latent space
that adapts to diverse sounds beyond Gaussian assumptions. This leads to the lowest FAD score
among all compared methods, demonstrating that the generated audio not only aligns semantically
and temporally but also achieves high perceptual realism.

4.3 OPEN-SET RESULTS

A central challenge addressed by OpenFoley is open-set video-to-audio generation, where the model
must generalize to novel categories that are unseen during training. To evaluate this setting, we
construct a curated benchmark from AudioSet (Gemmeke et al., 2017) and Panda70M (Chen et al.,
2024), ensuring no overlap with VGGSound categories. This benchmark contains 10M diverse video
clips spanning a wide range of environments, objects, and events.

Table 2 presents results on the open-set benchmark. Most prior methods, which rely heavily on
category-dependent supervision or language-based encoders, experience substantial performance
degradation in this regime. For example, Diff-Foley (Luo et al., 2023) and VATT (Liu et al., 2024)
show decreased alignment accuracy, as unseen motion patterns and object interactions break their
category priors. In contrast, OpenFoley achieves robust generalization, reducing KLD and FAD by
large margins and improving Align Acc by over +10% compared to the strongest baseline.

Performance Drop of Baselines. Compared to the closed-set VGGSound results (Table 1), most
baselines exhibit a notable degradation when evaluated on unseen categories. For example, VATT (Liu
et al., 2024) achieves an Align Acc of 82.81% in the closed-set setting but drops to 73.04% in the
open-set benchmark. Similarly, Im2Wav (Sheffer & Adi, 2023) suffers from a decrease in semantic
fidelity, with KLD rising from 2.54 to 3.38. These results suggest that models relying on category-
dependent or language-mediated alignment are vulnerable to domain shifts, as unseen categories
break their learned priors.

7
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Table 3: Ablation study on the contributions of Modality-aware Masking Alignment (MMA) and Modality-aware
Flow Generation (MFG) on the open-set benchmark. Removing either component degrades performance, while
the full model achieves the best results.

Method Variant KLD ↓ FAD ↓ Align Acc ↑
OpenFoley w/o MMA 2.45 1.37 76.42
OpenFoley w/o MFG 1.98 1.22 81.56
OpenFoley w/o MMA & MFG 2.83 2.05 70.31
OpenFoley (Full Model) 1.12 0.63 88.72

Semantic Fidelity (KLD). OpenFoley achieves a KLD of 1.12, representing a 60% relative im-
provement over the strongest baseline (VATT at 2.81). This shows that modality-aware masking
enables the model to capture semantic correspondences directly from raw multimodal data, rather
than relying on indirect textual embeddings that fail to generalize.

Perceptual Quality (FAD). Flow-based latent modeling substantially improves perceptual quality in
open-set conditions. While V2A-Mapper (Wang et al., 2024) achieves competitive FAD (1.89), its
semantic alignment remains weak (KLD 3.15). In contrast, OpenFoley delivers both low FAD (0.63)
and low KLD, showing that our flow prior captures diverse audio distributions while maintaining
semantic fidelity.

Temporal Synchronization (Align Acc). Temporal alignment proves most challenging in open-set
generation. Even strong diffusion-based approaches such as Diff-Foley (Luo et al., 2023) only achieve
70.25% Align Acc. By explicitly enforcing bidirectional masking between video and audio streams,
OpenFoley attains 88.72%, a significant improvement of +15.7% over the next-best baseline. This
demonstrates that our modality-aware alignment strategy learns fine-grained synchronization cues
that generalize across novel categories.

Balanced Improvements. Unlike prior methods, which often trade off perceptual quality (FAD)
against synchronization (Align Acc), OpenFoley achieves strong results across all three metrics
simultaneously. This balance highlights the complementary nature of our design: modality-aware
masking enforces cross-modal grounding, while flow-based generation ensures flexible and high-
quality synthesis.

5 EXPERIMENTAL ANALYSIS

In this section, we present detailed ablation studies to validate the design choices of OpenFoley . We
evaluate the contributions of the Modality-aware Masking Alignment (MMA) and Modality-aware
Flow Generation (MFG) modules, compare different flow objectives, and analyze the effect of the
masking ratio. Together, these experiments highlight how each component contributes to semantic
fidelity, perceptual quality, and synchronization in open-set video-to-audio generation.

Modality-aware Masking Alignment & Modality-aware Flow Generation. Table 3 presents the
effect of removing the MMA and MFG modules. Without MMA, the model experiences a sharp drop
in synchronization, with Align Acc decreasing from 88.72% to 76.42%. Although perceptual quality
remains reasonable (FAD = 1.37), the lack of direct cross-modal reconstruction prevents the model
from learning fine-grained temporal alignment. When MFG is removed, the model achieves better
synchronization but the perceptual quality deteriorates significantly, as FAD increases from 0.63 to
1.22. This confirms that Gaussian priors are insufficient for modeling diverse audio distributions.
Removing both modules results in the largest performance degradation, with KLD increasing to 2.83
and Align Acc dropping to only 70.31%, approaching the behavior of baseline methods. In contrast,
the full model achieves the strongest results across all metrics (KLD = 1.12, FAD = 0.63, Align Acc
= 88.72%), demonstrating that MMA and MFG are complementary: the former enforces temporal
alignment, while the latter ensures efficient and high-fidelity generation.

Type of Flow Objectives. We further examine different flow objectives for the MFG module in
Table 4. Using a vanilla normalizing flow yields poor results, with KLD = 1.87 and FAD = 1.54,
indicating difficulty in capturing temporal dynamics. Conditional affine coupling improves perfor-
mance by leveraging video features, lowering KLD to 1.56 and FAD to 1.12, but synchronization
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Table 4: Comparison of different flow objectives for Modality-aware Flow Generation (MFG). Continuous-time
flow matching achieves the best trade-off between semantic coherence, perceptual quality, and synchronization.

Flow Objective KLD ↓ FAD ↓ Align Acc ↑
Vanilla Normalizing Flow 1.87 1.54 80.15
Conditional Affine Coupling 1.56 1.12 83.42
Continuous-time Flow Matching (ours) 1.12 0.63 88.72

Table 5: Impact of masking ratio in Modality-aware Masking Alignment (MMA). Moderate ratios achieve the
best trade-off between semantic fidelity and temporal synchronization.

Masking Ratio KLD ↓ FAD ↓ Align Acc ↑
20% 1.73 0.94 82.45
40% (ours) 1.12 0.63 88.72
60% 1.65 0.89 83.12

remains limited with Align Acc of 83.42%. The best results are achieved with continuous-time
flow matching, which reduces KLD to 1.12, FAD to 0.63, and pushes Align Acc to 88.72%. These
findings confirm that continuous flows are especially well-suited for aligning transient events across
modalities, providing both a flexible prior and strong temporal consistency.

Impact of Masking Ratio. The effect of masking ratio in MMA is shown in Table 5. A low masking
ratio of 20% provides weak cross-modal supervision, yielding limited improvements (KLD = 1.73,
FAD = 0.94, Align Acc = 82.45%). At the other extreme, masking 60% of the data makes the
reconstruction task overly difficult, slightly degrading semantic fidelity (KLD = 1.65) while keeping
alignment relatively strong. The best trade-off is observed at a moderate ratio of 40%, which achieves
the strongest overall performance (KLD = 1.12, FAD = 0.63, Align Acc = 88.72%). These results
show that balanced masking provides sufficient cross-modal alignment signals without overwhelming
the reconstruction objective.

6 CONCLUSION

In this work, we introduced OpenFoley , a novel framework for open-set video-to-audio generation
that explicitly enforces semantic coherence and temporal synchronization across modalities. Unlike
prior approaches that rely heavily on CLIP/CLAP-based language alignment, OpenFoley learns
direct video–audio correspondences through modality-aware masking alignment, while a modality-
aware flow generation module provides a flexible prior for efficient and high-fidelity synthesis.
Extensive experiments on VGGSound and a newly curated open-set benchmark demonstrated that
OpenFoley achieves state-of-the-art performance, significantly improving KLD, FAD, and alignment
accuracy over recent baselines. Our ablation studies further revealed that both components are
indispensable and complementary: masking alignment drives synchronization, flow generation
enhances perceptual realism, and moderate masking ratios strike the best balance between supervision
and reconstruction stability.

Limitation. While OpenFoley achieves state-of-the-art results in both closed-set and open-set
video-to-audio generation, several limitations remain. Although modality-aware masking improves
synchronization, extremely complex or ambiguous scenes (e.g., crowded environments with multiple
sound sources) can still lead to imperfect alignment. The flow-based module improves perceptual
quality but introduces additional computational overhead compared to purely Gaussian priors, which
may limit scalability to ultra-long video sequences.

Broader Impact. The ability to generate realistic audio from visual content has broad implications
across creative media, accessibility, and immersive technologies. By explicitly addressing open-set
generalization, OpenFoley enables audio generation for novel or unseen categories, expanding its
applicability to diverse real-world scenarios. Potential applications include enriching silent videos for
virtual reality and gaming, providing audio cues for accessibility tools, and assisting video editing in
film or educational content.

9
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ETHICS STATEMENT

This work focuses on open-set video-to-audio generation, with the goal of improving multimodal
understanding and accessibility. Potential positive applications include enriching silent video content
for accessibility, supporting immersive experiences in virtual and augmented reality, and providing
new creative tools for artists and educators. However, as with any generative technology, there
is a risk of misuse in creating misleading or fabricated media. We acknowledge this concern and
encourage responsible use by pairing our framework with safeguards such as watermarking and
detection systems. Our dataset usage follows standard research protocols, relying on publicly available
benchmarks (VGGSound, AudioSet, Panda70M) with appropriate licenses. No personally identifiable
or sensitive data was used in this study.

REPRODUCIBILITY STATEMENT

We have taken multiple steps to ensure reproducibility of our results. All datasets used in this
work are publicly available: VGGSound (Chen et al., 2020), AudioSet (Gemmeke et al., 2017),
and Panda70M (Chen et al., 2024). Detailed implementation settings, including data preprocessing,
model architecture, loss functions, hyperparameters, and training schedules, are fully described in
Section 4. We report evaluation metrics (KLD, FAD, Align Acc) with standard protocols to allow
direct comparison. We also include ablation studies to clarify the role of each component. Upon
publication, we will release code, pretrained models, and scripts for dataset preparation and evaluation
to support full reproducibility of our experiments.
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APPENDIX

In this appendix, we provide additional details and analyses to complement the main paper. Section A
expands on implementation, dataset construction, and evaluation protocols. Section B presents
theoretical properties of modality-aware masking and flow generation, with supporting propositions.
Section C details the training algorithm of OpenFoley . Section D includes extended experiments,
ablations, and visualizations. Finally, Section E clarifies the role of large language models (LLMs) in
preparing this submission.

A EXPERIMENTAL DETAILS

Hardware and Training Setup. All experiments were run on 8 NVIDIA A100 GPUs. Training
on VGGSound required ∼3 GPU-days, while training on the open-set benchmark (10M clips from
AudioSet + Panda70M) required ∼9 GPU-days. Mixed-precision training (FP16) was used to reduce
memory usage and accelerate convergence.

Model Configurations. The visual encoder is a transformer initialized from WebLI-pretrained
weights Chen et al. (2023), while the audio encoder is based on PaSST Koutini et al. (2022) and
initialized from AudioSet-pretrained weights Gemmeke et al. (2017). The modality-aware masking
module uses a masking ratio of 40% unless otherwise specified. The flow module employs 12
continuous coupling layers with hidden dimension 512.

Training Parameters. We used Adam optimizer Kingma & Ba (2014) with β1 = 0.9, β2 = 0.999,
learning rate 3× 10−4, and batch size 128. A linear warmup of 5k steps followed by cosine decay
was applied. Dropout of 0.1 was used in encoders. Gradient clipping (norm=1.0) stabilized training.

Dataset Preprocessing.

• VGGSound: Official splits were used (200k 10-second clips).
• Open-set benchmark: We curated 10M clips from AudioSet and Panda70M, removing

overlapping classes with VGGSound. Clips were filtered by (i) audio signal-to-noise ratio
>15dB, (ii) minimum resolution 224p, (iii) duration between 8–12s. This ensured high-
quality, diverse, and truly unseen categories.

Evaluation Metrics. KLD was computed on PaSST embeddings, FAD was measured with VGGish
features following Kilgour et al. (2018), and Align Acc was evaluated using the protocol in Diff-
Foley Luo et al. (2023). Each metric was averaged over three runs.

B THEORETICAL PROPERTIES AND GUARANTEES

We provide theoretical insights into why modality-aware masking alignment (MMA) and modality-
aware flow generation (MFG) improve synchronization and generalization.
Proposition 1 (Cross-Modal Consistency Bound). Let (V,A) denote video and audio features with
bounded variance. Under modality-aware masking with reconstruction loss Lmask, the expected
synchronization error ϵsync satisfies

ϵsync ≤ C · E[Lmask],

for some constant C > 0.

This shows that minimizing reconstruction loss directly bounds misalignment, encouraging temporal
synchronization.
Proposition 2 (Flow Expressiveness Guarantee). Normalizing flows with K coupling layers and
Lipschitz continuous transformations can approximate any smooth target distribution p(A | V) up to
arbitrarily small error δ, i.e.,

∥p− pθ∥TV ≤ δ,

where pθ is the distribution induced by the flow.

This guarantees that the flow-based prior can flexibly capture the diverse distributions of real-world
audio, beyond Gaussian assumptions.
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Proposition 3 (Generalization to Unseen Categories). If the cross-modal alignment objective Lmask
enforces reconstruction of masked segments without category supervision, then the learned rep-
resentations are invariant to category-specific priors. Formally, for any unseen category c′, the
reconstruction error is bounded by the training error plus a domain shift term:

E(V,A)∼c′ [ℓ] ≤ E(V,A)∼c[ℓ] + ∆(c, c′),

where ∆(c, c′) is the distribution divergence between seen and unseen categories.

This suggests that OpenFoley ’s inductive bias, based on cross-modal reconstruction rather than
labels, naturally supports open-set generalization.

We also provide proof sketches for the propositions below. Throughout, let (V,A) denote random
variables for video and audio features drawn from a joint distribution D, and let ℓ(·, ·) be a nonnegative
reconstruction loss. We make the following mild assumptions:

A1 (Bounded variance and sub-Gaussian tails). Features have bounded second moments and sub-
Gaussian tails: E∥V∥2,E∥A∥2 < ∞, and V,A are sub-Gaussian.

A2 (Lipschitz decoders). The prediction maps for masked reconstruction are L-Lipschitz in their
inputs; i.e., for any inputs x, x′ in the relevant feature space, ∥h(x)− h(x′)∥ ≤ L∥x− x′∥.

A3 (Calibrated reconstruction). The reconstruction loss is α-calibrated to the feature error: there
exists α > 0 such that α ℓ(ŷ, y) ≥ ∥ŷ − y∥2 (e.g., ℓ(ŷ, y) = ∥ŷ − y∥2 with α = 1).

Proposition 1 (Cross-Modal Consistency Bound). Let ϵsync denote an expected synchronization
error functional that is Lipschitz in the feature reconstruction error (e.g., a surrogate of temporal
misalignment computed on feature trajectories). Under A1–A3, there exists C > 0 such that

ϵsync ≤ C · E(V,A)∼D[Lmask] ,

where Lmask = ∥Â − A∥22 + ∥V̂ − V∥22.

Proof (sketch). Let ϕA, ϕV denote the feature trajectories used by the synchronization metric (e.g.,
PaSST or encoder features per frame). Suppose ϵsync = E[∆(ϕV (V̂), ϕV (V)) +∆(ϕA(Â), ϕA(A))],
where ∆ is K-Lipschitz and ϕA, ϕV are Lϕ-Lipschitz. Then

∆(ϕA(Â), ϕA(A)) ≤ K ∥ϕA(Â)− ϕA(A)∥ ≤ KLϕ∥Â − A∥.

By A3, ∥Â − A∥ ≤
√

α ℓ(Â,A). The same holds for the video term. Taking expectations and
applying Jensen’s inequality yields

ϵsync ≤ KLϕ

(
E
√
α ℓ(Â,A) + E

√
α ℓ(V̂,V)

)
≤ C E

[
ℓ(Â,A) + ℓ(V̂,V)

]
,

for C absorbing constants and using
√
x ≤ 1

2 (1 + x) along with boundedness from A1. Noting that ℓ
is the squared error here, we obtain the stated bound with Lmask. □

Proposition 2 (Flow Expressiveness Guarantee). Let p(A | V) be a family of conditionals with
densities that are continuous and supported on Rd. For any δ > 0, there exists a conditional
normalizing flow fθ(·;V) with finitely many triangular (coupling) layers and Lipschitz transforms
such that the induced conditional density pθ(· | V) satisfies

∥p(· | V)− pθ(· | V)∥TV ≤ δ for V-a.e..

Proof (sketch). The proof follows standard universal approximation arguments for normalizing
flows via transport maps. For each fixed V , let TV be the (Knothe–Rosenblatt) monotone triangular
transport map pushing a simple base q (e.g., standard Gaussian) to p(· | V). Under continuity
and absolute continuity assumptions, TV exists and is unique a.e. Triangular/coupling flows with
sufficiently many layers and smooth, Lipschitz conditioners can uniformly approximate TV to arbitrary
precision on compacta. Hence the pushforward TV #q can be approximated in total variation by
fθ,V #q; see standard density transport approximation arguments. Since the approximation can be
made uniform over compact subsets of V’s feature space (by continuity of the conditioners), the
bound holds for V-a.e. with any prescribed δ > 0. □
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Proposition 3 (Generalization to Unseen Categories). Let DS and DT denote the source (seen
categories) and target (unseen categories) joint distributions over (V,A). For a reconstruction
predictor h trained by minimizing Lmask on DS , the target risk obeys the domain adaptation–style
bound

EDT
[ℓ(h(Ṽ, Ã), (V,A))] ≤ EDS

[ℓ(h(Ṽ, Ã), (V,A))] + disc(DS ,DT ) + λ∗,

where disc is an integral probability metric (IPM)–type discrepancy induced by the loss class, and
λ∗ is the error of the optimal hypothesis shared across domains.

Proof (sketch). Let H be the hypothesis class of reconstruction predictors (the masking alignment
decoders). Define the discrepancy

disc(DS ,DT ) = sup
h∈H

∣∣∣EDS
ℓ(h(Ṽ, Ã), (V,A))− EDT

ℓ(h(Ṽ, Ã), (V,A))
∣∣∣ .

For any h ∈ H, add and subtract the source risk of the optimal joint hypothesis h∗ ∈
argminh∈H (EDS

ℓ+ EDT
ℓ) and apply triangle inequality to obtain

EDT
ℓ(h) ≤ EDS

ℓ(h) + disc(DS ,DT ) + (EDT
ℓ(h∗)− EDS

ℓ(h∗)) .

Let λ∗ = EDT
ℓ(h∗) (the joint optimal error; the remaining difference can be absorbed into disc or

λ∗ depending on the chosen IPM). Since MMA trains without category labels, H does not encode
category-specific priors; thus the shift captured by disc measures distributional divergence in cross-
modal dynamics rather than label drift, which is typically milder for co-occurrence patterns. This
yields the stated bound. □

Remarks. Proposition 1 ties synchronization quality to reconstruction via Lipschitz surrogates,
formalizing why minimizing the MMA loss improves alignment. Proposition 2 justifies the choice of
flows in MFG as a universal conditional density model, explaining strong FAD and KLD in open
set. Proposition 3 adapts classic domain adaptation reasoning to reconstruction (rather than label
prediction), explaining empirical robustness to unseen categories.

C ALGORITHM FOR OpenFoley

Algorithm 1 outlines the training procedure for OpenFoley .

Algorithm 1 Training Procedure for OpenFoley

Require: Video frames V , audio spectrogram A, masking ratio r, flow model fθ, encoders Ev, Ea

1: for each minibatch do
2: Sample masking indices Mv,Ma with ratio r
3: Encode unmasked inputs: zv = Ev(Ṽ), za = Ea(Ã)

4: Predict masked audio Â and masked video V̂
5: Compute Lmask = ∥Â − A∥2 + ∥V̂ − V∥2
6: Transform audio latent: z = fθ(A), refine with zt+1 = zt + λgθ(vt)
7: Compute flow loss Lflow = − log pθ(fθ(A)|V)
8: Update θ using L = λmaskLmask + λflowLflow
9: end for

D EXPERIMENTAL ANALYSIS

In this section, we provide extended analyses beyond the main paper to better understand the behavior
of OpenFoley . We focus on encoder selection, scalability to long sequences, architectural variations,
and qualitative inspections of generated results. These studies shed light on the robustness and
practical applicability of our framework.

Encoder Choice. We first investigate the role of large-scale multimodal pretraining by replacing
the WebLI-pretrained visual encoder with a ResNet-50 trained on ImageNet. This substitution
causes a noticeable performance degradation: the Fréchet Audio Distance (FAD) increases by
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+0.31, and the alignment accuracy drops by −4.6%. The degradation arises because ImageNet-
pretrained models capture object-level semantics but lack fine-grained motion dynamics critical for
temporal synchronization. On the audio side, we compared the AudioSet-pretrained encoder against
a randomly initialized encoder. Removing AudioSet pretraining leads to a +0.45 increase in KLD,
reflecting weaker distributional alignment with ground-truth audio. Together, these results highlight
the importance of multimodal pretraining on large-scale, diverse datasets for capturing both semantic
and temporal cues.

Long Sequence Generalization. Most prior works in video-to-audio generation focus on 10-second
clips. To test scalability, we evaluate OpenFoley on 30-second clips sampled from Panda70M.
Despite the significantly longer temporal horizon, our model maintains strong performance with
Align Acc of 85.3%, demonstrating stable synchronization over extended contexts. Although FAD
increases slightly due to accumulated prediction errors, the generated audio remains temporally
coherent with visual events. This suggests that our modality-aware masking strategy effectively
enforces alignment even when extrapolating beyond the training length. In practice, this property is
crucial for real-world applications such as film dubbing or long-form VR experiences, where audio
continuity is required over long time spans.

Impact of Flow Depth. We conducted ablations on the number of flow layers in the Modality-aware
Flow Generation (MFG) module. With fewer than 6 layers, the model underfits, producing blurred
spectrograms and FAD scores exceeding 1.0. Increasing flow depth beyond 12 layers yields marginal
improvements (< 0.05 FAD reduction) but significantly increases training time and memory usage.
We find that 12 layers provide the best trade-off, offering both sufficient expressiveness and efficiency.
This observation is consistent with our theoretical guarantees (Appendix B), which suggest that flow
expressiveness improves with depth but saturates once the target distribution is well-approximated.

Cross-Dataset Robustness. To test robustness, we trained on VGGSound and evaluated zero-shot on
Kinetics-Sound. While absolute performance was lower than in-domain evaluation, OpenFoley still
achieved FAD improvements of 0.27 over the best baseline. This indicates that the modality-aware
objectives provide generalization beyond dataset-specific distributions, consistent with our open-set
motivation.

E USE OF LLMS

Large language models (LLMs), specifically OpenAI’s GPT-5, were used to assist in writing and
organizing sections of this paper. All technical contributions, dataset design, algorithm development,
and experiments were carried out and validated by the authors. The use of LLMs was limited to
communication support and did not influence scientific content or experimental results.
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