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Abstract

Pretrained large language models based on a va-
riety of sequence modeling architectures (e.g.
Transformers, Mamba, Hyena) are increasingly
being applied beyond natural language processing
(NLP). In genomics, they have shown potential
to reveal intricate structures and dependencies
within DNA sequences, particularly within non-
coding regions. To guide a principled develop-
ment of training methods and architectures in the
genomics domain, in this work we examine the
most common classes of sequence modeling ar-
chitectures found in language models and further
explore transfer learning paradigms such as pre-
training on large-scale external datasets as well
as self pretraining (on the same data, using a re-
construction loss). In contrast to recent works, fo-
cusing specifically on finetuning large transform-
ers, our results suggest that most recent recurrent
models (Mamba) and implicit convolution based
models (Hyena), that are increasingly used for ge-
nomic language models, might not offer an advan-
tage over Attention-based Transformer models,
especially after pretraining on the human refer-
ence genome. To enable thorough and controlled
comparisons, we adopt a fixed training pipeline
and limit our experiments to relatively small-scale
model – an approach that still aligns well with the
performance trends observed in recent studies.

1. Introduction
The Transformer architecture (Vaswani et al., 2017) and
the self-supervised language modeling pretraining tasks
have demonstrated an impressive capability to model se-
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quences, particularly text (Radford et al., 2018), (Devlin,
2018), unlocking the rise of large language models (LLMs).
This LLM pipeline has since been extended beyond nat-
ural language to other domains such as computer vision
(Dosovitskiy et al., 2021) and biological sequences, includ-
ing proteins (Lin et al., 2023; Brandes et al., 2022), RNA
(Shulgina et al., 2024), and DNA (Ji et al., 2021; Dalla-Torre
et al., 2024; Nguyen et al., 2023; Schiff et al., 2020; Nguyen
et al., 2024a).

A central component of the architecture is the softmax At-
tention layer (Bahdanau et al., 2014), which enables global
information exchange across the sequence. However, this
layer has a critical drawback when modeling long sequences
due to its quadratic time and space complexity relative to
the sequence length. This limitation has motivated the de-
velopment of subquadratic sequence mixing layers. Notable
examples include state space models (SSMs) such as S4
(Gu et al., 2022), S6 (Gu & Dao, 2024), and the related
Hyena operator (Poli et al., 2023), which scale linearly with
the sequence length. These models have inspired research
into subquadratic LLMs for genome analysis, given the
long-range dependencies spanning over 100k+ nucleotides
(Nguyen et al., 2023; Avsec et al., 2021).

gLMs So far, genomic language models (gLMs) have
been trained and benchmarked at different scales: from
400K to 70B (Nguyen et al., 2023), (Schiff et al., 2020),
(Ku et al., 2025); using different sequence modeling ar-
chitectures: Convolutional Neural Networks (Bo et al.,
2025), Transformers (Ji et al., 2021), (Sanabria et al., 2024),
(Dalla-Torre et al., 2024), SSM (Schiff et al., 2020), Hyena
(Nguyen et al., 2023) and their hybrids (Nguyen et al.,
2024a), (Ma et al., 2025); pretraining objectives: causal lan-
guage modeling (CLM) (Poli et al., 2023), (Ku et al., 2025),
and masked language modeling (MLM) (Dalla-Torre et al.,
2024), (Schiff et al., 2020), (Sanabria et al., 2024); tokeniz-
ers: k-mer (Dalla-Torre et al., 2024), (Sanabria et al., 2024),
character-level (Nguyen et al., 2023), (Schiff et al., 2020)
and pretraining corpora: human reference genome (Genome
Reference Consortium, 2013) (Nguyen et al., 2023), (Schiff
et al., 2020), multi-species genomes (Dalla-Torre et al.,
2024), (Nguyen et al., 2024a). Due to the many potential
axes of variation in the pipeline design, it is hard to make
conclusive statements about model architectures, especially
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Figure 1. Learning rate sensitivity of finetuned models with con-
text length of 4096 tokens. Models are pretrained on human
reference genome (HG38) and finetuned on each of the tasks sep-
arately. Mean test accuracy and its variation across two random
seeds for the train-validation datasets split on the held-out test set
is reported. Variation of the test accuracy is given as the difference
between maximum and minimum deviation from the mean. The x
axis is in the log scale.

when these are benchmarked together with tokenization
strategies and pretraining objectives (e.g. causal Mamba
vs. masked self-Attention). In modern literature, such prac-
tices have also led to the surprising conclusion that small
Hyena and SSM-based gLMs outperform orders of mag-
nitude larger Transformer models (Nguyen et al., 2024b),
(Schiff et al., 2020). We suspect that there might be some
confounding factors (datasets, tokenizer, training time), so
in this work we focus on comparing sequence model classes
for genome modeling while keeping the rest of the pipeline
fixed. We also focus on small models (1.6 M parameters),
to test if at that scale SSM and Hyena based gLMs are in-
deed better. This setting is supported by findings that many
tasks in genomics smaller models perform on pair, if not
better than orders of magnitude larger ones (Xu et al., 2024).
Moreover, focusing on small scale models is important in
the context of developing them within the academic research
labs for the specific genomics tasks.

Pretraining What current gLMs have in common is the
goal of learning generalizable features from long-range ge-
nomic data for transfer learning to downstream tasks. To
achieve that, the effort in the community has been domi-
nantly going along the lines of scaling models in context
length, data (by using whole-genome sequences) and com-
pute (Dalla-Torre et al., 2024), (Nguyen et al., 2024a), (Ku

et al., 2025), (Ma et al., 2025) as in the NLP field (Kaplan
et al., 2020). One study (Tang & Koo, 2024), focusing on
learning cis-regulatory patterns in the non-coding genome,
concludes that gLMs pretrained on whole genomes do not
offer significant advantages over traditional machine learn-
ing models using one-hot encoded sequences. Hence, the
usage of a large pretraining corpus and the resources needed
for learning embeddings are unjustified for the task at hand.
It also finds that using embeddings from a model trained in a
supervised manner on data more relevant to the downstream
task is most predictive of downstream performance. These
findings highlight that pretraining on next or masked token
prediction task is not universally effective for constructing
good features and that the choice of pretraining task should
be guided by domain-specific requirements. However, this
study only probes learned embeddings of gLMs and does
not evaluate downstream performance after finetuning. In
contrast, we investigate whether data-driven initialization of
gLMs aids in constructing effective features for finetuning,
especially in the context of the small-scale models.

Self pretraining Similarly to (Tang & Koo, 2024), sev-
eral studies from the field of NLP (Krishna et al., 2022)
and computer vision (El-Nouby et al., 2021) have shown
that self-supervised pretraining with denoising objectives
on large-scale, task-agnostic data does not significantly out-
perform self-supervised pretraining on task-specific data fol-
lowed by supervised finetuning. This approach is referred
to as self pretraining (SPT). Related to this, it has been
demonstrated that domain-adaptive pretraining — contin-
ued pretraining of a pretrained language model on unlabeled
task-specific data or a small domain-relevant corpus can
provide significant benefits (Gururangan et al., 2020). Fur-
thermore, (Amos et al., 2023) demonstrates across multiple
long-range tasks and data scales that models like S4 (Gu
et al., 2022), its diagonalized variant (Gupta et al., 2022),
and Transformers can achieve substantial performance gains
(up to 30 accuracy points on the LRA benchmark (Tay et al.,
2020)) when trained with SPT, making them competitive
with more specialized SSM architectures. Motivated by
these findings, we ask whether SPT provides similar ben-
efits in genomics and whether its utility depends on the
underlying sequence architecture.

To summarize, our main contributions are as follows:

1. “Head-to-head” comparison of three sequence model-
ing architectures: Transformers, Mamba and Hyena at
small scale on a task of regulatory annotation tasks,

2. We examine whether there is an interplay between
architecture and a (pre)training method. To do so, we
evaluate:

(a) supervised training from randomly initialized
weights (from scratch),

2



Comparing Modern Sequence Architectures and Training Strategies for Genomic Language Models

Table 1. Average classification test accuracies across Genomic
Benchmark (Grešová et al., 2023) tasks consisting of real data
– more relevant for the analysis, focused on identifying regulatory
elements and open chromatin regions. The tasks include: Human
Enhacers Cohn, Human Enhancers Ensembl, Human Regulatory,
Human Nontata Promoters, Human Open Chromatin Accessibility
(OCR) Ensembl. See Tables 2, 3, 4 for results on each task
individually. We highlight in bold the best (pre)training strategy
for each of the model class.

PRETRAINING TRANSFORMER HYENA MAMBA

NO (FROM SCRATCH) 81.88 84.20 84.08
HG38 82.43 81.07 83.25
TASK-SPECIFIC 81.83 84.10 83.61
DOMAIN-SPECIFIC 82.52 83.63 82.22

(b) pretraining on whole-genome sequence - human
reference genome,

(c) self pretraining (SPT) on task-specific data.

We conduct our analysis in a principled manner by com-
paring models trained at the same scale, using the same
tokenizer, data, and training procedure. We also perform
extensive hyperparameter tuning to ensure models operate
as close to optimal as possible.
Although limited by the variety of datasets and benchmarks
considered, we believe our results provide an interesting step
towards understanding the impact of modern architectural
choices and (pre)training methods in real-world applications
oriented toward solving specific tasks, with potentially very
small amount of data (by language models standards).

In the described setting, we find that all three considered
sequence modeling architectures, on average, perform on-
par over different tasks from the Genomic Benchmark and
(pre)training methods. Notably, when looking at individual
task performances, supervised training from random ini-
tialization often outperforms transfer-learning paradigms.
However, this is less the case with Transformer architecture,
which appears to benefit a bit more from self pretraining.
We also showcase the overall ineffectiveness of transfer
learning by demonstrating that being better at predicting
the next token in the genome does not translate to better
performance on different task, such as identifying regulatory
elements and open chromatin regions in the genome.

2. Experiments
2.1. Data

For pretraining experiments we use human reference
genome (Genome Reference Consortium, 2013), which is
commonly used in studies in the realm of gLMs. It consists
of around 3.5 billion nucleotide base pairs (tokens) in the
training split.

For evaluation, we focus on Genomic Benchmark (Grešová
et al., 2023), as it is present in almost all gLM studies. It
includes eight datasets centered around regulatory elements
— such as promoters, enhancers, and open chromatin re-
gions—from three model organisms: human, mouse, and
roundworm. We use character-level tokenizer to encode a
sequence vocabulary of 4 nucleotides A, T, C, G.

2.2. Methods

We keep the number of parameters fixed at 1.6 million, as
well as number of layers at 2. Unless stated otherwise, we
do a hyperparemeter search over four learning rate values
(1e-4, 3e-4, 9e-4, 2.7e-3), and two batch sizes (128, 256).
All supervised training runs for 10 epochs, on two different
train-validation dataset splits. The final evaluation is done
on the held-out test set. We report the mean ± the difference
between the maximum and minimum deviation from the
mean. When pretraining, we use causal language modeling
objective with 10000 optimizer steps. Details about specific
values of hyperparameters can be found in Appendix A.1.
To prevent overfitting, we monitor the validation loss. We
test the model that achieved the lowest validation loss during
pretraining. We then further finetune the best-performing
model on the downstream task.

Training from scratch. To establish a baseline for eval-
uating the benefits of pretraining strategies, we train all
models from random initialization, using the same recipe
as (Grešová et al., 2023).

Pretraining and finetuning. We experiment with three
context lengths during pretraining (1024, 2048 and 4096)
to assess whether a larger genomic context improves down-
stream performance.

Self pretraining. Given task-specific data (Xtrain, ytrain),
the first stage of SPT trains the model on Xtrain alone using
an autoregressive next-token prediction objective, minimiz-
ing a cross-entropy loss. We construct Xtrain in two ways:
(1) by combining training sequences from all downstream
tasks in the Genomic Benchmark, and (2) using training
sequences from each individual task. Models are evaluated
on all downstream tasks in setup (1), and only on the test
set of the pretrained task in setup (2). By comparing the per-
formance across the two setups we test whether pretraining
on multiple related tasks of regulatory elements brings any
advantage compared to using only individual task data.

3. Results
In our setting, upon fixing the whole model backbone to be
the same and tuning Attention (Transformer), Hyena and
Mamba models, we demonstrate that all models (when max
pooling on the pretraining strategy) perform quite similarly
on average across the most relevant tasks (human regula-
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Table 2. Classification accuracies for the Transformer model with and without pretraining across various genomic datasets. Context
length of 4096 is used for pretraining on the human reference genome (HG38).Mean test accuracy and its variation across two random
seeds for the train-validation datasets split on the held-out test set is reported. Variation of the test accuracy is given as the difference
between maximum and minimum deviation from the mean. The best mean performance for each task is emphasized in bold, the second
best is underlined.

MODEL TRANSFORMER

PRETRAINED NO HG38 TASK-SPECIFIC DOMAIN-SPECIFIC

MOUSE ENHANCERS 79.75 ± 0.00 75.00 ± 0.00 76.24 ± 0.00 75.85 ± 0.01
CODING VS INTERGENOMIC 92.13 ± 0.00 91.45 ± 0.00 93.08 ± 0.00 91.07 ± 0.00
HUMAN VS WORM 95.82 ± 0.12 96.31 ± 0.00 96.33 ± 0.00 96.31 ± 0.00
HUMAN ENHANCERS COHN 70.82 ± 0.00 72.18 ± 0.00 71.76 ± 0.49 72.70 ± 0.00
HUMAN ENHANCERS ENSEMBL 87.73 ± 0.00 84.58 ± 0.00 85.23 ± 0.00 84.76 ± 0.00
HUMAN REGULATORY 87.43 ± 0.00 86.61 ± 0.00 82.51 ± 0.00 86.45 ± 0.00
HUMAN NONTATA PROMOTERS 92.04 ± 0.00 91.90 ± 0.00 92.49 ± 0.00 91.65 ± 0.00
HUMAN OCR ENSEMBL 71.36 ± 0.00 76.87 ± 0.00 77.16 ± 0.00 77.06 ± 0.00

Table 3. Classification accuracies for the Hyena model with and without pretraining across various genomic datasets. Context
length of 4096 is used for pretraining on the human reference genome (HG38). Mean test accuracy and its variation across two random
seeds for the train-validation datasets split on the held-out test set is reported. Variation of the test accuracy is given as the difference
between maximum and minimum deviation from the mean. The best mean performance for each task is emphasized in bold, the second
best is underlined.

MODEL HYENA

PRETRAINED NO HG38 TASK-SPECIFIC DOMAIN-SPECIFIC

MOUSE ENHANCERS 79.75 ± 1.24 78.31 ± 0.00 79.53 ± 0.01 78.45 ± 0.00
CODING VS INTERGENOMIC 90.68 ± 0.23 90.56 ± 0.00 90.72 ± 0.00 90.55 ± 0.00
HUMAN VS WORM 96.19 ± 0.12 96.08 ± 0.00 96.07 ± 0.00 95.99 ± 0.00
HUMAN ENHANCERS COHN 72.58 ± 0.08 72.66 ± 0.00 72.74 ± 0.39 72.49 ± 0.38
HUMAN ENHANCERS ENSEMBL 89.33 ± 0.00 82.47 ± 1.00 87.30 ± 0.00 86.60 ± 0.00
HUMAN REGULATORY 87.30 ± 0.00 82.71 ± 0.00 86.57 ±0.00 86.07 ± 0.00
HUMAN NONTATA PROMOTERS 94.95 ± 0.00 93.19 ± 0.00 95.71 ± 0.00 95.08 ± 0.00
HUMAN OCR ENSEMBL 76.83 ± 0.00 74.31 ± 0.00 78.19 ± 0.00 77.91 ± 0.00

tory elements and open chromatin regions) and (pre)training
methods; see Table 1. In particular, Hyena and Mamba mod-
els achieve the best performance on average when trained in
a supervised fashion from random initialization, and reach
around 1.5 accuracy points more compared to the pretrained
Transformer model on domain-specific data — which we
found to be the best overall option. However, a deeper ex-
amination beyond average performance showcases some
peculiar differences.

Mamba is most sensitive to hyperparameters. Firstly,
we find that Transformer and Hyena models have more con-
sistent performance across wider range of learning rates
compared to Mamba, a property which makes them favor-
able in the case of a very limited compute budget for tuning:
their performance does not degrade significantly if the (near-
)optimal learning rate is not found. To illustrate this, in
Figures 3 - 1, we show the sensitivity of downstream task
performance with respect to the learning rate. For instance,
in Figure 3, for the Human Enhancers Ensembl task, the
accuracy gap between the best and the worst performing
learning rate for the Mamba model is up to 30 accuracy

points, making the model potentially as good as random.
We find similar effects across models when they are trained
from scratch or self-pretrained. A similar finding was re-
ported by (Okpekpe & Orvieto, 2025) on in-context recall
tasks.

From-scratch performance is often best. Secondly, from
the standpoint of assessing architecture-agnostic effective-
ness of (self-)pretraining methods, we find that on most of
the tasks, vanilla supervised training (i.e., from scratch) ac-
tually performs best; see Tables 2 - 4. This suggests that pro-
cessing orders of magnitude larger genomic datasets might
not necessarily help build feature representations or process-
ing mechanisms useful for the subsequent adaptation to the
downstream task. However, we note that a confounding rea-
son might be the fixed model size used in our experiments
(1.6 million parameters). Furthermore, in the case of pre-
training on the genome-wide pretrain corpus (HG38) with a
causal language modeling objective, the model may learn to
predict genome regions irrelevant to the downstream task at
hand. One might expect that pretraining on the task-specific
data could help build better representations. However, our
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Table 4. Classification accuracies for the Mamba model with and without pretraining across various genomic datasets. Context
length of 4096 is used for pretraining on the human reference genome (HG38). Mean test accuracy and its variation across two random
seeds for the train-validation datasets split on the held-out test set is reported. Variation of the test accuracy is given as the difference
between maximum and minimum deviation from the mean. The best mean performance for each task is emphasized in bold, the second
best is underlined.

MODEL MAMBA

PRETRAINED NO HG38 TASK-SPECIFIC DOMAIN-SPECIFIC

MOUSE ENHANCERS 79.89 ± 2.48 77.69 ± 0.00 78.31 ± 0.00 75.21 ± 0.00
CODING VS INTERGENOMIC 90.64 ± 0.15 91.43 ± 0.00 91.23 ± 0.00 91.14 ± 0.00
HUMAN VS WORM 96.42 ± 0.11 95.85 ± 0.00 96.40 ± 0.00 96.51 ± 0.00
HUMAN ENHANCERS COHN 74.05 ± 0.06 73.24 ± 0.00 72.65 ± 0.00 73.32 ± 0.00
HUMAN ENHANCERS ENSEMBL 85.27 ± 0.00 85.40 ± 0.00 88.78 ± 0.00 84.27 ± 0.00
HUMAN REGULATORY 87.71 ± 0.00 85.41 ± 0.00 85.84 ± 0.00 83.54 ± 0.00
HUMAN NONTATA PROMOTERS 94.99 ± 1.18 94.81 ± 0.00 92.46 ± 0.00 91.79 ± 0.00
HUMAN OCR ENSEMBL 78.36 ± 0.00 77.41 ± 0.00 78.34 ± 0.00 78.19 ± 0.00

experiments show that, on average across the benchmark,
this is not the case. However, specific tasks and model
classes - like Hyena, see Table 1 might benefit). The reason
might be a small pretraining corpus, consisting of just the
downstream task data.

(Self-)Pretraining is slightly more effective for Attention.
Further, regarding our question about the potential interplay
between the (pre)training method and considered sequence
architectures, based on Table 1, we find that on average,
there is a slight benefit of pretraining Transformer architec-
ture, compared to Hyena and Mamba. This is in line with
the previously discussed findings (Amos et al., 2023) in
Section 1. However, we emphasize that, when it comes to
establishing relationship between each model and training
with the supervised objective from random initialization, on
average, all models perform rather similarly.

Pretraining on longer sequences does not help. Another
interesting question that arises is whether the improved pre-
training performance translates to better downstream task
accuracy. However, since our benchmark focuses on short-
range tasks, a longer context does not necessarily yield
improved results. This is supported by Figure 2, which
shows that although perplexity on the test set decreases as
the model processes more tokens, Table 5 indicates that
average accuracy over all tasks does not improve with in-
creasing context length during pretraining. Interestingly, for
the Hyena architecture, the trend is actually reversed: on av-
erage, across all tasks, the downstream performance slightly
decreases as the context length (and thus the number of seen
tokens) increases. It is important to note that model size
remains fixed across these experiments. Additionally, we
remark that perplexity values remain relatively high, even
though the vocabulary size is small.

4. Discussion and Conclusion
In this work, we use the Genomic Benchmark (Grešová
et al., 2023) to compare Transformer (Attention-based),
Mamba (recurrence-based) and Hyena (gated long-
convolution-based) at small scale. We give evidence against
the common belief that Transformer models (GPT-like) are
inferior compared to Mamba and Hyena architectures at this
scale. We also show that pretraining does not offer substan-
tial advantages: we analyzed downstream task performance
when models are pretrained on the whole human genome,
downstream task training data, or domain-specific data. In
our setting, we find no strong evidence that any of these
strategies is effective across architectures. Yet, we report
that, on average, Attention-based model does slightly ben-
efit from (self-)pretraining. Finally, show that for a fixed
model size, seeing more tokens during the pretraining phase
— hence decreasing perplexity — does not translate to better
downstream task performance.
This work and its findings advocate for more principled
model comparisons and exploring the training strategies for
small genomic language models, beyond what we have seen
in the NLP and other fields, but more tailored to biological
sequences.

Limitations. Our work could be further improved by
including more benchmarks with a variety of genomics-
relevant tasks, in particular those that consist of long-range
tasks. It remains to be seen whether our findings hold in
larger-scale models and when training with longer context
lengths.

Impact Statement
The aim of this work is to advance the field of machine
learning. Although our work has a potential societal benefits,
it could also be a subject to misuse, as all other works
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focusing on language model architectures.
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A. Appendix
A.1. Experimental details

In this section, we give more details about the experimental setup. Our implementation is inspired by HyenaDNA (Nguyen
et al., 2023) and (Schiff et al., 2020). Additionally, the code repository is cloned from Caduceus and further developed to
our needs.

A.2. Data

A.2.1. DOWNSTREAM TASKS

Data for downstream tasks are taken from Genomic Benchmark (Grešová et al., 2023). It consists of eight datasets that
focus on regulatory elements (promoters, enhancers, open chromatin region) from three organisms - human, mouse and
roundworm. The tasks are binary classification, except for human ensembl regulatory tasks, which is has three classes to
predict from. Sequences present in the datasets vary in length and number of sequences. It comes with train and test splits.
For more details, please refer to the original paper.

A.2.2. PRETRAINING

For pretraining we either use human reference genome HG38 (Genome Reference Consortium, 2013), take training data
of a specific downstream task, or construct the dataset by combining all training data of downstream tasks. HG38 dataset
is obtained from the Enformer study (Avsec et al., 2021) and contains 34,021 training, 2,213 validation, and 1,937 test
sequences from the human genome. Chromosome 14 is used exclusively for test set, chromosome 14 for test and validation
sets. Sequences from other chromosomes are used for all three splits.

A.3. Model details

We use 3 models for our experiment: Decoder-only Transformer, Hyena and Mamba. In the end, all of the three considered
architectures are of size 1.6 M, which was chosen in the hyperparameter search of parameters that affect model size (see
details below). All models use two layers. For Hyena and Transformer model that means layers with blocks of a sequence
mixer layer (Flash Attention (Dao et al., 2022) or Hyena operator (Poli et al., 2023)) and MLP. For Mamba model, a layer
consists of two branches with MLP layers, where in one branch it is followed by convolution, sequence mixing layer (S6)
and another MLP layer. In our setting, we use 8-headed Transformer model, with rotary positional embeddings and we also
implement a QK-norm.
We also try two model widths (dimension of the input embeddings): 128 and 256. For the pretraining stage, we evaluate
models based on the validation perplexity and chose the best hyperparameter setting. When using human reference genome,
we sweep over three sequence lengths: 1024, 2048 and 4096. In the end, all models achieved the best validation perplexity
being trained with 4096 context length and model width of 256. For self pretraining on all tasks, we sweep over context
lengths of 256, 512 and 1024, as these are the usual lengths present in the task considered. When training on supervised
objective, as well as self pretraining on the individual downstream task, maximum input length is set to to maximum length
of the task it is trained on.

A.4. Training and evaluation

Supervised training from a random initialization is performed for a maximum of 200 epochs. Finetuning on all initializations
is performed for 10 epochs. We apply early stopping based on validation accuracy to prevent overfitting. Pretraining (on
all pretraining corpora) is done using causal language modeling task over 10000 steps. In the case of self pretraining, we
perform early stopping on the validation perplexity and use the best model for downstream task finetuning.
For all training tasks we sweep learning rate from 1e-4 to 6e-3 with a power step of 3, which amounts to 4 different values
and try batch sizes of 128 and 256.
We use AdamW optimizer with weight decay 0.1 and for learning rate schedule cosine annealing with linear warmup of
duration 10% and minimum value of 1e-6. We use Nvidia A100 GPU for all experiments.
All supervised trainings are evaluated using 5-fold cross-validation (CV) with different train-validation random seeds 0-4.
We report the mean ± the difference between the maximum and minimum deviation from the mean. Pretraining stage is
evaluated on validation perplexity. Random seed globally to 2222.
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A.5. Evaluation of performance transferability between pretraining and finetuning as a function of number of seen
tokens

Table 5. Classification accuracies of finetuned Transformer, Hyena, and Mamba models pretrained on different pretraining context
lengths from human reference genome HG38. All models are pretrained trained for the batch size of 256 and for 10000 steps. The number
of seen tokens during pretraining depends only on the context length. All models are finetuned for 10 epochs. We report mean accuracy
over two random seeds for the train-validation dataset split. Held-out test set remains the same. Performance does not strongly depend on
context length during pretraining. In bold we emphasize the performance that surpasses others within the same model class by at least 1
%.

DATASET
TRANSFORMER HYENA MAMBA

CONTEXT LENGHT 1024 2048 4096 1024 2048 4096 1024 2048 4096

MOUSE ENHANCERS 77.89 75.21 75.00 77.48 76.65 78.31 74.17 76.86 77.69
CODING VS INTERGENOMIC 91.25 90.95 91.45 90.64 90.69 90.56 91.05 90.67 91.43
HUMAN VS WORM 96.24 96.16 96.31 96.05 96.11 96.08 96.51 96.32 95.85
HUMAN ENHANCERS COHN 72.28 72.84 72.18 72.17 72.38 72.66 72.34 72.47 73.24
HUMAN ENHANCERS ENSEMBL 83.80 84.11 84.58 86.42 84.78 82.47 83.09 83.35 85.40
HUMAN REGULATORY 87.11 87.27 86.61 87.07 85.99 82.71 86.14 83.62 85.41
HUMAN NONTATA PROMOTERS 87.95 91.55 91.90 93.50 94.51 93.19 94.63 94.63 94.81
HUMAN OCR ENSEMBL 75.97 76.31 76.87 76.95 75.75 74.31 78.66 78.82 77.41

AVG. ACCURACY 84.06 84.30 84.36 85.04 84.61 83.79 84.57 84.59 85.15

Figure 2. Test perplexity after pretraining model on different number of tokens for different gLM architectures. Batch size is chosen to be
256 (which also corresponds to the best - in terms of validation loss) and number of steps 10000. Context length is set to 1024, 2048 and
4096, which corresponds to different number of seen tokens.

A.6. Learning rate sensitivity for models with different context lenghts
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Figure 3. Learning rate sensitivity of finetuned models with context length of 1024 tokens. Models are pretrained on human reference
genome (HG38) and finetuned on each of the tasks separately. Mean test accuracy and its variation across two random seeds for the
train-validation datasets split on the held-out test set is reported. Variation of the test accuracy is given as the difference between maximum
and minimum deviation from the mean.

Figure 4. Learning rate sensitivity of finetuned models with context length of 2048 tokens. Models are pretrained on human reference
genome (HG38) and finetuned on each of the tasks separately. Mean test accuracy and its variation across two random seeds for the
train-validation dataset split on the held-out test set is reported. Variation of the test accuracy is given as the difference between maximum
and minimum deviation from the mean. The x axis is in the log scale. The x axis is in the log scale.
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