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ABSTRACT

Scientific problem solving poses unique challenges for LLMs, requiring both deep
domain knowledge and the ability to apply such knowledge through complex
reasoning. While automated scientific reasoners hold great promise for assist-
ing human scientists, there is currently no widely adopted holistic benchmark for
evaluating scientific reasoning, and few approaches systematically disentangle the
distinct roles of knowledge and reasoning in these tasks. To address these gaps,
we introduce SCIREAS, a diverse suite of existing benchmarks for scientific rea-
soning tasks, and SCIREAS-PRO, a selective subset that requires more complex
reasoning. Our holistic evaluation surfaces insights about scientific reasoning per-
formance that remain hidden when relying on individual benchmarks alone. We
then propose KRUX, a probing framework for studying the distinct roles of rea-
soning and knowledge in scientific tasks. Combining the two, we conduct an
in-depth analysis that yields several key findings: (1) Retrieving task-relevant
knowledge from model parameters is a critical bottleneck for LLMs in scientific
reasoning; (2) Reasoning models consistently benefit from external knowledge
added in-context on top of the reasoning enhancement; (3) Enhancing verbalized
reasoning improves LLMs’ ability to surface task-relevant knowledge.1

1 INTRODUCTION

Recent frontier reasoning models, such as OpenAI’s o-series (OpenAI et al., 2024) and DeepSeek-
R1 (DeepSeek-AI et al., 2025), demonstrate significant advances by leveraging increased test-time
compute to enable intermediate reasoning steps (Wei et al., 2023; Kojima et al., 2023). These ap-
proaches facilitate advanced mechanisms, including methodology exploration (Yao et al., 2023),
self-verification (Ma et al., 2025a), and backtracking (Yang et al., 2025), resulting in improvements
on tasks such as mathematics and coding with more test-time compute (Muennighoff et al., 2025).

These advances in reasoning capabilities create opportunities for applying LLMs to complex sci-
entific tasks (Lu et al., 2024; Gottweis et al., 2025; Schmidgall et al., 2025). However, scientific
work demands not only rigorous reasoning but also deep domain knowledge, from specialized con-
cepts and foundational theories to hands-on methodological expertise and familiarity with obscure
yet pivotal findings. Successful scientific reasoning systems must apply such knowledge in complex
multi-step reasoning processes (Zhao et al., 2023; Wang et al., 2023a; Wadden et al., 2024a; Li et al.,
2025).

While a variety of scientific benchmarks exist (e.g., GPQA (Rein et al., 2024) and MMLU-
Pro (Wang et al., 2024b)), there is no holistic and unified benchmark that comprehensively targets
scientific reasoning. Existing individual benchmarks typically focus narrowly on specific domains,
task formats, or skill types. For example, although GPQA is challenging, it focuses exclusively on
multiple-choice questions within a limited range of domains. Furthermore, there is a lack of an-
alytical tools that can isolate the distinct roles that reasoning and scientific knowledge play when
performing sophisticated scientific tasks.

We introduce datasets and methods to facilitate the study of scientific problem solving. First, we
present SCIREAS, a unified suite of ten public benchmarks that span physics, chemistry, biol-
ogy, medicine, materials, mathematics, computer science, and engineering, with multiple-choice,

1The codebase and artifacts are released at link-redacted-for-review.
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Question Q: While operating on variable frequency supplies, the AC motor requires variable voltage in order to ____. 
(A) extend the motor's lifespan. (B) increase the motor's efficiency. (C) avoid effect of saturation (D) ...

Reasoning R + Answer A: <think> Okay, so I need to figure out why an AC motor requires variable voltage 
when operating on variable frequency supplies … </think>…Therefore, the answer is (C). 

k1: The synchronous speed of an AC motor is proportional to the ratio of supply frequency to the number 
of motor poles.
k2: Induction motors require maintenance of a constant voltage-to-frequency ratio for optimal operation.
k3: Maintaining constant voltage while decreasing supply frequency increases magnetic flux, risking core 
saturation.
…

Question w/ KIs
Question Q: …
Here are some knowledge points that 
could be helpful:
- k1
- k2
- k3
… 

Base-Math

Base-STEM

Base-BOTH
DeepSeek-R1

Base KI ExtractorKnowledge 
Ingredients (KIs)

Base-Math Base-STEM Base-BOTH Base

RQ1, 2 RQ3
Response

Knowledge 
Source

Evaluated 
Model

Figure 1: KRUX pipeline. Starting upper left, we prompt an LLM (one of base, DeepSeek-R1,
Base-Math, Base-STEM, and Base-BOTH) with a question from SCIREAS as the knowledge source,
collect the output and reasoning traces, and feed the reasoning traces to DeepSeek-R1 as the extrac-
tor to generate knowledge ingredients (KIs). We then evaluate the tested model with KI-augmented
questions, which allows us to study three key research questions (RQ1 §4.2.2, RQ2 §4.2.3, RQ3
§4.2.4) regarding LLMs’ knowledge and reasoning capabilities in scientific problem-solving.

fill-in-the-blank, structured, and protocol/procedural questions. To improve evaluation efficiency
and sharpen the focus on reasoning difficulty, we manually inspect each subtask and retain only
those that are subject-relevant and reasoning-intensive, while preserving broad domain coverage.
Furthermore, to facilitate standardized evaluation, we provide an efficient and unified implementa-
tion of streamlined assessment across individual benchmarks, avoiding the need to set up different
environments or dataset-specific boilerplate for each dataset (§3.1).

Next, we introduce SCIREAS-PRO, a compact subset of SCIREAS tailored for evaluating more chal-
lenging reasoning. Specifically, SCIREAS-PRO is constructed by selecting examples from SCIREAS
where only reasoning models with high inference-time compute budget (or the highest allowed num-
ber of thinking tokens) succeed. We find that despite containing only 8% as many examples as
SCIREAS, SCIREAS-PRO better differentiates weak and strong reasoners (§3.1).

Having constructed the reasoning-intensive scientific benchmarks, our next goal is to leverage them
to study how verbalized chain-of-thought (CoT) reasoning affects knowledge recall and usage (§4).
To study this, we design KRUX (Knowledge & Reasoning Utilization eXams), a probing framework
which supplies models with atomic “knowledge ingredients” (KIs) extracted from other models’
reasoning traces (Figure 1). This technique allows for more controlled analyses of reasoning and
knowledge, which we use to perform three in-depth investigations that lead to the following findings:

(1) Vanilla instruct models can outperform their reasoning counterparts by ≥ 10% once KIs are
provided in-context, suggesting that internalizing and retrieving the right knowledge is a key
bottleneck for scientific reasoning tasks.

(2) When both model families receive the same KIs from a strong reasoner (e.g., DeepSeek-R1),
the reasoning-fine-tuned models consistently outperform the base models, showing that reasoning
models are capable of utilizing external in-context knowledge for additional improvements.

(3) Feeding KIs from a reasoning-fine-tuned model to its base model can boost performance even
when the KIs are already known by the base model, indicating that reasoning-fine-tuning aids
knowledge recall by surfacing more relevant knowledge.

Our contributions can be summarized as:

• We introduce SCIREAS, a unified and holistic benchmark suite spanning a broad range of scientific
domains and problem types, allowing us to surface insights that otherwise remain hidden if relying
on individual datasets only. We also release a reasoning-focused subset SCIREAS-PRO that allows
efficient benchmarking of sophisticated reasoning with more room for improvement.
• We present KRUX, a novel analytic framework which we use to conduct a comprehensive empir-
ical study that disentangles the impacts of knowledge and reasoning.
• We provide an in-depth analysis with three key findings: (i) knowledge retrieval is a bottleneck; (ii)
in-context knowledge consistently benefits reasoning models; and (iii) long CoT improves knowl-
edge surfacing. We support these findings with controlled post-training experiments, and show our
training recipe is competitive compared with concurrent SFT post-training efforts.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

$1.0 $10 $100
Cost per 1k instances (USD, log scale)

0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700

Sc
iR

ea
s 

Pe
rf

or
m

an
ce

 (
Av

g)

Families
DeepSeek V3/R1
Gemini 2.5 Pro
o3
Qwen3 32B
o3 Mini
Claude Sonnet 4
GPT 4.1
o4 Mini
Grok3
Grok3 Mini
Llama 4 Maverick
GPT OSS 120B
GPT 5
Qwen3 235B A22B

Variant
High/Thinking
Low/Non-Thinking

Figure 2: Frontier reasoning models’ performance evaluated on SCIREAS. The X-axis shows the
cost per 1k instances in USD. Different reasoning settings on the same model can result in distinct
costs and performance, but the margins vary depending on the models.

2 RELATED WORK

Scientific Benchmarks Existing scientific benchmarks span a wide array of domains and tasks,
but each tends to focus on specific disciplines or subskills, often lacking explicit emphasis on multi-
step reasoning or standardized implementation. For example, most tasks in SciRIFF (Wadden et al.,
2024a) focus on context-grounded information QA, rather than demanding reasoning. Benchmarks
like GPQA (Rein et al., 2024) and LabBench (Laurent et al., 2024) pose reasoning challenges,
yet they cover only a limited range of scientific domains and rely on multiple-choice QA formats.
Implementation-wise, benchmarks lack standardized prompts, up-to-date evaluation metrics, or con-
sistent scoring and reporting, making reproducibility and fair comparison difficult (Gu et al., 2025;
Gao et al., 2024). To address this fragmentation, our study systematically incorporates 10 promi-
nent scientific benchmarks, GPQA, MMLU-Pro (Wang et al., 2024b), SuperGPQA (Team et al.,
2025b), LabBench, OlympiadBench (He et al., 2024), SciBench (Wang et al., 2023b), SciRIFF, UG-
Physics (Xu et al., 2025), SciEval (Sun et al., 2024), and SciKnowEval (Feng et al., 2024), enabling
a unified, comprehensive, and reproducible evaluation suite of scientific reasoning capabilities.

Knowledge & Reasoning An important line of work on disentangling reasoning and knowledge
designs specialized tasks (e.g., linguistically challenging questions (Bean et al., 2024; Khouja et al.,
2025) or synthetic multi-hop questions (Li & Goyal, 2025)) to isolate reasoning from knowledge,
but such benchmarks are often artificial and domain-constrained. Notably, Li & Goyal (2025) an-
alyzes the synergy between knowledge and reasoning as knowledge evolves, offering a perspective
complementary to our controlled CoT SFT experiments. Another line of work trains external clas-
sifiers to label questions as reasoning- or knowledge-intensive based on parametric models (Thapa
et al., 2025). However, this approach requires well-calibrated training data and does not distin-
guish the tested model’s internal knowledge from reasoning. Concurrent work leverages reasoning
traces to evaluate factual correctness (Wu et al., 2025), but focuses on surface-level factuality rather
than genuine knowledge recall. Unlike prior work that trains external classifiers to label question
types or checks surface factuality in traces, KRUX holds knowledge constant and varies the target
model, isolating knowledge recall from reasoning ability without relying on heuristic difficulty tags.
Additional related work is provided in Appendix B.

3 BENCHMARKING KNOWLEDGE-INTENSIVE SCIENTIFIC REASONING

Given limited coverage in terms of domain, formats, or accessibility for individual benchmarks,
SCIREAS solves this by merging ten datasets under one standardized harness, offering broad domain
coverage and consistent evaluation.

3.1 EVALUATION SUITE CONSTRUCTION

SCIREAS SCIREAS is an evaluation suite focused on reasoning-intensive scientific tasks curated
from 10 representative existing benchmarks. Through task-level filtering, SCIREAS reduces instance
count by nearly 50% while preserving coverage, and, inspired by OLMES (Gu et al., 2025), provides
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Question: When 49 g of KClO3 decomposes, the resulting O2 reacts 
with 10.8 g of impure metal (20\% purity) to form metal oxide. 
Calculate the amount of carbon needed to convert the metal oxide 
back to pure metal. The metal is amphoteric in nature and is one 
of the most abundant metals in earth crust.
Choices: (A) 0.72 g (B) 0.36 g (C) 0.48 g (D) 0.06 g 

Question: which of the following molecules has c3h symmetry?
Choices: (A) triisopropyl borate (B) benzotrifuran-1,3,4,6,7,9-
hexaone (C) quinuclidine (D) triphenylenotrifuran-1,3,6,8,11,13-
hexaone

Model Input Model Input

Reasoning Intensive Less Reasoning Intensive

To solve the problem, we start by analyzing the decomposition of 
KClO3. The balanced equation for its decomposition is: [2, KClO3 
\\rightarrow 2, KCl + 3, O2]. The molar mass of KClO3 … For 49 g 
of KClO3, the moles of KClO3 are: … From the stoichiometry of the 
reaction, 2 moles of KClO3 produce 3 moles of O2. Thus, the moles 
of O\u2082 produced are: … The metal is amphoteric and abundant 
in the Earth's crust, strongly suggesting it is aluminum (Al). 
The molar mass of Al is 27 g/mol, so the moles of Al are: …

Here's the analysis for each option: Option A: The central boron 
atom is bonded to three oxygen atoms, each connected… Option B: 
This molecule consists of a benzene ring fused with three furan 
rings, each contributing ketone groups. … Option D is the only 
molecule with **C3h symmetry**, as it possesses the necessary **C3 
axis** and **c3h mirror plane** while lacking vertical mirrors.

Model Output Model Output

Figure 3: An example pair with varying reasoning intensity, where the example on the left is sampled
from SCIREAS-PRO and the right is a filtered out example (§3.1). On the left, the progressive
reasoning chain is highlighted. The example on the right emphasizes knowledge recall on each
option with a simple elimination strategy.

a unified implementation optimized with vLLM (Kwon et al., 2023) and batch job APIs2 for scalable,
easy-to-use, and efficient evaluation.

Our curation prioritizes subtasks from each benchmark that demand not only specific domain knowl-
edge but also complex, multi-step reasoning processes for resolution. For each subtask from each
benchmark, we used a subtask-level exclusion protocol: for each candidate subtask, we sampled 20
instances and excluded the subtask if any sample failed to both (i) require domain knowledge beyond
the prompt and (ii) require multi-step reasoning. This deliberately conservative, exclusion-oriented
design looks for reasons to remove subtasks, biasing against inclusion and reducing the risk of false
positives.3 We provide a complete list of selected subtasks in Appendix C.1

To keep evaluation cost-efficient, we uniformly sample 200 instances from each subtask sourced
from high-cost benchmarks — MMLU-Pro, SciKnowEval, SciEval, and UGPhysics, which main-
tains similar evaluation outcomes (more in Appendix C.2) while reducing the cost by nearly 50%
(from 29,604 to 15,567 total instances). Benchmarks affected by our filtering are marked with an
asterisk (*); their scores are not directly comparable to those from prior work.

SCIREAS-PRO Although SCIREAS provides a uniform measurement for model performance on
scientific reasoning tasks that nominally require scientific reasoning, the difficulty of individual
instances is uneven: some can be answered with little deductive effort once the pertinent fact is
recalled, as shown in an example in Figure 3.

To isolate the reasoning skill, we therefore curate a “hard” subset — those questions whose solu-
tions still demand multi-step inference even when all relevant knowledge is available — so that any
performance gains cannot be explained by knowledge recall alone. Building on our observation in
§3.2, we hypothesize that the performance difference under different test-time inference budgets can
serve as an effective indicator of reasoning intensity. Specifically, instances where reasoning models
fail with low reasoning budget but succeed with high budget likely require complex reasoning, even
when the necessary domain knowledge is accessible to the model in both settings.

In practice, we evaluate o3-mini and o4-mini on SCIREAS with both high and low “reasoning-effort”
settings, an OpenAI API flag that limits the number of thinking tokens before output. For o3-mini
and o4-mini, the high-effort setting costs about 5.8× more per instance than the low-effort setting
(Table 6, Appendix C.1).4 For each model, we keep questions answered incorrectly under low effort
but correctly under high effort and take the union of these sets to create SCIREAS-PRO, result-
ing in 1,260 unique instances. We further validate this approach by using LLM judge and human
evaluation to check the reasoning-intensiveness of resulting examples from this filtering pipeline in
Appendix C.3, and observe that incorrect answers are attributed to insufficient reasoning rather than
lack of knowledge 90% of the time by humans on a sampled set and 91% of the time by LLM judge.

2We provide batch job inference options for popular LLM providers, e.g., OpenAI, Anthropic, TogetherAI,
and Gemini. Using batch APIs allows for up to 50% cost reduction.

3While this manual inspection can be subjective, it is based on the authors’ graduate-school-level expertise.
4Because these models are proprietary, factors beyond the flag may influence performance. We therefore

treat the flag as a practical, not absolute, proxy and validate it with independent studies (Appendix C.3).
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Figure 4: SCIREAS correlations breakdown. (a) Task-to-task Pearson correlations. SCIREAS incor-
porates tasks complementary to popular benchmarks. (b) and (c) show performance on SCIREAS vs.
SciBench and MMLU-Pro*. Models may be tuned for certain tasks, outperforming higher-ranked
models on individual benchmarks.

3.2 BENCHMARKING FRONTIER MODELS

Having constructed SCIREAS and SCIREAS-PRO with focus on scientific reasoning tasks, we now
examine how state-of-the-art models perform under varying computational budgets. We evaluate
frontier models using different “reasoning-effort” settings (see configuration details in Appendix
D). These settings typically correspond to significant differences in output length, with high-effort
modes producing substantially more reasoning tokens as they work through complex problems.5

Aggregated Results Figure 2 highlights aggregated performance evaluated on SCIREAS, with
score breakdowns on selected models shown in Table 6. Notably, the aggregated ranking pro-
vides additional insights that differ from popular individual benchmarks. Comparing o3-High
and Gemini-2.5-Pro-Preview-High as an example, o3-High wins on GPQA and MMLU-Pro* while
Gemini-2.5-Pro-Preview-High wins on SuperGPQA*, all with a thin margin (within 1 absolute
point, even evaluated on MMLU-Pro before uniform sampling as shown in Figure 7). Similarly,
GPT-5-High shows on-par performance with Gemini-2.5-Pro-Preview-High on problem-solving
benchmarks like OlympiadBench and SciRIFF. Evaluated across SCIREAS, however, we notice that
GPT-5-High outperforms its competitors on a broader range of benchmarks. Meanwhile, o3-High
achieves higher overall performance over Gemini-2.5-Pro-Preview-High, with superior performance
on LabBench* and weaker on OlympiadBench by a large margin (beyond 10 absolute points).

Benchmark Correlations In general, as the Pearson correlations shown in Figure 4 (a), while
some benchmarks are closely correlated (e.g., GPQA and SuperGPQA*), benchmarks containing
free-form QA and fill-in-the-blank questions like SciRIFF* and SciEval* are not highly correlated
with GPQA-like multiple-choice tasks, demonstrating the need for a holistic evaluation suite. Iso-
lating specific benchmarks, we observe that models from different providers may be tuned ex-
plicitly for specific tasks or skills. As shown in Figure 4 (b) and (c), Qwen3-32B-Thinking strikes
noticeably above the trend on SciBench, reaching comparable performance to commercial fron-
tier models. Similarly, DeepSeek-V3 and DeepSeek-R1-0120 demonstrate stronger performance on
MMLU-Pro*, indicating capabilities that surpass their overall rankings.

Performance Gap by Reasoning Difference Although the gap varies depending on different
model families, the same model can exhibit a significant performance gap under different rea-
soning settings. For instance, in Figure 2, o3-mini-Low and -High show a performance gap of 6.8.
Similar traits can be observed among o4-mini, Claude-Sonnet-4, and o3, while Gemini-2.5-Pro-
Preview shows the least performance gain, even with significantly more (>10×) thinking budget.
This observation motivates the construction of SCIREAS-PRO, leveraging the performance gap be-
tween low and high reasoning efforts as an effective proxy for identifying instances that demand
complex reasoning rather than mere knowledge recall. For practitioners, task-specific evaluation
is still recommended for the optimal balance between inference cost and performance.

Amplified Performance Gap Figure 5 shows that SCIREAS-PRO amplifies performance gaps
between low- and high-reasoning settings, where the gap between GPT-5-High and GPT-5-Low

5In this work, we refer to DeepSeek-R1-0528 and DeepSeek-V3-0324 simply as DeepSeek-R1 and
DeepSeek-V3, respectively, unless otherwise specified.
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Figure 5: Model performance on SCIREAS and
SCIREAS-PRO with varying reasoning capabil-
ities. SCIREAS-PRO amplifies gaps between
low-reasoning and high-reasoning settings.

widens from 3.01 to 12.22, and the correspond-
ing gap for Gemini-2.5-Pro-Preview widens from
0.35 to 2.30. Meanwhile, non-reasoning models,
e.g., GPT-4.1, DeepSeek-V3, show more signifi-
cant gaps compared to concurrent reasoning mod-
els, o3 and DeepSeek-R1, respectively.

Reasoning Efforts Improve Math Reasoning
More Is a higher inference budget more help-
ful to math or numeric reasoning than non-math
reasoning? To answer this question, we catego-
rize instances from SCIREAS into Has-Math and
No-Math buckets (Appendix E.3.1) and report the
gains in micro average accuracy. In Appendix
E.3.2 Figure 10, the results show that higher reasoning budgets yield more improvements among
Has-Math instances compared to No-Math instances. This finding echoes with concurrent work
where Sprague et al. (2024) points out that CoT helps more with math and symbolic reasoning.

4 DISENTANGLING KNOWLEDGE AND REASONING IN SCIENTIFIC TASKS

Table 1: Performance of reasoning models
trained from Qwen2.5-Instruct and Llama-3.1-
Instruct on SYNTHETIC-1 and concurrent rea-
soning models.

Model Method SCIREAS -PRO

Our Checkpoints
Qwen – 37.07 13.97
Qwen-STEM SFT 40.47 16.11
Qwen-Math SFT 41.99 18.17
Qwen-BOTH SFT 42.84 21.11
Llama – 31.25 11.67
Llama-STEM SFT 35.28 14.29
Llama-Math SFT 35.49 16.98
Llama-BOTH SFT 38.55 16.51

Concurrent Reasoning Post-training
SYNTHETIC-1-SFT SFT 37.64 19.44
OpenR1 SFT 43.08 26.43
Llama-Nemotron SFT&RL 43.53 23.75
General-Reasoner RL 34.99 13.73

While SCIREAS and SCIREAS-PRO provide
benchmarks to evaluate scientific reasoning ca-
pabilities, another fundamental question remains:
how does CoT reasoning adaptation affect a
model’s ability to recall and utilize knowledge?
To address this question, we first conduct a series
of controlled SFT experiments on high-quality
reasoning traces with and without in-domain sci-
entific knowledge, and then we propose KRUX, a
novel investigative framework to study three key
research questions regarding the role of knowl-
edge in scientific reasoning using the fine-tuned
checkpoints.

4.1 CONTROLLED COT SFT

To control for data composition and isolate the
impact of reasoning and knowledge injection
during post-training, we fine-tune Qwen2.5-7B-
Instruct (Yang et al., 2024) and Llama-3.1-8B-Instruct (Grattafiori et al., 2024) on reasoning traces
drawn from mathematics and STEM domains, as well as on their combination. This allows us to
attribute behavior changes to the data mixture rather than confounding factors.

For training, we leverage the SYNTHETIC-1 (Mattern et al., 2025) dataset, an existing large-scale
dataset released by Prime Intellect, which consists of outputs of DeepSeek-R1-0120, including the
reasoning traces, on a diverse set of tasks. More specifically, we leverage the mathematics and
STEM subsets from SYNTHETIC-1 (denoted as SYNTHETIC-1-Math/STEM, respectively). The
former provides reasoning traces on abstract math reasoning questions, serving as a source for long
CoT adaptation without introducing in-domain knowledge. In contrast, the latter is sourced from
StackExchange (Lambert et al., 2023), providing a more in-domain data source for a broader range
of scientific subjects.6 The math subset contains around 462K instances, while the STEM subset
contains around 512K instances. Details of the training and evaluation setup are in Appendix E.

By training Qwen2.5-7B-Instruct on SYNTHETIC-1 (-Math, -STEM, and the combined subsets),
we derived Qwen-Math, Qwen-STEM, and Qwen-BOTH along with their counterparts trained from
Llama-3.1-8B-Instruct. In the following, we will refer to the Base models as Qwen or Llama for

6Notably, SYNTHETIC-1-Math is sourced from competition-level math problems, highlighting high-quality
abstract math reasoning filtered by verified answers. In contrast, StackExchange and SYNTHETIC-1-STEM
provide more realistic problem-solving data from wider subjects, offering more coverage in science domains.
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brevity. Compared with concurrent work on long CoT post-training (Bercovich et al., 2025a; Face,
2025; Mattern et al., 2025; Ma et al., 2025b), our checkpoints deliver comparable performance under
controlled settings (Table 1), serving as reliable investigating checkpoints. A lightweight analysis of
domain-specific improvements and data composition is presented in Appendix E.3-E.4.

4.2 KNOWLEDGE & REASONING UTILIZATION EXAM (KRUX)

We introduce KRUX (Figure 1), a novel investigative framework to study the role of knowledge
and long CoT reasoning in scientific problem solving. To separate what a model knows from how
it reasons, we hold knowledge availability fixed by injecting compact, answer-agnostic knowledge
ingredients (KIs) in-context. In the framework, we extract KIs from the reasoning traces of various
models and provide these KIs in-context to LLMs when evaluating them. Consequently, gains over
a no-KI baseline indicate a knowledge bottleneck, while persistent errors point to reasoning limits.

We first introduce our pipeline to extract KIs from reasoning traces (§4.2.1), and then discuss how
we analyze and apply extracted KIs to test knowledge recall (§4.2.2, §4.2.4) and usage (§4.2.3). For
experiments, we prioritize challenging benchmarks (e.g., GPQA, MMLU-Pro*, and LabBench*),
which have been widely used by previous work in the field on tasks that require scientific expertise.

4.2.1 KNOWLEDGE INGREDIENT (KI) EXTRACTION

First, to analyze the role of knowledge in models’ performance on scientific problem-solving, we
aim to study a setting in which the model is given the requisite knowledge in-context. Specifically,
we take the reasoning traces from a reasoning model as the knowledge source and use a strong
reasoning-focused LLM (e.g., DeepSeek-R1) to extract the essential atomic knowledge units that
comprise it, which we refer to as knowledge ingredients (KIs) (Figure 1). We provide the extraction
prompt and example KIs in Appendix F.1. We then augment the original question by prepending the
extracted KIs in-context and ask the models to solve the same problem.

We perform additional checks on DeepSeek-R1 and Qwen3-30B-A3B-Thinking-2507 as the extrac-
tor to ensure that KIs (a) are task-agnostic (i.e., provide knowledge and facts without referring to
specific details in the question or options, e.g, “... as referred in option B ...”), (b) do not leak any
part of the final answer, and (c) strictly adhere to traces as the knowledge source without additional
information. In manual review, all extracted KIs from 100 sampled reasoning traces met these cri-
teria and were consistent with their source reasoning traces. For the following analysis, we use KIs
generated by DeepSeek-R1 with more details on the differences between extrators in Appendix F.2.

To prevent the extractor from hallucinating or introducing extraneous facts (i.e., KIs unsupported
by the source trace or unnecessary for solving the problem), we feed the generated KIs back to the
source model and measure performance. If performance changes materially, this indicates potential
leakage of steps or answers. Empirically, we observe no significant change (Table 2, Base vs. w/
Base KIs), suggesting the KIs are answer-agnostic and faithful to the trace. Further, although it is
possible that the knowledge pieces may be irrelevant to the solution, as shown in recent studies of
CoT faithfulness (Turpin et al., 2023; Wang et al., 2024c;a), recent high-performing models like
DeepSeek-R1 have demonstrated strong reasoning adherence on benchmark tasks (DeepSeek-AI
et al., 2025). Our experiments show that the knowledge pieces help models on reasoning tasks. See
Figures 13-15 in Appendix F.1 for KI examples generated by different models for the same question.

Centered on our main objective of studying knowledge recall and use in reasoning models, we exam-
ine the following key research questions: RQ1: To what extent can base models benefit from high-
quality external knowledge? RQ2: Do reasoning-enhanced models benefit from external knowl-
edge? RQ3: Does reasoning fine-tuning improve models’ ability to surface helpful knowledge?

4.2.2 RQ1: TO WHAT EXTENT CAN BASE MODELS BENEFIT FROM HIGH-QUALITY
EXTERNAL KNOWLEDGE?

Problem Statement. We investigate the potential improvement from external knowledge by pro-
viding KIs to the base models in the prompt when performing scientific reasoning (Figure 1). Here,
we focus on two sources for the KIs, which are extracted from their own CoT traces (w/ Base
KIs) or from DeepSeek-R1’s CoT traces (w/ R1 KIs). To overcome context sensitivity, we report
averages and standard deviations across 5 runs with corresponding KIs permuted randomly. We
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then investigate whether there are significant gaps between base models augmented with ad-
ditional KIs in the context, and their corresponding reasoning-fine-tuned models. To this end,

Table 2: Performance on GPQA and
LabBench* with base models alone, base
models with KIs extracted from DeepSeek-R1
or itself (w/ {R1, Base} KIs), and reasoning-
fine-tuned models. Best and second best
average scores are labeled in bold and un-
derlined. Reasoning models fall behind base
models augmented with in-context knowledge.

Setup GPQA LabBench*

Qwen 35.27 32.38
w/ Qwen KIs 34.24 ± 0.93 30.93 ± 1.43
w/ R1 KIs 47.19 ± 1.53 41.40 ± 2.46

Qwen-STEM 41.63 31.75
Qwen-Math 39.47 30.18
Qwen-BOTH 40.81 33.83
General-Reasoner 35.94 35.58

Llama 28.13 33.55
w/ Llama KIs 29.06 ± 1.44 34.40 ± 2.58
w/ R1 KIs 43.57 ± 0.88 42.27 ± 1.60

Llama-STEM 38.95 36.04
Llama-Math 36.16 34.78
Llama-BOTH 39.43 36.61
Llama-Nemotron 37.95 27.78

comparisons are made with reasoning-fine-tuned
models trained on our controlled data mixtures
and the ones from concurrent work (i.e., General-
Reasoner-7B (Liu et al., 2025) and Llama-
Nemotron-Nano-8B (Bercovich et al., 2025b))
that involve SFT and reinforcement learning
based on the same base models.

Answer to RQ1: As an upper bound, a base
model with high-quality in-context knowledge
can substantially outperform its reasoning-
enhanced counterpart.

As shown in Table 2, base models provided with
KIs from DeepSeek-R1 are able to outperform
base models alone or Base w/ Base KIs setup by
≥ 20%, and outperform reasoning variants with-
out KIs by ≥ 10% across different benchmarks
and model families, showing the external knowl-
edge provides greater gain than reasoning fine-
tuning. The fact that a base model without strong
reasoning capabilities can outperform reasoning
models in this setting indicates a potential defi-
ciency of the models in knowledge recall that hin-
ders their performance in scientific reasoning.

4.2.3 RQ2: DO REASONING-ENHANCED MODELS BENEFIT FROM EXTERNAL KNOWLEDGE?

Table 3: Accuracy of Qwen and Llama variants on benchmarks with external knowledge ingredients
(KIs). We report averages and standard deviations over 5 random permutations of the KIs. Reason-
ing variants w/ R1 KIs outperform base model w/ R1 KIs across different benchmarks and models.

GPQA MMLU-Pro* LabBench*
Models w/ self KIs w/ R1 KIs w/ self KIs w/ R1 KIs w/ self KIs w/ R1 KIs

Qwen 34.24 ± 0.93 47.19 ± 1.53 59.03 ± 0.34 68.86 ± 0.56 30.93 ± 1.43 41.40 ± 2.46
Qwen-STEM 41.63 ± 2.10 52.50 ± 2.14 64.71 ± 1.05 69.69 ± 0.73 31.75 ± 2.81 43.79 ± 1.71
Qwen-Math 39.47 ± 1.66 53.53 ± 1.24 66.93 ± 0.72 74.00 ± 0.59 30.18 ± 1.65 41.17 ± 2.32
Qwen-BOTH 40.81 ± 2.04 54.46 ± 1.27 65.71 ± 0.74 71.64 ± 1.16 33.83 ± 2.59 43.90 ± 2.71

Llama 29.06 ± 1.44 43.57 ± 0.88 47.73 ± 0.89 60.53 ± 1.67 34.40 ± 2.58 42.27 ± 1.60
Llama-STEM 38.95 ± 1.31 53.17 ± 1.15 59.14 ± 0.85 68.19 ± 1.15 36.04 ± 3.98 46.87 ± 1.49
Llama-Math 36.16 ± 2.33 53.75 ± 1.15 59.65 ± 0.98 69.01 ± 0.55 34.78 ± 4.26 45.55 ± 0.68
Llama-BOTH 39.43 ± 2.00 54.73 ± 1.75 63.81 ± 0.90 72.74 ± 0.26 36.61 ± 2.73 48.65 ± 0.49

Problem Statement. Observing considerable improvements from adding external KIs from
DeepSeek-R1 to base models in RQ1, we hypothesize similar improvements would scale on
reasoning-enhanced models, offering additional gains on top of enhanced reasoning. To this end,
we evaluate base and CoT SFTed variants on KIs extracted from DeepSeek-R1, providing the same
necessary knowledge from DeepSeek-R1’s reasoning traces (w/ R1 KIs). As a baseline without the
added knowledge, we provide the tested models with KIs extracted from their own CoT traces (w/
self KIs) for comparison.

Answer to RQ2: Yes. Reasoning models also substantially benefit from addition of contextual
knowledge. As shown in Table 3, within both Qwen and Llama groups, reasoning-enhanced models
w/ R1 KIs in the context show significant improvements over the base setting without the KIs,
while preserving the gap compared with the base model w/ R1 KIs. Confirming the effectiveness
of providing external knowledge as an in-context prompt, this result sheds light on potential future
improvement by applying high-quality external memory modules as an external knowledge source
for better problem-solving capabilities, echoing the finding in COMPACTDB (Lyu et al., 2025), a
concurrent effort constructing a high-quality datastore for reasoning-intensive tasks.
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Note, however, that in these experiments, we do not distinguish between two possible non-exclusive
explanations for the improvement from adding R1 KIs. (a) It may be that the R1 KIs provide new
key knowledge absent from the model’s parameters, or (b) the model may already possess these
facts but struggle to retrieve them (put another way, once a strong reasoning model supplies the key
facts, the reasoning search space might narrow and the problem becomes easier, whether or not the
model originally “knew” the augmented facts). We further analyze this confounder in RQ3.

4.2.4 RQ3: DOES REASONING FINE-TUNING IMPROVE MODELS’ ABILITY TO SURFACE
HELPFUL KNOWLEDGE?

Problem Statement. While we observe that external knowledge benefits reasoning models, in this
RQ, we ask how reasoning-fine-tuning affects knowledge recall. To this end, we focus on evaluating
the KIs from -Math models to determine whether they offer more improvement than those of base
models, as -Math models are fine-tuned on math-only data without additional scientific knowledge.

Table 4: Accuracy (%) of synthetic knowledge re-
call on KIs generated from Qwen/Llama-Math on
GPQA and MMLU-Pro*. Base models and math
reasoning-fine-tuned models show similar perfor-
mance on knowledge recall questions.

Qwen -Math Llama -Math
KI Dataset Qwen-Math Llama-Math

KI-GPQA 72.30 73.02 70.94 68.94
KI-MMLU-Pro* 82.49 81.50 74.46 74.12

Notably, in Table 2, while -STEM and -
BOTH variants, trained with SYNTHETIC-1-
STEM, outperform -Math variants due to sci-
ence in-domain training data, -Math variants
also largely outperform the base model even
without being trained on science data. Recall-
ing our discussion in RQ2 (§4.2.3), the -Math
model’s gains have the same two non-exclusive
explanations, (a) the -Math model performs
better on science questions that require math
because math knowledge was loaded into the model through the math-specific fine-tuning, and/or
(b) the -Math model is better at surfacing its relevant parametric knowledge via CoT expression.

To disentangle these two factors, we extract KIs from the CoTs of the -Math models and examine
whether these KIs represent new knowledge added by fine-tuning, or whether they are also facts
known to the base model. We probe this by querying the model with synthetic questions that test
knowledge of each KI (see Appendix F.3 for examples). Then, to verify explanation (b), we provide
the KIs in-context from either the -Math or base model, to the corresponding base model; i.e.,
holding mathematical reasoning capacity constant while varying only the external knowledge.

Answer to RQ3: Yes. In response to explanation (a), we find that on average, the base models and
their corresponding -Math variants have similar recall of the KIs (Table 4), meaning that explanation
(a) is unlikely to be the major contributor for the improvements.

Table 5: Performance on GPQA and MMLU-Pro*
with KIs extracted from base and -Math reasoning
models. KIs extracted from -Math models enable
more improvement over those from base models.

Base Setup GPQA MMLU-Pro*

Q
w

en w/ Qwen KIs 34.24 ± 0.93 59.03 ± 0.34
w/ Qwen-Math KIs 36.93 ± 1.75 63.66 ± 0.45

L
la

m
a w/ Llama KIs 29.06 ± 1.44 47.73 ± 0.89

w/ Llama-Math KIs 29.69 ± 1.72 53.91 ± 0.94

To verify explanation (b), Table 5 shows that
KIs from -Math deliver significant boosts over
those from the base models across different
benchmarks and model families. This result
suggests that CoT verbalization improves the
model’s ability to surface the most relevant
knowledge for the given reasoning problems.
Notably, the KIs are unlikely to have been
newly acquired during fine-tuning (Table 4); in-
stead, the findings indicate that reasoning-fine-
tuned models exhibit improved recall of knowl-
edge already parameterized in the base model.

5 CONCLUSION

In this work, we studied how reasoning and domain knowledge each contribute to scientific reason-
ing in LLMs. To this end, we introduced SCIREAS and SCIREAS-PRO, unified, reproducible suites
for evaluating scientific reasoning across domains and formats, together with KRUX, a knowledge-
controlled evaluation framework. We showed: (i) retrieving task-relevant knowledge from parame-
ters is a key bottleneck; (ii) reasoning-fine-tuned models get complementary gains from external KIs;
and (iii) verbalized CoT improves knowledge surfacing. Our results show that reasoning-focused
fine-tuning improves both reasoning and knowledge use, suggesting promising future directions in
better understanding and enhancing these interconnected components.
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A LIMITATIONS

Our KRUX framework and KI extraction methods depend on strong models like DeepSeek-R1 for
generating reasoning traces. While we used an open-weight model, which provides more trans-
parency and interpretability, the KI extraction pipeline may introduce unobservable biases (though
risk is minimal due to our focus on scientific domains), unwanted leakage of information about the
answer, or inconsistencies in the faithfulness of the KIs to the task. To mitigate this, we conducted
manual analysis of the KIs, confirming their relevance and no direct answer leakage, but extracted
KIs could occasionally be irrelevant or incomplete, especially if deployed at scale. Furthermore,
some of our analyses are confounded by factors such as context sensitivity (addressed via permuta-
tions) and the impact of constraining the search space when providing KIs, which we interpret as an
upper bound but may overestimate pure recall benefits. We have taken measures to mitigate these
and discussed the caveats in our discussion of results with more details.

Our experiments focus on moderate-sized LLMs with ¡10B parameters, specifically open-weight
models (Qwen2.5, Llama3.1). While we deliberately selected two model families and models large
enough to exhibit non-trivial reasoning performance, this limits the generalizability of our findings
to larger models. Experimenting with larger models represents a straightforward extension but re-
quires significantly greater computational resources, beyond the scope of our current study and our
available compute resources.

The benchmarks we examine emphasize STEM fields, which may underrepresent interdisciplinary
or emerging scientific research areas. We acknowledge potential data contamination issues that
may impact our analysis; however, the nature of our study is analytical, and we perform controlled
experiments. In our benchmarks, we also mitigate these concerns by focusing on recent 2024–2025
datasets. Despite these constraints, our methodology provides a systematic framework for evaluating
domain-specific reasoning that can be extended to address these limitations in future work.

B EXTENDED RELATED WORK

Evaluating Knowledge of LLMs Early efforts tended to evaluate the LM knowledge frontier
with a static unified benchmark (Petroni et al., 2021). However, given the growing training corpus
for pushing LLM performance, quantifying the knowledge frontier of LLMs becomes increasingly
challenging, making it difficult to design a unified benchmark. Instead of general knowledge eval-
uation, recent work approaches the knowledge frontier of LLMs by anchoring on specific entities,
proposing methods to quantify knowledge and factuality around given entities (Gottesman & Geva,
2024; Cohen et al., 2023). With recent development of reasoning LLMs, more work exploits long
CoT traces as evidence of explicit knowledge utilization, verifying knowledge recall in CoT traces
for factuality (Wu et al., 2025). Nevertheless, directly evaluating CoT traces can result in false pos-
itive signals on the knowledge boundary, given that the knowledge involved could be factual but
not helpful for problem solving (Arcuschin et al., 2025). In our framework, we construct controlled
settings and protocols to evaluate whether the knowledge is genuinely helpful for problem-solving,
implicitly guaranteeing the factuality and relevance.

Reasoning LLMs Recent work has shown that LLMs can be trained to utilize intermediate tokens
for reasoning, achieving better performance on reasoning tasks as the decoding budget increases.
OpenAI’s o-series (OpenAI et al., 2024) represents the landmark of this paradigm among com-
mercial frontier models, followed by DeepSeek-R1 (DeepSeek-AI et al., 2025) and several recent
efforts to reproduce this success without releasing the training data, such as QwQ (Team, 2025) and
Kimi (Team et al., 2025a). Some recent initiatives aim to achieve the same goal using fully open
data sources, led by Llama-Nemotron from NVIDIA (Bercovich et al., 2025b) and SYNTHETIC-1
from Prime Intellect (Mattern et al., 2025), releasing post-training data to foster development within
the community. Our work builds on these commitments, sharing the vision of improving model rea-
soning by leveraging intermediate tokens, while emphasizing our focus on scientific domains rather
than on mathematics or general logical reasoning.

LLMs for Science Recent advancements in scientific LLMs have transitioned from early domain-
specific pretraining (e.g., Beltagy et al. 2019; Lee et al. 2020), to more comprehensive models with
multiple stages of training, e.g., SciGLM (Zhang et al., 2024), SciLitLLM (Li et al., 2025), and

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

OmniScience (Prabhakar et al., 2025). On the other hand, reasoning models have shown strong
performance on scientific tasks such as GPQA and MMLU-Pro (DeepSeek-AI et al., 2025; OpenAI
et al., 2024), and some recent efforts instrument LLMs to separate recall from deduction during
inference (Wang et al., 2025; Jin et al., 2025). However, we still lack a clear understanding of
the factors underlying performance on scientific tasks, such as knowledge acquisition or improved
reasoning capabilities. We aim to address this gap by studying these factors and then providing a
recipe for training more capable models in science.

C SCIREAS DETAILS

Benchmark o3 o3-mini o4-mini Gemini-2.5-Pro Claude-Sonnet-4 GPT-5
Low High ∆ Low High ∆ Low High ∆ Low High ∆ Low High ∆ Low High ∆

GPQA 75.4 79.9 +4.5 63.4 73.9 +10.5 69.4 74.6 +5.2 80.1 79.5 -0.6 63.8 69.0 +5.2 79.2 82.4 +3.1
SuperGPQA* 54.9 59.5 +4.6 40.5 54.0 +13.5 48.6 57.1 +8.5 60.1 60.4 +0.3 45.2 49.8 +4.6 58.6 62.4 +3.8
MMLU-Pro* 85.7 86.6 +0.9 82.1 85.0 +2.9 84.1 86.0 +1.9 85.0 86.2 +1.2 84.1 85.3 +1.2 86.5 88.6 +2.1
LabBench* 70.5 74.2 +3.7 56.9 59.2 +2.3 59.7 63.7 +4.0 61.9 64.4 +2.5 53.4 57.2 +3.8 66.6 74.4 +7.8
OlympBench 53.5 58.0 +4.5 39.5 51.1 +11.6 40.4 49.6 +9.2 67.5 69.6 +2.1 55.4 59.8 +4.4 60.0 64.9 +4.8
SciBench 69.7 72.1 +2.4 46.0 66.3 +20.3 65.5 69.7 +4.2 71.0 70.2 -0.8 65.5 67.1 +1.6 70.4 72.0 +1.6
SciEval* 84.8 82.7 -2.1 83.8 83.4 -0.4 87.1 87.5 +0.4 86.4 85.1 -1.3 85.8 85.8 0.0 87.4 86.1 -1.3
SciKnowEval* 52.1 51.9 -0.2 49.0 51.9 +2.9 49.9 51.1 +1.2 46.8 47.6 +0.8 43.6 43.3 -0.3 45.5 46.7 +1.2
SciRIFF* 51.8 53.6 +1.8 51.3 51.8 +0.5 50.6 52.2 +1.6 51.6 51.4 -0.2 53.5 50.9 -2.6 46.9 50.1 +3.3
UGPhysics* 63.1 65.2 +2.1 56.7 60.7 +4.0 57.7 62.2 +4.5 56.0 55.4 -0.6 52.4 53.2 +0.8 63.6 67.6 +4.0

Average 66.2 68.4 +2.2 56.9 63.7 +6.8 61.3 65.4 +4.1 66.6 67.0 +0.4 60.3 62.1 +1.8 66.5 69.5 +3.1
0.01$ / Instance 0.68 2.25 ×3.3 0.41 3.24 ×7.9 0.41 2.38 ×5.8 1.07 12.51 ×11.7 1.83 7.50 ×4.1 0.72 3.10 ×4.3

Table 6: Performance (%) across SCIREAS grouped by models at low and high reasoning efforts.
The same model with different reasoning effort can have distinctive performance with a clear margin.

C.1 EVALUATION SUITE CURATION

See Table 11-12 for domain distribution. We list the selection of each benchmark as follows.

GPQA (Rein et al., 2024): No change. Report in micro average. License: CC-BY-4.0.

MMLU-Pro (Wang et al., 2024b): MMLU-Pro features subjects beyond STEM and scientific
subjects. We first filter by subjects, retaining instances from physics, chemistry, computer science,
math, biology, and health, and then randomly sample each task to 200 instances max. Report in
macro average across 7 subjects. License: MIT.

LabBench (Laurent et al., 2024): We drop tasks that require visual inputs or external ta-
ble/paper extraction, therefore dropping DbQA, FigQA, LitQA2, SuppQA, and TableQA, retain-
ing CloningScenarios, PropotolQA, and SeqQA. Report in macro average across 3 tasks. License:
CC-BY-SA-4.0.

SciBench (Wang et al., 2023b): No change. Report in micro average. License: MIT.

OlympiadBench (He et al., 2024): Dropping tasks that require visual inputs or not in English.
Report the macro average across math and physics. License: apache-2.0.

SciRIFF (Wadden et al., 2024b): We drop tasks that primarily focus on information/relation/table
extraction and retain EvidenceInference, Qasper, and SciFact. Report in macro average of 5 metrics
(detailed in Table 11-12) across 3 tasks. License: ODC-BY.

SciKnowEval (Feng et al., 2024): The authors introduce scientific tasks in 5 progressive levels
from knowledge memorization to application. After manual inspection, we only preserve tasks from
the highest level of knowledge application (L5), and cap instances from each task to be 200. Report
the macro average across 8 tasks. License: MIT.
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Figure 6: Correlation between sampled and full
dataset performance as a function of sample
size. 200 instances per subject (purple) yields
r = 0.919 ± 0.043. Error bars: SD over 30 sam-
ples.
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SciEval (Sun et al., 2024): Similar to SciKnowEval, the authors introduce 4 progressive levels of
static tasks, including basic knowledge, knowledge application, scientific calculation, and research
creativity. After inspection, we retain knowledge application and scientific calculation subsets, cap-
ping each task to a maximum of 200. Report the macro average across 6 tasks. License: N/A.

UGPhysics (Xu et al., 2025): The authors annotate each instance into 5 different physics reason-
ing skills: knowledge recall, laws application, math derivation, practical application, and others,
which fails to be categorized into the categories above. We filter out instances that specifically re-
quire knowledge recall only and cap instances from each subject to be 200 max. Report the macro
average across 13 subjects. License: CC-BY-NC-SA-4.0.

SuperGPQA (Team et al., 2025b): We curate questions from two broad domains — science and
engineering — while omitting niche areas that lie outside mainstream STEM (e.g., weapon science,
textile engineering). The science portion spans mathematics, biology, physics, systems science, and
chemistry. The engineering portion covers a comprehensive set of disciplines: electronic science
and technology; nuclear science and technology; mechanical engineering; information and com-
munication engineering; civil engineering; instrument science and technology; computer science
and technology; control science and engineering; chemical engineering and technology; mechanics;
electrical engineering; materials science and engineering; hydraulic engineering; power engineering
and engineering thermophysics; and optical engineering. Report in macro average across the domain
of science and engineering. License: ODC-BY.

C.2 UNIFORM SAMPLING VALIDATION: MMLU-PRO CASE STUDY

Evaluating state-of-the-art frontier models could be expensive. To mitigate evaluation cost, we eval-
uate frontier models on MMLU-Pro* before and after uniform sampling. By sample size correlation
in Figure 6 and 95% confidence intervals for sampled subset in Figure 7, we show that the sampling
is cost-efficient and statistically effective while reducing evaluating instances from 6,696 to 1,400.

For costly frontier reasoning models such as Gemini-2.5-Pro-Preview, at rates in time of writing, the
sampling reduces SCIREAS evaluation costs from $3,600 to $1,500 and can be further decreased to
$730 by using batch job inference.

C.3 SCIREAS-PRO REASONING INTENSIVENESS VALIDATION

To test this hypothesis, we pursue two complementary checks: (1) different reasoning models should
have high agreement identifying reasoning intensive instances, and (2) filtered instances should
agree with human judgment in terms of reasoning intensiveness.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C.3.1 CROSS-MODEL AGREEMENT ON REASONING INTENSITY

To validate our hypothesis that performance gaps between different reasoning effort settings
indicate reasoning intensity, we first examine whether different models agree on which in-
stances are reasoning-intensive. As shown in Figure 1, for each reasoning model, we catego-
rize each test question from SCIREAS by their correctness under low/high reasoning efforts into
four categories, (high c, low c), (high c, low i), (high i, low c), and (high i,
low i), where high/low stands for high/low reasoning effort setting and * c/* i stands for
the problem instance has been answered correctly/incorrectly by the model. Treating (high c,
low i) as targeting instances that require high reasoning effort, we measure how (high c,
low i) sets derived from different reasoning models agree with others.

Ground Truth o3-mini o3-mini o3-mini
vs. vs. vs.

Target o4-mini o3 claude-sonnet-4
SuperGPQA* 78.0 77.8 76.1
GPQA 80.4 81.0 79.0
MMLU-Pro* 92.2 91.6 92.0
LabBench* 71.9 74.6 75.8
SciBench 75.9 74.1 75.4
OlympiadBench 81.1 81.5 81.2
SciEval* 94.3 93.1 93.5
UGPhysics* 83.2 82.9 83.8

Table 7: Accuracy of overlapping instances on
(high c, low i) from o3-mini vs. other
models, treating o3-mini as ground true label.
Different reasoning models agree on high rea-
soning instances.

As shown in Table 7, treating (high c,
low i) from o3-mini as ground truth, the same
set derived from o4-mini, o3, and claude-sonnet-
4 largely coincide with o3-mini across differ-
ent benchmarks from SCIREAS (all above 70%),
showing high agreement on instances that require
high reasoning efforts across models from differ-
ent model families.

C.3.2 HUMAN
AND LLM-AS-JUDGE ASSESSMENT

The overlap of instances that require high reason-
ing effort shows reasoning models tend to agree
on problem difficulty, but to verify the reliability
of reasoning effort as a surrogate, the filter should
also align with human judgment.

To this end, we collect the union of (high c, low i) from o3-mini and o4-mini for the case
study and apply an LLM-as-judge assessment (Zheng et al., 2023) to expedite the process while
manually annotating a subset for a reliability test. The LLM judge is based on GPT-4.1 for a balanced
tradeoff between assessment reliability and cost. Notably, naively prompting the LLM judge to
determine the reasoning difficulty could be suboptimal due to a lack of reference. Therefore, we
designed two reference-based evaluation protocols: (a) pair-wise comparison on reasoning difficulty
between instance questions sampled from filtered subset and original SCIREAS, and (b) identifying
failing reason for filtered instances given low and high reasoning outputs (i.e., whether the model
fails in a low reasoning setting due to lack of reasoning effort).

(a) Pairwise Comparison For each instance in SCIREAS-PRO, the judge is also presented with
an instance drawn from the set of other, non-overlapping instances from SCIREAS. The judge is
not given any information as to which instance is drawn from which source and is tasked to identify
which instance is more reasoning-intensive.

(b) Failure Analysis For each instance in SCIREAS-PRO, the judge is presented with both the cor-
rect high reasoning output (if both o3-mini-high and o4-mini-high are correct, o4-mini-high will be
selected) as well as the incorrect low reasoning output from the corresponding model (e.g. correct:
o3-mini-high; incorrect: o3-mini-low). The judge is tasked with determining whether the failure of
the low reasoning effort model can be attributed primarily due to insufficient reasoning ability or
lack of domain knowledge.
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SYSTEM MESSAGE

You are an expert judge comparing reasoning intensity between two questions. Analyze both questions
thoroughly and determine which one demands more complex reasoning.
Reply in this exact format:
###EXPLANATION: <detailed analysis of both questions and the
comparison>
###RESULTS: A / B / UNCLEAR

USER MESSAGE

You will be shown two questions (A and B) from the same academic domain.
A question is *reasoning intensive* if it requires:
• Complex multi-step logical reasoning
• Advanced mathematical computation or derivation
• Integration of multiple concepts or principles
• Abstract thinking or sophisticated problem-solving strategies
• Deep domain knowledge application
*QUESTION A*
Context: {{context_a}}
Question: {{question_a}}
*QUESTION B*
Context: {{context_b}}
Question: {{question_b}}
Analyze both questions carefully and explain your reasoning. Then reply using the exact format speci-
fied above.

Figure 8: Full reasoning intensiveness pairwise comparison prompt template used in our experi-
ments.

SYSTEM MESSAGE

You are an expert judge analyzing why AI models fail on reasoning-intensive questions. Compare the
correct and incorrect answers to determine if the failure was primarily due to insufficient reasoning
ability or lack of domain knowledge.
Reply in this exact format:
###EXPLANATION: <detailed analysis of why the low-reasoning model
failed>
###RESULTS: REASONING/KNOWLEDGE/BOTH/UNCLEAR

USER MESSAGE

You will be shown a question from an academic dataset, along with
(1) a *CORRECT* answer from a high-reasoning model and
(2) an *INCORRECT* answer from a low-reasoning model.
Your task is to analyze *why* the low-reasoning model failed.
Consider whether the failure is primarily due to:
• *REASONING*: Insufficient logical thinking, problem-solving ability, or step-by-step analysis
• *KNOWLEDGE*: Lack of domain knowledge (missing facts, formulas, concepts, procedures)
• *BOTH*: Significant deficiencies in both reasoning and knowledge
• *UNCLEAR*: Cannot determine the primary cause of failure

QUESTION
Context: {{context}}
Question: {{question}}
CORRECT ANSWER (from {{high_model}}):
{{high_full_response}}
INCORRECT ANSWER
(from {{low_model}}):
{{low_full_response}}
Analyze why the low-reasoning model failed. Was it primarily due to insufficient reasoning ability or
lack of knowledge?

Figure 9: Prompt used to classify failure cause (reasoning vs. knowledge) for low-reasoning models.20
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Results We show that both protocols agree that filtered instances require significantly more reason-
ing efforts than non-filtered instances from SCIREAS, with (a) showing 71% agreement in accuracy
by LLMs with 78% human annotation agreement and (b) showing 91% agreement by LLMs with
90% human agreement, where human annotations are made by authors on 80 sampled tests for each
protocol.

D FRONTIER MODEL API EVALUATION CONFIGURATION

For OpenAI and xAI provided reasoning models, we apply generic “low” and “high” reasoning effort
parameters with respect to official documentation where specificity on token budget is not allowed;
for other reasoning models that allows thinking budgets as input (e.g. Gemini and Anthropic), we
adopt “low” as definition introduced by LiteLLM,7 which corresponds to 1024 budget, and remove
the constraint to allow for as many thinking tokens as the model needed to unleash full potential
as “high” reasoning effort, corresponding to the highest reasoning effort from OpenAI and xAI
models. For all frontier reasoning models, if not restricted, we set temperature=1, borrowed from
OpenAI forced setting,8 and top-p=0.95, borrowed from recommended setting by Anthropic,9 with
max generation length of 64K, as we observe no models tend to output more than 20K tokens. We
log API pricing at the time of writing in Table 8.

Model Input Price ($ per 1M tokens) Output Price ($ per 1M tokens)

OpenAI models
GPT-4.1-2025-04-14 2.00 8.00
o3-mini-2025-01-31 1.10 4.40
o3-2025-04-16 2.00 8.00
o4-mini-2025-04-16 1.10 4.40
GPT-5-2025-08-07 1.25 10.00
GPT-oss-120B (Together AI) 0.15 0.60

DeepSeek models
DeepSeek-V3-0324 0.14 0.28
DeepSeek-R1-0120 0.55 2.19
DeepSeek-R1-0528 0.55 2.19

Alibaba Qwen models (Together AI)
Qwen3-32B 0.40 1.20
Qwen3-235B-2507 0.65 3.00

Google models
Gemini-2.5-Pro-Preview-05-06 1.25 10.00

Meta models (Together AI)
Llama-4-Maverick-17B-128E-Instruct-FP8 0.27 0.85

Anthropic models
Claude-Sonnet-4-20250514 3.00 15.00

Table 8: Pricing ($ per 1M tokens) for input and output across different LLM providers at the time
of writing, without any discounts.

E TRAINING / EVALUATION DETAILS

E.1 DISTILLATION FROM REASONING LLMS

To obtain high-performing reasoning models for study, we employ a distillation method that fine-
tunes smaller models using Supervised Fine-tuning (SFT) on the CoT trajectories generated by large
reasoning models, as it is more effective than reinforcement learning (RL) with the small models
alone (DeepSeek-AI et al., 2025). Specifically, we consider the standard SFT framework for lan-
guage models where the objective is to train a model fθ to approximate a distribution over output

7https://docs.litellm.ai/docs/providers/anthropic#usage—thinking–reasoning content
8https://community.openai.com/t/o3-mini-unsupported-parameter-temperature/1140846/3
9https://docs.anthropic.com/en/docs/build-with-claude/extended-thinking#feature-compatibility
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sequences y conditioned on input x, based on a dataset D = {(xi, yi)}Ni=1. For recent reasoning
LLMs such as DeepSeek-R1, the output y consists of two main parts: a reasoning trace r and the ac-
tual output a. In practice, the reasoning traces are enclosed by keywords <think> and </think>,
indicating the start and the end of the reasoning process. The model is trained with the standard SFT
objective: L(θ) = −Σ(x,y)∈DΣ

|y|
t=1 log pθ(yt|y<t, x), where yt is the t-th token and y<t is its prefix.

E.2 EXTENDED SETUP

E.2.1 TRAINING SETTINGS

We filter out instances with a token length greater than 4096.10 The models are trained for 5 epochs
with a cosine learning rate scheduler, a maximum learning rate of 1e-5, and 3% warmup steps.

E.2.2 EVALUATION SETUP

The reasoning models could produce excessively long outputs, and may be prone to self-repetition
with greedy decoding (DeepSeek-AI, 2025). In this work, unless otherwise specified, we apply
greedy decoding on non-CoT fine-tuned models and top-p=0.95, temperature=0.6 on reasoning
models, with a maximum generation length of 64K. From our preliminary studies, we observe
that the setup generally reflects the best performance for both settings, and the decoding setup
matches the recommended setup from recent efforts in large reasoning models, such as Llama-
Nemotron (Bercovich et al., 2025a). Notably, for Qwen (Yang et al., 2024) models and their vari-
ants, we apply YaRN context extension (Peng et al., 2023) as recommended by the official model
card (Team, 2024).

E.3 MATH VS. NON-MATH

E.3.1 FILTERING HEURISTICS

We label instances as math-needed if they contain explicit numeric quantities that typically im-
ply computation. Importantly, numbers that appear solely within unit expressions (e.g., “cm2”) or
chemical formulas (e.g., “H2O” or “NaCl”) are not treated as indicators of math-related reasoning.

Specifically, a question is marked Has-Math when it includes

1. a signed or unsigned integer/decimal (e.g. 3, -2.5, 60, 9.81),
2. not embedded inside a word (so digits in H2O, COVID-19, IL-2 . . . are ignored), and
3. optionally followed—without intervening letters—by any one of the unit strings listed in Fig. 11.

E.3.2 COT IMPROVEMENTS ON MATH VS. NON-MATH

GPT-5 o3

Gemini2.5-Pro-Preview
Claude-Sonnet-4
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Figure 10: Performance gains on Has-Math in-
stances vs. No-Math instances across different
frontier models when reasoning effort increases.
CI95% shown as the error bar. CoT helps more
with Has-Math instances.

In response to the question in §3.2, we use cat-
egorize instances from SCIREAS into Has-Math
and No-Math, resulting in 8,527 cases identified
as Has-Math and 4,757 as No-Math. We compute
the micro accuracy on frontier models and plot
the performance gains by increasing the thinking
budget from low reasoning effort to high reason-
ing effort in Figure 10.

E.3.3 EFFECTS
ON REASONING-FINE-TUNED MODELS

As shown in Table 1, Qwen-STEM and Qwen-
Math both exhibit significant improvement over
the base model on SCIREAS and SCIREAS-PRO.
Qwen-Math slightly outperforms Qwen-STEM on SCIREAS and the gap is amplified on SCIREAS-
PRO.

10Longer input lengths would slow down our training in quadratic order based on 8 80GB A100/H100 GPUs.
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Units recognised by the heuristic

• % °C, °F, K,
°

• g, kg, mg,
µg/ug, lb/lbs,
oz

• m, cm, mm,
km
L/l, mL/ml,
µL/µl/ul

• Pa, kPa, MPa,
atm, bar, mbar

• J, kJ, MJ; W,
kW, MW, GW

• V, kV; A, mA,
µA/uA

• Hz, kHz,
MHz, GHz

• cm2, m2,
mm2, km2

cm3, m3,
mm3, km3

• mol; M, mM,
µM/uM, nM,
pM

• dB; rpm;
rad/s

• s, ms, µs/us,
ns; min, h
day/days;
yr/yrs

Figure 11: Unit suffixes accepted by the nu-
meric heuristic. A standalone number with any
of these units (or no unit) is treated as evidence
that the question contains mathematical content.

Model Has-Math Acc. No-Math Acc.

SCIREAS-PRO: 1,260 Instances
# 1,172 88

Qwen 14.25 12.50
Qwen-STEM 15.53 23.86
Qwen-Math 17.58 13.64
Qwen-BOTH 20.56 28.41

Llama 11.52 13.64
Llama-STEM 14.16 15.91
Llama-Math 17.24 13.64
Llama-BOTH 15.96 23.86

Table 9: Accuracy breakdown on math and non-
math instances for SCIREAS-PRO. -Math and
-STEM variants contribute to different dimen-
sions of performance, while -BOTH captures
improvements on both.

Given limited subject coverage on SYNTHETIC-1-Math dataset, the strong performance of check-
points fine-tuned on it only seems surprising — Does the improvement come from generalization
from math reasoning to a wider domain, or is it because the high-reasoning instances in our datasets
are math-intensive? To answer this question, we categorize SCIREAS-PRO into math and non-math
instances by heuristics.

As shown in Table 9, we find that math computation appears frequently among reasoning-intensive
instances, and the improvements on SCIREAS-PRO mostly come from improved math capabilities.
For non-math instances, -math variants hardly improve, while -STEM variants and -BOTH variants,
trained with STEM subjects data, show noticeable improvements.

E.4 TRAINING KNOWLEDGE ENHANCED SCIENTIFIC REASONING MODELS

Our post-trained checkpoints are based on models fine-tuned on either SYNTHETIC-1-Math,
SYNTHETIC-1-STEM, or both, while combining the two, which cover both STEM and mathemat-
ical reasoning, achieves the strongest performance (Table 1). To further assess the effectiveness of
this Math+STEM data mixture following §4.1, we compare it directly against concurrently released
long-CoT SFT datasets on the same base model. We then apply the same mixture to Qwen3-8B-Base
to obtain SCILIT01 to provide a stronger baseline.

Specifically, we compare Qwen-BOTH, which is fine-tuned using our training recipe, with
SYNTHETIC-1-SFT Mattern et al. (2025), a model fine-tuned on SYNTHETIC-1 with additional
coding and preference alignment data, and Qwen-Nemotron, a model we trained with the same
settings and same amount of data (§4.1) sampled from science and math domains of Llama-
Nemotron Bercovich et al. (2025b), a training data mixture for reasoning fine-tuning, all post-trained
on Qwen2.5-7B-Instruct. The results in Table 10 show that our data composition yields a stronger
baseline for scientific reasoning than concurrent data recipes on Qwen2.5-7B-Instruct (Table 10
center block), and Qwen-BOTH reaches comparable performance to models from concurrent efforts
focusing on reasoning enhancement post-training recipes (Table 10 left-hand block, i.e., OpenR1
Face (2025), Llama-Nemotron Bercovich et al. (2025b), and General-Reasoner Ma et al. (2025b)).

Furthermore, using our recipe, we fine-tune the recently released Qwen3-8B-Base to deliver a
stronger model, SCILIT01. While its performance falls behind Qwen3-8B with the thinking mode,
which has undergone more sophisticated post-training, it outperforms Qwen3-8B with non-thinking
mode (Table 10 right-hand block). This indicates that SCILIT01 partially unleashes the reasoning
capabilities from the base model, offering a strong baseline for future study on post-training recipe
for scientific reasoning.
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Base Model Q2.5-Math L3.1-Inst. Q2.5-Base Q2.5-Inst. Q3-Base

Training Methods SFT SFT&RL RL SFT SFT SFT SFT – –
Trained by Us No No No No Yes Yes Yes No No

GPQA 44.42 37.95 35.94 38.84 44.20 40.63 50.89 55.80 55.80
SuperGPQA* 31.90 29.39 14.26 22.39 19.47 20.33 30.11 23.32 38.27
MMLU-Pro* 60.86 65.64 62.14 56.21 63.57 65.00 76.57 73.36 81.71
LabBench* 27.14 27.78 35.58 28.61 35.76 33.00 35.07 36.99 38.19
OlympiadBench 53.03 37.62 19.82 40.75 29.33 34.55 43.78 28.51 21.30
SciBench 61.85 57.66 19.08 51.59 48.27 47.11 61.27 54.05 68.21
SciEval* 43.64 68.67 70.34 46.41 38.53 72.36 80.60 81.51 84.02
SciKnowEval* 28.45 30.69 34.19 19.13 31.85 32.00 39.46 37.99 41.81
SciRIFF* 29.17 34.01 37.75 28.57 39.24 41.81 44.01 47.23 47.26
UGPhysics* 50.30 45.92 20.86 43.96 46.52 40.03 52.28 30.98 59.81

Average 43.08 43.53 34.99 37.64 39.67 42.68 51.41 46.97 53.64
SCIREAS-PRO 26.43 23.75 13.73 19.44 19.68 21.11 24.84 19.05 29.92

Table 10: Performance of concurrent efforts on open-recipe post-training in <10B-parameter level.
SCILIT01 shows competitive performance relative to concurrent reasoning post-training methods.
We abbreviate Qwen2.5, Qwen3, and Llama-3.1 as Q2.5, Q3, and L3.1, respectively; ‘-Inst.’ denotes
the instruction-tuned variant. The best and second-best overall results are highlighted in bold and
underlined, respectively.

F EXTENDED KRUX DETAILS

F.1 KNOWLEDGE EXTRACTION

In this work, we apply DeepSeek-R1 as the extractor. Prompt shown in Figure 12. We show a
set of KIs extracted from Qwen2.5-7B-Instruct (Figure 13), Qwen-Math variants (Figure 14), and
DeepSeek-R1 (Figure 15) for the same question from GPQA:

Question: A large gene has dozens of exons, of which the central
ones code for folded triple helical repeats that connect the
cytoskeleton with sarcolemma and extracellular space. Each exon
usually codes for one folded triple alpha helix. The most common
mutations of the gene are central exon deletions that create
out-of-frame peptides and progressive degenerative organ waste. A
solution is to deliver a Morpholino that recognizes the 5’ end of
the out-of-frame exon in pre-mRNA. The molecule prevents binding
of the spliceosome and creates exon skipping and in-frame joining.
Several missing exons are well tolerated by an organism. Which
structure below is not involved in the proposed therapy? (A)
lariat (B) antisense (C) R-loops (D) polyA tail.
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USER MESSAGE

You are given a reasoning chain that explains and justifies a particular conclusion or answer. Your task
is to extract **all distinct knowledge pieces** from this chain. A knowledge piece is any standalone
statement conveying an explicit fact, definition, mechanism, relationship, or insight that can be gener-
alized beyond the specific question.
## Instructions:

1. Read the entire reasoning chain.

2. Identify each discrete fact or insight expressed.

3. Rewrite each as a self-contained, generalizable sentence.

4. Do **not** include any contextual or example-specific details.

5. Output **only** a list of those sentences.

## Output Format:
• knowledge-Piece-1
• knowledge-Piece-2
• ...

## Reasoning Chain: {{REASONING}}
## Now perform the extraction.

Figure 12: Full knowledge extraction prompt template used in our experiments.

KNOWLEDGE EXTRACTION OUTPUT

Based on the reasoning chain, here are all distinct knowledge pieces:
1. R-loops are structures formed when a strand of RNA hybridizes with its complementary DNA

strand, displacing the other DNA strand.
2. Morpholino can prevent spliceosome binding.
3. Preventing spliceosome binding can lead to exon skipping.
4. Exon skipping can result in in-frame joining of exons.
5. The process of using Morpholino to induce exon skipping does not involve R-loops.

Figure 13: Example KIs extracted from Qwen2.5-7B-Instruct.

KNOWLEDGE EXTRACTION OUTPUT

Based on the reasoning chain, here are all distinct knowledge pieces:
1. Morpholino oligonucleotides can bind to the 5’ splice site of pre-mRNA to block spliceosome recog-

nition.
2. Blocking spliceosome binding prevents normal intron removal and leads to exon skipping.
3. Exon skipping can enable in-frame joining of adjacent exons, preserving the reading frame.
4. Antisense molecules function by complementary base-pairing to specific RNA sequences to modu-

late splicing.
5. Lariat structures are formed during canonical splicing via branch site interactions but are absent

when spliceosome activity is inhibited.
6. R-loops are DNA-RNA hybrid structures unrelated to spliceosome-mediated exon skipping mecha-

nisms.
7. The polyA tail is added post-transcriptionally and is not directly involved in splice site selection or

exon skipping processes.

Figure 14: Example KIs extracted from Qwen-Math.
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KNOWLEDGE EXTRACTION OUTPUT

Based on the reasoning chain, here are all distinct knowledge pieces:
1. Morpholinos are antisense oligonucleotides that bind to complementary RNA sequences.
2. The spliceosome recognizes splice sites on pre-mRNA through components like U1 snRNP, which

binds to the 5’ splice site.
3. Blocking spliceosome access to a splice site prevents recognition of exon boundaries and causes

exon skipping.
4. Exon skipping can restore the reading frame by joining exons flanking the skipped exon.
5. Functional proteins may be produced if skipped exons encode non-critical regions and the remaining

exons maintain an in-frame sequence.
6. Lariat structures form during canonical splicing when introns are removed via branch site cleavage.
7. R-loops are nucleic acid structures involving RNA-DNA hybrids and are not directly involved in

spliceosome-mediated splicing.
8. Antisense oligonucleotide therapies rely on sequence-specific binding to pre-mRNA targets.
9. Polyadenylation (polyA tail addition) occurs during mRNA maturation and is unrelated to splice

site selection or exon skipping mechanisms.

Figure 15: Example KIs extracted from DeepSeek-R1.

F.2 ALTERNATIVE EXTRACTOR

We generate KIs from the same set of knowledge traces as the knowledge source and inspect them
in pairs blindly. Specifically, we compare Qwen3-30B-A3B-Thinking-2507 and DeepSeek-R1 as
extractors. Among 100 sample pairs, all KIs generated from both models (a) do not refer to any
specific identities in the question, e.g., “The option B ...”, (b) do not expose the final answers, and
(c) adhere to the given traces with no additional information nor missing essential components.
However, different extractors may provide KIs at different granularities. Specifically, we observe
that the DeepSeek-R1 extractor tends to be more detailed in terms of KIs extracted, as shown in the
example in Figure 16. Our human annotation shows that DeepSeek-R1 is more detailed, with 53%
of sampled pairs, 43% tied, and only 4% of Qwen3-30B-A3B being more detailed.

KI EXAMPLE FROM DeepSeek-R1

• Copulation refers to the physical act of mating between male and female organisms.
• Insemination is the process of depositing semen containing sperm into the female reproductive tract.
• Fertilization is the union of a sperm cell and an egg cell to form a zygote.
• Copulation encompasses the physical joining of organisms, while insemination specifically involves

sperm transfer.
• Fertilization is a distinct biological event from copulation and insemination, occurring after suc-

cessful insemination.
• Copulation and fertilization are separate processes, with the former involving physical mating and

the latter involving gamete fusion.

KI EXAMPLE FROM Qwen3-30B-A3B-Thinking-2507

• Copulation is the general term for the act of mating.
• Copulation is the physical joining of the male and female.
• Insemination is the male depositing sperm into the female’s reproductive tract.
• Fertilization is the union of gametes.

Figure 16: An example of KIs generated by DeepSeek-R1 and Qwen3-30B-A3B-Thinking-2507.
The DeepSeek-R1 tends to cover knowledge recalled in more detail.

F.3 KNOWLEDGE PROBING

We provide our probing question synthesis prompt (Figure 17), example input and output (Figure
18), and knowledge probing results in Table 4.
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USER MESSAGE

You are a meticulous question-authoring assistant. Your job is to convert declarative knowledge state-
ments into *probing* multiple-choice questions that can test whether another language model truly
stores the fact in its parametric memory.
## IMPORTANT INSTRUCTIONS FOR QUESTIONS:
1. Factual: It should be about a specific detail or fact mentioned in the statement. For example, a true

or false statement, a statistic, a definition, etc.
2. Important: It should be a question about the main topic or a key detail/finding/conclusion of the

statement.
3. Context-Independent: It should be fully understandable on its own, without phrases like ”the pro-

posed model” or ”this approach” that assume prior context.
## IMPORTANT INSTRUCTIONS FOR ANSWERS:
1. Provide one correct answer and 4 - 6 incorrect answers.
2. Ensure all answers are roughly the same length and follow a similar style so the correct answer

cannot be guessed based on length or style alone.
3. The incorrect answers must be plausible but ultimately wrong, reflecting a misunderstanding or

misinterpretation of the knowledge.
## OUTPUT FORMAT: Please provide the question, correct answer, incorrect answers, and a list of
text snippets from the article as ”evidences” in the following format:
{ ”question”: ”Your question here”,
”correct answer”: ”Correct answer here”,
”incorrect answers”: [”Incorrect answer 1”, ..., ”Incorrect answer N”],
”evidences”: [”Text snippets from the article that supports the question and correct answer”, ”Another
text snippet”]
}
# Knowledge Statement: {src text}
Please provide your response in the specified format without any additional text.

Figure 17: Knowledge probing question synthesis template used in our experiments.

EXAMPLE src text

”Hyperfine structure in EPR spectroscopy arises from interactions between unpaired electrons and
nuclear spins.”

EXAMPLE OUTPUT

{
”question”: ”What causes hyperfine structure in EPR spectroscopy?”,
”correct answer”: ”Interactions between unpaired electrons and nuclear spins”,
”incorrect answers”: [
”Interactions between electron spins and lattice vibrations”, ”Coupling between electron orbitals and
magnetic fields”, ”Dipolar interactions between neighboring nuclei”, ”Spin-orbit coupling within the
electron cloud”, ”Chemical shift anisotropy of atomic orbitals” ],
”evidences”: [
”Hyperfine structure in EPR spectroscopy arises from interactions between unpaired electrons and
nuclear spins.” ]
}

Figure 18: Knowledge probing question synthesis example input and output.

G LLM USAGE STATEMENT

We used ChatGPT-o3 from OpenAI for grammar and typo corrections.
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Domain Task Source Subtask/Subdomain Instances Total Metrics

Physics

GPQA Physics 187

5087

Acc
MMLU-Pro physics 200 Acc
SciBench fund 81 Acc

thermo 83 Acc
class 63 Acc

OlympiadBench-COMP physics en 236 Acc
SciKnowEval.L5 physics problem solving 200 LM
SciEval physics knowledge application 29 Acc

physics scientific calculation 200 Acc
UGPhysics Electrodynamics 170 Acc

Thermodynamics 200 Acc
GeometricalOptics 54 Acc
Relativity 200 Acc
ClassicalElectromagnetism 200 Acc
ClassicalMechanics 200 Acc
WaveOptics 200 Acc
QuantumMechanics 200 Acc
TheoreticalMechanics 200 Acc
AtomicPhysics 200 Acc
SemiconductorPhysics 148 Acc
Solid-StatePhysics 154 Acc
StatisticalMechanics 200 Acc

SuperGPQA Physics 1482 Acc

Chemistry

GPQA Chemistry 183

2158

Acc
MMLU-Pro chemistry 200 Acc
SciBench quan 41 Acc

chemc 47 Acc
atkins 121 Acc
matter 57 Acc

SciKnowEval.L5 chemical procedure generation 74 LM
chemical reagent generation 125 LM

SciEval chemistry knowledge application 200 Acc
chemistry scientific calculation 200 Acc

SuperGPQA Chemistry 910 Acc

Comp Sci MMLU-Pro computer science 200 415 Acc
SciRIFF Qasper 107 F1, LM
SuperGPQA Computer Science and Technology 108 Acc

Math

MMLU-Pro math 200

2533

Acc
SciBench calc 52 Acc

stat 92 Acc
diff 55 Acc

OlympiadBench-COMP maths en 674 Acc
SuperGPQA Mathematics 1460 Acc

Table 11: Domain-wise breakdown of SCIREAS tasks and instance counts (Part 1: Physics to Math).
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Domain Task Source Subtask Instances Total Metrics

Biology

GPQA Biology 78

1911

Acc
MMLU-Pro biology 200 Acc
LabBench CloningScenarios 33 Acc

ProtocolQA 108 Acc
SeqQA 600 Acc

SciKnowEval.L5 biological procedure generation 200 LM
biological reagent generation 200 LM

SciEval biology knowledge application 200 Acc
biology scientific calculation 200 Acc

SuperGPQA Biology 92 Acc

Medicine
MMLU-Pro health 200

634
Acc

SciRIFF SciFact 184 F1, LM
Evidence Inference 250 F1

Material Sci

SciKnowEval.L5 crystal structure and composition 196
624

LM
specified band gap material generation 200 LM
property and usage analysis 118 LM

SuperGPQA Materials Science and Engineering 110 Acc

Engineering

MMLU-Pro engineering 200

2205

Acc
SuperGPQA Control Science and Engineering 77 Acc

Information and Communication En-
gineering

156 Acc

Electrical Engineering 234 Acc
Chemical Engineering and Technol-
ogy

226 Acc

Power Engineering and Engineering
Thermophysics

345 Acc

Electronic Science and Technology 95 Acc
Hydraulic Engineering 67 Acc
Mechanics 456 Acc
Mechanical Engineering 30 Acc
Civil Engineering 93 Acc
Optical Engineering 162 Acc
Nuclear Science and Technology 30 Acc
Instrument Science and Technology 12 Acc
Systems Science 22 Acc

Table 12: Domain-wise breakdown of SCIREAS tasks and instance counts (Part 2: Biology to Engi-
neering).

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Domain Task Source Subtask/Subdomain Instances Total Metrics

Physics

GPQA Physics 8

388

Acc
MMLU-Pro physics 5 Acc
SciBench fund 1 Acc

thermo 10 Acc
class 8 Acc

OlympiadBench-COMP physics en 25 Acc
SciEval physics knowledge application 1 Acc

physics scientific calculation 1 Acc
UGPhysics Electrodynamics 17 Acc

Thermodynamics 16 Acc
GeometricalOptics 9 Acc
Relativity 16 Acc
ClassicalElectromagnetism 21 Acc
ClassicalMechanics 17 Acc
WaveOptics 16 Acc
QuantumMechanics 17 Acc
TheoreticalMechanics 13 Acc
AtomicPhysics 13 Acc
SemiconductorPhysics 13 Acc
Solid-StatePhysics 13 Acc
StatisticalMechanics 15 Acc

SuperGPQA Physics 133 Acc

Chemistry

GPQA Chemistry 31

135

Acc
MMLU-Pro chemistry 3 Acc
SciBench quan 3 Acc

chemc 2 Acc
atkins 6 Acc
matter 3 Acc

SciEval chemistry knowledge application 11 Acc
chemistry scientific calculation 3 Acc

SuperGPQA Chemistry 73 Acc

Comp Sci MMLU-Pro computer science 6 21 Acc
SuperGPQA Computer Science and Technology 15 Acc

Math

MMLU-Pro math 3

283

Acc
SciBench calc 2 Acc

stat 2 Acc
diff 3 Acc

OlympiadBench-COMP maths en 92 Acc
SuperGPQA Mathematics 181 Acc

Table 13: Domain-wise breakdown of SCIREAS-PRO tasks and instance counts (Part 1: Physics to
Math).
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Domain Task Source Subtask Instances Total Metrics

Biology

GPQA Biology 2

123

Acc
MMLU-Pro biology 6 Acc
LabBench CloningScenarios 2 Acc

ProtocolQA 10 Acc
SeqQA 89 Acc

SciEval biology knowledge application 3 Acc
biology scientific calculation 2 Acc

SuperGPQA Biology 9 Acc

Medicine MMLU-Pro health 5 5 Acc

Material Sci SuperGPQA Materials Science and Engineering 13 13 Acc

Engineering

MMLU-Pro engineering 14

292

Acc
SuperGPQA Control Science and Engineering 7 Acc

Information and Communication En-
gineering

15 Acc

Electrical Engineering 32 Acc
Chemical Engineering and Technol-
ogy

43 Acc

Power Engineering and Engineering
Thermophysics

44 Acc

Electronic Science and Technology 13 Acc
Hydraulic Engineering 13 Acc
Mechanics 54 Acc
Mechanical Engineering 7 Acc
Civil Engineering 18 Acc
Optical Engineering 23 Acc
Nuclear Science and Technology 3 Acc
Instrument Science and Technology 2 Acc
Systems Science 4 Acc

Table 14: Domain-wise breakdown of SCIREAS-PRO tasks and instance counts (Part 2: Biology to
Engineering).
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