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ABSTRACT

Large Vision-Language Models (LVLMs) have made significant strides in the field
of video understanding in recent times. Nevertheless, existing video benchmarks
predominantly rely on text prompts for evaluation, which often require complex
referential language and diminish both the accuracy and efficiency of human–model
interaction in turn. To address this limitation, we propose V2P-Bench, a robust
and comprehensive benchmark for evaluating the ability of LVLMs to understand
Video Visual Prompts in human–model interaction scenarios. V2P-Bench consists
of 980 videos and 1172 well-structured high-quality QA pairs, each paired with
manually annotated visual prompt frames. The benchmark spans three main tasks
and twelve categories, thereby enabling fine-grained, instance-level evaluation.
Through an in-depth analysis of current LVLMs, we identify several key findings:
1) Visual prompts are both more model-friendly and user-friendly in interactive
scenarios than text prompts, leading to significantly improved model performance
and enhanced user experience. 2) Models are reasonably capable of zero-shot
understanding of visual prompts, but struggle with spatiotemporal understanding.
Even o1 achieves only 71.8%, far below the human expert score of 88.3%, while
most open-source models perform below 60%. 3) LVLMs exhibit pervasive Hack
Phenomena in video question answering tasks, which become more pronounced
as video length increases and frame sampling density decreases, thereby inflating
performance scores artificially. We anticipate that V2P-Bench will not only shed
light on these challenges but also serve as a foundational tool for advancing
human–model interaction and improving the evaluation of video understanding.

1 INTRODUCTION

In recent years, Large Vision-Language Models (LVLMs) have made significant strides in video
understanding, showcasing powerful capabilities in tasks such as video captioning and question
answering. Notable models like Gemini-2.5-Pro (Team et al., 2024) and LLaVA-Video (Zhang et al.,
2024b) have set new performance benchmarks. In response, numerous benchmarks have emerged to
evaluate these models comprehensively across diverse tasks (Li et al., 2024c; Mangalam et al., 2023;
Fu et al., 2024). These benchmarks provide robust support for assessing LVLMs, allowing nuanced
evaluations of their strengths and weaknesses in real-world applications. This growing landscape
not only facilitates rigorous testing but also encourages further innovation in LVLM development,
enhancing their effectiveness in video understanding tasks.

However, most benchmarks utilize text prompts for human-model interaction, which inevitably
introduces certain inherent limitations. As shown in Figure 1, text prompts usually fail to provide
precise spatial and temporal references, resulting in difficulties when assessing the ability of LVLMs
to understand specific areas or moments in videos, particularly in complex multi-object scenarios. For
users, a significant amount of referential language is required to specify targets. For the model, it first
needs to comprehend the user’s referential language, making it prone to confusion at this initial step.

In contrast, as a frontier approach to multimodal human-model interaction, visual prompts offer
a simpler and more precise way, facilitating model understanding and aligning more closely with
human intuitive cognition. Some previous efforts (Cai et al., 2024; Yang et al., 2023; Lin et al., 2024)
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Figure 1: Comparison of text prompts and visual prompts for users and models. Pure text
prompts face complex encoding and decoding issues, where users need to refer to targets using
complicated language (encoding), while models must locate the user’s intended targets based on
the text (decoding), leading to inconsistencies in understanding, especially in complex scenes with
multiple, similar or unknown targets. In contrast, visual prompts offer a direct approach by creating
prompts on video frames to directly refer to targets, avoiding the complexity and of pure text prompts,
making it friendly for both users and models.

conduct initial explorations in image visual prompt areas, demonstrating the superiority of visual
prompts over texts. However, existing studies lack research on video modality, limiting the further
development of multimodal human-model interaction.

To bridge this gap, we propose V2P-Bench, a comprehensive benchmark specifically designed to
evaluate the video understanding capabilities of LVLMs in human-model interaction scenarios. As
illustrated in Figure 2, V2P-Bench encompasses three main tasks, twelve categories, twenty video
types, eight types of visual prompts and wide distribution of durations ranging from three seconds
to two hours. Each query includes one visual prompt annotation, focusing on fine-grained spatial
and temporal understanding, aiming to comprehensively assess the video understanding abilities of
LVLMs. All videos are meticulously curated by human annotators to ensure high-quality QA pairs
and accurate visual prompts.

We conduct a thorough evaluation of multiple models on V2P-Bench. We first conduct a comparative
study between visual prompts and text prompts, along with a user experience evaluation, demon-
strating that visual prompts significantly enhance model performance and improve user interaction
compared to text-based prompts. Then comes a comprehensive evaluation of 15 LVLMs, including
3 closed-source models and 12 open-source models. The results indicate that even the sota models
exhibit suboptimal performance on this benchmark (e.g., o1 (OpenAI, 2024) achieving 71.8%), which
is substantially lower than the human expert score of 88.3%, highlighting the current limitations of
LVLMs in understanding video visual prompts. Further analysis reveals that LVLMs commonly ex-
hibit hacking behaviors in video question-answering tasks, which become increasingly pronounced as
video length increases and frame sampling rates decrease, leading to artificially inflated performance
scores. In a nutshell, our contributions are as follows:

• V2P-Bench has been meticulously designed, comprising twelve categories covering a
wide range of video types and diverse visual prompts. Collection and annotation process
undergoes rigorous human validation, aiming to provide the community with a high-quality
benchmark for multi-model human-model interaction.

• We demonstrate the superiority of visual prompts over text prompts. Experimental results
reveal that current models exhibit substantial limitations in comprehending video visual
prompts and display evidence of hacking behaviors in video question-answering tasks.

• V2P-Bench pioneeringly applies visual prompts in video understanding evaluation for
human-model interaction, addressing critical limitations in existing text-based evaluation
frameworks. We seek to advance the field of video visual prompt understanding evaluation
and establish a foundation for more intuitive human-model interaction.
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Figure 2: (Left) Datasets and categories. Our dataset is derived from twelve datasets and contains
twenty restructured categories. (Right) Performance radar chart. We report the performance of
different models on V2P-Bench by dimension. SOTA for each dimension is given.

2 RELATED WORK

2.1 LVLMS FOR VIDEO UNDERSTANDING

The rapid development of image-based LVLMs (Liu et al., 2024b; 2023; 2024a; Li et al., 2024a; Chen
et al., 2024a;d; Bai et al., 2023) has significantly enhanced the potential of video understanding and
question answering tasks, injecting new vitality into the field of artificial intelligence. VideoChat (Li
et al., 2023b) and Video-ChatGPT (Maaz et al., 2023) are preliminary attempts in the realm of video
understanding. Notable recent works include CogVLM2-Video (Hong et al., 2024), InternVL2 (Chen
et al., 2024d) and LLaVA-Video (Zhang et al., 2024b), which treat videos as sequences of images
and leverage the powerful image comprehension capabilities to process video modality. Furthermore,
the high computational and memory demands required for handling high frame rates and long videos
have spurred advancements in video compression technologies. For instance, InternVideo2 (Wang
et al., 2024c) and Video-LLaMA (Zhang et al., 2023) utilize QFormer (Li et al., 2023a) for efficient
video feature extraction. Despite promising results, current LVLMs primarily rely on text prompts and
still face challenges in fine-grained spatial and temporal understanding when given visual prompts as
input.

2.2 VIDEO UNDERSTANDING BENCHMARKS

Traditional video understanding benchmarks, such as MSRVTT-QA (Xu et al., 2017), ActivityNet-QA
(Yu et al., 2019), and NExT-QA (Xiao et al., 2021), focus on basic action recognition and video
question answering. Recently, more benchmarks have been proposed. MMBench (Liu et al., 2024c),
SEED-Bench (Li et al., 2024b), and MVBench (Li et al., 2024c) mainly concentrate on short video
clips for evaluation. EgoSchema (Mangalam et al., 2023) and MovieQA (Tapaswi et al., 2016) provide
insights into narrative and thematic understanding. LongVideoBench (Wu et al., 2024), Video-MME
(Fu et al., 2024), and LVBench (Wang et al., 2024b) offer longer videos and a broader variety of
tasks. Additionally, recent works like INST-IT (Peng et al., 2024) and VideoRefer (Yuan et al., 2024)
have introduced instance-level video question answering benchmarks. However, constrained by
insufficiently robust and comprehensive, they still fail to adequately simulate real-world interactions.
To address this limitation, we introduce V2P-Bench, allowing for a comprehensive evaluation of
LVLMs that simulates multimodal human-model interaction in realistic settings.

2.3 VISUAL PROMPT AS A USER-FRIENDLY SOLUTION

Compared to text prompts, visual prompts offer a simple and effective means of facilitating interaction
between users and models. Visual prompts have been widely utilized in image understanding. ViP-
LLaVA (Cai et al., 2024) enhances the ability of LVLMs to comprehend local image regions by
overlaying arbitrary visual prompts on images. Draw-and-Understand (Lin et al., 2024) employs a
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Table 1: Comparison of different datasets. Answer Type indicates whether the QA pair is open-
ended(OE) or multiple-choice(MC). Multi Level represents whether the videos cover multiple
duration levels. Open Domain indicates whether the video source is diversified. Visual Prompt
represents whether the video contains visual prompts. Refer to Appendix A for more features.

Benchmarks Videos Samples Tasks Avg duration Annotation Answer Type Multi Level Open Domain Visual Prompt
MSVD-QA(Xu et al., 2017) 504 13157 1 9.8s Auto OE ✗ ✗ ✗
MSRVTT-QA(Xu et al., 2017) 2990 72821 1 15.2s Auto OE ✗ ✗ ✗
ActivityNet-QA(Yu et al., 2019) 800 8000 3 111.4s Manual OE ✗ ✗ ✗
NExT-QA(Xiao et al., 2021) 1000 8564 3 39.5s Manual MC ✗ ✗ ✗
Perception Test(Patraucean et al., 2024) 11600 44000 4 23.0s Auto&Manual MC ✗ ✗ ✗

MLVU(Zhou et al., 2024) 1334 2593 9 ˜12min Auto&Manual OE&MC ✓ ✓ ✗
VCGBench-Diverse(Maaz et al., 2024) 877 4354 6 217.0s Auto&Manual OE ✗ ✓ ✗
MVBench(Li et al., 2024c) 3641 4000 20 16.0s Auto MC ✗ ✓ ✗
HourVideo(Chandrasegaran et al., 2024) 500 12976 18 45.7min Auto&Manual MC ✗ ✗ ✗
LVBench(Wang et al., 2024b) 103 1549 6 68.4min Manual MC ✗ ✓ ✗
EgoSchema(Mangalam et al., 2023) 5063 5063 1 180.0s Auto MC ✗ ✗ ✗
Video-MME(Fu et al., 2024) 900 2700 12 17.0min Manual MC ✓ ✓ ✗

INST-IT Bench(Peng et al., 2024) 206 1000 1 14.2s Auto&Manual OE&MC ✗ ✗ ✓
VideoRefer BenchQ(Yuan et al., 2024) 198 1000 5 13.8s Manual MC ✗ ✗ ✓

V2P-Bench(ours) 980 1172 12 19.0min Manual MC ✓ ✓ ✓

two-stage training approach to improve performance in pixel-level tasks. Set-of-Mark (Yang et al.,
2023) introduces a novel visual prompting method to enhance the performance of LVLMs in visual
localization tasks. However, research on visual prompts in the context of video remains limited.
INST-IT (Peng et al., 2024) introduces instruction tuning with visual prompts to enhance instance-
level understanding in LVLMs. VideoRefer Suite (Yuan et al., 2024) creates a large instance-level
video instruction dataset to assist LVLMs in understanding spatiotemporal information in videos.

3 V2P BENCH

Figure 3: Various visual prompt types.

Table 1 compares the key difference of V2P-
Bench with previous benchmarks. The first two
blocks list traditional pure text video understand-
ing benchmarks, which primarily understand
videos at a holistic level and lack instance-level
comprehension. Instance-level understanding is
crucial as it focuses on the specific elements of
greatest interest to us, requiring a more nuanced understanding and consistency.

As shown in the third block, although INST-IT Bench (Peng et al., 2024) and VideoRefer BenchQ

(Yuan et al., 2024) use visual prompts for question-answering, their: 1) visual prompts are annotated
on all frames, rendering them unsuitable for human–model interaction scenarios; 2) all data are
sourced exclusively from VIS datasets (Yang et al., 2019; Pont-Tuset et al., 2017; Ding et al., 2023),
thereby exhibiting limitations in both robustness and comprehensiveness, meaning a) Shorter video
durations( 14.2s and 13.8s); b) Single continuous shots; c) Limited video sources; d) Objects of
interest not be suitable for question-answering.

3.1 TASK DEFINITION

To facilitate fine-grained evaluation of LVLMs from various perspectives, we categorize the questions
according to dimensions. Our dimension design strives to ensure both comprehensiveness and
orthogonality, and ultimately includes three main tasks and twelve dimensions. Definitions for tasks
and dimensions are as follows:
• Basic Perception focuses on understanding the intrinsic attributes of objects and humans in the
visual prompt. This task includes: 1) Object Attribute (OA); 2) Human Attribute (HA).
• Temporal Understanding emphasizes comprehension and processing of dynamic information and
chronological sequences in videos. This task includes: 1) Object Direction (OD); 2) Feature Mapping
(FM); 3) Forward Temporal (FT); 4) Reverse Temporal (RT); 5) Action Sequence (AS); 6) Spatial
Relationship (SR); 7) General Counting (GC).
• High-level Reasoning extends beyond perception and temporal understanding, requiring logical
inference and judgment to derive new conclusions or answers. This task includes: 1) Causal
Relationship (CR); 2) Plot Understanding (PU); 3) Counterfactual Inference (CI).
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Figure 4: Examples for each dimension of V2P-Bench.

Detailed elaborations and examples of each dimension are provided in Appendix A.2.

3.2 DATASET CONSTRUCTION

3.2.1 VIDEO COLLECTION

To create our dataset, we start from existing video benchmarks, as they already have a wide distribution
of durations and diverse video types. We categorize the video durations into short, medium, and long
videos. Additionally, we reclassify all the videos, resulting in twenty video categories, as shown in
Figure 2(left). Our final dataset covers multiple video domains while maintaining a relative balance
in video lengths.

3.2.2 QA AND VISUAL PROMPT ANNOTATION

After completing the collection process, we conduct the annotation of QA pairs and visual prompts
to evaluate the capabilities of LVLMs in video understanding with visual prompts. The annotation
work is carried out by researchers proficient in English. To ensure data quality, we provide thorough
training for the annotators and conduct pilot annotations to assess their annotation capabilities.

While annotating the QA pairs, annotators are also required to perform visual prompt annotations. To
better approximate real-world distributions, we adopt a fully manual approach for annotating visual
prompts, with each QA pair constrained to one visual prompt frame. We predefine various types of
visual prompts as follows: rectangle, mask contour, ellipse, triangle, scribble, point, arrow and SoM,
as shown in Figure 3.
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3.2.3 POST PROCESSING

To ensure the quality of the dataset, we conduct a rigorous review of the annotated data after
completion, including both VLMs and manual review processes.
Blind LLMs Filtering. Inspired by MMStar (Chen et al., 2024b), we perform plain text filtering
on the QA pairs to ensure that questions could only be answered correctly by viewing the videos.
Specifically, we provide only the pure text QA pairs to the most powerful closed-source models
GPT-4o and Gemini-2.5-Pro. We set the sampling temperature to 0.2 and conduct two rounds of
inference, then exclude samples for which both rounds provided correct answers.

Manual and Rule-based Review. After that, we perform a rule-based check and manual review of
the remaining data. We exclude samples where the length disparity between different options was
too significant. Additionally, we shuffle the order of multiple-choice options to ensure a uniform
distribution of answer choices, thereby eliminating potential biases of different models toward specific
options. The filtering ratios are reported in the Appendix A.4. The final balanced proportions of
the four options are 28.0%, 23.9%, 25.0% and 23.1%. Through this rigorous dataset construction
process, we strive to provide a high-quality, diverse, and balanced dataset that will benefit researchers
in the field of human-model interaction.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Evaluation Models. To thoroughly evaluate the effectiveness of V2P-Bench, we conduct assessments
on multiple models, including 3 closed-source models: o1 (OpenAI, 2024), GPT-4o (Hurst et al.,
2024) and Gemini-2.5-Pro (Team et al., 2024); 12 open-source models: LLaVA-OneVision(7B 72B)
(Li et al., 2024a), InternVL3-8B (Zhu et al., 2025), mPLUG-Owl3-7B (Ye et al., 2024), LLaVA-
Video(7B 72B) (Zhang et al., 2024b), MiniCPM-V 2.6-8B (Yao et al., 2024), Qwen2.5-VL(7B
72B) (Wang et al., 2024a), MiMo-VL-7B (Team et al., 2025), LLaVA-NeXT-7B (Liu et al., 2024a)
and LLaVA-NeXT-INST-IT-7B (Peng et al., 2024). This essentially covers the mainstream LVLMs
currently available.

Implementation Details. For open-source models, we select the sampling frame rate based on
the context length of each model. Specifically, we average 128 frames from the video for LLaVA-
OneVision(7B 72B), InternVL3-8B, mPLUG-Owl3-7B, LLaVA-Video(7B 72B), MiniCPM-V 2.6-8B,
Qwen2.5-VL(7B 72B), MiMo-VL-7B, 4 frames for LLaVA-NeXT-7B and LLaVA-NeXT-INST-IT-
7B. For o1 and GPT-4o, we average 64 frames. For Gemini-2.5-Pro, the raw video was uploaded
directly without audio track. The visual prompt frame is placed after the video for all models. For
other hyperparameters, we follow the settings in VLMEvalKit (Duan et al., 2024).

4.2 QUANTITATIVE RESULTS

Table 2 and 5 present the comprehensive evaluation results of V2P-Bench across different dimensions
and video durations. These results encompass the performance of human experts, the blind answering
task, and evaluations of 15 different models. We can conclude that o1 achieves the highest overall
score; however, its performance is not consistently superior across all dimensions, particularly in
Object Direction and Action Sequence. As shown at the top of Table 2, human experts achieve an
accuracy of 88.3%, representing the upper bound of human performance. For the blind answering
task, we observe that all three models perform below 10% on this task, with GPT-4o at 1.4%, Gemini-
2.5-Pro at 9.6%, and Qwen2.5-VL-7B at 3.0%. This demonstrates that our post-processing pipeline
effectively filters out commonsense-based questions, thereby ensuring high quality and robustness.

Below we summarize our key findings as follows:

Which prompt type works better for humans and models? Most benchmarks rely solely on text
prompts, requiring models to answer questions based on textual questions and visual context. To
investigate which type of prompt(textual or visual) is more conducive in human model interaction
scenarios, we conduct a prompt comparison experiment and a real-user study. Results are reported in
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Table 2: Evaluation Results on V2P-Bench across Dimensions. We report results for 12 open-source
models, 3 closed-source models, 3 blind answering results and human performance on V2P-Bench
across dimensions. The best results are bold and the second-best are underlined.

Method OA HA OD FM CR PU CI FT RT AS SR GC Avg

Human Performance 92.2 91.7 84.8 89.5 85.7 83.2 91.9 87.4 84.1 75.4 92.0 95.8 88.3
Pure Text as Input
GPT-4o 2.3 1.2 0.0 0.0 4.6 1.8 0.0 1.7 0.0 0.0 0.0 4.6 1.4
Gemini-2.5-Pro 15.6 12.0 6.5 3.9 9.2 10.9 8.1 5.2 13.6 1.8 8.0 7.4 9.6
Qwen2.5-VL-72B 3.9 4.0 0.0 0.0 7.3 3.6 0.0 0.0 6.8 5.4 0.0 0.0 3.0
Closed-source Models
o1 85.2 78.4 23.1 78.1 71.6 78.7 66.7 69.1 73.1 50.0 64.1 51.2 71.8
GPT-4o 76.6 68.9 41.3 60.8 67.0 73.3 67.6 68.1 70.5 50.0 54.0 48.4 65.4
Gemini-2.5-Pro 84.0 72.4 68.2 71.8 75.0 73.3 22.6 66.7 72.7 47.4 67.5 63.6 69.8
Open-source Models
LLaVA-NeXT-7B 56.6 55.6 34.8 52.5 43.0 48.6 31.6 42.6 42.2 28.1 42.0 30.5 46.0
LLaVA-NeXT-INST-IT-7B 57.4 58.4 26.1 42.4 43.0 49.2 31.6 49.2 42.2 26.3 42.0 27.4 46.3
LLaVA-OV-7B 57.1 52.1 28.3 47.1 63.8 59.1 41.0 42.1 35.6 63.2 62.8 43.2 52.8
LLaVA-OV-72B 65.5 59.9 34.7 47.0 63.8 43.2 38.5 50.0 41.1 66.3 66.9 45.9 56.7
InternVL3-8B 73.9 69.1 39.1 60.8 58.1 65.9 41.0 52.6 41.1 61.1 69.7 64.9 61.7
mPLUG-Owl3-7B 61.3 54.4 28.3 49.0 60.0 50.0 51.3 60.5 34.4 55.8 58.6 37.8 52.6
LLaVA-Video-7B 60.5 58.1 37.0 49.0 62.9 54.5 41.0 52.6 48.9 57.9 56.6 40.5 54.8
LLaVA-Video-72B 62.2 60.8 30.4 54.9 61.0 54.5 43.6 47.4 42.2 70.5 71.0 59.5 58.6
MiniCPM-V 2.6-8B 68.9 59.4 26.1 56.9 58.1 50.0 33.3 50.0 34.4 57.9 67.6 43.2 55.3
Qwen2.5-VL-7B 60.5 56.7 17.4 45.1 47.6 40.9 48.7 52.6 32.2 47.4 50.3 35.1 48.1
Qwen2.5-VL-72B 69.7 72.4 43.5 52.9 49.5 59.1 53.8 55.3 44.4 57.9 64.1 51.4 59.8
MiMo-VL-7B 67.2 57.6 37.0 45.1 47.6 52.3 59.0 55.3 41.1 50.5 61.4 43.2 53.8

(a) Model performance.

Model Text Visual

GPT-4o 53.0 65.4
Gemini-2.5-Pro 54.7 69.8
LLaVA-Video-7B 42.4 54.8
Qwen2.5-VL-7B 43.1 52.4
Mimo-VL-7B 46.7 55.6

(b) User experience study.

Metric Text Visual

Acc 57.0 69.5
Cost Time 25.2 18.1
User Satisfaction 5.3 7.5

(c) User preference for prompt type.
Preference Text Visual None

Nums 57 129 14
Percentage 28.5% 64.5% 7.0%

(d) Question order on user responses.
Order Text First Visual First

Nums 64 136
Percentage 34.0% 68.0%

Table 3: Comparison of text and visual
prompts for humans and models.

Table 3. We can draw the following observations: (1) Vi-
sual prompts are more model-friendly than text prompts.
As shown in Table 3a, simply converting visual prompts
into text prompts leads to a substantial drop in accuracy
across all participating models, with the most pronounced
decline 15.1% observed in Gemini-2.5-Pro. This is because
text prompts require the model to decode the target from
the text, which increases the difficulty of comprehension.
Moreover, textual references can sometimes be ambiguous,
as illustrated in Figure 1. In contrast, visual prompts can
precisely localize the target within video frames, bypassing
both the user’s need to encode intentions in text and the
model’s need to decode them. (2) Visual prompts are more
user-friendly than text prompts. We recruit 20 volunteers
to participate in the experiment. Specifically, the interac-
tion process consists of: watching a video, formulating a
meta-question, rewriting the question into both text and a
visual-prompt version, completing the QA session, and then
indicating their preference(text or visual prompts). We also
record the order in which users write the text version and the
visual prompt version of each question. Each participant is
required to produce 10 text and 10 visual prompt questions.
All questions are open-ended but designed to have unique
correct answers to minimize potential subjectivity or eval-
uation bias. The correctness of model responses is assessed
by our annotators. All videos are randomly sampled from
the V2P-Bench dataset we construct. Throughout the study,
Gemini-2.5-Pro serves as the conversational agent. To systematically evaluate performance, we
record five key metrics: answer accuracy (max 100), completion time (seconds), user satisfaction
(max 10), user preference, and question order. As shown in Table 3b, users complete tasks more
quickly in the visual prompt interaction setting, with the time reduced from 25.2s to 18.1s, saving 7.7s
on average. In addition, the improvement in model performance means more satisfactory responses
for users. Together, these factors contributed to an average user satisfaction score of 8.2, 2.4 points
higher than under the text-only prompt condition. This indicates that visual prompts provide clear
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Figure 5: Hack Phenomena and Model Performance on V2P-Bench.

advantages in human–model interaction, improving both overall satisfaction and efficiency. Besides,
64.5% of participants explicitly preferred using visual prompts, while only 28.5% preferred text-only
input, and 7.0% had no preference. What’s more, 68% of the questions were initiated using visual
prompts. This indicates that for real users, visually selecting the target is more intuitive and less
effortful than crafting a natural-language description, especially for objects, locations, or people that
are difficult to describe precisely with text. Refer to Appendix E.2 for the implementation details.

Can the models effectively comprehend visual prompts, and how do they perform? In Table 2, we
report the performance of human experts and all models across dimensions, leading to the following
observations: (1) Models are reasonably capable of zero-shot understanding of visual prompts.
Except for LLaVA-NeXT-INST-IT-7B, the open-source models have not been trained on visual
prompt datasets, yet all achieve performance above 45 points, surpassing the random-guess baseline
(25%) by over 20%. Notably, in the Basic Perception task, every model achieves over 50%. This
phenomenon arises because LVLMs are typically trained on massive image–text and video–text pairs,
enabling them to learn broad visual–semantic associations and thus exhibit strong zero-shot transfer
capabilities. (2) Models struggle with spatiotemporal understanding. Object Direction requires
models to identify the direction of an object’s movement, while Spatial Relationship requires models
to understand the dynamic spatial positions. The average scores on the two dimensions are only 34.4%
and 45.7%, respectively, indicating that spatiotemporal tasks remains a weakness of current models
and requires further improvement. (3) Closed-source models and large-scale parameter models
possess stronger capabilities. As shown in Table 2, three closed-source models outperform all open-
source counterparts. This disparity highlights the persistent challenges in advancing open-source
models. Moreover, for the same open-source model with varying scales, for example Qwen2.5-VL
7B and 72B, the larger-parameter variant demonstrates stronger capabilities and achieves higher
scores, which is consistent with the established scaling laws of LVLMs.

Does the expert model exhibit the anticipated superior performance? LLaVA-NeXT-INST-IT is fine-
tuned on INST-IT dataset based on LLaVA-NeXT, yet the results show only a marginal improvement
of 0.3%. There are two main reasons for this limited performance gain: (1) Limited diversity of
visual prompt types. LLaVA-NeXT-INST-IT is trained exclusively on SoM data. As observed in
Table 13, while the model achieves a 15.0% improvement on SoM prompts, its performance drops on
other types of visual prompts, indicating a forgetting phenomenon. This suggests that models’ training
should cover a broad range of visual prompt types to better meet the demands of real-world scenarios.
(2) Differences in data format. Unlike V2P-Bench, INST-IT dataset annotates visual prompts on
every sampled frame, as shown in Figure 9 (left). This redundant annotation does not account for
the constraints of user interactions in real human–model interaction scenarios, which contributes to
the suboptimal performance. A detailed analysis of this phenomenon provides important insights for
building future datasets and training strategies. Refer to Appendix D for more information.

Are vision-language models truly understanding videos, or merely exploiting hacks?

Table 4: Results with shuffled
video and question pairs.

Model Trigger Ratio

Qwen2.5-VL-7B 6.4%
MiMo-VL-7B 3.9%

Due to the sparsity of frame sampling and the upper limits of model
perception, the models may guess answers rather than rely on vi-
sual context. We randomly shuffle the videos and questions and
performed inference with Qwen2.5-VL-7B and MiMo-VL-7B. As
shown in Table 4, only 6.4% and 3.9% of the cases trigger a refusal,
respectively, while all others follow the instructions to select an op-
tion. This indicates that current models are trained to be “test-takers”
often neglecting basic factual information. To investigate to what extent models exhibit hack behavior
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on V2P-Bench, we conduct experiments in which the models are instructed to reject when they cannot
reach a conclusion. Results are reported in Figure 5. From our analysis, we draw the following
conclusions: (1) Hack Phenomena exist in video benchmark evaluations. Both Qwen2.5-VL-7B
and MiMo-VL-7B exhibit positive Hack Ratios across all settings, accompanied by varying degrees
of performance degradation. (2) Longer videos exacerbate Hack Phenomena. For instance, under
a 4-frame sampling setting, the Hack Ratios of Qwen2.5-VL-7B for short, medium, and long videos
are 11.1%, 23.0%, and 33.8%, respectively. This pattern is consistent across other experiments as
well. (3) Fewer sampled frames increase Hack Phenomena. For example, when reducing the
number of sampled frames for Qwen2.5-VL-7B from 128 to 4, the average Hack Ratio steadily
rises from 8.0% to 18.7%. The presence of Hack Phenomena can be attributed to three factors: (1)
Insufficient information, as existing sparse sampling strategies fail to provide the model with enough
information to get the answer; (2) Limited model perception, where excessive visual context may
overwhelm the key information; (3) Training strategy. Models are trained as instruction-following
agents, leading them to prioritize following instructions over grounding their responses in factual
information. Efforts should be made to actively enhance model capabilities and explore novel visual
representation mechanisms that capture a broader range of effective context. When visual context
is insufficient, models should proactively request clarification. We also report the results of other
benchmarks in Appendix I.3, which are consistent with our observation on V2P-Bench.

How LVLMs are robust to varied video duration? Table 5: Evaluation results on V2P-Bench
across durations. The best results are bold
and the second-best are underlined.

Method Short Medium Long Avg

Human Performance 91.6 87.3 84.0 88.3
Pure Text as Input
GPT-4o 1.1 1.9 1.6 1.4
Gemini-2.5-Pro 10.0 10.6 8.1 9.6
Qwen2.5-VL-72B 2.7 5.1 2.5 3.0
Closed-source Models
o1 75.2 83.9 60.4 71.8
GPT-4o 67.3 70.8 59.3 65.4
Gemini-2.5-Pro 73.8 86.3 54.5 69.8
Open-source Models
LLaVA-NeXT-7B 47.0 47.1 43.8 46.0
LLaVA-NeXT-INST-IT-7B 48.6 51.1 39.5 46.3
LLaVA-OV-7B 51.3 63.0 47.3 52.8
LLaVA-OV-72B 54.5 70.4 49.0 56.7
InternVL3-8B 61.7 68.5 55.6 61.7
mPLUG-Owl3-7B 52.2 62.5 44.9 52.6
LLaVA-Video-7B 54.1 65.7 46.5 54.8
LLaVA-Video-72B 57.5 66.2 54.3 58.6
MiniCPM-V 2.6-8B 53.3 66.2 50.2 55.3
Qwen2.5-VL-7B 48.0 53.2 43.6 48.1
Qwen2.5-VL-72B 62.4 63.9 50.2 59.8
MiMo-VL-7B 56.8 58.8 42.4 53.8

In Table 5, we compare the performance of differ-
ent models on short, medium, and long videos, from
which we can conclude that: Performance degrades
as video length increases. All models exhibit a sig-
nificant drop in performance. For example, o1’s per-
formance on long videos decreases by 23.5% com-
pared to the medium. This decline is primarily due
to the increased sparsity of frame sampling as video
length grows, which reduces the amount of effective
visual content. Such sparsity prevents models from
retaining all relevant visual–semantic information,
thereby hindering accurate predictions. However, all
models perform worse on short videos compared to
medium-length videos unexpectedly. This is likely
because over half of the short videos are drawn from
Perception Test, MVBench and TVBench, which
have high information density and contain challeng-
ing questions related to spatiotemporal questions.

How does the structure of visual prompts affect model performance? To investigate the effect of
the visual query structure itself on the performance of visual prompts, we randomly sampled 217
data instances. For each question–answer pair, we annotated the corresponding visual prompt frames
with multiple types of visual prompts, while strictly keeping all other settings identical, including the
number of frames, prompts. The results are shown in Table 6.

Table 6: Performance on Different Visual Prompts.

Method Standard Shapes Doodle Shapes
Rectangle Arrow SoM Rectangle Arrow SoM

Qwen2.5-VL-7B 47.3 43.6 45.1 46.7 42.9 44.4
MiMo-VL-7B 54.2 51.2 52.7 53.6 50.3 51.9

For the same visual prompt type,
the doodle-style shapes are slightly
weaker than the standard shapes.
When switching from standard shapes
to doodle shapes, the performance of
Qwen2.5-VL-7B and MiMo-VL-7B
decreases by 0.7% and 0.8%, respectively. This is reasonable, since most training data are synthetic,
whereas hand-drawn doodles often have unstable boundaries, making it harder for the model to
extract consistent visual prompts. Regardless of whether standard or doodle shapes are used, the
overall performance trend remains Rectangle > SoM > Arrow. Among these, rectangles appear most
frequently in training data and can fully enclose the target region, providing a stable and explicit
spatial localization signal. In contrast, arrows are typically smaller and carry lower information
density, making it more difficult for the model to capture key spatial relationships and therefore
resulting in the weakest performance.
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4.3 ERROR ANALYSIS

Figure 6: Distribution of Error Types.

In this section, we analyze the error patterns of LVLMs
in video visual prompt understanding. We examine and
categorize 470 model predictions from Qwen2.5-VL-7B,
identifying three main representative error types. These
patterns are illustrated in Figure 10 to Figure 12, and their
distribution is presented in Figure 6.

• Perception Error. Provided with sufficient visual
context, the model still produces errors due to deficiencies
in its perception capabilities. Perception errors account
for 57.7%, making them the most prevalent error type.

• Reasoning Error. The model demonstrates a range of
logical reasoning failures, including plot understanding,
counterfactual reasoning and causal errors. Some of these errors arises from deficiencies in perception,
which further undermine the model’s reasoning ability.

• Hack Error. Constrained by the sparse frame sampling strategy and the upper limit of the model’s
perceptual capability, the model fails to recognize sufficient visual semantics and consequently resorts
to arbitrary guessing, which ultimately leads to erroneous predictions.

Analyzing and mitigating these errors is crucial for enhancing the performance of LVLMs in video
visual prompt question understanding. This analysis provides an opportunity to target specific error
types, thereby improving the model’s overall capability.

5 CONCLUSION

In this study, we introduce V2P-Bench, a comprehensive benchmark for evaluating the video un-
derstanding capabilities of LVLMs through visual prompts in human–model interaction scenarios.
Through a rigorous construction and evaluation process, V2P-Bench enables systematic evaluation
and useful insights into the issues within the current models. Our experiments demonstrate three key
findings: 1) visual prompts outperform text prompts, substantially improving accuracy and interaction
efficiency; 2) a notable performance gap remains between LVLMs and human experts, especially in
spatiotemporal understanding; and 3) Hack Phenomena are prevalent, exacerbated by longer videos
and sparser frame sampling. These results underscore the need for more robust evaluation protocols
and model designs. We envision V2P-Bench as both a diagnostic tool and a roadmap for advancing
LVLMs toward more reliable, human-aligned video understanding and interaction.
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We are committed to ensuring the reproducibility of our results. All prompts used during the
evaluation are provided in the appendices. In addition, the datasets and evaluation scripts used in this
paper have been publicly released.

REFERENCES

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
arXiv preprint arXiv:2308.12966, 2023.

Mu Cai, Haotian Liu, Siva Karthik Mustikovela, Gregory P Meyer, Yuning Chai, Dennis Park, and
Yong Jae Lee. Vip-llava: Making large multimodal models understand arbitrary visual prompts.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
12914–12923, 2024.

Nicolas Carion, Laura Gustafson, Yuan-Ting Hu, Shoubhik Debnath, Ronghang Hu, Didac Suris,
Chaitanya Ryali, Kalyan Vasudev Alwala, Haitham Khedr, Andrew Huang, Jie Lei, Tengyu
Ma, Baishan Guo, Arpit Kalla, Markus Marks, Joseph Greer, Meng Wang, Peize Sun, Roman
Rädle, Triantafyllos Afouras, Effrosyni Mavroudi, Katherine Xu, Tsung-Han Wu, Yu Zhou,
Liliane Momeni, Rishi Hazra, Shuangrui Ding, Sagar Vaze, Francois Porcher, Feng Li, Siyuan
Li, Aishwarya Kamath, Ho Kei Cheng, Piotr Dollár, Nikhila Ravi, Kate Saenko, Pengchuan
Zhang, and Christoph Feichtenhofer. Sam 3: Segment anything with concepts, 2025. URL
https://arxiv.org/abs/2511.16719.

Keshigeyan Chandrasegaran, Agrim Gupta, Lea M Hadzic, Taran Kota, Jimming He, Cristóbal
Eyzaguirre, Zane Durante, Manling Li, Jiajun Wu, and Li Fei-Fei. Hourvideo: 1-hour video-
language understanding. arXiv preprint arXiv:2411.04998, 2024.

Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Conghui He, Jiaqi Wang, Feng Zhao, and Dahua Lin.
Sharegpt4v: Improving large multi-modal models with better captions. In European Conference
on Computer Vision, pp. 370–387. Springer, 2024a.

Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi
Wang, Yu Qiao, Dahua Lin, et al. Are we on the right way for evaluating large vision-language
models? arXiv preprint arXiv:2403.20330, 2024b.

Lin Chen, Xilin Wei, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong
Duan, Bin Lin, Zhenyu Tang, et al. Sharegpt4video: Improving video understanding and generation
with better captions. arXiv preprint arXiv:2406.04325, 2024c.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
for generic visual-linguistic tasks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 24185–24198, 2024d.

Henghui Ding, Chang Liu, Shuting He, Xudong Jiang, and Chen Change Loy. Mevis: A large-scale
benchmark for video segmentation with motion expressions. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 2694–2703, 2023.

Haodong Duan, Junming Yang, Yuxuan Qiao, Xinyu Fang, Lin Chen, Yuan Liu, Xiaoyi Dong, Yuhang
Zang, Pan Zhang, Jiaqi Wang, et al. Vlmevalkit: An open-source toolkit for evaluating large
multi-modality models. In Proceedings of the 32nd ACM international conference on multimedia,
pp. 11198–11201, 2024.

11

https://arxiv.org/abs/2511.16719


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Chaoyou Fu, Yuhan Dai, Yongdong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu
Zhou, Yunhang Shen, Mengdan Zhang, et al. Video-mme: The first-ever comprehensive evaluation
benchmark of multi-modal llms in video analysis. arXiv preprint arXiv:2405.21075, 2024.

Wenyi Hong, Weihan Wang, Ming Ding, Wenmeng Yu, Qingsong Lv, Yan Wang, Yean Cheng,
Shiyu Huang, Junhui Ji, Zhao Xue, et al. Cogvlm2: Visual language models for image and video
understanding. arXiv preprint arXiv:2408.16500, 2024.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. arXiv preprint
arXiv:2408.03326, 2024a.

Bohao Li, Yuying Ge, Yixiao Ge, Guangzhi Wang, Rui Wang, Ruimao Zhang, and Ying Shan.
Seed-bench: Benchmarking multimodal large language models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 13299–13308, 2024b.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, pp. 19730–19742. PMLR, 2023a.

KunChang Li, Yinan He, Yi Wang, Yizhuo Li, Wenhai Wang, Ping Luo, Yali Wang, Limin Wang, and
Yu Qiao. Videochat: Chat-centric video understanding. arXiv preprint arXiv:2305.06355, 2023b.

Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo Chen,
Ping Luo, et al. Mvbench: A comprehensive multi-modal video understanding benchmark. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
22195–22206, 2024c.

Weifeng Lin, Xinyu Wei, Ruichuan An, Peng Gao, Bocheng Zou, Yulin Luo, Siyuan Huang, Shang-
hang Zhang, and Hongsheng Li. Draw-and-understand: Leveraging visual prompts to enable
mllms to comprehend what you want. arXiv preprint arXiv:2403.20271, 2024.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. arXiv preprint arXiv:2310.03744, 2023.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
Llava-next: Improved reasoning, ocr, and world knowledge, January 2024a. URL https://
llava-vl.github.io/blog/2024-01-30-llava-next/.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances in
neural information processing systems, 36, 2024b.

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi
Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around player?
In European conference on computer vision, pp. 216–233. Springer, 2024c.

Muhammad Maaz, Hanoona Rasheed, Salman Khan, and Fahad Shahbaz Khan. Video-chatgpt:
Towards detailed video understanding via large vision and language models. arXiv preprint
arXiv:2306.05424, 2023.

Muhammad Maaz, Hanoona Rasheed, Salman Khan, and Fahad Khan. Videogpt+: Integrating image
and video encoders for enhanced video understanding. arXiv preprint arXiv:2406.09418, 2024.

Karttikeya Mangalam, Raiymbek Akshulakov, and Jitendra Malik. Egoschema: A diagnostic
benchmark for very long-form video language understanding. Advances in Neural Information
Processing Systems, 36:46212–46244, 2023.

OpenAI. Introducing openai o1, 2024., 2024. URL https://openai.com/o1/.

12

https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://openai.com/o1/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Viorica Patraucean, Lucas Smaira, Ankush Gupta, Adria Recasens, Larisa Markeeva, Dylan Banarse,
Skanda Koppula, Mateusz Malinowski, Yi Yang, Carl Doersch, et al. Perception test: A diagnostic
benchmark for multimodal video models. Advances in Neural Information Processing Systems, 36,
2024.

Wujian Peng, Lingchen Meng, Yitong Chen, Yiweng Xie, Yang Liu, Tao Gui, Hang Xu, Xipeng Qiu,
Zuxuan Wu, and Yu-Gang Jiang. Inst-it: Boosting multimodal instance understanding via explicit
visual prompt instruction tuning. arXiv preprint arXiv:2412.03565, 2024.

Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Arbeláez, Alex Sorkine-Hornung, and
Luc Van Gool. The 2017 davis challenge on video object segmentation. arXiv preprint
arXiv:1704.00675, 2017.

Makarand Tapaswi, Yukun Zhu, Rainer Stiefelhagen, Antonio Torralba, Raquel Urtasun, and Sanja
Fidler. Movieqa: Understanding stories in movies through question-answering. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 4631–4640, 2016.

Core Team, Zihao Yue, Zhenru Lin, Yifan Song, Weikun Wang, Shuhuai Ren, Shuhao Gu, Shicheng
Li, Peidian Li, Liang Zhao, Lei Li, Kainan Bao, Hao Tian, Hailin Zhang, Gang Wang, Dawei Zhu,
Cici, Chenhong He, Bowen Ye, Bowen Shen, Zihan Zhang, Zihan Jiang, Zhixian Zheng, Zhichao
Song, Zhenbo Luo, Yue Yu, Yudong Wang, Yuanyuan Tian, Yu Tu, Yihan Yan, Yi Huang, Xu Wang,
Xinzhe Xu, Xingchen Song, Xing Zhang, Xing Yong, Xin Zhang, Xiangwei Deng, Wenyu Yang,
Wenhan Ma, Weiwei Lv, Weiji Zhuang, Wei Liu, Sirui Deng, Shuo Liu, Shimao Chen, Shihua Yu,
Shaohui Liu, Shande Wang, Rui Ma, Qiantong Wang, Peng Wang, Nuo Chen, Menghang Zhu,
Kangyang Zhou, Kang Zhou, Kai Fang, Jun Shi, Jinhao Dong, Jiebao Xiao, Jiaming Xu, Huaqiu
Liu, Hongshen Xu, Heng Qu, Haochen Zhao, Hanglong Lv, Guoan Wang, Duo Zhang, Dong
Zhang, Di Zhang, Chong Ma, Chang Liu, Can Cai, and Bingquan Xia. Mimo-vl technical report,
2025. URL https://arxiv.org/abs/2506.03569.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett
Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model’s
perception of the world at any resolution. arXiv preprint arXiv:2409.12191, 2024a.

Weihan Wang, Zehai He, Wenyi Hong, Yean Cheng, Xiaohan Zhang, Ji Qi, Xiaotao Gu, Shiyu Huang,
Bin Xu, Yuxiao Dong, et al. Lvbench: An extreme long video understanding benchmark. arXiv
preprint arXiv:2406.08035, 2024b.

Yi Wang, Kunchang Li, Xinhao Li, Jiashuo Yu, Yinan He, Guo Chen, Baoqi Pei, Rongkun Zheng,
Zun Wang, Yansong Shi, et al. Internvideo2: Scaling foundation models for multimodal video
understanding. In European Conference on Computer Vision, pp. 396–416. Springer, 2024c.

Haoning Wu, Dongxu Li, Bei Chen, and Junnan Li. Longvideobench: A benchmark for long-context
interleaved video-language understanding. arXiv preprint arXiv:2407.15754, 2024.

Junbin Xiao, Xindi Shang, Angela Yao, and Tat-Seng Chua. Next-qa: Next phase of question-
answering to explaining temporal actions. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 9777–9786, 2021.

Dejing Xu, Zhou Zhao, Jun Xiao, Fei Wu, Hanwang Zhang, Xiangnan He, and Yueting Zhuang. Video
question answering via gradually refined attention over appearance and motion. In Proceedings of
the 25th ACM international conference on Multimedia, pp. 1645–1653, 2017.

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-
mark prompting unleashes extraordinary visual grounding in gpt-4v, 2023. URL http://arxiv.
org/abs/2310.11441, 2023.

Linjie Yang, Yuchen Fan, and Ning Xu. Video instance segmentation. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 5188–5197, 2019.

13

https://arxiv.org/abs/2506.03569


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li,
Weilin Zhao, Zhihui He, et al. Minicpm-v: A gpt-4v level mllm on your phone. arXiv preprint
arXiv:2408.01800, 2024.

Jiabo Ye, Haiyang Xu, Haowei Liu, Anwen Hu, Ming Yan, Qi Qian, Ji Zhang, Fei Huang, and Jingren
Zhou. mplug-owl3: Towards long image-sequence understanding in multi-modal large language
models. arXiv preprint arXiv:2408.04840, 2024.

Zhou Yu, Dejing Xu, Jun Yu, Ting Yu, Zhou Zhao, Yueting Zhuang, and Dacheng Tao. Activitynet-qa:
A dataset for understanding complex web videos via question answering. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33, pp. 9127–9134, 2019.

Yuqian Yuan, Hang Zhang, Wentong Li, Zesen Cheng, Boqiang Zhang, Long Li, Xin Li, Deli Zhao,
Wenqiao Zhang, Yueting Zhuang, et al. Videorefer suite: Advancing spatial-temporal object
understanding with video llm. arXiv preprint arXiv:2501.00599, 2024.

Hang Zhang, Xin Li, and Lidong Bing. Video-llama: An instruction-tuned audio-visual language
model for video understanding. arXiv preprint arXiv:2306.02858, 2023.

Youcai Zhang, Xinyu Huang, Jinyu Ma, Zhaoyang Li, Zhaochuan Luo, Yanchun Xie, Yuzhuo Qin,
Tong Luo, Yaqian Li, Shilong Liu, et al. Recognize anything: A strong image tagging model.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
1724–1732, 2024a.

Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun Ma, Ziwei Liu, and Chunyuan Li. Video
instruction tuning with synthetic data. arXiv preprint arXiv:2410.02713, 2024b.

Junjie Zhou, Yan Shu, Bo Zhao, Boya Wu, Shitao Xiao, Xi Yang, Yongping Xiong, Bo Zhang,
Tiejun Huang, and Zheng Liu. Mlvu: A comprehensive benchmark for multi-task long video
understanding. arXiv preprint arXiv:2406.04264, 2024.

Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
Duan, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for
open-source multimodal models. arXiv preprint arXiv:2504.10479, 2025.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX OVERVIEW

• Section A: More Dataset Details.

• Section A.4: Dataset Scaling Up.

• Section A.4: More Experiments.

• Section D: Qualitative Examples.

• Section E: Implementation Details.

• Section F: Error Analysis.

• Section G: Application Scenarios for Visual Prompts.

• Section H: Discussion.

• Section I: Additional Results.

• Section J: Prompt Template.

A MORE DATASET DETAILS

A.1 DATASET STATISTICS

In Table 1, we have already presented the main characteristics of V2P-Bench. Overall, the proposed
V2P-Bench defines three main tasks and twelve dimensions, encompassing 980 unique videos and
1,172 QA pairs sourced from twelve existing video datasets, covering twenty video categories. The
average duration of the videos is 19.0 minutes, which represents a wide range of video lengths,
differing from most benchmarks. The format of the QA pairs is multiple-choice with 4 options.
Below we introduce a more detailed analysis of our benchmark:

• Wide distribution of durations. Figure 7(left) shows the detailed duration distributions on
V2P-Bench. We follow Video-MME (Fu et al., 2024) in categorizing video lengths into short (< 3
minutes), medium (3-30 minutes), and long videos (30-120 minutes), with respective proportions of
46.8%, 22.0%, and 31.2%.

• Diverse video types and comprehensive tasks. Figure 2(left) shows various datasets and
categories on V2P-Bench. Figure 7(right) shows the detailed distribution of each dimension.

• Diverse Targets and Visual Prompts. Figure 3 shows various targets and visual prompts on
V2P-Bench, benefiting from diverse video sources.

• Comprehensive Shot Types. V2P-Bench includes both continuous and transition videos, the latter
of which significantly increases the difficulty of reference, implying that the model must perform
temporal and spatial grounding in different scenes.

Figure 7: Distribution of video durations and dimensions.
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A.2 ELABORATION ON DIMENSIONS

Table 7 presents detailed information on the three main tasks and twelve dimensions of V2P-Bench.

Table 7: Our proposed three main tasks and twelve dimensions with explanation.

Basic Perception
Object Attribute This dimension evaluates the model’s ability to perceive the visual and motion

attributes of objects indicated by visual prompts, such as color, shape, position,
and movement.

Human Attribute This dimension evaluates the model’s ability to recognize the actions and attributes
of individuals indicated by visual prompts, such as their activities, clothing, and
appearance.

Temporal Understanding
Forward Temporal This dimension assesses the model’s ability to accurately locate the visual prompt

and track subsequent events that follow the natural chronological order of the
video.

Object Direction This dimension examines the model’s ability to perceive and interpret the motion
trajectory of objects pointed by visual prompts, with a particular focus on movement
direction.

Feature Mapping This dimension examines the model’s capability to extract distinctive features of
objects indicated by visual prompts and consistently track them across the entire
video.

Reverse Temporal This dimension evaluates the model’s capacity to comprehend the temporal struc-
ture of the video by identifying events that precede the visual prompt, demonstrating
an understanding of temporal precedence.

Action Sequence This dimension evaluates the model’s ability to grasp the overall temporal flow
of the video, particularly in understanding and reasoning about the temporal
dynamics of multiple action sequences of individuals or objects, as indicated by
visual prompts.

Spatial Relationship This dimension assesses the model’s ability to discern and comprehend the spatial
relationships between instances highlighted by visual prompts within the video
scene.

General Counting This dimension evaluates the model’s ability to perceive and accurately count
repeated actions or objects within the video, as indicated by visual prompts, testing
its capacity for detailed content understanding and comprehensive scene analysis.

High-level Reasoning
Causal Relationship This dimension assesses the model’s ability to perceive the causal relationships

between actions and events, identifying the underlying intentions of actions and the
causes of subsequent events. The visual prompt points to the action executor.

Plot Understanding This dimension examines the model’s ability to analyze narrative progression and
logically infer subsequent developments based on the given plot. The visual prompt
executes the protagonist of the plot.

Counterfactual Inference This dimension evaluates the model’s ability to reason under hypothetical scenarios
that deviate from the actual video content, with visual prompts guiding the devi-
ation, assessing its capacity to infer potential outcomes based on counterfactual
assumptions.
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A.3 ANNOTATION GUIDELINES

A.3.1 VISUAL PROMPT ANNOTATION

Visual Prompt Annotation Guidelines

Interaction Constraint. To remain consistent with real-world interactive applications,
each QA pair is restricted to a single visual prompt frame. This design emphasizes the
simplicity of user prompt creation and minimizes annotation burden. Therefore, annotators
must select the most representative frame that anchors the key moment or location of the event.

Visual Prompt Type. Annotators should select the appropriate type of visual prompt
according to the target and strictly follow the eight predefined categories.

Uniqueness. Visual prompts must precisely point to a specific object or region in the video,
avoiding ambiguity or multiple referents.

Consistency. Visual prompts must strictly align with the question text, ensuring a one-to-one
correspondence between the annotated target and the object referred to in the question,
without mismatches or misleading references.

Multi-target Differentiation. When multiple prompts appear in the same frame, different
shapes or colors should be used to clearly distinguish between targets.

A.3.2 QA PAIRS ANNOTATION

QA Pairs Annotation Guidelines

Scenario Realism. Questions must be based on the actual video content rather than hypo-
thetical or fictional scenarios to ensure relevance to the real world and avoid fabricated or
unrelated plots.

• Correct : Asking What is the object held by the marked person? when annotating a
frame where a person raises a cup.

• Incorrect : If he is holding a beer, what will he do next? (overly speculative).

Answer Uniqueness. Questions should be concise and straightforward, avoiding ambiguous
references or subjective judgments to ensure a unique answer.

• Correct : What color of clothes is the target inside the rectangle wearing?

• Incorrect : What does this person look like? (ambiguous and hard to standardize).

Avoid Reliance on Common Sense. Do not design questions that can be answered solely
using common sense; ensure that the model must refer to the visual content to answer.

• Correct : What color is the label of the target inside the ellipse?

• Incorrect : Do people usually use a knife to cut vegetables? (answerable without
watching the video).

Fine-grained Observation and Diversity. Questions should emphasize detailed observation
and cover diverse objects (people, animals, tools, etc.), rather than being restricted to a
specific target.

• Correct : What color jersey is the circled target wearing?

• Incorrect : What activity is happening in the video? (too broad).

Dependence on Visual Prompts. Questions must rely on visual prompts to be answered,
which may require multiple targets to appear in the video, rather than inferring from context
or common sense. Avoid questions unrelated to the prompts.
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• Correct : What object is the target pointed to by the arrow holding?

• Incorrect : Is the person in the video cooking? (lacking visual prompt).

Minimize Feature Descriptions. Use only the visual prompts to refer to the target; avoid
describing the target’s appearance in words.

• Correct : When annotating a frame where an arrow points to a person sitting, ask:
What did the target do before sitting?

• Incorrect : What did the person wearing beige clothes and black pants do before
sitting? (contains appearance description).

Concise Language and Distractor Design. Questions and options should be kept concise to
avoid noise from long descriptions and prevent models from learning biases unrelated to
visuals. Options in multiple-choice questions should follow a consistent style, avoiding hints
from length, tone, or format.

Misleading yet incorrect distractors. Besides common types (e.g., quantity substitution,
causal reversal), annotators must carefully control the distractor’s misleading nature to ensure
answer uniqueness.

A.3.3 DESIGN OF DISTRACTORS

Standards for Designing Distractors

Quantity Substitution. Replacing the correct numerical information (such as quantities,
years, percentages, number of flags, etc.) with incorrect values.

Tool / Object Replacement. Swapping the actual tool used for another similar but different
item—for example, writing hoe instead of rake, or switching the functions of a peeler and a
knife.

Role Reversal. Exchanging the duties or action order of participants—for instance, changing
“the cameraman cleans the table while the assistant kneads the dough” to the opposite
distribution of tasks.

Step / Sequence Inversion. Reordering the correct procedure or omitting key steps—for
example, writing the actions as “pass then plant” instead of the correct “plant then pass.”

Identity / Name Error. Substituting the real person’s name, nationality, or position with
another—for example, writing Nathan instead of Eric, or labeling a Canadian athlete as
British.

Attribute Replacement. Changing the attribute of clothing, objects, or chart lines to another
common color—for example, describing black clothing as green.

Orientation / Gesture Reversal. Reversing directions or gestures—for example, writing
“the right hand holds the cup” or “both hands hold it” instead of “the left hand holds the cup,
and the right hand returns to the table.”

Emotion Substitution. Replacing the true expression—such as “surprised” or “smil-
ing”—with emotions like “angry,” “sad,” or “bored.”

Misplaced Cause-and-Effect. Substituting the real reason with another seemingly plausible
explanation—for example, the girl covering her ears is truly because “there are too many
mice,” but the distractor states “neighbors are renovating.”
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Location Replacement. Changing the venue to a similar but different place—for instance,
describing “a prison” as “a hospital” or “a hotel.”

Relationship Misjudgment. Describing friends as lovers, enemies, or strangers, or labeling
a father-daughter pair as siblings, and so on.

Misattributed Result / Follow-up Action. Giving an incorrect description of subsequent
actions or impacts—for example, writing “the cameraman bows in thanks” instead of “waves
and steps down.”

Addition of Extraneous False Details. Introducing nonexistent actions or objects—such as
“handing the host a torch”—to create confusion through redundant information.

A.4 QUALITY CONTROL

In Section 3.2.3, to ensure the quality of the dataset, we conducted a rigorous review of the annotated
data after completion. The review process included Blind LLMs filtering and manual and rule-based
review. Initially, we had 1,747 QA pairs. After applying Blind LLMs filtering, 1,653 pairs remained
(94 filtered). Subsequently, we performed a comprehensive manual and rule-based review, resulting
in a final count of 1,172 QA pairs (481 filtered). Table 8 shows some representative data examples
from the post-processing step.

Figure 8: Representative data examples from the post-processing step.

A.5 CERTIFICATE LENGTH

Following EgoSchema Mangalam et al. (2023), we compute the temporal certificate length and the
temporal certificate ratio (the proportion of the minimal effective content duration relative to the total
duration) based on the video length and task type in our dataset. The results are shown in Table 8.

Table 8: Certificate Length and Certificate Length Percentage across Different Video Durations.

Short Medium Long
BP TU HR BP TU HR BP TU HR

Certificate Length 1s 31s 27s 1s 204s 169s 1s 1147s 984s
Certificate Length Percentage 1.9% 61.4% 52.9% 0.2% 44.7% 37.2% 0.003% 35.3% 30.3%

The Basic Perception task is designed solely to assess a model’s fundamental ability to perceive
visual prompts, and thus it can be completed using a single prompted frame. In contrast, Temporal
Understanding and High-level Reasoning focus on dynamic information and chronological relation-
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ships in videos, and on logical inference and higher-level judgment, respectively. As a result, both
tasks require multiple video frames to be properly resolved.

A.6 DATASET BIAS

Our benchmark is constructed from 12 publicly available video datasets, all of which were originally
annotated with pure text-based QA pairs. The annotators of these datasets did not assume that “users
will provide visual prompts” when creating the annotations, meaning that the data are naturally more
aligned with text descriptions. The visual-prompt version of the benchmark is a rewrite we created
on top of these original annotations. Therefore, from the perspective of data provenance: If any bias
exists, it should favor pure text, not visual prompts.

Furthermore, to ensure a fair comparison between text prompts and visual prompts, we uniformly
rewrote all text prompts rather than directly reusing the original textual annotations. Since the 12
constituent datasets vary widely in linguistic style, granularity, and descriptive conventions, directly
comparing visual prompts with the original text would introduce additional bias. To avoid this, we
rewrote all questions into a standardized text-prompt format and ensured the text prompts contained
the same information as the visual prompts.

B DATASET SCALING UP

The core value of a benchmark dataset lies in being high-quality, trustworthy, and diagnostic, rather
than merely covering as much data as possible. To this end, we rely on trained human annotators
instead of automated generation, ensuring that each question maintains a strict causal linkage between
the video evidence, visual prompts, and the correct answer. Thus, the benchmark does not prioritize
“scaling up data volume” as its primary goal.

On the other hand, to enable the construction of large-scale visual-prompt datasets and to enhance
existing models’ ability to understand visual prompts, we also provide a fully automated data-
generation pipeline, including:

1) Using RAM++ Zhang et al. (2024a) to automatically extract potential target objects from video.

2) Applying SAM3 Carion et al. (2025) for cross-frame object tracking and mask propagation to
obtain temporally consistent visual annotations.

3) Following automatic data-synthesis strategies from LLaVA-Video Zhang et al. (2024b) and
ShareGPT4Video Chen et al. (2024c) to bind model-generated QA pairs to target regions, thus
producing large quantities of high-quality video–visual-prompt supervision data.

C MORE EXPERIMENTS

C.1 CONSISTENCY ANALYSIS OF MCQ AND DIALOGUE TASKS

We adopt a MCQ format as MCQ-based evaluation is easy to automate, highly controllable, and
effective at avoiding the ambiguity and vagueness that commonly arise in open-ended responses.
This is also why existing mainstream video-understanding benchmarks (Video-MME Fu et al. (2024),
MVBench Li et al. (2024c), EgoSchema Mangalam et al. (2023), LVBench Wang et al. (2024b)
.etc)widely adopt a QA-style design. In contrast, free-form dialogue introduces substantial subjectivity
and is difficult to score in a consistent and reproducible manner. Moreover, relying on an LLM-as-a-
judge may introduce evaluation bias, further weakening the fairness, reliability, and comparability
of the assessment. However, real human–model interaction scenarios are inherently dialogue tasks.
To examine the extent to which a MCQ task can represent a dialogue task, we further analyze the
consistency between the two. Specifically, we remove the multiple-choice constraints from the

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

original questions, convert them into open-ended ones and re-evaluate the models using GPT-4o
Hurst et al. (2024) and human annotators as the judge.

As shown in Table 9, under the open-ended setting, the Pearson consistency coefficient between
MCQ and OE (GPT-4o Judge) reaches 0.95, and the coefficient between MCQ and OE (Human
Judge) reaches 0.98. This demonstrates a strong consistency between QA-style evaluation and
free-form dialogue, indicating that QA-based assessments can reliably reflect a model’s capabilities
in open-ended conversational scenarios.

Table 9: Consistency Evaluation Between MCQ and Open-Ended Tasks.

Model MCQ OE (GPT-4o Judge) OE (Human Judge)

Gemini-2.5-Pro 69.8 48.3 51.6
Qwen2.5-VL-7B 48.1 30.2 33.7
MiMo-VL-7B 45.7 32.7 35.6

C.2 HACK PHENOMENA IN OPEN-ENDED EVALUATION

Existing benchmarks commonly adopt the MCQ format because it is easy to evaluate and highly
controllable, and avoids the ambiguity often seen in open-ended responses. Our experimental results
show that models indeed exhibit such behavior: they tend to game the MCQ structure to obtain higher
scores instead of performing true video comprehension. This finding suggests that, in addition to
pursuing higher benchmark scores, future models should also prioritize genuine understanding and
groundedness as key optimization objectives.

To examine whether open-ended generation helps reduce hack behaviors, we conducted two experi-
ments in which we removed the multiple-choice constraints and answer options from the original
prompts, converting them into open-ended question–answering tasks:

Random Shuffling Experiment. We randomly shuffle the videos and questions, meaning the model
can no longer obtain the answer from the video content. If a model is sufficiently honest, it should
refuse to answer all questions. We perform inference using Qwen2.5-VL-7B and MiMo-VL-7B. The
Trigger Ratio denotes the proportion of cases in which the model refuses to answer. For the MCQ
setting, we perform standard reasoning and count all responses that do not select any option; for the
OE setting, we manually evaluate whether the model refused to respond. The results are shown in
Table 10.

Table 10: Hack Phenomena under MCQ and Open-Ended Evaluation.

Model MCQ Trigger Ratio (%) OE Trigger Ratio (%)
Short Medium Long Avg Short Medium Long Avg

Qwen2.5-VL-7B 6.2 6.9 6.3 6.4 95.8 96.8 96.1 96.7
MiMo-VL-7B 3.6 4.2 4.0 3.9 92.2 94.6 94.8 93.6

We observe that under the MCQ setting, Qwen2.5-VL-7B and MiMo-VL-7B exhibit refusal rates
of only 6.4% and 3.9%, respectively. This indicates that even when the video and question are
completely mismatched, the models still select an option in the vast majority of cases, and the trigger
rates remain almost identical across different video lengths. In contrast, under the OE setting, the
refusal rates rise sharply to 96.7% and 93.6%, again showing little variation across video lengths.
These results clearly demonstrate that open-ended generation effectively mitigates hack behaviors to
a large extent.

Model Performance on V2P-Bench. Besides,we follow the same setup as in the random shuffling
experiment, with the only difference being that we use the original benchmark data rather than the
shuffled version. The experimental results are shown in Table 11.
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Table 11: Hack Rates under MCQ and Open-Ended Evaluation.

Model MCQ Hack Ratio (%) OE Hack Ratio (%)
Short Medium Long Avg Short Medium Long Avg

Qwen2.5-VL-7B 8.1 11.5 14.4 10.2 2.1 2.6 3.4 2.7
MiMo-VL-7B 5.3 7.2 7.4 6.2 1.7 2.3 2.8 2.2

We observe that after converting the MCQ task into an open-ended question–answering task, the
Hack Ratios of Qwen2.5-VL-7B and MiMo-VL-7B decrease by 7.5% and 4.0%, respectively. This
further demonstrates that open-ended generation can substantially mitigate hack behaviors.

C.3 IMPACT OF SAMPLING FRAME RATES

We evaluate Qwen2.5-VL-7B across different task types and video durations to investigate how
varying sampling frame rates affect model performance. Here, 1 frame indicates that only the
visual-prompt frame is provided to the model. The results are shown in Table 12.

Table 12: Performance under Different Sampling Frame Rates across Video Durations.

Model Frames Short Medium Long
BP TU HR BP TU HR BP TU HR

Qwen2.5-VL-7B
1 62.1 28.6 29.8 64.3 30.4 31.1 47.6 27.4 33.2
8 61.8 38.3 43.0 59.1 43.6 44.2 44.8 41.7 45.7
64 60.8 40.1 46.8 56.1 47.9 51.8 43.1 41.7 50.0

We observe that for the BP task, which relies solely on single-frame information, increasing the
sampling frame rate actually leads to a certain degree of performance degradation. This is because
more frames enlarge the temporal search space, making it harder for the model to accurately locate
the visual prompt frame. In contrast, TU and HR tasks inherently require multi-frame temporal
information. As the frame rate increases, the model gains access to richer dynamic cues, resulting in
a clear performance improvement that eventually saturates.

D QUALITATIVE EXAMPLES

D.1 COMPARISON WITH INST-IT

Unlike V2P-Bench, INST-IT dataset contains visual prompt annotations on every frame of the video,
as shown in Figure 9 (left), which is both unrealistic and practically unachievable in real human-model
interaction scenarios.

Figure 9: Comparison of INST-IT-Dataset and V2P-Bench.
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E IMPLEMENTATION DETAILS

E.1 HUMAN EXAM AND BLIND LLMS ANSWERING.

Human Exam. For the human evaluation, all questions were assigned to three human experts. To
mitigate the risk of data leakage, we took special care to ensure that the experts involved in the
evaluation had never participated in the annotation process. The human experts were instructed to
watch the videos along with the visual prompt frames and to respond by selecting only the letter
corresponding to their chosen option. The results were recorded in a JSON file. The evaluation was
scored using a script, maintaining consistency with the model evaluation process.

Blind LLMs Answering. For the blind answering task, we report the performance of three models:
GPT-4o, Gemini-2.5-Pro, and Qwen2.5-VL. Although all three models are in fact LVLMs, we provide
them only with the textual QA pairs, so that their visual encoders remain inactive. The models are
prompted to output “Z” honestly instead of selecting an option whenever the QA pair requires access
to visual context, thereby preventing the models from guessing.

E.2 COMPARISON OF TEXT AND VISUAL PROMPTS FOR HUMANS AND MODELS.

Text prompt evaluation. After completing the annotation of the visual-prompt dataset, we uniformly
rewrote all text prompts, rather than directly reusing the original textual annotations. The twelve
source datasets differ significantly in linguistic style, granularity, and description patterns; therefore,
directly comparing their original questions would introduce additional bias. To ensure fairness,
we rewrote all questions into a standardized text-prompt format and guaranteed that the amount of
information conveyed matched that of the visual-prompt version.
Concretely, we converted the visual-prompt references in each QA pair into natural-language descrip-
tions of the target’s appearance. For example, a question such as “What does the arrow-pointed person
do after getting off the car?” was rewritten as “What does the person weaormuing a black suit and
black hat do after getting off the car?” In contrast, in the original text-only dataset, the same question
appeared as “What does the main character in the video do after getting off the car?”, a formulation
that requires the model to first understand the video content and identify the main character. This
would be unfair when comparing text prompts to visual prompts, since the latter already explicitly
localize the target. Therefore, we performed a unified rewriting of all text prompts to eliminate this
bias and ensure a fair comparison between text-based and visual-prompt–based evaluation.
To guarantee fairness in the comparison, we also include the original video frame corresponding to
the visual prompt (without any visual prompts) later in the video, ensuring that in both experimental
settings, the model receives an identical amount of visual context. Finally, we adopt the same
inference and evaluation procedures as in the visual prompt setting, ensuring comparability of results
and enabling a rigorous assessment of model performance in pure text QA tasks.

User experience study.

In fact, we reused the Gradio-based annotation interface originally built for constructing the dataset,
so the volunteers operated in the same environment as the annotators. The UI supports displaying,
playing, and pausing the video at the top; when the video is paused, clicking again enlarges the frame
and launches MS Paint, allowing users to draw visual prompts directly on the frame. The UI also
displays the original QA pair and allows the annotator to input a new question. After the participant
finishes formulating the question, the video, the visual prompt frame, and the question are sent to
the Gemini API to obtain a response. We slightly improved the system to display the model’s reply
within the UI.
To avoid possible biases or preferences arising from annotators who were familiar with the dataset’s
purpose, we recruited volunteers to conduct the user study. Before formally participating, each
volunteer received training from one of the annotators and completed a guided interaction session.
Only after this training were the volunteers allowed to proceed with the actual experiment.
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F ERROR ANALYSIS

Figure 10: Typical failure modes of the model regarding Perception Errors.
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Figure 11: Typical failure modes of the model regarding Reasoning Errors.

Figure 12: Typical failure modes of the model regarding Insufficient Information Errors.
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G APPLICATION SCENARIOS FOR VISUAL PROMPTS

In real-world scenarios, the video modality demonstrates greater applicability and value, specifically
including but not limited to the following situations:

• Interaction with Mobile Devices. Users can watch videos on mobile devices such as
smartphones and computers, easily creating visual prompts with their fingers or a mouse.
This functionality has been successfully implemented in systems like GPT-4o and Video
Refer, allowing users to interact with video content more intuitively, enhancing their viewing
experience.

• Smart Device Wearables. Imagine users wearing advanced smart devices (like Apple
Vision Pro), immersed in a sea of video content. These users could generate visual prompts
through natural gestures. It undoubtedly offers limitless possibilities for future interaction
methods, significantly enhancing the immersive experience of watching videos.

• Interaction with Smart Robots. Consider the interaction between users and physical
smart robot terminals equipped with visual prompt screens. It will revolutionize the way
we communicate with smart technology, making interactions more vivid, engaging, and
intuitive.

In these diverse scenarios, users can interact smoothly with local or cloud-based LVLMs based on
video content. Developers only need to adjust the front-end system to efficiently capture video frames
and visual prompts to achieve this goal. Such integration will create a more immersive experience
for users, transforming video watching from passive observation into an engaging and interactive
journey.

H DISCUSSION

Limitation. Although our V2P-Bench comprehensively evaluates the capabilities of LVLMs in
video-language understanding with visual prompts for multimodal human-model interaction, it only
focuses on visual and textual inputs, lacking audio input, and supports evaluations only on offline
videos, which leaves a gap compared to the ultimate form of multimodal human-model interaction in
real world. we plan to develop V2P-Bench v2, which will support all types of video understanding,
incorporate full-modality inputs, and enable the evaluation of multi-turn dialogue and interruptible
interactions.

Broader Impact. V2P-Bench has built a comprehensive visual prompt dataset for evaluating video
visual prompt question answering in the multimodal domain, which will help more thoroughly
validate the video understanding capabilities of large visual language models and enhance their
performance in the field of video understanding. We have released the dataset, evaluation code, and
leaderboard.

I ADDITIONAL RESULTS

I.1 RESULTS ACROSS VISUAL PROMPTS

See Table 13.

I.2 RESULTS ACROSS FRAME RATES

See Table 14 to Table 23.

I.3 HACK PHENOMENA ON OTHER BENCHMARKS

See Figure 13.
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J PROMPT TEMPLATE

Prompt template for model inference

System prompt:

First, you will receive a series of images sampled at regular intervals from a video. Then, you
will receive a visual prompt frame, which is screenshot from the same video and have been
manually annotated with visual prompts. Your task is to answer the question based on the
video and visual prompt frame.
Select the best option that accurately addresses the question. Give only your option letter, no
other words.

User prompt:

<video> <vp_frame> <question>

Prompt template for the blind answering task

System prompt:

You will receive a question and four options. Please respond based on the question.
Select the best option that accurately addresses the question. Give only your option letter, no
other words.
If the question cannot be answered, output Z.

User prompt:

<question>

Prompt template for model inference without hack

System prompt:

First, you will receive a series of images sampled at regular intervals from a video. Then, you
will receive a visual prompt frame, which is screenshot from the same video and have been
manually annotated with visual prompts. Your task is to answer the question based on the
video and visual prompt frame.
Select the best option that accurately addresses the question. Give only your option letter, no
other words.
If the video does not provide sufficient information, or if none of the options is correct, don’t
try to make up an answer but output Z directly.

User prompt:

<video> <vp_frame> <question>
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Figure 13: Hack Phenomena and Performance of Qwen2.5-VL-7B on MVBench, Video-MME and
LongVideoBench.

Table 13: Evaluation results on V2P-Bench across visual prompt types.

Method Rectangle Mask Ellipse Triangle Scribble Point Arrow SoM Avg

Human Performance 86.6 88.1 92.5 86.1 86.9 89.7 90.2 86.3 88.3
Closed-source Models
o1 74.4 70.1 70.3 68.9 71.9 74.5 72.1 68.3 71.8
GPT-4o 68.5 63.6 65.4 62.3 66.0 63.2 69.8 59.6 65.4
Gemini-2.5-Pro 73.2 63.6 71.4 65.6 69.5 72.4 62.8 66.3 69.8
Open-source Models
LLaVA-NeXT-7B 44.3 40.2 47.9 49.1 48.3 45.4 45.1 47.7 46.0
LLaVA-NeXT-INST-IT-7B 42.2 41.5 45.0 45.6 45.3 43.7 44.2 62.7 46.3
LLaVA-OV-7B 54.7 48.1 49.2 59.0 44.9 72.1 52.7 52.9 52.8
LLaVA-OV-72B 55.1 54.5 54.1 55.7 58.2 60.5 56.7 54.8 56.7
InternVL3-8B 62.6 57.1 61.1 62.3 65.3 55.8 59.6 65.4 61.7
mPLUG-Owl3-7B 51.6 55.8 47.6 52.5 49.0 53.5 59.1 51.9 52.6
LLaVA-Video-7B 50.4 54.5 53.5 55.7 62.2 58.1 56.2 54.8 54.8
LLaVA-Video-72B 59.1 59.7 57.3 49.2 67.3 55.8 58.6 56.7 58.6
MiniCPM-V 2.6-8B 56.3 48.1 53.5 65.6 51.0 53.5 57.6 53.8 55.3
Qwen2.5-VL-7B 47.6 55.8 42.2 42.6 48.0 48.8 50.2 51.9 48.1
Qwen2.5-VL-72B 63.4 61.0 57.8 54.1 55.1 58.1 61.1 61.5 59.8
MiMo-VL-7B 49.6 51.9 55.1 55.7 50.0 48.8 56.2 61.5 53.8

Table 14: Results on LLaVA-OneVision-7B with different frame-rate sampling strategies.

Model Frames Dimension Duration Avg
OA HA OD FM CR PU CI FT RT AS SR GC Short Medium Long

LLaVA-OV-7B

4 49.6 52.5 30.4 45.1 51.4 56.8 33.3 47.4 36.7 45.3 57.2 35.1 51.1 48.1 40.3 48.0
8 51.3 51.2 32.6 45.1 56.2 59.1 41.0 47.4 37.8 48.4 55.2 43.2 52.4 50.0 41.2 49.2

16 58.8 53.0 28.3 45.1 56.2 50.0 35.9 34.2 37.8 55.8 58.6 43.2 52.0 53.7 43.6 50.4
32 56.3 53.0 28.3 43.1 58.1 56.8 41.0 36.8 38.9 50.5 64.1 43.2 52.0 56.9 44.0 51.2
64 56.3 54.4 28.3 47.1 60.0 59.1 41.0 42.1 41.1 55.8 63.4 43.2 51.9 63.4 45.3 52.7
128 57.1 52.1 28.3 47.1 63.8 59.1 41.0 42.1 35.6 63.2 62.8 43.2 51.3 63.0 47.3 52.8

Table 15: Results on LLaVA-OneVision-72B with different frame-rate sampling strategies.

Model Frames Dimension Duration Avg
OA HA OD FM CR PU CI FT RT AS SR GC Short Medium Long

LLaVA-OV-72B

4 48.7 55.8 37.0 47.1 55.2 50.0 38.5 57.9 33.3 60.0 60.0 32.4 50.6 57.4 46.1 51.0
8 58.0 55.3 39.1 47.1 57.1 43.2 33.3 52.6 35.6 62.1 57.9 45.9 52.6 59.7 44.4 52.1

16 62.2 57.6 30.4 43.1 59.0 38.6 35.9 47.4 37.8 62.1 66.2 45.9 52.4 63.9 48.1 53.8
32 62.2 60.8 30.4 45.1 63.8 45.5 41.0 52.6 35.6 62.1 67.6 45.9 54.9 65.3 49.4 55.8
64 65.5 60.4 30.4 45.1 61.9 43.2 38.5 47.4 43.3 65.3 66.2 45.9 53.8 71.8 48.1 56.2
128 65.5 59.9 34.7 47.0 63.8 43.2 38.5 50.0 41.1 66.3 66.9 45.9 54.5 70.4 49.0 56.7

Table 16: Results on InternVL3-8B with different frame-rate sampling strategies.

Model Frames Dimension Duration Avg
OA HA OD FM CR PU CI FT RT AS SR GC Short Medium Long

InternVL3-8B

4 66.4 65.0 28.3 56.9 51.4 59.1 28.2 52.6 34.4 57.9 63.4 64.9 56.8 58.8 51.9 56.0
8 69.7 67.7 39.1 58.8 62.9 59.1 30.8 44.7 33.3 52.6 68.3 70.3 59.6 65.3 51.4 58.9

16 69.7 67.7 37.0 54.9 61.9 63.6 35.9 52.6 37.8 60.0 68.3 67.6 60.3 68.5 52.3 60.1
32 69.7 67.3 39.1 52.9 63.8 63.6 43.6 50.0 40.0 56.8 70.3 62.2 59.8 68.1 55.1 60.4
64 68.1 67.7 34.8 62.7 56.2 63.6 35.9 57.9 37.8 63.2 74.5 70.3 58.2 71.8 58.4 61.1
128 73.9 69.1 39.1 60.8 58.1 65.9 41.0 52.6 41.1 61.1 69.7 64.9 61.7 68.5 55.6 61.7
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Table 17: Results on mPLUG-Owl3-7B with different frame-rate sampling strategies.

Model Frames Dimension Duration Avg
OA HA OD FM CR PU CI FT RT AS SR GC Short Medium Long

mPLUG-Owl3-7B

4 61.3 53.5 32.6 41.2 53.3 50.0 48.7 55.3 26.7 51.6 53.8 37.8 51.7 50.5 43.6 49.5
8 62.2 54.4 34.8 51.0 50.5 43.2 41.0 50.0 23.3 52.6 57.9 37.8 50.3 54.2 44.4 49.7
16 59.7 51.6 30.4 51.0 54.3 45.5 48.7 55.3 31.1 54.7 60.0 40.5 51.3 56.9 44.4 50.9
32 60.5 55.3 32.6 45.1 56.2 45.5 48.7 50.0 28.9 54.7 61.4 35.1 51.7 58.8 44.0 51.4
64 55.5 54.8 34.8 54.9 60.0 50.0 46.2 50.0 33.3 58.9 58.6 35.1 52.2 59.3 45.7 52.1

128 61.3 54.4 28.3 49.0 60.0 50.0 51.3 60.5 34.4 55.8 58.6 37.8 52.2 62.5 44.9 52.6

Table 18: Results on LLaVA-Video-7B with different frame-rate sampling strategies.

Model Frames Dimension Duration Avg
OA HA OD FM CR PU CI FT RT AS SR GC Short Medium Long

LLaVA-Video-7B

4 48.7 56.2 32.6 51.0 55.2 54.5 35.9 52.6 38.9 51.6 55.9 35.1 49.6 56.9 45.7 50.2
8 55.5 54.8 30.4 49.0 54.3 59.1 38.5 55.3 43.3 54.7 53.1 37.8 50.6 57.4 46.9 51.2
16 61.3 57.6 32.6 49.0 57.1 54.5 38.5 52.6 41.1 56.8 59.3 43.2 53.4 62.0 46.5 53.6
32 58.8 58.5 34.8 52.9 58.1 56.8 51.3 55.3 42.2 56.8 55.2 40.5 54.3 63.4 44.9 54.0
64 58.0 59.4 32.6 47.1 61.9 56.8 41.0 52.6 44.4 54.7 61.4 40.5 54.3 62.5 47.7 54.5

128 60.5 58.1 37.0 49.0 62.9 54.5 41.0 52.6 48.9 57.9 56.6 40.5 54.1 65.7 46.5 54.8

Table 19: Results on LLaVA-Video-72B with different frame-rate sampling strategies.

Model Frames Dimension Duration Avg
OA HA OD FM CR PU CI FT RT AS SR GC Short Medium Long

LLaVA-Video-72B

4 52.9 54.8 43.5 54.9 55.2 56.8 43.6 57.9 32.2 61.1 64.8 54.1 55.2 58.8 46.5 53.9
8 58.0 54.4 34.8 52.9 61.0 56.8 41.0 47.4 43.3 63.2 61.4 56.8 55.2 62.5 46.9 54.8
16 61.3 55.8 34.8 51.0 60.0 56.8 43.6 52.6 40.0 65.3 68.3 62.2 56.4 65.3 49.4 56.6
32 65.5 58.5 32.6 49.0 57.1 50.0 46.2 50.0 44.4 65.3 71.0 54.1 55.9 67.6 51.9 57.4
64 61.3 59.4 23.9 51.0 64.8 50.0 48.7 50.0 44.4 69.5 72.4 45.9 55.7 69.0 53.5 58.0

128 62.2 60.8 30.4 54.9 61.0 54.5 43.6 47.4 42.2 70.5 71.0 59.5 57.5 66.2 54.3 58.6

Table 20: Results on MiniCPM-V 2.6 with different frame-rate sampling strategies.

Model Frames Dimension Duration Avg
OA HA OD FM CR PU CI FT RT AS SR GC Short Medium Long

MiniCPM-V 2.6

4 59.7 54.8 28.3 41.2 42.9 52.3 28.2 52.6 33.3 51.6 59.3 40.5 50.3 51.4 44.0 49.0
8 63.0 55.3 26.1 33.3 52.4 43.2 30.8 44.7 34.4 44.2 64.1 40.5 49.9 55.1 43.6 49.5
16 60.5 59.0 26.1 51.0 58.1 52.3 30.8 47.4 35.6 56.8 61.4 43.2 52.9 63.0 44.0 52.9
32 65.5 57.1 28.3 49.0 58.1 50.0 33.3 50.0 43.3 55.8 60.7 45.9 54.5 61.6 45.3 53.8
64 67.2 62.2 26.1 52.9 57.1 43.2 28.2 50.0 40.0 58.9 64.8 45.9 54.3 65.7 47.7 55.2

128 68.9 59.4 26.1 56.9 58.1 50.0 33.3 50.0 34.4 57.9 67.6 43.2 53.3 66.2 50.2 55.3

Table 21: Results on Qwen2.5-VL-7B with different frame-rate sampling strategies.

Model Frames Dimension Duration Avg
OA HA OD FM CR PU CI FT RT AS SR GC Short Medium Long

Qwen2.5-VL-7B

4 59.7 51.6 21.7 49.0 46.7 43.2 33.3 44.7 35.6 41.1 48.3 45.9 48.0 48.6 39.9 46.2
8 62.2 56.2 17.4 35.3 45.7 43.2 53.8 57.9 36.7 41.1 47.6 35.1 47.6 49.1 43.2 46.9

16 56.3 54.8 26.1 47.1 47.6 52.3 25.6 52.6 36.7 44.2 49.0 40.5 49.2 48.1 42.4 47.4
32 56.3 53.9 26.1 43.1 52.4 56.8 38.5 55.3 32.2 43.2 46.2 43.2 50.1 48.6 40.3 47.5
64 62.2 53.9 19.6 41.2 47.6 50.0 38.5 57.9 33.3 44.2 49.7 40.5 48.7 52.3 43.2 48.1

128 60.5 53.7 17.4 45.1 47.6 40.9 48.7 52.6 32.2 47.4 50.3 35.1 48.0 53.2 43.6 48.1

Table 22: Results on Qwen2.5-VL-72B with different frame-rate sampling strategies.

Model Frames Dimension Duration Avg
OA HA OD FM CR PU CI FT RT AS SR GC Short Medium Long

Qwen2.5-VL-72B

4 64.7 65.0 28.3 56.9 41.0 40.9 30.8 55.3 46.7 50.5 59.3 29.7 55.4 55.6 44.0 52.7
8 65.5 62.2 30.4 49.0 42.9 52.3 38.5 55.3 37.8 54.7 59.3 40.5 55.7 52.8 46.5 52.9

16 65.5 66.4 39.1 51.0 45.7 50.0 46.2 55.3 40.0 55.8 61.4 43.2 58.0 57.9 47.3 55.5
32 67.2 68.2 47.8 47.1 51.4 52.3 53.8 52.6 43.3 57.9 61.4 51.4 61.6 58.8 48.6 57.9
64 69.7 68.2 39.1 54.9 47.6 50.0 51.3 50.0 44.4 63.2 68.3 48.6 61.0 62.0 51.4 59.0
128 69.7 72.4 43.5 52.9 49.5 59.1 53.8 55.3 44.4 57.9 64.1 51.4 62.4 63.9 50.2 59.8
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Table 23: Results on MiMo-VL-7B with different frame-rate sampling strategies.

Model Frames Dimension Duration Avg
OA HA OD FM CR PU CI FT RT AS SR GC Short Medium Long

MiMo-VL-7B

4 62.2 54.4 30.4 43.1 43.8 54.5 46.2 47.4 33.3 43.2 55.9 35.1 49.7 51.4 43.6 48.6
8 64.7 55.8 34.8 47.1 42.9 47.7 25.6 47.4 34.4 45.3 56.6 40.5 50.4 53.7 41.6 49.0

16 63.0 54.8 41.3 37.3 52.4 54.5 48.7 60.5 38.9 49.5 59.3 35.1 52.9 59.3 43.6 52.0
32 65.5 57.6 34.8 47.1 47.6 54.5 48.7 52.6 45.6 54.7 57.9 43.2 55.7 60.6 42.0 53.5
64 65.5 57.6 34.8 47.1 47.6 54.5 48.7 52.6 45.6 54.7 57.9 43.2 55.7 60.6 42.0 53.5

128 67.2 57.6 37.0 45.1 47.6 52.3 59.0 55.3 41.1 50.5 61.4 43.2 56.8 58.8 42.4 53.8
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