
Gondola : Grounded Vision Language Planning
for Generalizable Robotic Manipulation

Shizhe Chen, Ricardo Garcia, Paul Pacaud, Cordelia Schmid
Inria, École normale supérieure, CNRS, PSL Research University

https://cshizhe.github.io/projects/robot_gondola.html

Abstract: Robotic manipulation faces a significant challenge in generalizing across
unseen objects, environments and tasks specified by diverse language instructions.
To improve generalization capabilities, recent research has incorporated large
language models (LLMs) for planning and action execution. While promising,
these methods often fall short in generating grounded plans in visual environments.
Although efforts have been made to perform visual instructional tuning on LLMs
for robotic manipulation, existing methods are typically constrained by single-view
image input and struggle with precise object grounding. In this work, we introduce
Gondola, a novel grounded vision-language planning model based on LLMs for
generalizable robotic manipulation. Gondola takes multi-view images and history
plans to produce the next action plan with interleaved texts and segmentation
masks of target objects and locations. To support the training of Gondola, we
construct three types of datasets using the RLBench simulator, namely robot
grounded planning, multi-view referring expression and pseudo long-horizon task
datasets. Gondola outperforms the state-of-the-art LLM-based method across all
four generalization levels of the GemBench dataset, including novel placements,
rigid objects, articulated objects and long-horizon tasks.

Keywords: Robotic Manipulation, Task Planning, Vision-Language Model

1 Introduction

Training robots to perform physical manipulation tasks following human instructions has been a
long-term goal in robotics, enabling intuitive human-robot interaction in unstructured, dynamic
environments such as homes and factories. Recently, end-to-end learning-based models [1, 2, 3],
particularly Vision-Language-Action models (VLAs) [4, 5, 6, 7, 8] trained on real-world robot data,
have achieved remarkable success in robotic manipulation. However, due to the scarcity and limited
diversity of available robot datasets [9, 10, 11], these models still struggle to generalize beyond their
training conditions, facing difficulties with novel objects, unfamiliar environments, and especially
unseen long-horizon tasks [12, 13, 14].

To improve generalization, modular frameworks [15, 16, 14, 17] have received increasing attention,
separating high-level task planning from low-level action execution. As the planning component
is less coupled to robot embodiments, it can leverage a broader range of internet-scale data for
training to enhance its generalization capabilities. Inspired by the impressive zero- and few-shot
reasoning and planning abilities of Large Language Models (LLMs) [18, 19], researchers have begun
exploring LLMs for task planning, such as decomposing a language instruction into substeps [14, 20]
or generating executable code [15, 16]. However, since LLMs lack direct grounding in the physical
world, their ability to produce actionable and reliable plans remains limited.

Different methods have been proposed to ground LLM-generated plans in visual context. SayCan [21]
trains an affordance score predictor based on visual input and candidate skills, allowing the system
to rerank substeps proposed by the LLM. However, this is limited to evaluating a predefined set

https://cshizhe.github.io/projects/robot_gondola.html

RoboPoint

Screw in the rose
light bulb.

LLaRA

GR00T N1

Pick up the rose bulb at (0.26,
0.66), drop it at (0.54, 0.50).

Bounding boxes

[(0.26, 0.66), (0.30, 0.78)]
2D Points

Latent hidden states
…

(a) Existing methods [24, 23, 17] using single-view in-
put and producing various intermediate representations.

1. Grasp rose bulb
 [mask1] … [maskK]

2. Move grasped object to
lamp [mask1] … [maskK]

3. Rotate grasped object

Vi
ew

1
Vi

ew
K

…

Gondola

Grounded Plans with
Segmentation Masks

Screw in the
rose light bulb.

(b) Our Gondola model with multi-view inputs generat-
ing grounded plans with segmentation masks.

Figure 1: Comparison of vision-language models for high-level planning in robotic manipulation.
Multi-view inputs alleviate occlusions for improved 3D scene perception, while segmentation masks
offer more precise and compact grounded plans.

of skills. ECoT [22] uses image captioning models to convert visual scenes into text descriptions,
which are then fed to the LLM. Yet, captions can be less accurate and miss crucial details, leading to
sub-optimal decision-making and raising the risk of error propagation.

More recently, a few works [23, 24, 17] have explored fine-tuning Vision-Language Models (VLMs)
to generate visually grounded plans, using intermediate representations such as points [24], bounding
boxes [23], or latent hidden states [17] as illustrated in Figure 1a. While promising, points and
bounding boxes are often too coarse for precise robotic manipulation in 3D environments. Latent
representations from VLMs, on the other hand, are difficult to interpret and may lack the conciseness
needed for efficient execution. Furthermore, most existing methods rely on single-view images,
which exacerbates planning challenges due to occlusions and limited fields of view.

To address these limitations, we propose Gondola - a grounded vision-language planning model
to enhance generalization in robotic manipulation. As illustrated in Figure 1b, Gondola transforms
language instructions and multi-view images into precisely grounded plans, consisting of interleaved
actions and objects with accompanying segmentation masks for each referred object. The model builds
upon a dense grounding VLM Sa2VA [25], leveraging a specialized segmentation token that enables
object-specific mask generation across views. To improve planning consistency, we incorporate
the textual history of previously generated plans as additional context to the model. For effectively
training Gondola, we construct a robot grounded planning dataset using simulated environments
from RLBench [26], supplemented with multi-view referring expression data to strengthen object
grounding. To better handle long-horizon tasks, we create extended tasks by concatenating two short
task sequences and using an LLM to generate instructions. We evaluate Gondola on both offline
grounded planning and online task execution using the GemBench generalizable robotic manipulation
benchmark [14]. Comprehensive results demonstrate Gondola’s superior performance, benefiting
from multi-view inputs, history-aware planning, segmentation masks and diverse training data. It
outperforms the state-of-the-art LLM-based method 3D-LOTUS++ [14] by absolute 10% on average.

To summarize, our contributions are three-fold:
• We propose Gondola to generate grounded vision-language plans with masks for generaliz-

able robotic manipulation. It features multi-view image understanding and grounding.
• We construct multi-view grounding and planning datasets using RLBench, and propose

pseudo long-horizon task generation to improve long-term planning capabilities.
• Our model sets a new state of the art on the generalization benchmark GemBench, and

works reliably on a real robot. The code, models and datasets will be publicly released.

2 Related Work

Vision-and-language robotic manipulation. Learning robotic manipulation conditioned on vision
and language has garnered significant interest [27, 28, 29]. Due to the high-dimensional action
space, directly applying reinforcement learning (RL) for training presents challenges [30]. Therefore,
most approaches employ imitation learning (IL) [31, 4, 32, 33, 34, 35, 36, 37, 38] using scripted
trajectories [26] or tele-operation data [9]. Visual representation plays a crucial role in policy learning.
Existing works [31, 4, 2, 32, 34, 39, 40] rely on 2D images for action prediction, although recent work

2

explores 3D visual representations [41, 33, 35, 37, 38, 36, 14, 42]. Hiveformer [32] and RVT [34]
utilize 2D images to predict a heatmap in 2D space, which is then combined with 3D point clouds to
demermine the final 3D position. C2F-ARM [41] and PerAct [33] directly use 3D voxel representation
as input, being less efficient due to encoding empty voxels. PolarNet [35] and 3D-LOTUS [14]
improve efficiency by encoding only visible point clouds to predict actions, while SUGAR [36]
further enhances point cloud representation through 3D pre-training. Given the superiority of current
pre-trained 2D representations [43], works like Act3D [37] and 3D Diffuser Actor [38] lift pre-trained
2D features into 3D space, and then train 3D models to leverage the strengths of both. In this work,
we leverage the strong generalization capabilities of pretrained 2D VLMs for high-level task planning
and integrate it with 3D-based motion planning policies for task execution.
Foundation models for robotics. Learning-based robotic policies struggle to generalize to novel
scenarios [44]. Inspired by generalization abilities of foundation models [43, 45, 19], recent research
leverages these models for perception, reasoning and planning in robotics. Some methods [20, 14]
directly use LLMs to decompose high-level tasks into sub-steps. To better ground plans in vision,
SayCan [21] combines LLMs with value functions of pretrained skills given visual contexts. ViLa [46]
replaces LLMs with a multimodal LLM GPT-4V [47]. CaP [15] directs LLMs to generate code that
invokes tools for visual perception and control, and VoxPoser [16] uses LLMs and VLMs to create
3D voxel maps. These approaches rely on general-purpose pretrained models for task planning, but
tend to be unstable in robotic settings and require heavy prompt engineering. To address this, a few
recent methods fine-tune VLMs on robot datasets to generate grounded plans using intermediate
representations such as points [24], bounding boxes [23], and latent vision-language embeddings [17].
In our work, we extend the VLM framework with multi-view inputs and finer grounding masks, and
introduce synthetic robot data for long-horizon grounded planning.
Vision and language models for grounding. Early VLMs [48, 49] are constrained to generating text
outputs from multimodal inputs, such as image captioning and visual question answering. To enable
VLMs to produce grounded outputs that align generated texts with specific image regions, existing
methods can be broadly categorized into three types. The first category outputs box coordinates [50,
51, 52, 53, 54] or polygons of segmentation masks [55] as text. However, generating precise numerical
outputs is difficult and prone to hallucination. The second category uses a proposal-based approach,
where a separate module first generates candidate regions, and the VLM selects the one for each
generated text [56, 57]. While more structured, this method is sensitive to proposal quality, suffers
from error accumulation, and introduces more computation overhead. The third category decouples
language and grounding by feeding the output of a VLM into a grounding model to produce boxes
or masks [58, 59, 60, 25]. Among them, Sa2VA [25] achieves the state-of-the-art performance by
integrating a strong VLM model InternVL [61] and a segmentation model SAM2 [62], as well as
training on large-scale image and video grounding data. Our Gondola model fine-tunes Sa2VA on
multi-view image grounding and planning datasets for robotic manipulation.

3 Gondola: Grounded Vision-Language Plan Generation

We formulate high-level task planning for robotic manipulation as a vision-language grounding
problem, where the goal is to generate the next executable, visually-grounded action plan that
accomplishes a natural language instruction in the observed environment. Formally, given a language
instruction L and multi-view visual observations I = {I1, · · · , IK} from K cameras, the Gondola
model produces a grounded vision-language plan P = (a, o,Mo, l,Ml), where a represents the
action name, o specifies the manipulated object description paired with corresponding segmentation
masks Mo = {m1

o, · · · ,mK
o } across all views, and l denotes the target location description with

associated location masks Ml. Noting that either o or l may be empty if the particular action does not
require an object or target location for execution.

3.1 Model Architecture

As illustrated in Figure 2, the Gondola architecture consists of three main components: an image
encoder for tokenizing each view image, an LLM to process multimodal inputs and outputs, and a
segmentation model for multi-view object grounding.

3

…

Vi
ew

1

Vi
ew

K

Image Encoder

Image Embedding

LoRALarge Language Model (LLM)

Task: screw the light bulb from
the rose holder into the lamp.
History plans: grasp the rose
light bulb.
Generate the next action plan.

Token Embedding
SAM2

Decoder

move to <p> </p>violet jar <seg>…

SAM2
Image Encoder

Prompt
Embedding

…

Mask 1

Mask K
Environment

Motion
planning

policy

Actions
(Joint positions)

Gondola

RGB-D images

plan

Figure 2: Left: Gondola model architecture, consisting of a shared visual encoder for multi-view
images, an LLM to generate action and object names along with segmentation tokens, and SAM2 to
decode masks. Right: Integrating Gondola with a motion planning policy for task execution.

Image encoder. We use a pretrained vision transformer (ViT) InternVL-300M [61] with an input
image resolution of 448 × 448 to generate image patch embeddings, followed by a 2-layer multi-layer
perceptron (MLP). The ViT is frozen, while the MLP is trained to adapt the visual features to the
language space. The same image encoder is applied across all views, with view separation handled
by a special token \n. Image tokens from all views are concatenated to form a single sequence.
LLM. We adopt InternVL-4B [61] as our language model, keeping its base parameters frozen
while adding LoRA [63] layers for fine-tuning. Building upon Sa2VA [25], we incorporate a
specialized vocabulary that includes a dedicated <seg> token to signal mask generation, along
with paired delimiter tokens <p> and </p> that precisely delineate object and location references
requiring spatial grounding. To maintain contextual awareness across sequential steps in completing
manipulation tasks, we further encode previously generated history plans H as compact text tokens
to the model. The following example demonstrates input and output token formatting for the LLM:

User: <image>\n<image>\n<image>\n<image>\n You are a skilled assistant for robot task
planning in tabletop environments. You can perform the following actions: grasp, move grasped object,
rotate grasped object, push down, push forward, and release. Task: screw the light bulb from the rose
holder into the lamp. You have completed the following action plans: grasp the rose light bulb. Please
generate the next action plan.
Gondola: Move the grasped object to <p> lamp </p><seg>.

Here, <image> represents placeholders for image tokens for each view, which are replaced by the
actual visual embeddings.
Segmentation model. We employ SAM2 [62] as the segmentation model. Given the hidden
embedding hseg from the LLM that predicts the <seg> token, we project hseg with a 2-layer MLP to
generate a prompt embedding. SAM2 uses this prompt to segment the corresponding object mask for
each view image separately and thus generates K binary masks for each referred object or location.

3.2 Training Data

We construct three datasets to train Gondola using 31 task variations in GemBench training split [14]
within the RLBench simulator [26], including robot grounded planning, multi-view referring expres-
sion, and pseudo long-horizon tasks. While this data construction approach can be extended to any
task in RLBench, we restrict dataset construction to the GemBench training split for fair comparison
with prior work [14] in evaluating generalization performance. Figure 3 illustrates examples from
each of the three datasets.
Robot grounded planning. In the RLBench simulator, each task is structured with semantically
labeled objects and fixed procedure trajectories, enabling efficient grounded plan generation. First,
we manually decompose the trajectory in each task into a sequence of plans, each step consisting
of an action, object and placement location triplet. This only requires a single annotation effort per
task with minimal annotation overhead. The corresponding segmentation masks for objects and
locations are then automatically extracted given the annotated semantic labels. In this way, we create

4

Robot grounded planning Multi-view referring expression

Please segment one of the violet jar

View 1 View K

In
pu

t
M

as
k

Tasks: Push the maroon button first, then screw in the navy
light bulb. You have completed the following actions: push
down maroon button, grasp the navy light bulb.
Ground-truth: move grasped object to <p>lamp</p><seg>

Pseudo long-horizon task

Ta
sk

 1
Ta

sk
 2

Tasks: close the violet jar. Your are in the first step.
Ground-truth: grasp <p> gray lid </p> <seg>

View 1 View K

In
pu

t
M

as
k

Ground-truth: <p> violet jar </p> <seg>

Figure 3: Constructed datasets: (1) robot grounded planning, (2) multi-view referring expressions for
improved object grounding, and (3) pseudo long-horizon tasks for enhanced long-horizon planning.

ground-truth plan {at, ot,M t
o, lt,M

t
l } for multi-view images It at each keystep t 1 in an episode

per task variation. We use 100 episodes for each GemBench training task variation, where each
episode contains randomized object placements (and optionally new distractor objects), resulting in
approximately 15k training tuples for robot grounded planning.
Multi-view referring expression. To strengthen Gondola’s multi-view object grounding capabilities,
we further create a multi-view referring expression dataset based on RLBench. Recognizing that
the default semantic labels in RLBench contain noises and ambiguities, we implement an automatic
preprocessing pipeline to standardize and refine object names in RLBench. More detail is presented
in Appendix B. Similar to grounded planning generation, we automatically extract all object instances
and their corresponding segmentation masks for each keystep in GemBench training split, yielding
15k multi-view image examples and 58k referring expressions. For each training example, we
formulate the referring query as “Please segment one of the [object name]” with the expected output
being the corresponding segmentation masks across all input view images.
Pseudo long-horizon tasks. To enhance planning for long-horizon tasks, we propose to automatically
generate pseudo long-horizon sequences. Specifically, we randomly concatenate pairs of different
training task sequences from GemBench training split to create compositional tasks. We then use an
LLM to create coherent joint instructions for the combined tasks. Despite the abrupt scene transitions
between tasks, these pseudo long-horizon tasks still help the model learn to leverage history plans to
track task progress, and predict the next step based on long-horizon context.

3.3 Training Objectives

Gondola is trained to jointly optimize plan generation and multi-view object grounding. For plan
generation, we employ the cross-entropy loss for next token prediction:

Lplan = −
∑

log p(yi|y<i, I, L,H), (1)

where yi represents tokens in the generated plan including the special tokens. For multi-view object
grounding, we adopt a joint loss of binary mask prediction and dice loss Lgrd = Lbce + Ldice:

Lbce = −
∑

[Mgt(p) · log(Mpred(p)) + (1−Mgt(p)) · log(1−Mpred(p))], (2)

Ldice = 1−
2
∑

p Mpred(p) ·Mgt(p)∑
p Mpred(p) +

∑
p Mgt(p) + ϵ

, (3)

where p indexes over all pixels in the mask, Mpred(p) is the predicted probability, Mgt(p) is the
ground-truth binary label, and ϵ is a small constant for numerical stability.

4 Experiments
4.1 Evaluation Datasets and Metrics

We evaluate Gondola on the GemBench benchmark [14] for robotic manipulation in RLBench [26]
simulator. GemBench assesses models’ generalization capabilities across four levels: Level 1 (L1)
1The keystep is defined as step with significant motion change as in prior work [32, 35, 39, 14, 37], which helps
avoid over-sampling similar images in training.

5

with new locations, Level 2 (L2) with novel rigid objects, Level 3 (L3) with new articulated objects,
and Level 4 (L4) with unseen long-horizon tasks. To ensure a fair evaluation on generalization, tasks
from L2 to L4 are excluded during training. The benchmark includes 31 task variations in L1, 28 in
L2, 21 in L3 and 12 in L4. We conduct the following two types of evaluation:
• Grounded planning evaluation. This setup purely assesses models’ grounded planning perfor-
mance given instruction, multi-view images and ground-truth history plans. We construct a grounded
planning evaluation set given the GemBench validation split. It contains 20 episodes per task variation
in GemBench. For each keystep in an episode, we provide ground-truth annotations for the next
action, object names and segmentation masks across all views. To evaluate the grounded planning
performance, we measure the accuracy of action and object name predictions through exact text
matches for each keystep. For grounding evaluation, we calculate the intersection over union (IoU)
between predicted and ground-truth masks for each view. The averaged performances of each metric
on all keysteps are reported for each generalization level of GemBench.
• Task completion evaluation. This setup integrates Gondola with low-level motion planning
policies to execute the generated plans. We adopt the standard camera configuration in GemBench,
using K = 4 cameras positioned at the front, left shoulder, right shoulder and wrist, each with an
image resolution of 256× 256. For evaluation, we use the GemBench test split across all four levels,
conducting 20 episodes per task variation for 5 times, resulting in 20 × 5 × (31 + 28 + 21 + 12)
evaluation episodes in total. Each episode is limited to a maximum of 25 steps. Task performance is
measured by success rate (SR), where SR is 1 for a successful episode and 0 for failure. We report
mean SR and standard deviations across the 5 runs.

4.2 Implementation Details

Training Gondola. We train the Gondola model using 8 NVIDIA H100 GPUs with training scripts
built on the DeepSpeed engine [64]. The image encoder and SAM2 encoder are kept frozen during
training. We apply LoRA [63] with rank 128 for parameter-efficient fine-tuning of the LLM, and the
SAM2 mask decoder is also fine-tuned. The model is optimized with AdamW, using a learning rate
of 2× 10−5 for all trainable parameters. The batch size per device is set to 4, resulting in an effective
batch size of 32. It takes 3 hours for training 10k iterations over the three constructed datasets.
Integrating Gondola with low-level policies. For fair comparison with prior work, we employ the
same motion planning policy released by 3D-LOTUS++ [14]. Unlike 3D-LOTUS++ [14] which
performs task planning only once and then executes the plan, our approach runs the task and motion
planning models iteratively in a feedback loop, enabling continuous re-planning and corrections
as needed. Specifically, at each step, Gondola takes multi-view RGB images, instruction and
previously executed history plans as input to produce the next plan, including the next action, the
manipulated object, and/or the target location together with grounded masks on each view. Then we
combine aligned depth images with these masks and unify the segmented objects across views into
a consolidated 3D point cloud. Following [14], each point is assigned with one of four categories
based on the segmentation results and robot proprioceptive information, namely target object, target
location, robot, and obstacle. The predicted action name and the point cloud are fed into the 3D
motion planning policy in [14] to generate a sequence of actions. We can either run the entire action
sequence as in action chunking [3] or execute one action at a time before re-planning with Gondola.
We compare the two strategies in Table 3.

4.3 Ablation Studies

Boxes vs. Masks. We compare Gondola’s mask-based grounding approach with a box-based variant.
The box variant (row 1) in Table 1 directly generates bounding boxes as textual outputs as illustrated
in the middle of Figure 1a. We use the same image encoder and LLM as Gondola (row 4) for fair
comparison. To measure the mask IoU, the predicted boxes are fed into the SAM2 model to produce
segmentation masks. We observe that the box-based model frequently suffers from format errors, as
generating multiple numeric values for multiple images can be challenging. It performs worse across
all levels in both action and object name accuracy, and shows significantly lower grounding quality
in terms of mask IoU. These results highlight the advantages of end-to-end mask generation within
VLMs, which provides more accurate and reliable grounding for robotic planning.

6

Table 1: Performance on grounded planning evaluation. We measure the action (Act) and object
(Obj) name prediction accuracy and grounding performance (Grd) on the four levels of GemBench
validation split. All the models are fine-tuned on the robot grounded planning dataset.

L1 L2 L3 L4Grd
type

Multi-
view

Hist-
ory Act Obj Grd Act Obj Grd Act Obj Grd Act Obj Grd

Box ✓ ✓ 95.1 93.7 62.8 97.4 89.0 58.7 69.3 53.8 46.2 70.0 36.8 16.6
Mask × × 98.0 98.2 87.8 95.1 89.5 79.8 79.3 76.3 62.7 77.2 40.0 37.4
Mask ✓ × 100 100 88.6 98.0 91.3 81.2 85.6 75.6 61.4 89.9 50.1 46.5
Mask ✓ ✓ 100 100 87.9 99.0 93.3 79.2 88.6 83.9 66.4 79.4 44.9 40.0

Table 2: Performance on grounded planning evaluation. All the models use multi-view and history
plans for mask generation, but are fine-tuned on different composition of datasets: robot grounded
planning (Plan), multi-view referring expression (RefExp), and pseudo long-horizon tasks (Long).

Finetuning Data L1 L2 L3 L4
Plan RefExp Long Act Obj Grd Act Obj Grd Act Obj Grd Act Obj Grd

✓ × × 100 100 87.9 99.0 93.3 79.2 88.6 83.9 66.4 79.4 44.9 40.0
✓ ✓ × 100 100 89.1 99.0 95.1 84.2 92.1 88.2 73.3 72.1 42.3 41.7
✓ ✓ ✓ 100 100 89.5 99.7 95.3 85.2 88.5 82.2 73.8 93.9 51.2 53.8

Multi-view inputs. The comparison between the 2nd and 3rd rows in Table 1 showcases the impact
of multi-view image inputs for robot task planning. In the 2nd row, only the front-view image is
provided to the model, whereas in the 3rd row, all four views are used. Multi-view images help
mitigate occlusions and generally improve action, object and grounding prediction across levels, with
only slight worse performance on a few metrics in L3 compared to the single-view setting.
History plans. The last two rows in Table 1 compares the effect of incorporating history plans into
task planning. Including history information boosts the performance on L2 and L3 by enabling
more coherent and context-aware planning decisions. However, on L4, we observe a significant
performance drop compared to the model without history. An in-depth analysis reveals that this
decline is due to a distribution shift in history plans. As a result, the model tends to leverage its prior
knowledge for generating purely textual plans rather than grounded plans. In contrast, the model
without history does not suffer from this distribution shift. This issue can be addressed by training on
our constructed pseudo long-horizon data, as shown in Table 2.

Data

G
rd

0.600

0.650

0.700

0.750

0.800

0% 25% 50% 75% 100%
Figure 4: Averaged performance on
grounded planning evaluation.

Fine-tuning datasets. Table 2 evaluates the contribution of
each fine-tuning dataset. The multi-view referring expression
dataset proves most effective in improving segmentation quality,
leading to consistently better grounding performance across all
four levels. The pseudo long-horizon task dataset is particularly
beneficial for L4, as it mitigates the history plan shift issue and
encourages the model to reason over extended plan histories.

Table 3: Success rate of task execution on four levels
of GemBench testing split. The Gondola model is inte-
grated with a 3D-based motion planning policy.

Act
chunk

3D
filter Uni L1 L2 L3 L4

× × 80.8±1.2 68.5±1.5 48.6±1.1 4.1±1.3

× ✓ 87.3±1.9 74.8±1.8 52.4±2.1 19.0±1.05
✓ ✓ 86.5±1.2 74.4±1.1 51.1±1.5 19.7±1.7

× ✓ 90.8±1.2 78.2±1.4 49.5±0.5 14.9±2.21
✓ ✓ 90.5±0.3 78.1±1.8 49.3±0.9 15.9±2.1

Scalability and data efficiency. Figure 4
shows grounding performance averaged
over 4 levels with varying percentages of
finetuning data. With just 10% of the data,
the model reaches 87% of the full-data per-
formance, and performance continues to
improve as more data is used.
Unified planning and grounding. Gon-
dola unifies textual task planning and ob-
ject grounding within a single framework.
To highlight the benefit, we train two sep-

arate models, one for task planning and another for grounding. As shown in the first two rows of
Table 3, unification yields better performance while also being more memory- and compute-efficient.
Action chunking. As shown in Table 3, when the action chunk size for running the motion planning
policy is set to 1, Gondola replans at every step; when set to 5, it replans only after the motion
planning policy completes the previous subplan. We observe that the impact of action chunk size

7

Table 4: Performance on four levels of GemBench testing split.

Method L1 L2 L3 L4

w/o LLM

Hiveformer [32] 60.3±1.5 26.1±1.4 35.1±1.7 0.0±0.0

PolarNet [35] 77.7±0.9 37.1±1.4 38.5±1.7 0.1±0.2

3D diffuser actor [38] 91.9±0.8 43.4±2.8 37.0±2.2 0.0±0.0

RVT-2 [39] 89.1±0.8 51.0±2.3 36.0±2.2 0.0±0.0

3D-LOTUS [14] 94.3±1.4 49.9±2.2 38.1±1.1 0.3±0.3

w/ LLM

BridgeVLA [65] 91.1±1.1 65.0±1.3 43.8±1.2 0.0±0.0

3D-LOTUS++ [14] 68.7±0.6 64.5±0.9 41.5±1.8 17.4±0.4

Gondola (Ours) 87.3±1.9 74.8±1.8 52.4±2.1 19.0±1.0

varies depending on tasks. Detailed results and analysis are provided in Appendix D. In general, for
tasks requiring fine-grained manipulation, frequent replanning (i.e., smaller action chunks) yields
better performance. In contrast, for long-horizon tasks that benefit from consistent, high-level
planning, using a larger action chunk is more effective since the current Gondola model does not
encode fine-grained history within subplans, which can limit coherent decision-making at this level.
3D postprocessing. We ablate a postprocessing step that applies 3D point cloud filtering using the
DBSCAN algorithm to remove outlier points in grounded masks. Results show that this step offers
minimal improvement, indicating that Gondola already produces spatially coherent object masks.

4.4 Comparison with state of the art

Table 4 presents a comparison of our Gondola model with state-of-the-art methods on the GemBench
test split. Gondola is combined with the same motion policy in 3D-LOTUS++ [14] with action
chunking size of 5 and no 3D postprocessing. The methods in the upper section do not use LLMs
for planning but rely on end-to-end policy training to predict actions directly. While these methods
perform well on seen tasks in L1, they show limited generalization to unseen objects in L2 and L3
and struggle with unseen long-horizon tasks in L4. BridgeVLA [65] is an end-to-end VLA model
fine-tuned on the GemBench dataset. Thanks to large-scale Internet pretraining, it achieves strong
performance on training tasks and generalizes better than non-pretrained models in the first block.
However, its joint fine-tuning of vision and actions on the robot dataset may be suboptimal, leading
to worse performance than our hierarchical model on levels L2–L4. Compared to 3D-LOTUS++ [14],
which uses extensive engineering and in-context learning to enable LLM-based planning without
visual input, our Gondola model offers a straightforward approach to directly generate grounded
plans for follow-up motion planning. Gondola outperforms 3D-LOTUS++ [14] by 10.3% on novel
rigid objects in L2, 10.9% on novel articulated objects in L3 and 1.6% in L4 of long-horizon tasks.
Detailed results per task and qualitative examples are included in Appendix D. We further deploy
Gondola in LIBERO and a real robot with results in Appendix E.

5 Conclusion

This paper presents Gondola, a grounded vision-language planning model to improve generalization
in robotic manipulation. Gondola features with multi-view perception and the incorporation of
planning history to generate fine-grained segmentation masks in the action plan. We construct
three simulated datasets based on RLBench for model training, including robot grounded planning,
multi-view referring expressions and pseudo long-horizon tasks datasets. Gondola demonstrates
superior performance in both standalone planning and full execution on the GemBench benchmark,
achieving stronger generalization abilities on novel rigid and articulated objects and long-horizon
tasks. Our experiments highlight the importance of multi-view grounding, temporal reasoning, and
end-to-end mask generation for effective robotic planning.
Acknowledgements. This work was partially supported by the HPC resources from GENCI-IDRIS (Grant
20XX-AD011012122 and AD011014846). It was funded in part by the French government under management
of Agence Nationale de la Recherche as part of the “France 2030” program, reference ANR-23-IACL-0008
(PR[AI]RIE-PSAI projet), the ANR project VideoPredict (ANR-21-FAI1-0002-01), and the Paris Île-de-France
Région in the frame of the DIM AI4IDF.

8

References
[1] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino,

M. Plappert, G. Powell, R. Ribas, et al. Solving rubik’s cube with a robot hand. arXiv preprint
arXiv:1910.07113, 2019.

[2] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song. Diffusion policy:
Visuomotor policy learning via action diffusion. arXiv:2303.04137, 2023.

[3] Z. Fu, T. Z. Zhao, and C. Finn. Mobile aloha: Learning bimanual mobile manipulation with
low-cost whole-body teleoperation. arXiv preprint arXiv:2401.02117, 2024.

[4] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Haus-
man, A. Herzog, J. Hsu, et al. Rt-1: Robotics transformer for real-world control at scale.
arXiv:2212.06817, 2022.

[5] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choromanski, T. Ding, D. Driess,
A. Dubey, C. Finn, et al. Rt-2: Vision-language-action models transfer web knowledge to
robotic control. arXiv preprint arXiv:2307.15818, 2023.

[6] D. Driess, F. Xia, M. S. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J. Tompson,
Q. Vuong, T. Yu, et al. Palm-e: An embodied multimodal language model. arXiv preprint
arXiv:2303.03378, 2023.

[7] O. M. Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees, S. Dasari, J. Hejna, T. Kreiman,
C. Xu, et al. Octo: An open-source generalist robot policy. arXiv preprint arXiv:2405.12213,
2024.

[8] M. J. Kim, K. Pertsch, S. Karamcheti, T. Xiao, A. Balakrishna, S. Nair, R. Rafailov, E. Foster,
G. Lam, P. Sanketi, et al. Openvla: An open-source vision-language-action model. arXiv
preprint arXiv:2406.09246, 2024.

[9] Q. Vuong, S. Levine, H. R. Walke, K. Pertsch, A. Singh, R. Doshi, C. Xu, J. Luo, L. Tan,
D. Shah, et al. Open x-embodiment: Robotic learning datasets and rt-x models. In CoRL, 2023.

[10] A. Khazatsky, K. Pertsch, S. Nair, A. Balakrishna, S. Dasari, S. Karamcheti, S. Nasiriany, M. K.
Srirama, L. Y. Chen, K. Ellis, et al. Droid: A large-scale in-the-wild robot manipulation dataset.
In RSS 2024 Workshop: Data Generation for Robotics.

[11] AgiBot-World-Contributors, Q. Bu, J. Cai, L. Chen, X. Cui, Y. Ding, S. Feng, S. Gao, X. He,
X. Hu, X. Huang, S. Jiang, Y. Jiang, C. Jing, H. Li, J. Li, C. Liu, Y. Liu, Y. Lu, J. Luo, P. Luo,
Y. Mu, Y. Niu, Y. Pan, J. Pang, Y. Qiao, G. Ren, C. Ruan, J. Shan, Y. Shen, C. Shi, M. Shi,
M. Shi, C. Sima, J. Song, H. Wang, W. Wang, D. Wei, C. Xie, G. Xu, J. Yan, C. Yang, L. Yang,
S. Yang, M. Yao, J. Zeng, C. Zhang, Q. Zhang, B. Zhao, C. Zhao, J. Zhao, and J. Zhu. Agibot
world colosseo: A large-scale manipulation platform for scalable and intelligent embodied
systems. arXiv preprint arXiv:2503.06669, 2025.

[12] O. Mees, L. Hermann, E. Rosete-Beas, and W. Burgard. CALVIN: A benchmark for language-
conditioned policy learning for long-horizon robot manipulation tasks. IEEE RA-L, 2022.

[13] W. Pumacay, I. Singh, J. Duan, R. Krishna, J. Thomason, and D. Fox. The colosseum: A bench-
mark for evaluating generalization for robotic manipulation. arXiv preprint arXiv:2402.08191,
2024.

[14] R. Garcia, S. Chen, and C. Schmid. Towards generalizable vision-language robotic manipulation:
A benchmark and LLM-guided 3D policy. ICRA, 2025.

[15] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence, and A. Zeng. Code as
policies: Language model programs for embodied control. In ICRA, 2023.

9

[16] W. Huang, C. Wang, R. Zhang, Y. Li, J. Wu, and L. Fei-Fei. Voxposer: Composable 3d value
maps for robotic manipulation with language models. arXiv:2307.05973, 2023.

[17] J. Bjorck, F. Castañeda, N. Cherniadev, X. Da, R. Ding, L. Fan, Y. Fang, D. Fox, F. Hu, S. Huang,
et al. Gr00t n1: An open foundation model for generalist humanoid robots. arXiv preprint
arXiv:2503.14734, 2025.

[18] AI@Meta. Llama 3 model card, 2024. URL https://github.com/meta-llama/
llama3/blob/main/MODEL_CARD.md.

[19] OpenAI. GPT-4 technical report. arXiv:2302.11550, 2023.

[20] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch. Language models as zero-shot planners:
Extracting actionable knowledge for embodied agents. In ICML, 2022.

[21] A. Brohan, Y. Chebotar, C. Finn, K. Hausman, A. Herzog, D. Ho, J. Ibarz, A. Irpan, E. Jang,
R. Julian, et al. Do as i can, not as i say: Grounding language in robotic affordances. In CoRL,
2023.

[22] Z. Michał, C. William, P. Karl, M. Oier, F. Chelsea, and L. Sergey. Robotic control via embodied
chain-of-thought reasoning. In CORL, 2024.

[23] X. Li, C. Mata, J. Park, K. Kahatapitiya, Y. S. Jang, J. Shang, K. Ranasinghe, R. Burgert, M. Cai,
Y. J. Lee, et al. Llara: Supercharging robot learning data for vision-language policy. arXiv
preprint arXiv:2406.20095, 2024.

[24] W. Yuan, J. Duan, V. Blukis, W. Pumacay, R. Krishna, A. Murali, A. Mousavian, and D. Fox.
Robopoint: A vision-language model for spatial affordance prediction for robotics. arXiv
preprint arXiv:2406.10721, 2024.

[25] H. Yuan, X. Li, T. Zhang, Z. Huang, S. Xu, S. Ji, Y. Tong, L. Qi, J. Feng, and M.-H. Yang.
Sa2va: Marrying sam2 with llava for dense grounded understanding of images and videos.
arXiv preprint arXiv:2501.04001, 2025.

[26] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison. Rlbench: The robot learning benchmark &
learning environment. IEEE RA-L, 2020.

[27] L. Shao, T. Migimatsu, Q. Zhang, K. Yang, and J. Bohg. Concept2robot: Learning manipulation
concepts from instructions and human demonstrations. IJRR, 2021.

[28] C. Lynch, A. Wahid, J. Tompson, T. Ding, J. Betker, R. Baruch, T. Armstrong, and P. Florence.
Interactive language: Talking to robots in real time. IEEE RA-L, 2023.

[29] S. Stepputtis, J. Campbell, M. Phielipp, S. Lee, C. Baral, and H. Ben Amor. Language-
conditioned imitation learning for robot manipulation tasks. NeurIPS, 2020.

[30] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly, M. Kalakr-
ishnan, V. Vanhoucke, et al. Scalable deep reinforcement learning for vision-based robotic
manipulation. In CoRL, 2018.

[31] E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch, S. Levine, and C. Finn. Bc-z:
Zero-shot task generalization with robotic imitation learning. In CoRL, 2022.

[32] P.-L. Guhur, S. Chen, R. Garcia Pinel, M. Tapaswi, I. Laptev, and C. Schmid. Instruction-driven
history-aware policies for robotic manipulations. In CoRL, 2023.

[33] M. Shridhar, L. Manuelli, and D. Fox. Perceiver-actor: A multi-task transformer for robotic
manipulation. In CoRL, 2023.

[34] A. Goyal, J. Xu, Y. Guo, V. Blukis, Y.-W. Chao, and D. Fox. Rvt: Robotic view transformer for
3d object manipulation. In CoRL, 2023.

10

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md

[35] S. Chen, R. Garcia, C. Schmid, and I. Laptev. Polarnet: 3d point clouds for language-guided
robotic manipulation. In CoRL, 2023.

[36] S. Chen, R. Garcia, I. Laptev, and C. Schmid. Sugar: Pre-training 3d visual representations for
robotics. CVPR, 2024.

[37] T. Gervet, Z. Xian, N. Gkanatsios, and K. Fragkiadaki. Act3d: 3d feature field transformers for
multi-task robotic manipulation. In CoRL, 2023.

[38] T.-W. Ke, N. Gkanatsios, and K. Fragkiadaki. 3d diffuser actor: Policy diffusion with 3d scene
representations. arXiv:2402.10885, 2024.

[39] A. Goyal, V. Blukis, J. Xu, Y. Guo, Y.-W. Chao, and D. Fox. Rvt2: Learning precise manipula-
tion from few demonstrations. In RSS, 2024.

[40] G. Tziafas and H. Kasaei. Towards open-world grasping with large vision-language models.
arXiv preprint arXiv:2406.18722, 2024.

[41] S. James, K. Wada, T. Laidlow, and A. J. Davison. Coarse-to-fine q-attention: Efficient learning
for visual robotic manipulation via discretisation. In CVPR, 2022.

[42] E. Chisari, N. Heppert, M. Argus, T. Welschehold, T. Brox, and A. Valada. Learning robotic
manipulation policies from point clouds with conditional flow matching. arXiv preprint
arXiv:2409.07343, 2024.

[43] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervision.
In ICML, 2021.

[44] T. Yu, T. Xiao, A. Stone, J. Tompson, A. Brohan, S. Wang, J. Singh, C. Tan, D. M, J. Peralta,
B. Ichter, K. Hausman, and F. Xia. Scaling robot learning with semantically imagined experience.
arXiv:2302.11550, 2023.

[45] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C.
Berg, W.-Y. Lo, P. Dollár, and R. Girshick. Segment anything. arXiv:2304.02643, 2023.

[46] Y. Hu, F. Lin, T. Zhang, L. Yi, and Y. Gao. Look before you leap: Unveiling the power of gpt-4v
in robotic vision-language planning. arXiv:2311.17842, 2023.

[47] G. OpenAI. 4v (ision) system card. preprint, 2023.

[48] H. Liu, C. Li, Q. Wu, and Y. J. Lee. Visual instruction tuning. NeurIPS, 2024.

[49] H. Liu, C. Li, Y. Li, and Y. J. Lee. Improved baselines with visual instruction tuning. In CVPR,
2024.

[50] Z. Peng, W. Wang, L. Dong, Y. Hao, S. Huang, S. Ma, and F. Wei. Kosmos-2: Grounding
multimodal large language models to the world. arXiv preprint arXiv:2306.14824, 2023.

[51] K. Chen, Z. Zhang, W. Zeng, R. Zhang, F. Zhu, and R. Zhao. Shikra: Unleashing multimodal
llm’s referential dialogue magic. arXiv preprint arXiv:2306.15195, 2023.

[52] J. Chen, D. Zhu, X. Shen, X. Li, Z. Liu, P. Zhang, R. Krishnamoorthi, V. Chandra, Y. Xiong,
and M. Elhoseiny. Minigpt-v2: large language model as a unified interface for vision-language
multi-task learning. arXiv preprint arXiv:2310.09478, 2023.

[53] H. You, H. Zhang, Z. Gan, X. Du, B. Zhang, Z. Wang, L. Cao, S.-F. Chang, and Y. Yang. Ferret:
Refer and ground anything anywhere at any granularity. arXiv preprint arXiv:2310.07704,
2023.

11

[54] W. Wang, Q. Lv, W. Yu, W. Hong, J. Qi, Y. Wang, J. Ji, Z. Yang, L. Zhao, X. Song, et al.
Cogvlm: Visual expert for pretrained language models. arXiv preprint arXiv:2311.03079, 2023.

[55] J. Liu, H. Ding, Z. Cai, Y. Zhang, R. K. Satzoda, V. Mahadevan, and R. Manmatha. Polyformer:
Referring image segmentation as sequential polygon generation. In CVPR, 2023.

[56] C. Ma, Y. Jiang, J. Wu, Z. Yuan, and X. Qi. Groma: Localized visual tokenization for grounding
multimodal large language models. In ECCV, 2025.

[57] Y. Zhang, Z. Ma, X. Gao, S. Shakiah, Q. Gao, and J. Chai. Groundhog: Grounding large
language models to holistic segmentation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 14227–14238, 2024.

[58] X. Lai, Z. Tian, Y. Chen, Y. Li, Y. Yuan, S. Liu, and J. Jia. Lisa: Reasoning segmentation via
large language model. In CVPR, 2024.

[59] H. Zhang, H. Li, F. Li, T. Ren, X. Zou, S. Liu, S. Huang, J. Gao, C. Li, J. Yang, et al. Llava-
grounding: Grounded visual chat with large multimodal models. In ECCV. Springer, 2025.

[60] H. Rasheed, M. Maaz, S. Shaji, A. Shaker, S. Khan, H. Cholakkal, R. M. Anwer, E. Xing, M.-H.
Yang, and F. S. Khan. Glamm: Pixel grounding large multimodal model. In CVPR, 2024.

[61] Z. Chen, J. Wu, W. Wang, W. Su, G. Chen, S. Xing, M. Zhong, Q. Zhang, X. Zhu, L. Lu, et al.
Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 24185–24198, 2024.

[62] N. Ravi, V. Gabeur, Y.-T. Hu, R. Hu, C. Ryali, T. Ma, H. Khedr, R. Rädle, C. Rolland,
L. Gustafson, et al. Sam 2: Segment anything in images and videos. arXiv preprint
arXiv:2408.00714, 2024.

[63] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. Lora:
Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685, 2021.

[64] J. Rasley, S. Rajbhandari, O. Ruwase, and Y. He. Deepspeed: System optimizations enable
training deep learning models with over 100 billion parameters. In ACM SIGKDD, 2020.

[65] P. Li, Y. Chen, H. Wu, X. Ma, X. Wu, Y. Huang, L. Wang, T. Kong, and T. Tan. Bridgevla:
Input-output alignment for efficient 3d manipulation learning with vision-language models.
arXiv preprint arXiv:2506.07961, 2025.

[66] B. Liu, Y. Zhu, C. Gao, Y. Feng, Q. Liu, Y. Zhu, and P. Stone. Libero: Benchmarking knowledge
transfer for lifelong robot learning. Advances in Neural Information Processing Systems, 36:
44776–44791, 2023.

12

A Limitations

First, data scarcity remains a major bottleneck for Gondola. Our current dataset is limited to short-
horizon tasks in controlled tabletop environments from the GemBench training split, which restricts
generalization to unseen objects and more complex long-horizon tasks. Expanding the dataset with
more diverse simulated and real-world data is essential.
Second, visual history encoding can be improved. Multi-view inputs introduce many image tokens,
making it difficult to include detailed historical context. A more efficient memory mechanism could
support richer history representation without overwhelming the model.
Lastly, our approach relies solely on imitation learning from successful episodes, making it challeng-
ing for the model to anticipate and correct errors. Introducing examples of failure and recovery could
better equip Gondola for robust, real-world applications.

B Data Construction in RLBench

We detail the label construction from RLBench in Section 3.2. RLBench contains scripted trajectories
for each task, and every object in the scene already has a name and an associated label id. We use
regular expressions to filter out undesired objects and fix object names by removing undesired name
parts, prefix numbers or words such as distractor or success. For the set of objects whose color
changes from one task variation to the other, we prepend the color name whose RGB value is closest
to the RGB value of the object color. We consider 20 different colors that appear in RLBench: red,
maroon, lime, green, blue, navy, yellow, cyan, magenta, silver, gray, orange, olive, purple, teal, azure,
violet, rose, black and white. We use 3100 episodes from the 31 GemBench training task variations.
For each keystep, we collect RGB images per camera viewpoint, the extracted list of object names in
the scene, and object masks across views.

C Comparison with RoboPoint

RoboPoint [24] is a VLM finetuned on synthetic robot images to generate points given the instruction.
Without fine-tuning on downstream data, RoboPoint performs poorly. It generates multiple points,
some of which fall outside the target object, reducing overall performance. Moreover, it uses only
a single-view image, resulting in inconsistency across views when multiple instances of the same
category exist. In offline evaluation, RoboPoint+SAM achieves grounding IoU scores of 23.0, 22.0,
18.6, 18.2 across the four levels given ground-truth object names - significantly lower than our model.

D Detailed Results on GemBench

Table 5 to 8 present the per-task results on four levels of GemBench benchmark, respectively.
We observe that the impact of action chunk size varies depending on tasks. Frequent replanning (i.e.,
smaller action chunks) yields better performance for tasks requiring fine-grained and reactive actions
such as ‘SlideBlock’ and ‘PutInCupboard’. For example, in the ‘PutInCupboard’ task as shown in
Figure 5, Step 2 involves moving the grasped object to the cupboard. Although the predictions of
Gondola are correct, the partial observation of the cupboard makes it difficult to precisely localize its
position for the motion planner, causing the object to fall outside the intended area. This issue could
be mitigated by using smaller action chunks, which would allow the model to gradually get closer and
acquire better views of the cupboard. While Gondola has replanning capabilities as shown in Step 5,
the motion planner fails again due to the new object pose. Figure 6 shows a failure example for the
‘SlideBlock’ task. It is challenging for the motion planner to predict long-horizon action trajectories
for this contact-rich task, though the initial plan generated from Gondola is correct.
In contrast, for long-horizon tasks in Level 4 that benefit from consistent, high-level planning, using
a larger action chunk is more effective since the current Gondola model does not encode fine-grained
history within subplans, which can limit coherent decision-making at this level.

13

Table 5: Detailed performance on each task variation on GemBench Level 1. ‘AC’ denote action
chunk size.

Method Avg. Close
Fridge+0

Close
Jar+15

Close
Jar+16

CloseLap-
topLid+0

CloseMicro-
wave+0

LightBulb
In+17

LightBulb
In+19

Open
Box+0

Open
Door+0

3D-LOTUS++ [14] 68.7 95 100 99 28 87 55 45 55 79
Gondola (AC=5) 87.3 96 99 100 96 82 85 81 63 79
Gondola (AC=1) 90.8 97 100 100 98 83 80 73 55 73

Method Open
Drawer+0

Open
Drawer+2

Pick&
Lift+0

Pick&
Lift+2

Pick&
Lift+7

PickUp
Cup+11

PickUp
Cup+8

PickUp
Cup+9

Push
Button+0

Push
Button+3

3D-LOTUS++ [14] 68 75 97 94 93 91 86 88 100 100
Gondola (AC=5) 82 97 97 97 98 88 95 90 100 100
Gondola (AC=1) 84 96 100 100 97 96 97 94 97 100

Method Push
Button+4

PutInCup-
board+0

PutInCup-
board+3

PutMoney
InSafe+0

PutMoney
InSafe+1

Reach&
Drag+14

Reach&
Drag+18

Slide
Block+0

Slide
Block+1

Stack
Blocks+30

3D-LOTUS++ [14] 100 1 2 22 16 94 62 100 65 86
Gondola (AC=5) 100 58 55 89 73 97 98 100 74 76
Gondola (AC=1) 100 81 72 96 94 100 100 100 95 89

Method Stack
Blocks+36

Stack
Blocks+39

3D-LOTUS++ [14] 20 28
Gondola (AC=5) 81 81
Gondola (AC=1) 84 84

Table 6: Detailed performance on each task variation on GemBench Level 2. ‘AC’ denote action
chunk size.

Method Avg. Close
Jar+3

Close
Jar+4

Lamp
On+0

LightBulb
In+1

LightBulb
In+2

Pick&
Lift+14

Pick&
Lift+16

Pick&
Lift+18

Pick&Lift
Cylinder+0

3D-LOTUS++ [14] 64.5 98 96 2 56 43 94 96 95 91
Gondola (AC=5) 74.8 99 100 1 81 83 96 98 99 78
Gondola (AC=1) 78.2 99 99 0 83 73 98 96 98 89

Method Pick&Lift
Moon+0

Pick&Lift
Star+0

Pick&Lift
Toy+0

PickUp
Cup+10

PickUp
Cup+12

PickUp
Cup+13

Push
Button+13

Push
Button+15

Push
Button+17

PutCube
InSafe+0

3D-LOTUS++ [14] 29 94 71 79 89 84 99 100 99 37
Gondola (AC=5) 91 95 77 84 95 97 99 99 100 42
Gondola (AC=1) 90 95 83 86 96 98 99 100 99 57

Method PutInCup-
board+7

PutInCup-
board+8

Reach&
Drag+5

Reach&
Drag+7

Slide
Block+2

Slide
Block+3

Stack
Blocks+24

Stack
Blocks+27

Stack
Blocks+33

3D-LOTUS++ [14] 1 0 94 64 27 5 22 83 59
Gondola (AC=5) 16 1 97 96 26 10 81 80 72
Gondola (AC=1) 15 2 100 100 23 50 91 85 86

Table 7: Detailed performance on each task variation on GemBench Level 3. ‘AC’ denote action
chunk size.

Method Avg. Close
Box+0

Close
Door+0

Close
Drawer+0

Close
Fridge+0

Close
Grill+0

CloseLaptop
Lid2+0

Close
Microwave2+0

3D-LOTUS++ [14] 41.5 29 1 69 93 19 50 99
Gondola (AC=5) 52.4 57 1 69 93 46 61 99
Gondola (AC=1) 49.5 51 0 46 97 52 66 100

Method Open
Box2+0

Open
Door2+0

Open
Drawer+1

Open
Drawer2+0

Open
Drawer3+0

OpenDrawer
Long+0

OpenDrawer
Long+1

OpenDrawer
Long+2

3D-LOTUS++ [14] 16 52 0 70 41 72 52 23
Gondola (AC=5) 20 57 0 86 61 90 63 34
Gondola (AC=1) 10 43 0 82 71 93 68 50

Method OpenDrawer
Long+3

Open
Fridge+0

OpenLaptop
Lid+0

Open
Microwave+0

PutMoney
InSafe+2

Toilet
SeatUp+0

3D-LOTUS++ [14] 78 0 86 0 13 8
Gondola (AC=5) 93 6 80 0 58 26
Gondola (AC=1) 82 3 87 0 16 22

14

Predicted plan
grasp<p>crackers box</p>[SEG]

Step 0
Multi-view observation

Predicted segmentation masks

Point cloud and predicted actions

black: obstacle
green: robot
blue: target object
red: target location
maroon dots: actions

Predicted plan
move grasped object to <p>cupboard</p>[SEG], release

Step 2
Multi-view observation

Predicted segmentation masks

Point cloud and predicted actions

black: obstacle
green: robot
blue: target object
red: target location
maroon dots: actions

Predicted plan
grasp<p>crackers box</p>[SEG]

Step 5
Multi-view observation

Predicted segmentation masks

Point cloud and predicted actions

black: obstacle
green: robot
blue: target object
red: target location
maroon dots: actions

Predicted plan
move grasped object to <p>cupboard</p>[SEG], release

Step 6
Multi-view observation

Predicted segmentation masks

Point cloud and predicted actions

black: obstacle
green: robot
blue: target object
red: target location
maroon dots: actions

Figure 5: A failure example of the ‘PutInCupboard’ task using Gondola (AC=5). The instruction is
‘put the crackers box in the cupboard’. The predictions of Gondola are correct, but the motion planner
fails in Step 2 due to limited visual information of the cupboard from partial observations. Gondola
replans in Step 5, but the motion planner fails due to the new object pose.

Predicted plan
push forward<p>red cube</p>[SEG]

 to <p>blue square</p>[SEG]

Step 0
Multi-view observation

Predicted segmentation masks Point cloud and predicted actions

black: obstacle
green: robot
blue: target object
red: target location
maroon dots: actions

Predicted plan
push forward<p>red cube</p>[SEG]

 to <p>green square</p>[SEG]

Step 5
Multi-view observation

Predicted segmentation masks
Point cloud and predicted actions

black: obstacle
green: robot
blue: target object
red: target location
maroon dots: actions

History plan:
You are in the first step.

History plan:
Push forward red cube to blue square.

Figure 6: A failure example of the ‘SlideBlock’ task using Gondola (AC=5). The instruction is ‘slide
the block towards the blue plane’. The prediction of Gondola at Step 0 is correct, but it is challenging
for the motion planner to predict long-term actions for this contact-rich task. At Step 5, due to the
wrong history plan fed into Gondola, Gondola fails to replan correctly.

Table 8: Detailed performance on each task variation on GemBench Level 4. ‘AC’ denote action
chunk size.

Method Avg. Push
Buttons4+1

Push
Buttons4+2

Push
Buttons4+3

PutAllGroceries
InCupboard+0

PutItems
InDrawer+0

PutItems
InDrawer+2

PutItems
InDrawer+4

3D-LOTUS++ [14] 17.4 76 49 37 0 0 0 0
Gondola (AC=5) 19.0 82 72 62 0 0 0 0
Gondola (AC=1) 14.9 67 47 44 0 0 0 0

Method Stack
Cups+0

Stack
Cup+3

TakeShoes
OutOfBox+0 Tower4+1 Tower4+3

3D-LOTUS++ [14] 0 0 0 17 30
Gondola (AC=5) 0 0 0 1 11
Gondola (AC=1) 0 0 0 3 18

15

E Real Robot Experiments
E.1 Experimental Setup

Realsense d435

UR5 robot arm + RG6 gripper

Objects

Figure 7: Our setup includes three Re-
alSense D435 cameras and a UR5 robotics
arm equipped with a RG6 gripper.

As illustrated in Figure 7, our real robot setup in-
cludes three RealSense d435 cameras attached to a
table and a 6-DoF UR5 robotic arm equipped with an
RG6 gripper. We collect 20× 7 demonstrations via
teleoperation for 7 variations across 5 tasks: stack cup
(yellow in pink or navy in yellow), put fruit (straw-
berry or peach) in box, open drawer, put item in
drawer and hang mug. Then, we fine-tune Gondola
and the 3D-LOTUS [14] motion planning policy on
a joint dataset of RLBench and the real robot demon-
strations. We evaluate the fine-tuned models on the
same 7 seen task variations with different objects
placements and evaluate generalization capabilities
on 7 new unseen task variations: put fruit (lemon and
banana) in box, put food (tuna can then corn) in box
and put food in plates (croissant in the yellow plate
and grapes in the pink plate). For each task variation,
we run models 10 times and report the success rate.

E.2 Real Robot Results

Table 9 and 10 show the performance on seen and unseen task variations, respectively. The final
performance depends on both Gondola and the motion planning policy. Figure 8 illustrates a
successful prediction by Gondola on a previously unseen task. However, we observe that Gondola
performs worse in the real-world setting compared to simulation, primarily due to the limited amount
of real robot data. As illustrated in Figure 9, the multiview consistency is significantly lower in
the real world, leading to frequent segmentation errors. Increasing the availability of real-world
multi-view images could help address this limitation, and we leave this direction for future work. The
video in the supplementary material showcases more executions on the real robot.

Table 9: Performance of 7 seen task variations
with real robot.

Task Gondola

Stack yellow cup in pink cup 8/10
Stack navy cup in yellow cup 7/10
Put strawberry in box 4/10
Put peach in box 4/10
Open drawer 6/10
Put item in drawer 1/10
Hang mug 5/10

Avg. 5/10

Table 10: Performance of 7 unseen task varia-
tions with real robot.

Task Gondola

Stack red cup in black cup 7/10
Stack black cup in orange cup 2/10
Place the yellow cup inside the red cup,
then the cyan cup on top 2/10
Put lemon in box 5/10
Put banana in box 6/10
Put tuna can in box, then corn in box 3/10
Put croissant in yellow plate,
then grapes in pink plate 1/10

Avg. 3.7/10

E.3 Qualitative Zero-shot Results on LIBERO

Figure 10 shows the zero-shot result on LIBERO benchmark [66]. Although Gondola is only finetuned
on GemBench which contains different robots, numbers of cameras and environments compared to
LIBERO benchmark, it still generates reasonable predictions.

16

Predicted plan and masks
grasp<p>black cup</p>[SEG]Multi-view observation

Instruction: place the black cup onto the orange cup.

Predicted plan and masks
grasp<p>lemon</p>[SEG]Multi-view observation

Instruction: put the lemon in the box.

grasp<p>red cup</p>[SEG]<|end|>

Predicted plan and masks
grasp<p>red cup</p>[SEG]Step 0: Multi-view observation

Instruction: place the red cup onto the yellow cup.

Step 2: Multi-view observation
Predicted plan and masks

move grasped object to <p>yellow cup</p>[SEG], release

Figure 8: Successful examples of Gondola in unseen tasks with real robot.

Predicted plan and masks
grasp<p>black cup</p>[SEG]Multi-view observation

Instruction: place the black cup onto the orange cup.

Predicted plan and masks
grasp<p>lemon</p>[SEG]Multi-view observation

Instruction: put the lemon in the box.

Figure 9: Failure cases of Gondola in unseen tasks with real robot.

Task: Pick up the book
and place it in the
back compartment of
the caddy.

You have completed the
action: grasp book.
move grasped object to
<p>back shelf</p>[SEG]

You are in the first
step.
grasp<p>book</p>
[SEG]

Figure 10: Zero-shot planning result on LIBERO dataset.

17

	Introduction
	Related Work
	Gondola: Grounded Vision-Language Plan Generation
	Model Architecture
	Training Data
	Training Objectives

	Experiments
	Evaluation Datasets and Metrics
	Implementation Details
	Ablation Studies
	Comparison with state of the art

	Conclusion
	Limitations
	Data Construction in RLBench
	Comparison with RoboPoint
	Detailed Results on GemBench
	Real Robot Experiments
	Experimental Setup
	Real Robot Results
	Qualitative Zero-shot Results on LIBERO

