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ABSTRACT

Scene flow estimation, which predicts the 3D motion of scene points from point
clouds, is a core task in autonomous driving and many other 3D vision applica-
tions. Existing methods either suffer from structure distortion due to ignorance
of rigid motion consistency or require explicit pose estimation and 3D object seg-
mentation. Errors of estimated poses and segmented objects would yield inaccu-
rate rigidity constraints and in turn mislead scene flow estimation. In this paper,
we propose a novel weight-sharing aggregation (WSA) method for feature and
scene flow up-sampling. WSA does not rely on estimated poses and segmented
objects, and can implicitly enforce rigidity constraints to avoid structure distortion
in scene flow estimation. To further exploit geometric information and preserve
local structure, we design a deformation degree module aim to keep the local re-
gion invariance. We modify the PointPWC-Net and integrate the proposed WSA
and deformation degree module into the enhanced PointPWC-Net to derive an
end-to-end scene flow estimation network, called WSAFlowNet. Extensive ex-
perimental results on the FlyingThings3D (Mayer et al., 2016) and KITTI (Menze
et al., 2018) datasets demonstrate that our WSAFlowNet achieves the state-of-
the-art performance and outperforms previous methods by a large margin. We
will release the source code of WSAFlowNet upon the publicity of the paper.

1 INTRODUCTION

Estimating the 3D motion of scene points from two consecutive frames, known as scene flow esti-
mation, is vital to many 3D applications including autonomous driving (Zhai et al., 2020; Behl et al.,
2019; Pontes et al., 2020; Deng & Zakhor, 2023). Traditional methods usually estimate scene flow
from RGB or RGB-D images (Menze & Geiger, 2015; Pons et al., 2007; Chi et al., 2021; Wedel
et al., 2011; Quiroga et al., 2014). Recently, due to the increasing application of 3D sensors such as
LiDAR, directly estimating scene flow from 3D point clouds has attracted a lot of interests.

In recent years, with the evolution of deep learning, neural networks have become a popular ap-
proach for handling point cloud data. For instance, FlowNet3D (Liu et al., 2019) designs an end-to-
end scene flow estimation network based on PointNet++ and introduces a flow embedding layer to
encode 3D motion between the source and target point clouds. Similarly, PointPWC-Net (Wu et al.,
2020) adopts PointConv (Wu et al., 2019) as the convolution operation, and proposes a learnable
patch-to-patch cost volume and a coarse-to-fine strategy to improve the accuracy, in particular for
points with large displacements. However, the coarse-to-fine strategy used in PointPWC-Net could
also lead to error accumulation in the early stages. To address this problem, PV-RAFT (Wei et al.,
2021) leverages a gated recurrent unit (GRU (Teed & Deng, 2020) ) based optimization architecture.
Specifically, PV-RAFT builds the point-voxel correlation fields to capture both local and long-range
motion and then iteratively optimizes the estimated motion via GRU updaters. Despite the success
of these works, they ignore the fact that the scene flow for points of the same rigid object should
conform to the same geometric transformation, i.e., rigid motion consistency. As a result, these
methods could suffer from rigid structure distortion in the scene flow estimation.

To solve the above mentioned problem, we propose a network that utilizes implicit rigidity con-
straints based on the coarse-to-fine architecture. We focus on the internal relations within the point’s
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neighborhood N (pi). First, we propose a weight-sharing aggregation approach which is utilized
in the upsampling layer and implicitly enforces the rigidity constraints to avoid structure distortion
in scene flow estimation. Importantly, our method does not require explicit rigid object cluster-
ing/segmentation or pose estimation, which helps to avoid error interference that may arise from
combining multiple tasks. The key idea of weight-sharing aggregation is grounded in our mathe-
matical analysis. For a given 3D point pi and its neighboring points N (pi), using identical weights
to aggregate the point coordinate, along with their features and the scene flow of N (pi) can enforce
consistent motion implicitly among the points in N (pi).

Furthermore, we propose a deformation degree module which measures the deformation degree of
local structure between the reference points N (pi) and the warped points N (pwi ). It is constructed
using the source point cloud and predicted scene flow, to further enhance local structure consistency.
The deformation degree module serves as an additional input for our estimator providing supple-
mentary geometric information. We build a scene flow estimation network, named WSAFlowNet,
by integrating our weight-sharing aggregation and deformation degree module into an enhanced ver-
sion of PointPWC-Net (Wu et al., 2020). Extensive experimental results demonstrate the effective-
ness and generalization capability of our method. Our method surpasses the current state-of-the-art
methods Bi-PointFlowNet (Cheng & Ko, 2022). According to the EPE3D metric, we outperform
Bi-PointFlowNet by 14.6% on the FlyingThings3D (Mayer et al., 2016) dataset, and by 7.6% on the
KITTI (Menze et al., 2018) dataset.

In summary, this paper makes three contributions:

1. A novel weight-sharing aggregation approach for upsampling which implicitly enforces rigidity
constraints by using identical weights for aggregation of point coordinates, scene flow and features.
We mathematically and experimentally prove the feasibility of our approach. In addition, our ap-
proach does not require explicit pose estimation and/or 3D object segmentation.

2. A deformation degree module which captures the discrepancy in local structure between the
source point cloud and the warped point cloud. This module helps to preserve the local structure of
rigid objects during scene flow estimation.

3. An effective scene flow estimation network, named WSAFlowNet, which integrates these two
approaches to achieve the state-of-the-art performance on the FlyingThings3D and KITTI datasets.

2 RELATED WORK

Scene flow estimation. Several recent methods have achieved impressive performance on the scene
flow estimation task (Wu et al., 2020; Battrawy et al., 2022; Gu et al., 2019b; Wang et al., 2020;
2021; Gu et al., 2022). PointPWC-Net (Wu et al., 2020) introduces a coarse-to-fine network archi-
tecture to estimate scene flow. It can capture large motions without enlarging the scope of search.
Additionally, it proposes a novel patch-to-patch cost volume to encode point motions effectively.
RMS-FlowNet (Battrawy et al., 2022), on the other hand, designs a Patch-to-Dilated-Patch flow
embedding block that, in conjunction with Random-sampling, allows for operation on large-scale
point clouds. The methods mentioned above only use unidirectional features, which can result in in-
sufficient information. To address this limitation, Bi-PointFlowNet (Cheng & Ko, 2022) introduces
bidirectional flow embedding layers to extract correlations both forward and backward. 3DFlow
(Wang et al., 2022) proposes an all-to-all flow embedding layer that can capture distant points and
combine them with backward reliability validation. However, this pointwise scene flow estimation
method does not make full use of structural information during movement. Consequently, they may
encounter structure distortion in some challenging scenes, which is often caused by the sparsity of
point clouds.

Rigidity constraints. A straightforward solution to prevent structure distortion is to explicitly
estimate geometric transformations of rigid objects in a scene and enforce rigid motion consistency
on estimated scene flows. To this end, Gojcic et al. (Gojcic et al., 2021) categorize scene points into
the foreground clusters, which consist of several rigid objects, and the background cluster. They
then compute the ego-motion and the geometric transformation of each object between the source
and target point clouds via (Kabsch, 1976; Yew & Lee, 2020; Cuturi, 2013). Next, they enforce the
estimated scene flows of the same object to conform to the same geometric transformation. Dong
et al. (Dong et al., 2022) also adopt a similar approach, where they generate an abstraction mask
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Figure 1: WSAFlowNet overview. On the left side, the entire pipeline of the coarse-to-fine network
is illustrated. The inputs of the network are two consecutive sets of point clouds P,Q, and outputs
the scene flows corresponding to the P . The process primarily consists of two main stages: feature
abstraction and the refinement of scene flow estimation. Between adjacent refinement layers, we
incorporate the weight-sharing aggregation (Fig. 2) module for the upsampling of feature and
scene flow. The right side highlights the refinement layer. Our designed deformation degree
module (Fig. 3) maintains local structure.

for each input source point cloud using a pre-trained segmentation network (Gojcic et al., 2021) and
the DBSCAN clustering algorithm (Ester et al., 1996). They then estimate poses for each object
using (Kabsch, 1976). After that, direct multi-body rigidity constraints are computed based on the
abstraction mask and poses. These constraints are then integrated into the recurrent neural network
to alleviate structure distortion in scene flow estimation. To alleviate inevitable errors in 3D object
segmentation, HCRF-Flow (Li et al., 2021) treats spatially neighboring points as a rigid object and
employs a conditional random fields (CRF (Tseng et al., 2005)) to enforce local smoothness and
rigid motion consistency. However, all the aforementioned methods require explicit object pose
estimation, which is also very challenging. Inevitably errors in pose estimation can lead to inaccurate
constraints and in turn mislead scene flow estimation.

3 METHOD

3.1 OVERVIEW

The inputs of our network are two consecutive point clouds P =
{
pi ∈ R3

}N1

i=1
at timestamp t and

Q =
{
qi ∈ R3

}N2

i=1
at timestamp t+1. Our objective is to estimate the scene flow S =

{
si ∈ R3

}N1

i=1
for every pi ∈ P . Due to the inherent sparsity of point cloud data, there isn’t a direct one-to-one
correspondence between sets P and Q. Thus, the relationship between P , Q, and S can only be
expressed approximately, which is represented by P + S ≈ Q. Furthermore, we assume that the
majority of local regions satisfy the approximately rigid assumption as described in HCRF-Flow
(Li et al., 2021) and Man et al. (Man & Vision, 1982). Consequently, the movement of point
clusters within such regions adhere to a consistent transformation, characterized by the rotation
matrix R ∈ SO(3) and the translation vector t ∈ R3.

As shown in Fig. 1, We adopt the coarse-to-fine structure PointPWC-Net (Wu et al., 2020) as the
baseline. First, we construct feature pyramid for point clouds P and Q. Next, based on the extracted
feature, we conduct the scene flow estimation in the coarsest layer and then operate the layer-by-
layer refinement to the finest layer. Between adjacent layers, we propose a weight-sharing aggrega-
tion module for upsampling feature and scene flow. The upsampled scene flow will be propagated
by warping, which will enable the adjustment of the search center for matching. The upsampled
feature will be fed into the scene flow estimator to supply movement information. Notably, at each
layer, we systematically execute the following operations in sequence: the warping process, the
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construction of cost volume, the deformation degree module and the scene flow estimator. Among
these, the deformation degree module we proposed is utilized to preserve the geometric structure.

3.2 WEIGHT-SHARING AGGREGATION MODULE

In the scene flow estimation task, the sparsity of point cloud data often leads to poor correspondence.
This lack of correspondence results in matching errors, causing the warped point clouds to undergo
structural deformation. To alleviate the problem of mismatch, we introduce a weight-sharing aggre-
gation module that leverages implicit rigidity constraints during the upsampling process.

In the upsampling process, weight aggregation is a common implementation that involves assigning
weights to neighboring points in a coarser layer to interpolate central point information. Other
methods don’t notice the relationship between different variables and don’t involve point coordinates
upsampling. In this paper, we implicitly utilize rigidity constraints by considering the relationship
between coordinates, features, and scene flow.

According to rigidity constraints (points on the same object have the same motion (R, t)) and the
definition of scene flow, the scene flow aggregation process corresponding to each point should be
consistent with the coordinate aggregation process of the point, that is, weight-sharing, as shown
in Eq. (1-6). In addition, feature is an intermediate quantity closely related to scene flow and point
coordinates, so we extend the weight sharing to the feature level, namely Eq. (7). In specific imple-
mentation, WSA module is applied in the upsampling process of refinement stage. It contains the
condition that points on the same object conform to the same motion and implicitly enforces rigidity
constraints, which reduces the impact of mismatch.

The weight-sharing aggregation constraints. In the local rigid region where the points inside
have the same movement (R, t), if aggregated weight αk satisfies both Eq. (1) and Eq. (2), then it
can derive Eq. (3) related to the aggregation of scene flow.

Conditions:
K∑

k=1

αk = 1 (1)

K∑
k=1

αkpk = pi (2)

Conclusion:
K∑

k=1

αksk = si (3)

Where pk ∈ N (pi), N (pi) is defined as the group of K nearest neighbors of pi, determined by their
distance from pi. The constant K can be set to any value as required, which represents the size of
the neighborhood. si is the predicted scene flow of point pi.

Proof:

Utilize R, t to denote the motion of pk as Eq. (4).

T (pk) = Rpk + t (4)

According to the definition of scene flow, aggregation of S is explicitly expressed as:

sk = T (pk)− pk = (R− I)pk + t (5)

K∑
k=1

αksk =

K∑
k=1

αk {(R− I)pk + t}

= (R− I)

K∑
k=1

αkpk + t

K∑
k=1

αk

= (R− I)pi + t

= si

(6)
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Figure 2: Weight-sharing aggregation mod-
ule. During the upsampling process, the
weights among point coordinates, features and
scene flow are consistent. fe (pi) and si are the
feature and scene flow corresponding to pi.
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Figure 3: Deformation degree module. Calcu-
lation of the neighborhood relationship among
the point and the neighborhood points is illus-
trated in the upper part. Then we compare the
neighborhood relationship between the source
point cloud’s δ(P ) and the warped point cloud’s
δ(Pw).

We infer that the feature, intermediate variable between point cloud and scene flow, should have a
matching consistency relationship.

Corresponding equation goes here:

K∑
k=1

αkfe (pk) = fe (pi) (7)

where fe (pi) denotes the output feature of scene flow estimator for point pi.

3.3 DEFORMATION DEGREE MODULE

In addition to using (R, t) to make rigidity constraints according to the definition of scene flow,
another way to implement rigidity constraints is to maintain local structure invariance.

We propose a novel module named deformation degree module to maintain local rigid structure in-
variance, which provides a stronger loss constraint. Firstly, we construct a variable δ to represent the
local structure, calculating the distance between the central point and the K nearest neighborhood
points in the local rigid area. We maintain the dimension of K to enforce a one-to-one structural
relationship between the central point and its neighborhood points. Secondly, we calculate the dif-
ference δDD between δ(P ) and δ(Pw). As a priori knowledge, in a rigid transformation, the geo-
metric structure of an object remains unchanged. This ensures that the distance between any two
points within a local rigid region stays constant, irrespective of the object’s motion within the scene.
Therefore, we enforce a loss to make the difference δDD converge to 0 to preserve the local structure
and we input the δDD into scene flow estimator to supplement the geometric information. In this
way, we utilize the stronger prior information to reducing rigid objects’ local deformation.

pwi = pi + si (8)

δ(P ) =

{
1

C
|pk − pi| | pk ∈ N (pi)

}
(9)

δ(Pw) =

{
1

C
|pwk − pwi | | pwk ∈ N (pwi )

}
(10)

δDD = |δ(P )− δ(Pw)| (11)

where pwi represents the warped point. N (pi), N (pwi ) represents the neighborhood centered on pi
and pwi respectively. C indicates the number of channels.
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3.4 NETWORK ARCHITECTURE

We adopt PointPWC-Net (Wu et al., 2020) as our baseline, equip it with our proposed module, and
modify the network structure. The pipeline (Fig. 1) is a coarse-to-fine structure. It first estimates the
scene flow at the lowest resolution and then refine several times to the highest resolution.

Feature pyramid. We adopt the set conv layer proposed by FlowNet3D (Liu et al., 2019) to
encode feature and downsample l − 1 layer to l layer by Farthest Point Sampling. Our pyramid
structure has five levels {l0 − l4} by adding a layer for estimating at the roughest resolution (1/128
of the input scale), so that doesn’t cause a lot of memory consumption. For the l3 level, adding a
rougher layer to provide scene flow initialization for cost volume construction is better than operat-
ing it directly.

WSA in the upsampling layer. Upsampling layer is a process of interpolating the coordinates,
features, and scene flow from a coarse layer to a finer layer. Our WSA module involves using a
consistent weighted aggregation method for all three components, and we will focus on the features
as an example. For each point pl−1

i in the finer level l − 1, we select its K nearest neighbors plk in
the coarser level l, denoted by plk ∈ N

(
pl−1
i

)
. The upsampling process for features are formulated

as follows.
αk = softmax

(
mean

(
MLP

([
plk − pl−1

i , fe
(
plk
)])))

(12)

fe
(
pl−1
i

)
=

K∑
k=1

αkfe
(
plk
)

(13)

where [·, ·] indicates concatenation operation. mean () indicates operating the average operation in
the channel dimension. fe

(
pli
)

denotes the output feature of scene flow estimator for point pli.

Then we reuse αi for upsampling coordinates, scene flow. Other methods don’t involve point co-
ordinates upsampling and the common process of upsampling feature, and scene flow is performed
separately.

Warping layer. We use the upsampled scene flow to warp.

(pwi )
l−1

= pl−1
i + up

(
sli
)

(14)

where up () indicates WSA upsampling process.

Cost volume. We construct the cost volume between the warped source point Pw and the target
point Q, which reduces the search area. We adopt patch-to-dilated-patch cost volume to enlarge the
receptive field, following RMS-FlowNet(Battrawy et al., 2022).

Deformation degree module. First, computing the variables δ which represent the local structure
for P and Pw. Second, measuring the difference between δ(P ) and warped δ(Pw). Note that, it
will be inputted into the estimator as the supplement of geometric information.

Scene flow estimator. The input to the scene flow estimator consists of five components: the feature
f l−1 (pi) of point cloud pi, cost volume CVi, deformation degree module δDDi

, the upsampled
output feature of estimator in the coarse layer up

(
f l
e

)
, the upsampled scene flow up

(
sl
)
. Inspired

by DenseNet (Huang et al., 2017), we adopts feature reuse and bypass set in scene flow estimator.
The output feature of estimator f l−1

e (pi) which represents the flow motion information and the
predicted scene flow are as follows.

f l−1
e (pi) = MLP

([
f l−1 (pi) , CVi, δDDi , up

(
f l
e (pi)

)
,up

(
sli
)])

(15)

sl−1
i = FC

(
f l−1
e (pi)

)
(16)

where f l−1
e (pi) denotes the output feature of the estimator. sl−1

i denotes the predicted scene flow.
[·, ·] indicates concatenation operation. up () indicates WSA upsampling process. FC denotes fully
connected layer.
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3.5 LOSS

The whole system is in a fully-supervised manner by using multi-scale loss LS the same as (Wu
et al., 2020; Cheng & Ko, 2022; Battrawy et al., 2022). LS can be expressed as:

LS =

L∑
l=0

γl
∑
i

∥∥ŝl − slgt
∥∥
2

(17)

where γl represents the weight for each pyramid layer l. The weights are set as γ0 = 0.02, γ1 =
0.04, γ2 = 0.08, γ3 = 0.16, γ4 = 0.16. The predicted scene flow is denoted by ŝl. And || ∗ ||2
refers to the L2-norm.

Besides, we introduce a deformation degree loss LDD to maintain geometric invariance. LDD can
be expressed as:

LDD =

L∑
l=0

γl
∑
i

∥∥δlDD

∥∥
2

(18)

where δlDD indicates the deformation degree module.

The overall loss Lall comprises LS and LDD.

Lall = αSLS + αDDLDD (19)

where αS = 1.0 and αDD = 0.01 are the weights for each term.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION METRICS

Datasets. To verify the effectiveness of our method, we use the synthetic dataset FlyingThings3D
(Mayer et al., 2016) and real scene dataset KITTI Scene Flow 2015 (Menze et al., 2018) the same as
previous methods. FlyingThings3D dataset contains 19,640 pairs in training set and 3,824 pairs in
the test set. KITTI dataset contains 200 pairs in training set and 200 pairs in the test set. We follow
HPLFlowNet (Gu et al., 2019a) to preprocess data. Due to the disparity of the KITTI test set is not
available, we generate a reduced number of 142 pairs of point clouds from the KITTI training set.

Evaluation Metrics. For fair comparison, we evaluate the scene flow by following metrics, the
same as (Wu et al., 2020; Cheng & Ko, 2022; Battrawy et al., 2022).

• EPE3D, Acc3DS, Acc3DR, Outliers3D, EPE2D, Acc2D.

4.2 EXPERIMENTAL SETUP

We conduct experiments on NVIDIA RTX 3090 GPUs. We train on the FlyingThings3D training
dataset. The inputs of our network are only two frame point coordinates and the input size is 8192
by randomly sampling. To speed up, the training process is divided into two stages. We first train
our model on a quarter of the training set (4910 pairs), then fine-tune on the whole training set. In
the first stage, the learning rate is set to 0.001 and the decay rate is 0.7 for every 20 epochs. Pre-
training is done for 80 epochs. In the second stage, the learning rate is set to 0.000343 and the decay
rate is the same as before. Fine-tuning is done for 160 epochs after loading the pre-trained model.
The parameters of Adam optimizer are set to β1 = 0.9, β2 = 0.99, weight decay = 0.0001.
We evaluate on the FlyingThings3D test dataset to demonstrate the effectiveness. In addition, to
verify the generalization capability of our method, we test the model on the KITTI dataset without
fine-tuning.

4.3 MAIN RESULTS

We compare with the published state-of-the-art methods on the FlyingThings3D (Mayer et al., 2016)
and KITTI Scene Flow 2015(Menze et al., 2018) datasets, the quantitative results are shown in Tab.
1. Among the listed methods, only 3DFlow(Wang et al., 2022) evaluates 2048 points, while others
evaluate 8192 points’ scene flow results.
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Table 1: Quantitative results on FlyingThings3D and KITTI Scene Flow 2015 datasets. All
listed approaches are only trained on FlyingThings3D dataset in a fully-supervised manner. The
best results are marked in bold.

Dataset Method EPE3D(m)↓ Acc3D Strict↑ Acc3D Relax↑ Outliers3D↓ EPE2D↓ Acc2D↑

FlyingThings3D (Mayer et al., 2016)

PointPWC-Net(Wu et al., 2020) 0.0588 0.7379 0.9276 0.3424 3.2390 0.7994
RMS-FlowNet(Battrawy et al., 2022) 0.0560 0.7920 0.9550 0.3240 - -
HCRF-Flow (Li et al., 2021) 0.0488 0.8337 0.9507 0.2614 2.5652 0.8704
PV-RAFT(Wei et al., 2021) 0.0461 0.8169 0.9574 0.2924 - -
FlowStep3D(Kittenplon et al., 2021) 0.0455 0.8162 0.9614 0.2165 - -
RCP(Gu et al., 2022) 0.0403 0.8567 0.9635 0.1976 - -
Bi-PointFlowNet(Cheng & Ko, 2022) 0.0280 0.9180 0.9780 0.1430 1.5820 0.9290
3DFlow (Wang et al., 2022) 0.0281 0.9290 0.9817 0.1458 1.5229 0.9279
Ours 0.0239 0.9391 0.9821 0.1103 1.3703 0.9358

KITTI (Menze et al., 2018)

PointPWC-Net(Wu et al., 2020) 0.0694 0.7281 0.8884 0.2648 3.0062 0.7673
RMS-FlowNet(Battrawy et al., 2022) 0.0530 0.8180 0.9380 0.2030 - -
HCRF-Flow (Li et al., 2021) 0.0531 0.8631 0.9444 0.1797 2.0700 0.8656
PV-RAFT(Wei et al., 2021) 0.0560 0.8226 0.9372 0.2163 - -
FlowStep3D(Kittenplon et al., 2021) 0.0546 0.8051 0.9254 0.1492 - -
RCP(Gu et al., 2022) 0.0481 0.8491 0.9448 0.1228 - -
Bi-PointFlowNet(Cheng & Ko, 2022) 0.0300 0.9200 0.9600 0.1410 1.0560 0.9490
3DFlow(Wang et al., 2022) 0.0309 0.9047 0.9580 0.1612 1.1285 0.9451
Ours 0.0277 0.9209 0.9613 0.1350 0.9773 0.9574

Table 2: Ablation studies on FlyingThings3D.“MN”: modified network. “DD”:deformation degree
module. “WSA”:weight-sharing aggregation module. “✓” denotes using this module. The best
results are marked in bold.

MN DD WSA EPE3D(m)↓ Acc3D Strict↑ Acc3D Relax↑ Outliers3D↓ EPE2D↓ Acc2D↑
✓ 0.0282 0.9308 0.9799 0.1317 1.7321 0.9273
✓ ✓ 0.0279 0.9264 0.9786 0.1410 1.6202 0.9223
✓ ✓ 0.0243 0.9387 0.9819 0.1162 1.3868 0.9358
✓ ✓ ✓ 0.0239 0.9391 0.9821 0.1103 1.3703 0.9358

On FlyingThings3D dataset, our method outperforms prior SOTA work on all evaluation metrics,
which proves the effectiveness of our method. Our method surpasses current SOTA method Bi-
PointFlowNet (Cheng & Ko, 2022) by 14.6% on EPE3D metric. We surpass HCRF-Flow (Li et al.,
2021) which utilizes the direct rigidity constraints by 51.0% on EPE3D metric.

On KITTI Scene Flow 2015 dataset, we evaluate our model without fine-tuning to verify the gen-
eralization ability. Our method outperforms prior SOTA method Bi-PointFlowNet (Cheng & Ko,
2022) by 7.6% on EPE3D metric.

In Fig. 4, the visualization results demonstrate the better accuracy of our method than recent SOTA
methods(Wang et al., 2022; Cheng & Ko, 2022) on FlyingThings3D and KITTI Scene Flow 2015
datasets. We also show the local details for easy observation. In some challenging areas, we still
achieved good results (fewer red points means fewer errors).

4.4 ABLATION STUDIES

Modified network. As shown in the first row of Tab. 2, the modified network we proposed (MN)
outperforms the baseline network PointPWC-Net(Wu et al., 2020) and RMS-FlowNet (Battrawy
et al., 2022) by a large margin.

Deformation degree module. We compared the results with and without deformation degree mod-
ule. Equipping the module on the modified network structure can improve the performance. Even
in outstanding designs (MN + WSA), there is still performance improvement by using deformation
degree module (MN + DD + WSA). Therefore, preserving local structure can obtain more accurate
scene flow.

Weight-sharing aggregation. Contrast of the results of the first (MN) and third rows (MN + WSA)
illustrates that adding a weight-sharing aggregation module can bring 13.8% accuracy improvement
on EPE3D metric. It proves the validity of the weight-sharing aggregation constraints which use
identical weights for aggregation of point coordinates, scene flow and features. It is consistent with
the previous formula derivation conclusion (§ 3.2).

According to the analysis of the experimental results of the above different designs, each module we
proposed is effective. The best method design consists of three modules (MN + DD + WSA).
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3DFlow Bi-PointFlowNet Ours

KITTI

FlyingThings3D

Figure 4: Visualization Results. From left to right: 3DFlow, Bi-PointFlowNet and our method.
The first two rows are the experimental results on FlyingThings3D dataset. The last two rows are
the experimental results on KITTI dataset. Blue represents the source point. Green is the correctly
predicted warped source by the Acc3DS metric, while red indicates an incorrect prediction.

Table 3: Universality studies of WSA and DD modules.
Bi-PointFlowNet WSA DD EPE3D(m)↓ Acc3D Strict↑ Acc3D Relax↑ Outliers3D↓ EPE2D↓ Acc2D↑

✓ 0.0280 0.9180 0.9780 0.1430 1.5820 0.9290
✓ ✓ 0.0243 0.9425 0.9853 0.1134 1.3178 0.9511
✓ ✓ ✓ 0.0241 0.9416 0.9856 0.1181 1.2983 0.9504

4.5 UNIVERSALITY STUDIES

To demonstrate the universality of our method, we integrate the proposed modules (WSA and DD)
into current SOTA method Bi-PointFlowNet (Cheng & Ko, 2022). As a result, as illustrated in
Tab. 3, we observe a 13.9% improvement on EPE3D metric when our modules were applied to
Bi-PointFlowNet.

5 CONCLUSION

In this paper, we propose weights-sharing aggregation constraints to employ the rigidity constraints
indirectly, which avoids the errors caused by combining with other 3D tasks. Weights-sharing ag-
gregation constraints align the aggregated weights of feature and scene flow with the aggregated
weights of point coordinate. We prove the effectiveness of the constraints by formula derivation and
experiments. In addition, we further keep the local geometric structure invariance by constructing
the deformation degree module, which represents the structural difference in local areas between
the source domain and the target domain. It also provides geometric information for the subsequent
estimator to obtain more precise scene flow. We modify the coarse-to-fine network and equip it with
the module we proposed above. Experiments performed on the FlyingThings3D and KITTI scene
flow datasets illustrate the effectiveness and generalization capability of our WSAFlowNet.
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A APPENDIX

Evaluation Metrics.

• EPE3D: average end point error per point, measured in meters,
∥∥∥Ŝl − Sl

gt

∥∥∥
2
.

• Acc3DS: the fraction of points with EPE3D < 0.05m or relative error < 5%.

• Acc3DR: the percentage of points where EPE3D < 0.1m or relative error < 10%.

• Outliers3D: points percentage with EPE3D < 0.05m or relative error < 5%. with EPE3D> 0.3m
or relative error > 10%.

• EPE2D: the 2D average end point error, derived from projecting back onto the image plane.

• Acc2D: the fraction of points whose EPE2D < 3px or relative error < 5%.
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