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Abstract: This paper presents a new imitation learning paradigm for robot ma-
nipulation with flow matching policy. Flow matching represents a robot visuo-
motor policy as a conditional process of flowing random waypoints to desired
robot action trajectories, by regressing vector fields of fixed conditional prob-
ability paths. We evaluate the proposed method across two simulation bench-
marks and a real-world dataset with 10 tasks across Activities of Daily Liv-
ing. Our extensive evaluation highlights that learning multimodal robot ac-
tions with flow matching policy leads to consistently more stable training and
faster generalization than alternative diffusion-based behavior cloning methods.
https://hri-eu.github.io/flow-matching-policy/.
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1 Introduction

From the traditional behavior cloning with convolutional networks [1] to transformer-based learning
structures [2], extensive research has modeled robot action trajectories from visual scenes. A recent
line of works builds on successes in diffusion models [3] to generate motion trajectories to capture
multimodal action distributions. Flow Matching is another novel generative method. Sharing theo-
retical similarities with stochastic Denoising Diffusion Probabilistic Models, flow matching aims to
regress onto a deterministic vector field to flow samples toward the target distribution. It has proven
that the simplicity of flow matching objectives allows favorable performance in stable training and
generation quality compared to solving complex stochastic differential equations in diffusion mod-
els. Despite its recent progress in image generation [4], the application of flow matching in robotics
domains remains underexplored [5, 6, 7]. We propose the flow matching policy to learn simulated
and real-world robot behaviors from raw visual inputs and carry out systematic evaluation.

2 Flow Matching Policy

We build the robot behavioral cloning policy as a generative process of Flow Matching, which
constructs a flow vector that continuously transforms a source probability distribution toward a des-
tination distribution. Flow Matching leverages an ordinary differential equation to deterministically
mold data distribution, contrasting with diffusion policy which is based on a stochastic differential
equation through introducing noise.

2.1 Flow Matching Model

Given a conditional probability density path pt(x|z) and a corresponding conditional vector field
ut(x|z), the objective loss of flow matching could be described as:

LFM(θ) = Et,q(z),pt(x|z) ∥vt(x,θ)− ut(x|z)∥2 (1)

where x ∼ pt(x|z), t ∼ U [0, 1] (uniform distribution). Flow matching aims to regress ut(x|z)
with a time-dependent vector field of flow vt(x,θ) parameterized as a neural network with weights
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Figure 1: Framework of Flow Matching Policy. (a) At each time step, the policy predicts flow
vectors for each waypoint conditioned on visual observation data as well as the waypoints at the
current timestep. (b-c) Flow matching transforms random waypoints (green) to the target action
trajectory (purple) from timestep 0 to 1. The lines in (b) denote the flow vectors.

θ. ut(x|z) can be further simplified as:

ut(x|z) = x1 − x0 x0 ∼ p0,x1 ∼ p1

p0 represents a simple base density at time t = 0, p1 denotes the target complicated distribution at
time t = 1, x0 and x1 are the corresponding samplings. vt(x,θ) could be described as

vt(x,θ) = vθ(xt, t) (2)

We define xt as the linear interpolation between x0 and x1 with respect to time xt = tx1 + (1 −
t)x0, following the Optimal Transport theory [8]. And vθ is a network of the flow model. Thus
Equation (1) could be reformatted as

LFM(θ) = Et,∼p0,∼p1 ∥vθ(xt, t)− (x1 − x0))∥2 (3)

This represents the progression of the scalar flow that transforms data from source to target between
time 0 and 1.

Algorithm 1 Robot Flow Matching Policy

Input: observation o, target robot actions x1,
source random waypoints p0

Output: flow vθ

while not converged do
x0 ∼ p0, sample random robot waypoints
t ∼ U [0, 1], sample time steps
xt = tx1+(1−t)x0, linear interpolation
vt(x|o) = vθ(xt, t|o), flow estimation
∇θ ∥vθ(xt, t|o)− ẋt∥, gradient step

end while

Algorithm 2 Robot Diffusion Policy (DDPM)

Input: observation o, target robot actions x1, source
Gaussian noises p0

Output: noise ϵθ
while not converged do

x0 ∼ p0, sample Gaussian noises
t ∼ U [0, 1], sample time steps
xt = N (xt;

√
ᾱtx0, (1− ᾱt)I), forward process

ϵt(x|o) = ϵθ(xt, t|o), noise estimation
∇θ ∥ϵθ(xt, t|o)− ϵt∥, gradient step

end while

2.2 Flow Matching for Visuomotor Policy Learning

We extend flow matching to learn robot visuomotor policies. This requires two modifications in the
formulation: i) modeling the flow estimation conditioned on input observations o; ii) changing the
output x to represent robot actions. Fig. 1 illustrates our model structures.

Visual observation Conditioning: We modify Equation (2) to allow the model to predict actions
conditioned on observations:

vt(x|o) = vθ(xt, t|o)
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Methods 2D Trajectory 3D Trajectory Inference
Prediction (pixel) ↓ Prediction (cm) ↓ Times (ms) ↓

Baselines Diffusion Policy (16-step inference) 0.884 2.096 159.72
Transformer-based BC 2.797 6.109 7.59

Ours Flow Matching (Transformer) 2.151 4.842 18.05
Flow Matching (CNN, 1-step inference) 0.898 2.151 8.53

Ablations Flow Matching (CNN, 4-step inference) 0.890 2.094 34.99
Flow Matching (CNN, 8-step inference) 0.887 2.092 70.10
Flow Matching (CNN, 16-step inference) 0.841 2.091 100.98

Table 1: The flow matching method achieves the best trajectory estimation accuracy, and faster
inference compared to the diffusion policy on Activities of Daily Living dataset.

The visual embeddings o are obtained through ResNet [9]. We also evaluate the Transformer struc-
ture in our experiments. Various types of inputs include state-based inputs, RGB images, and visual
affordances.

Closed-loop action trajectory prediction: We execute the action trajectory prediction obtained
by our flow matching model for a fixed duration before replanning. At each step, the policy takes
the observation data o as input and predicts Tp steps of actions, of which Ta steps of actions are
executed on the robot without re-planning. Tp is the action prediction horizon and Ta is the action
execution horizon. The policy predicts flow vectors vt conditioned on visual observation data o
with Feature-wise Linear Modulation (FiLM) [10] as well as the interpolated waypoints xt. The
flow model fθ is represented with U-Net [11]. The whole training process of the flow matching
policy is illustrated in Algorithm 2.

In our case of robot manipulation, x1 in Equation (3) represents the demonstration robot action
trajectories. x0 is the random generated waypoints following a multivariate normal distribution
x0 ∼ N (0, I). x here could denote 6D robot end-effector trajectories or robot joint actions.

Inference: For the inference procedure, random waypoints are sampled from the source distribution
and then flowed into the target trajectory by estimating the flow from t = 0 to t = 1 over steps:

xt+∆t = xt +∆tf(xt, t|o), for t ∈ [0, 1] (4)

3 Experiments

3.1 Baseline Studies

We compare our flow matching policy against two other robot behavior cloning methods: (i) Dif-
fusion Policy [3], and (ii) Transformer-based behavior cloning with Mean Square Error Loss, as
customary in RVT [12], RT-X [13].

3.2 Datasets and Benchmarks

We benchmark the proposed methods on three datasets: (i) Push-T adapted from [14] with RGB
images as input, end-effector actions as outputs and 3, 000 epochs of training ; (ii) Franka Kitchen
proposed in Relay Policy Learning [15] with state-based inputs, robot joint actions as outputs and
4, 500 epochs of training ; (iii) Real-World Activities of Daily Living Task: We construct a real-
world dataset with 10 tasks across Activities of Daily Living. Each task includes 1, 000 sets of RGB
images, demonstrated robot trajectories, and labeled ground truth of affordances. We randomly split
the dataset with 80%-20% percentage of training and testing. The results reported here are obtained
after 1, 000 epochs of training. The inputs are the RGB image with visual affordance, and the output
includes trajectories in both 2D pixel space and 3D Cartesian space.
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Methods Flow Matching Diffusion Policy Flow Matching Diffusion Policy Transformer
(2-step) ↑ (2-step) ↑ (16-step) ↑ (16-step) ↑ BC ↑

Push-T 0.8771/0.7111 0.4412/0.1872 0.9035/0.7490 0.8840/0.7178 –
Franka Kitchen 0.9750/0.6134 0.2355/0.0527 0.9960/0.7172 0.9840/0.6716 –
Activities of Daily Living Task – – 0.82 0.76 0.44

Table 2: We present the robot performance with different checkpoint selection methods in the format
of (max performance) / (average of last checkpoint with 10 trials of replication), with each averaged
across 500 different environment initial conditions (5000 in total) for testing. The metric used here
is success rate, except for the Push-T task which uses target area coverage.
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Figure 2: Training and testing loss of flow matching and diffusion policy throughout the training
process. Flow matching exhibits greater stability on training and evaluation than the diffusion model.

3.3 Main Results

Table 1 presents the results of flow matching policy on our Activities of Daily Living dataset for
robot trajectory learning, comparing against baselines. Table 2 shows the simulated and real robot
manipulation evaluation on three benchmarks.

Generation Quality: Table 1 shows that flow matching (CNN-based, 16 steps) outperforms other
baselines in terms of 2D and 3D trajectory prediction accuracy. As shown in Table 2, flow matching
outperforms other baselines in all three benchmarks of robot manipulation experiments.

Inference Time: In terms of inference time, Table 1 showcases that flow matching with 16 steps
achieves faster inference time compared to diffusion policy with 16 steps. We hypothesize that flow
matching with linear pointwise flows (following the optimal transport theory) generates straighter
flows, and thus causes faster inference. Table 2 showcases better performances of diffusion policy
when applying more inference iterations, with a trade-off of longer inference time. Contrarily, flow
matching has not shown significant improvements when increasing inference steps. We hypothesize
that this is because flow matching trains Continuous Normalizing Flow models, where an ordinary
differential equation is solved without learning a series of discrete steps to progressively refine the
generated sample. This considerably reduces the inference time for closed-loop robot manipulation,
as 1-step flow matching (error: 0.898cm, time: 8.53ms) has achieved comparable performance as
16-step diffusion policy (error: 0.884cm, time: 159.72ms), but prominently lower inference time, as
shown in Table 1.

We could also see from Table 1 that CNN-based flow matching achieves better results than
transformer-based architecture. We hypothesize that transformer might need additional hyperpa-
rameter tuning. Fig. 2 shows the training and testing loss of flow matching and diffusion policy
throughout the training process. We can see flow matching exhibits greater stability on both training
and evaluation than the diffusion policy.

4 Conclusion

We have systematically studied flow matching framework for supervised robot manipulation, which
provides an alternative to diffusion policy. The results suggest forsaking the stochastic construction
in favor of more directly learning the probability path, allowing for faster and improved generation.
We qualitatively and quantitatively experiment on three simulations and real-world benchmarks to
prove the ease of training and evaluation for flow matching.
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