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Abstract

Parameter updating (PU), while being widely001
used in knowledge editing, has still shown lim-002
ited performances in terms of generalization003
and locality metrics, likely due to the catas-004
trophic forgetting, the riffle effects, or the un-005
seen contexts. This paper proposes a novel006
in-context post-editing, which is subsequently007
applied to the PU-based prediction results,008
namely POMEM – In-context knowledge post009
editing on massive-editing memory – which010
consists of two different types of in-context011
post-editing prompting method, divided into012
the “in-scope” and “out-of-scope” post-editing013
methods, shortly referred to as Copier and014
Recaller, respectively; 1) Copier is specially015
designed for in-scope cases, mainly aiming016
to further enhance the generalization editing017
ability; 2) Recaller is designed for out-of-018
scope cases, which involves a novel “recall-019
ing” prompt which aims to recover the predic-020
tion result of “original pre-edited” model under021
using the PU-based “edited” model. Experi-022
ment results on Counterfact dataset show that023
POMEM leads to the state-of-the-art perfor-024
mances. Our codes are publicly available at025
https://github.com/XXX/XXX.026

1 Introduction027

Given the ever-changed world knowledge and028

the frequent demands on knowledge maintenance,029

there has been a growing interest in “knowledge030

editing” task on large language models (LLMs),031

which aims to develop a scalable editing method032

that fixes incorrect information and reflects new033

information.034

A typical approach of knowledge editing meth-035

ods is the parameter updating (PU), which updates036

local parameters directly (Meng et al., 2022a,b; Li037

et al., 2023) or indirectly via additional hypernet-038

works (De Cao et al., 2021; Mitchell et al., 2022a;039

Tan et al., 2024), or augment parameters (Dong040

et al., 2022a; Huang et al., 2023). However, PU has041

still shown limited performances in terms of gener- 042

alization and locality metrics, two important met- 043

rics of knowledge editing (Yao et al., 2023). First, 044

as in the continual learning (Rolnick et al., 2019), 045

PU may cause the catastrophic forgetting given 046

its parametric surgical style, failing to strongly 047

maintain the original knowledge, often resulting 048

in weakly-performing locality. Second, PU may 049

suffer from the ripple effect (Cohen et al., 2024) or 050

the unseen contexts (Huang et al., 2024), because 051

in-scope boundary is not explicitly defined and “all” 052

relevant knowledge for given edit requests is hardly 053

pre-identified and captured, thus resulting in sub- 054

optimal generalization. 055

Without sorely relying on a PU method, inspired 056

by in-context learning (ICL)’s versatile abilities 057

(Liu et al., 2022a; Dong et al., 2022b) and its appli- 058

cation on the knowledge editing task (Zheng et al., 059

2023), this paper proposes a novel in-context post- 060

editing method, which is applied on top of a PU 061

method, namely POMEM – in-context knowledge 062

post editing on massive-editing memory. 063

More specifically, POMEM establishes the few- 064

shot learning ability of ICL towards desired behav- 065

iors for in-context post editing for in-scope and 066

out-of-scope queries, namely as “Copier” and “Re- 067

caller,” respectively, i.e., gearing the edited model 068

to revise an initially predicted result made by a PU 069

method towards a correct one, as follows: 070

• Copier, designed for an in-scope query, pro- 071

vides few-shot examples to guide the model 072

to explicitly identify and copy an answer from 073

an in-context fact relevant to the input query, 074

likely for enhancing generalization. 075

• Recaller, designed for an out-of-scope query, 076

presents a novel “recalling” few-shot exam- 077

ples to guide the model to recall the prediction 078

of the original “unedited” model but by the 079

current “edited” model given the query, to- 080

wards improving the locality. 081
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Experiment results carried on Counterfact082

dataset show that the proposed POMEM improves083

existing methods including MEMIT, exhibiting the084

state-of-the-art performances.085

2 Related Works086

2.1 PU Approach087

PU approaches are further divided into meta learn-088

ing, locate-then-edit, and parameter expansion089

methods. 1) Meta learning methods (De Cao et al.,090

2021; Mitchell et al., 2022a; Tan et al., 2024) train091

hyper-networks to indirectly update the model pa-092

rameters for knowledge editing. 2) Locate-then-093

edit methods Meng et al. (2022a,b); Li et al. (2023)094

directly modify the parameters in specific model095

layers or modules that are most related to the de-096

sired new knowledge, being largely connected to097

mechanistic interpretation of Transformer (Geva098

et al., 2021; Räuker et al., 2023; Nanda et al., 2023).099

3) Parameter expansion methods extends param-100

eters by adding neurons or parameters to store101

new knowledge, such as a calibration memory slot102

(Dong et al., 2022a) or extra neurons (Dai et al.,103

2022; Huang et al., 2023).104

2.2 Memory-based Approach105

Largely related to retrieval-augmented genera-106

tion (Lewis et al., 2020), Zheng et al. (2023); Zhong107

et al. (2023); Gu et al. (2023) leverage the ICL abil-108

ity of LLMs in a manner of providing a pre-stored109

edit request in an in-context manner for affecting110

the prediction results by LLMs, where all edit re-111

quests are maintained in an external memory, rather112

than modifying the parameters of LLMs. SERAC113

(Mitchell et al., 2022b) deploys a semi-parametric114

method which trains an additional “counterfactual115

model” to better reflect a pre-stored edit request in116

predicting a final output.117

Similar to POMEM, SERAC uses a scope classi-118

fier and handles in-scope and out-of-scope queries119

using different functions. In contrast to SERAC,120

POMEM addresses massive editing tasks and121

mainly relies on the ICL ability for the in-context122

post editing, without requiring an original base123

model during inference time.124

3 Task Definition: Massive Knowledge125

Editing126

Suppose that fθ(·) roughly indicates a function of127

a given LLM, where fθ(x) is the prediction result128

during the decoding step after taking x as a pre- 129

fix. Now, let E = {ei}ni=1 be a “massive” set of 130

n edit requests to be injected to the LLM, where 131

ei = (si, ri, o
∗
i ) is a i-th triple-level edit request, 132

i.e., si, ri, o∗i indicate a subject, a relation, and an 133

target object, respectively. The massive knowledge 134

editing aims to obtain an edited model f∗
θ (·) to 135

fulfill efficacy, generalization, and locality, for all 136

edits in E . 137

• Efficacy holds if f∗
θ (si, ri) = o∗i for (si, ri) ∈ 138

E . 139

• Generalization holds if f∗
θ (s

′
i, r

′
i) = o∗i for 140

an “in-scope” prefix (s′i, r
′
i) ∈ I(ei), where 141

I(ei) is the edit scope of ei, the set of in-scope 142

examples, a set of “relevant” facts to ei, which 143

usually include paraphrased and synonymous 144

expressions of ei. 145

• Locality (or specificity) holds if 146

f∗
θ (s

′′
i , r

′′
i ) = fθ(s

′′
i , r

′′
i ) for any out-of- 147

scope prefix (s′′i , r
′′
i ) ∈ O(ei) is the set 148

of out-of-scope examples, i.e., a set of all 149

“irrelevant” facts to ei, which should not be 150

affected by the current edit ei. 151

Appendix G illustrates detailed examples of an 152

edit, its prefix, in-scope and out-of-scope prefixes, 153

and their correct target objects. 154

4 Method 155

Figure 1 presents the overall architecture of the 156

proposed POMEM, whose components include 157

Copier, Recaller (i.e., two types of in-context post- 158

editing functions), Fact Retriever and Scope Clas- 159

sifier. POMEM consists of two stages — editing 160

and in-context post-editing – as follows: 161

• Editing: During the massive editing stage, a 162

PU method is applied to inject a set of edits 163

E into the parametric memory of LLM, and E 164

is stacked in an external edit memory F using 165

the memorization function Mem: 166

f∗
θ = PU (fθ, E) 167

F = Mem (E) (1) 168

where PU is a functional to return a PU-based 169

model f∗
θ by taking E , and Mem is a verbaliz- 170

ing function that linearizes each triple knowl- 171

edge to a natural language sentence. In this 172

paper, we use MEMIT (Meng et al., 2022b) 173

for PU. 174
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Figure 1: An overall architecture of the in-context post-editing procedure of POMEM, consisting of Copier, Recaller,
Fact Retriever, and Scope Classifier: For i-th test query qi, the PU-edited model is first applied to generate an
initial prediction result f∗

θ (qi), and Fact Retrieval performs the dense retrieval to find the most similar edit eq ∈ F
using Eq. (4) in Section 4.1.1, i.e., eq = Ret(q,F). Scope classifier S(q, eq) determines whether q is an in-scope
instance for the retrieved edit eq using Eq. (5) in Section 4.1.2. Depending on its scope of qi, Copier or Recaller are
performed as in-context post-editing method using few-shot demonstrations of Eq. (6) in Section 4.1.3, or of Eq. (7)
in Section 4.1.4, respectively.

• In-context post-editing: Suppose that a query175

prompt q = (s, r) is given, the in-context post-176

editing stage first takes the initially predicted177

result o, determines the scope of q based on178

its most-relevant fact eq ∈ F , applies a scope-179

specific post-editing, i.e., either Copier or Re-180

caller, depending on the scope of q, as follows:181

o = f∗
θ (q) (2)182

eq = Ret (q,F)183

o∗ =

{
Copier (f∗

θ , o, eq) if S(q, eq) = 1
Recaller (f∗

θ , o) otherwise
(3)

184

where Ret(q,F) is Fact Retriever which finds185

the most similar fact (i.e., the edit request)186

eq ∈ F to the input query q, referred to as187

the retrieved edit, and S(q, eq) is the scope188

classifier which determines whether q is in-189

scope in eq, (i.e., q ∈ I(eq)).190

4.1 In-Context Post Editing191

In this section, we provide more details of compo-192

nents for in-context post editing method.193

4.1.1 Fact Retriever: Ret(q,F)194

Fact Retriever finds the most relevant edit to an195

input query q by performing the dense retrieval196

between q and all edits in F , based on a sentence197

encoder h(s) ∈ Rd, which returns the sentence198

vector for a sentence s, as follows:199

Ret(q,F) = argmaxe∈Fcos (h(q), h(e)) (4)200

where the pre-trained sentence encoder (Reimers 201

and Gurevych, 2019) is used for h. 202

4.1.2 Scope Classifier: S(q, eq) 203

Scope Classifier deploys Siamese neural networks 204

similar to (Ranasinghe et al., 2019; Neculoiu et al., 205

2016), using an additional multi-layer perception 206

(MLP) layers which performs the binary classifica- 207

tion, as follows: 208

S(q, eq) =

{
1 if σ (MLP (h(q)− h(eq))) > 0.5
0 otherwise

(5) 209

where σ is the sigmoid function and the parameters 210

of MLP are separately trained in an extra training 211

dataset as in Appendix E. 212

4.1.3 Copier 213

Copier guides the model to extract an answer di- 214

rectly from an in-context retrieved edit “relevant” 215

to a given query. Copier prepares few-shot demon- 216

strations Din =
{
d
(i)
in

}k

i=1
where d

(i)
in is formed 217

based on the following template: 218

Input: q(i) ⊕ f∗
θ (q

(i)) 219

Retrieval: eq(i) 220

Answer: obj(eq(i)) (6) 221

where ⊕ is the concatenation operator of strings, 222

q(i) is i-th query part in Din, eq(i) = Ret(q(i)), and 223

obj(e) is the selector that returns an “object” part 224

in an edit e. 225
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Score ↑ Efficacy ↑ Generalization ↑ Locality ↑
Model Editor SS AS ES EA PS PA NS NA

GPT2-XL

Base 30.5 0.2 22.9 0.3 23.9 0.1 77.3 10.7
ROME 50.4 0.4 51.9 0.4 49.5 0.4 49.9 0.4
MEMIT 71.5 18.0 79.5 46.0 67.0 23.4 69.2 9.8
POMEM 86.7 35.1 99.2 90.1 91.9 78.3 73.3 16.2

GPT-J

Base 21.3 0.5 15.2 0.4 15.8 0.4 83.5 14.7
ROME 50.8 0.2 51.3 0.2 50.6 0.1 50.7 0.1
MEND 25.2 4.5 17.6 3.15 20.1 3.18 80.8 23.7
MEMIT 87.6 26.8 99.1 96.1 94.9 69.9 73.5 11.5
SERAC 86.5 28.4 99.1 96.1 82.0 59.7 80.7 12.7
POMEM 90.3 43.5 99.8 95.5 96.4 87.0 77.9 21.3

Table 1: The performances of editing 10,000 requests in Counterfact dataset, under GPT2-XL and GPT-J settings,
comparing POMEM with other baselines – Base (the unedited model), ROME, MEMIT, MEND, and SERAC.

4.1.4 Recaller226

Recaller forces the model to “recall” a predic-227

tion of an “original” unedited model to a given228

query, regardless of the current prediction of fθ.229

To gear the edited model to recall an “original”230

prediction, Recaller uses few-shot demonstrations231

Dout =
{
d
(j)
out

}k′

j=1
where d

(j)
out is formed as fol-232

lows:233

Input: q(j) ⊕ f∗
θ (q

(j))234

Answer: fθ(q
(j)) (7)235

where q(j) is j-th query part in Dout. Different236

from Eq. (6), Retrieval does not appear and237

Answer part uses the original prediction.238

Copier and Recaller finalize the prompts by ap-239

pending the test case following the same form of240

their demonstrations, as in Appendix F, which also241

include some examples.242

5 Experimental & Analysis243

5.1 Setup244

We adopted MEMIT(Meng et al., 2022b) for a PU245

method and evaluate our method on CounterFact246

dataset with GPT2-XL (1.5B) and GPT-J (6B) lan-247

guage model. See Appendix A, C, and D for the248

details of MEMIT, the description of CounterFact249

dataset, and the evaluation metrics.250

5.1.1 Main Results251

Table 1 presents the results of POMEM on the252

Counterfact dataset under GPT2-XL and GPT-J,253

comparing to Base (i.e., the unedited base model),254

ROME (Meng et al., 2022a), MEMIT (Meng255

et al., 2022b), MEND (Mitchell et al., 2022a), and256

SERAC (Mitchell et al., 2022b). As in MEMIT 257

(Meng et al., 2022b), the experiments reveals again 258

that ROME method struggles with low perfor- 259

mances because it injects large amounts of knowl- 260

edge into a single layer, which are substantially im- 261

proved by MEMIT. We also observe that MEMIT 262

demonstrates weak locality, showing a non-trivial 263

gap compared to the Base model, and its general- 264

ization is far from optimal, particularly when us- 265

ing GPT-2 XL. It is clearly shown that POMEM 266

outperforms MEMIT both generalization and local- 267

ity, confirming that the proposed in-context post- 268

editing, based on Copier and Recaller, effectively 269

revises initially predicted results to correct ones, 270

thereby leading to these improvements. 271

6 Discuss & Conclusion 272

In this paper, we proposed POMEM based on two 273

types of in-context knowledge post-editing meth- 274

ods – Copier and Recaller – which are designed 275

in scope-specific manners for in-scope and out-of- 276

scope queries, respectively. 277

In future work, we would like to examine 278

whether POMEM is effective on other PU meth- 279

ods such as meta learning and parameter expan- 280

sion methods, comparing to the locate-then-edit 281

methods. Given the recent advances in sequential 282

editing (Huang et al., 2023), event-level editing 283

(Liu et al., 2024; Peng et al., 2024), reasoning- 284

aware editing tasks (Zhong et al., 2023), it would 285

be worthy to explore how in-context post-editing 286

of POMEM is generalized on these new variants of 287

tasks. 288
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Limitations289

In our current setting, few-shot demonstrations290

used for Copier and Recaller in in-context post291

editing are fixed across all test quests. Given that292

the demonstration selection and ordering are impor-293

tant in ICL (Liu et al., 2022b; Rubin et al., 2022;294

Lu et al., 2022), however, POMEM could be en-295

hanced by dynamically selecting or ordering few-296

shot examples, more effectively for a current input297

query. In addition, POMEM currently relies on298

a simple format of prompts that only capture the299

key required information, and advanced prompting300

formats also need to be explored, as the prompt301

engineering is increasingly important in effectively302

exploiting ICL abilities of LLMs (Dong et al., 2023;303

Wang et al., 2023b).304

The proposed POMEM is currently evaluated305

only under MEMIT as a PU method, however, it306

could generally be applicable to other types of PU307

methods such as meta learning (De Cao et al., 2021;308

Mitchell et al., 2022a; Tan et al., 2024) and param-309

eter expansion methods (Dong et al., 2022a; Dai310

et al., 2022; Huang et al., 2023). It would be worthy311

to explore POMEM on other PU methods and to312

examine the effect of the selection of a PU method313

in the in-context post-editing.314

In an architectural design, POMEM relies on315

Scope Classifier, a parametric model, not being316

designed in an ICL manner. As a result, POMEM’s317

in-context post-editing is not purely designed based318

on ICL mechanism. While we tried to explore319

the ICL-based scope classifier in Appendix E, its320

performance is not effective. Enabling all required321

components of POMEM under ICL mechanism322

would be a valuable future direction, as the post-323

editing method could be realized as the process of324

chain-of-thought (CoT) (Wei et al., 2022), without325

relying on an external parametric model.326
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A PU method for Editing: MEMIT523

POMEM needs to first perform a PU method by524

injecting a set of massive edits to the parametric525

memory, to obtain an edited model, as in Figure 2526

We use MEMIT (Meng et al., 2022b) as such a527

PU method for editing stage in Eq. (1), which is528

an extensible multi-layer update algorithm, to in-529

ject a massive set of edits into the language model.530

Given the range of layers R to be updated, let531

L = max (R) be a target layer. For i-th edit532

ei = (si, ri, o
∗
i ) ∈ E , a set of enlarged factual533

prompts,Pi = {xj ⊕ p (si, ri)}Pj=1 are prepared to534

enhance “generalization” of editing where random535

prefixes xj , that cover various contexts that (si, ri)536

appear, are prepended into a templated prompt537

p (si, ri). The optimization to predict the target538

object o∗i under Pi leads to the residual vector δi539

using Eq. (8), which refer to the extent of updating540

the hidden state hLi at layer L.541

δi ←argminδ′i
1

P

P∑
j=1

− logPG(hL
i +=δ′i)

[
o′i | xj ⊕ p (si, ri)

] (8)542

where the G
(
hLi + = δ′i

)
operation is called “hook-543

ing,” which uses the adjusted hidden state hLi + =544

δ′i to execute the transformer.545

Then, δi is propagated across predefined editing546

layers l ∈ R = {l1 . . . L}, i.e., δi/(L − l + 1),547

which leads to obtain the increments ∆l to update548

the MLP weights in layers in R, resulting in the549

updated hidden representation at the layer L: 550

ĥLi =h0i +
L∑
l=1

attn
(
hl−1
i

)
+

L∑
l=1

[(
W l

out +∆l
)
relu

(
W l

in γ
(
hl−1
i

))]
(9) 551

where, h0i is the initial embedding of input token, 552

γ and relu is layernorm and ReLU activation func- 553

tion. Appendix A.1 presents further details for 554

calculating ∆l for updating the MLP weights. 555

Appendix B.2 describes the hyperparameter de- 556

sign of MEMIT under different LLM models. 557

A.1 Updating MLP weights in MEMIT 558

It is assumed that the the MLP layer stores facts as 559

key-memory pairs, as in (Geva et al., 2021). The 560

MLP output layer weight after massive editing is 561

defined as: 562

Wout ≜ argmin
Ŵ

n∑
i=1

∥∥∥Ŵki −mi

∥∥∥2 (10) 563

where ki is defined as encoded subject vector for 564

i-th edit, mi is its corresponding “target” memory 565

representation. During editing, as in Eq. (9), ∆ 566

is calculated to update Wout, resulting in a new 567

weight matrix Ŵout to inject the new association. 568

Ŵout = Wout +∆ (11) 569

By distinguishing old knowledge from new one, 570

Eq. (10) is further decomposed into 571

Ŵout ≜ argmin
Ŵ

(
n∑

i=1

∥∥∥Ŵki −mi

∥∥∥2+
n+u∑

i=n+1

∥∥∥Ŵki −mi

∥∥∥2) (12) 572

The above formula can be optimized by solving 573

the normal equation. Meng et al. (2022b) described 574

it in block form as follows. 575

Ŵout

[
K0 K1

] [
K0 K1

]T
=[

M0 M1

] [
K0 K1

]T (13) 576

According to formula 11, formula 13 is further 577

simplified to: 578

∆
(
K0K

T
0 +K1K

T
1

)
= M1K

T
1 −WoutK1K

T
1

(14) 579
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Figure 2: PU-based massive knowledge editing: Inject new knowledge into the base model to produce an edited
model.

Suppose that C ≜ K0K
T
0 and R ≜ M1−WoutK1,580

where C is a constant proportional to the non-581

central covariance of K0, and R is the residual of582

the new memory representations and the old ones583

for the required edits, corresponding to δi which is584

evenly distributed across the remaining layers.585

Eq. (14) is simplified to:586

∆ = RKT
1

(
C +K1K

T
1

)−1
(15)587

For each l ∈ R = {l1 . . . L}, its massive edit588

requests are reflected in K1 and M1, which consists589

of a set of pairs of all key vectors and their target590

memory representations as follows:591

K1 = K l =
[
kl1 . . . k

l
n

]
M1 = Rl =

[
rl1 . . . r

l
n

] (16)592

where kli and rli for ei = (si, ri, o
∗
i ) ∈ E are com-593

puted as:594

kli =
1

P

P∑
j=1

kl (xj ⊕ si) (17)595

rli = δi/(L− l + 1) (18)596

where kl(x) = relu
(
W l

in γ (x)
)
.597

Under K1 = K l and M1 = Rl, we apply Eq.598

(15) to finalize compute ∆l used to update the MLP599

weights at layer l.600

B Implementation Detail601

B.1 Experiment Environment602

All editing and evaluation experiments were run on603

a workstation with NVIDIA RTX A6000 GPU. The604

pre-trained weights of the loaded language model605

come from HuggingFace transformers (Wolf et al.,606

2019) in version 4.30.1, and Pytorch (Paszke et al.,607

2019) version is 2.01.608

B.2 Editing Hyperparameters609

All hyperparameters about using MEMIT to edit610

GPT2-XL and GPT-J can be found in the EasyEdit611

Model η t R
GPT2-XL 0.5 20 [13, 14, 15, 16, 17]

GPT-J 0.5 25 [3, 4, 5, 6, 7, 8]

Table 2: Optimization parameters and editing layer of
language model.

code (Wang et al., 2023a). The important parame- 612

ters are shown in table 2. t and η are the number 613

of steps and learning rate of δi optimization respec- 614

tively, andR is the model layer to be edited. 615

C DataSet 616

The form of data in Counterfact is mainly rep- 617

resented by the cloze-style. For the edit data 618

ei = (si, ri, o
∗
i ) ∈ E , its definition form is as in 619

table 3. The editing process writes (si, ri)→ o∗i to 620

the model to replace the previously pointed oi. 621

In addition, there is a set E for evaluating Effi- 622

cacy. The set I for evaluating Generalization is 623

rewritten from E in order to test the generalization 624

performance of the post-edit model. The set O for 625

testing Locality, which represents the same seman- 626

tics as E but unrelated facts, in order to test the 627

deterioration of the model after editing. 628

D Evaluation Metrics 629

In order to be consistent with previous 630

works (Mitchell et al., 2022a; Meng et al., 631

2022a) on the comparison of counterfact dataset 632

results, we report the evaluation formulas in 633

Efficacy, Generalization and Locality respectively. 634

D.1 Efficacy 635

Efficacy Success(ES), that is formula 19, is the 636

proportion of cases where the output o∗i probability 637

of the fact ei from the set E is greater than oi. 638

E(si,ri)∼E {f∗
θ (o

∗
i | (si, ri)) > f∗

θ (oi | (si, ri))}
(19) 639

Efficacy Accuracy(EA), the formula 20 evalu- 640
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triple-level

si Edwin of Northumbria
ri The official religion of {} is _
oi Christianity
o∗i Islam

E (si, ri) The official religion of Edwin of Northumbria is _

I (s′i, r
′
i)

Edwin of Northumbria follows the religion of _
Edwin of Northumbria is affiliated with the religion _

O (s′′i , r
′′
i )

The official religion of Charles Aznavour is _
Nicolas Sarkozy is affiliated with the religion _
Andrew Johnson is affiliated with the religion _
The official religion of Paul is _
Ringo Starr is follower of _
The official religion of Nicolas Sarkozy is _
The official religion of Andrew Johnson is _
Orson Welles is affiliated with the religion _
Lady Gaga is follower of _
Quentin Tarantino is affiliated with the religion _

Table 3: Formulation of the Counterfact Dataset. It is displayed at the triple-level, including subject si, relation
ri, original object oi, and new object o∗i . From the set-level, it shows editing facts set E , relevant facts set I and
irrelevant facts set O.

ates whether the most likely output token is o∗i .641

E(si,ri)∼E

{
argmax

o
f∗
θ (o | (si, ri)) = o∗i

}
(20)642

D.2 Generalization643

Similar to Efficacy, the fact q from the in-scope644

set I is used to test Paraphrase Success(PS),645

formula 21, and Paraphrase Accuracy(PA), for-646

mula 22.647

E(si,ri)∼I {f∗
θ (o

∗
i | (si, ri)) > f∗

θ (oi | (si, ri))}
(21)648

E(si,ri)∼I

{
argmax

o
f∗
θ (o | (si, ri)) = o∗i

}
(22)649

D.3 Locality (or Specificity)650

The Neighborhood Success(NS), and Neighbor-651

hood Accuracy(NA), metrics of the fact q from652

the out-of-scope setO are evaluated in terms of Lo-653

cality, formula 23 and formula 24. We expect the654

model not to change the answers to these irrelevant655

facts after editing, they should output the original656

answer oi.657

E(si,ri)∼O {f∗
θ (o

∗
i | (si, ri)) < f∗

θ (oi | (si, ri))}
(23)658

E(si,ri)∼O

{
argmax

o
f∗
θ (o | (si, ri)) = oi

}
(24)659

In addition, we also introduce Success Score(SS) 660

and Accuracy Score(AS), which represent the har- 661

monic mean of the evaluation results of (ES, PS, 662

NS) and (EA, PA, NA) respectively. 663

E Methods of Scope Classification 664

POMEM uses the Siamese neural network clas- 665

sifier for S(q, eq) as in Section 4.1.2. To verify 666

Siamese network classifier, we present the ablation 667

study comparing four scope classification methods, 668

denoted as follows: 669

• POMEMICL: The ICL-based scope classifi- 670

cation based on properly-designed few-shot 671

examples. A prompt is designed for analyz- 672

ing whether q and eq are related, as shown in 673

Table 4. 674

• POMEMSubj : The classification based on 675

subject matching classification by checking 676

where subj(eq) = subj(q) where subj(s) is a 677

selection function of a subject in s. 678

• POMEMThr: The threshold-based classifica- 679

tion by checking whether the cosine similarity 680

between a query and a retrieved edit is above 681

the given threshold τ , i.e., cos(h(q), h(eq)) ≥ 682

τ . 683

• POMEMSiam: The proposed Siamese neural 684

network classifier as described in Section 4.1. 685
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Table 5 compares the performances of four scope686

classifiers, in terms of the classification accuracy. It687

is shown that the proposed Siamese neural network688

(i.e., POMEMSiam) shows the best classification689

result, outperforming other methods, while ILC-690

based method (i.e., POMEMICL) shows the worse691

performance by failing to correctly classify out-of-692

scope queries.693

Table 6 compares the editing performances us-694

ing four scope classifiers under POMEM, in terms695

of knowledge editing evaluation metrics, under696

GPT2-XL and GPT-J settings. POMEMSiam and697

POMEMSubj show the best performing results698

when using GPT-J.699

E.1 Details of the Siamese Neural Network700

The subnetworks of the Siamese neural network701

utilize the "all-MiniLM-L6-v2" (Reimers and702

Gurevych, 2019) for encoding q and eq. The en-703

coding function is defined as h(). The distance704

between two feature vectors is computed using705

h(q) − h(eq), which indicates the similarity be-706

tween the input sample pairs. An additional MLP707

layer is employed for binary classification, taking708

h(q) − h(eq) as input and mapping the output to709

a single dimension to determine the similarity be-710

tween q and eq.711

The training data is sourced from unused por-712

tions of the Counterfact dataset. From each group’s713

unused data, two samples are extracted from the714

in-scope knowledge and two from the out-of-scope715

knowledge. These samples are then combined with716

the edited data from the same group to form a com-717

plete dataset. For labeling, in-scope data is as-718

signed a ground truth label of 1, while out-of-scope719

knowledge is assigned a ground truth label of 0.720

The binary classification MLP is trained using the721

Adam (Duchi et al., 2011) optimizer with a learn-722

ing rate of 1 × 10−3. Training is conducted for723

3 epochs on the entire dataset. The loss function724

utilized is Binary Cross Entropy with Logits Loss.725

F Demonstrations Detail726

Copier and Recaller use different types of demon-727

strations, Din and Dout as presented in Section728

4.1.3-4.1.4.729

Copier finalizes the in-context post-editing730

prompt by appending the test case: 731

promptin = 732

Input: q ⊕ f∗
θ (q) 733

Retrieval: eq 734

Answer: (25) 735

which leads to complete the function of Copier as 736

follows: 737

Copier (f∗
θ , o, eq) = f∗

θ (Din ⊕ promptin) (26) 738

Similarly, Recaller uses the test part of in-context 739

prompt as follows: 740

promptout = 741

Input: q ⊕ f∗
θ (q) 742

Answer: (27) 743

which leads to complete the function of Copier as 744

follows: 745

Recaller (f∗
θ , o) = f∗

θ (Dout ⊕ promptout) (28) 746

Table 7 mainly shows the demonstrations built 747

for the Counterfact dataset. 748

G Case Study 749

Table 8a and and 8b illustrate the case studies of 750

in-scope and out-of-scope knowledge using two 751

test fact examples from the Counterfactual dataset 752

that were successfully corrected and recalled. 753

More specifically, tables present the following: 754

an input query q to be evaluated (marked in red), 755

a preliminary answer resulting by a PU method 756

(marked in purple), a retrieved fact eq = Ret(q,F) 757

(marked in blue) from the edited facts F , few-shot 758

demonstrations (i.e., Din or Dout), a test prompt, 759

which consists of an input query q, a preliminary 760

answer f∗
θ (q), a retrieved fact eq (i.e„ eq is op- 761

tionally required only for in-scope queries), and a 762

querying prompt Answer: (marked in green). 763

The total prompts with few-shot demonstrations 764

are fed into the edited model f∗
θ to generate a final 765

answer (marked in orange). 766
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Are "South East Cape, which is located in" and "South East Cape, which is located in" related?
Yes

Are "Johann Heinrich Burchard, who has the position of" and "Joachim Meisner has the position of" related?
No

Are "The original language of Khamosh was" and "The language of Khamosh was" related?
Yes

Are "The language of Maqbool was" and "The original language of Dhool is" related?
No

Are "M’Sila Province can be found in" and: "M’Sila Province is located in" related?
Yes

Are "Wolfgang Ketterle’s occupation is" and "Martin Klebba’s occupation is" related?
No

Are "32nd Indiana Monument is in" and "32nd Indiana Monument is within" related?
Yes

Are "Angela Smith, Baroness Smith of Basildon is native to" and "Nicky Barnes is native to" related?
No

Table 4: In-context demonstrations for classifying relevance.

Method in-scope out-of-scope all
POMEMICL 94.63 15.69 33.91
POMEMSubj 99.14 84.82 88.12
POMEMThr 93.92 83.59 85.97
POMEMSiam 88.09 89.99 89.55

Table 5: Accuracy of four methods for in-scope and out-scope classification

Score ↑ Efficacy ↑ Generalization ↑ Locality ↑
Model Editor SS AS ES EA PS PA NS NA

GPT2-XL

POMEMICL 75.1 27.1 79.3 52.9 75.4 48.6 71.1 14.0
POMEMSubj 87.7 34.1 99.1 89.8 96.4 85.7 72.7 15.4
POMEMThr 86.9 32.8 99.1 89.8 94.2 82.4 72.4 14.7
POMEMSiam 86.7 35.1 99.2 90.1 91.9 78.3 73.3 16.2

GPT-J

POMEMICL 85.1 19.3 99.8 94.8 97.1 88.1 66.9 7.5
POMEMSubj 90.3 42.6 99.8 95.5 97.6 92.2 77.3 20.4
POMEMThr 90.1 41.8 99.8 95.5 96.6 89.5 77.3 19.9
POMEMSiam 90.3 43.5 99.8 95.5 96.4 87.0 77.9 21.3

Table 6: The comparison results of using four scope classifiers in POMEM, which result from performing the
massive knowledge editing on 10,000 in the Counterfact dataset.
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Input: The mother tongue of Danielle Darrieux is English.
Retrieval: The mother tongue of Danielle Darrieux is English.
Answer: English

Input: Edwin of Northumbria follows the religion of Islam.
Retrieval: The official religion of Edwin of Northumbria is Islam.
Answer: Islam

Input: The occupation of Juan Rulfo is the.
Retrieval: The occupation of Juan Rulfo is politician.
Answer: politician

Input: Beryl Cook died at the.
Retrieval: Beryl Cook passed away in Chicago.
Answer: Chicago

Input: Theo Crosby passed away in Chicago.
Retrieval: Theo Crosby passed away in Chicago.
Answer: Chicago

Input: Zaheer Khan follows the religion of Catholicism.
Retrieval: Zaheer Khan is follower of Catholicism.
Answer: Catholicism

(a) Demonstrations Din of Copier for in-context post-editing designed to handle in-scope queries,
whose form is defined in Eq. (6).

Input: The official religion of Charles Aznavour is Christianity.
Answer: Christianity

Input: Elcho Island Airport, located in Indonesia.
Answer: Australia

Input: The language of Barbarella is English.
Answer: English

Input: Choi Sung-yong is a native speaker of French.
Answer: Korean

Input: Roman Catholic Archdiocese of Sydney’s headquarters are in the.
Answer: Sydney

Input: Lars Onsager, who holds a citizenship from the.
Answer: Norway

(b) Demonstrations Dout of Recaller for in-context post-editing designed to handle out-of-scope queries,
whose form is defined in Eq. (7).

Table 7: Details of demonstrations of Copier and Recaller, denoted as Din and Dout which are selected from
Counterfact dataset.
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q = (s′i, r

′
i)

f∗
θ (q)
eq

David Rivett works as _
a
David Rivett’s occupation is composer.


Din

q + f∗
θ (q)

eq
o∗

...
Input: David Rivett works as a.
Retrieval: David Rivett’s occupation is composer.
Answer: composer

(a) A case study of Copier. The retrieval part is related to the input query, and is concatenated with the
in-scope in-context demonstrations Din for post-editing.


q = (s, r)
f∗
θ (q)
eq

In Cantavieja, they understand _
English
In Asturias, they understand German.


Dout

q + f∗
θ (q)

o∗

...
Input: In Cantavieja, they understand English.
Answer: Spanish

(b) A case study of Recaller. The retrieval part is unrelated to the input part, and is concatenated with
the out-of-scope in-context demonstrations Dout for recalling a result of the unedited base model.

Table 8: Illustrations of Copier and Recaller on the selected case examples in Counterfact dataset. The red part is
the input query q to be evaluated to a PU-edited model f∗

θ . The purple part is a preliminary answer generated by a
PU model, i.e., f∗

θ (q), the blue part is the retrieved edit eq by Retriever, the green parts are prompts of either Copier
and Recaller with few-shot demonstrations, and the orange part is a final answer generated after the in-context
post-editing.
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