POMEM: In-Context Knowledge Post Editing on Massive-Editing Memory
in Language Language Models

Anonymous ACL submission

Abstract

Parameter updating (PU), while being widely
used in knowledge editing, has still shown lim-
ited performances in terms of generalization
and locality metrics, likely due to the catas-
trophic forgetting, the riffle effects, or the un-
seen contexts. This paper proposes a novel
in-context post-editing, which is subsequently
applied to the PU-based prediction results,
namely POMEM - In-context knowledge post
editing on massive-editing memory — which
consists of two different types of in-context
post-editing prompting method, divided into
the “in-scope” and “out-of-scope” post-editing
methods, shortly referred to as Copier and
Recaller, respectively; 1) Copier is specially
designed for in-scope cases, mainly aiming
to further enhance the generalization editing
ability; 2) Recaller is designed for out-of-
scope cases, which involves a novel “recall-
ing” prompt which aims to recover the predic-
tion result of “original pre-edited” model under
using the PU-based “edited” model. Experi-
ment results on Counterfact dataset show that
POMEM leads to the state-of-the-art perfor-
mances. Our codes are publicly available at
https://github.com/XXX/XXX.

1 Introduction

Given the ever-changed world knowledge and
the frequent demands on knowledge maintenance,
there has been a growing interest in “knowledge
editing” task on large language models (LLMs),
which aims to develop a scalable editing method
that fixes incorrect information and reflects new
information.

A typical approach of knowledge editing meth-
ods is the parameter updating (PU), which updates
local parameters directly (Meng et al., 2022a,b; Li
et al., 2023) or indirectly via additional hypernet-
works (De Cao et al., 2021; Mitchell et al., 2022a;
Tan et al., 2024), or augment parameters (Dong
et al., 2022a; Huang et al., 2023). However, PU has

still shown limited performances in terms of gener-
alization and locality metrics, two important met-
rics of knowledge editing (Yao et al., 2023). First,
as in the continual learning (Rolnick et al., 2019),
PU may cause the catastrophic forgetting given
its parametric surgical style, failing to strongly
maintain the original knowledge, often resulting
in weakly-performing locality. Second, PU may
suffer from the ripple effect (Cohen et al., 2024) or
the unseen contexts (Huang et al., 2024), because
in-scope boundary is not explicitly defined and “all”
relevant knowledge for given edit requests is hardly
pre-identified and captured, thus resulting in sub-
optimal generalization.

Without sorely relying on a PU method, inspired
by in-context learning (ICL)’s versatile abilities
(Liu et al., 2022a; Dong et al., 2022b) and its appli-
cation on the knowledge editing task (Zheng et al.,
2023), this paper proposes a novel in-context post-
editing method, which is applied on top of a PU
method, namely POMEM - in-context knowledge
post editing on massive-editing memory.

More specifically, POMEM establishes the few-
shot learning ability of ICL towards desired behav-
iors for in-context post editing for in-scope and
out-of-scope queries, namely as “Copier” and “Re-
caller,” respectively, i.e., gearing the edited model
to revise an initially predicted result made by a PU
method towards a correct one, as follows:

* Copier, designed for an in-scope query, pro-
vides few-shot examples to guide the model
to explicitly identify and copy an answer from
an in-context fact relevant to the input query,
likely for enhancing generalization.

* Recaller, designed for an out-of-scope query,
presents a novel “recalling” few-shot exam-
ples to guide the model to recall the prediction
of the original “unedited” model but by the
current “edited” model given the query, to-
wards improving the locality.

https://github.com/XXX/XXX

Experiment results carried on Counterfact
dataset show that the proposed POMEM improves
existing methods including MEMIT, exhibiting the
state-of-the-art performances.

2 Related Works

2.1 PU Approach

PU approaches are further divided into meta learn-
ing, locate-then-edit, and parameter expansion
methods. 1) Meta learning methods (De Cao et al.,
2021; Mitchell et al., 2022a; Tan et al., 2024) train
hyper-networks to indirectly update the model pa-
rameters for knowledge editing. 2) Locate-then-
edit methods Meng et al. (2022a,b); Li et al. (2023)
directly modify the parameters in specific model
layers or modules that are most related to the de-
sired new knowledge, being largely connected to
mechanistic interpretation of Transformer (Geva
et al., 2021; Rauker et al., 2023; Nanda et al., 2023).
3) Parameter expansion methods extends param-
eters by adding neurons or parameters to store
new knowledge, such as a calibration memory slot
(Dong et al., 2022a) or extra neurons (Dai et al.,
2022; Huang et al., 2023).

2.2 Memory-based Approach

Largely related to retrieval-augmented genera-
tion (Lewis et al., 2020), Zheng et al. (2023); Zhong
et al. (2023); Gu et al. (2023) leverage the ICL abil-
ity of LLMs in a manner of providing a pre-stored
edit request in an in-context manner for affecting
the prediction results by LLMs, where all edit re-
quests are maintained in an external memory, rather
than modifying the parameters of LLMs. SERAC
(Mitchell et al., 2022b) deploys a semi-parametric
method which trains an additional “counterfactual
model” to better reflect a pre-stored edit request in
predicting a final output.

Similar to POMEM, SERAC uses a scope classi-
fier and handles in-scope and out-of-scope queries
using different functions. In contrast to SERAC,
POMEM addresses massive editing tasks and
mainly relies on the ICL ability for the in-context
post editing, without requiring an original base
model during inference time.

3 Task Definition: Massive Knowledge
Editing

Suppose that fy(-) roughly indicates a function of
a given LLM, where fy(x) is the prediction result

during the decoding step after taking x as a pre-
fix. Now, let & = {e;};—, be a “massive” set of
n edit requests to be injected to the LLM, where
ei = (si,7i,0}) is a i-th triple-level edit request,
i.e., s;,7;,0; indicate a subject, a relation, and an
target object, respectively. The massive knowledge
editing aims to obtain an edited model f;(-) to
fulfill efficacy, generalization, and locality, for all

edits in £.

* Efficacy holds if f;(s;,7;) = of for (s;,7;) €
£.

* Generalization holds if f; (s}, r}) = o} for

an “in-scope” prefix (s},r.) € Z(e;), where
Z(e;) is the edit scope of e;, the set of in-scope
examples, a set of “relevant” facts to e;, which
usually include paraphrased and synonymous

expressions of e;.

* Locality (or specificity) holds if
fo sty = fo(s!,r!) for any out-of-

scope prefix (s/,7/) € O(e;) is the set
of out-of-scope examples, i.e., a set of all
“irrelevant” facts to e;, which should not be

affected by the current edit e;.

Appendix G illustrates detailed examples of an
edit, its prefix, in-scope and out-of-scope prefixes,
and their correct target objects.

4 Method

Figure 1 presents the overall architecture of the
proposed POMEM, whose components include
Copier, Recaller (i.e., two types of in-context post-
editing functions), Fact Retriever and Scope Clas-
sifier. POMEM consists of two stages — editing
and in-context post-editing — as follows:

* Editing: During the massive editing stage, a
PU method is applied to inject a set of edits
£ into the parametric memory of LLM, and £
is stacked in an external edit memory F using
the memorization function Mem:

fo = PU(fo,€)
F = Mem(€) (1)

where PU is a functional to return a PU-based
model f, by taking £, and Mem is a verbaliz-
ing function that linearizes each triple knowl-
edge to a natural language sentence. In this
paper, we use MEMIT (Meng et al., 2022b)
for PU.

q € &1,0

q,: Danielle Darrieux spoke the language

fo(q1):

q,: Esther Rantzen, who works for

Retrieve edit fact _ F

C Ret(q, F) €q
—

1
Copier D;,

Input: Danielle Darrieux spoke the language
Retrieval: The mother tongue of Danielle Darrieux is English.
[Answer: English

S(q, eq) q| €q2: Emma Willis, who is employed by Google.

Aep (O
@ fo(q2):

Judgment: q; and e,; are /irrelated

g 41| eq1: The mother tongue of Danielle Darrieux is English.

0

Recaller D,,,;

Input: Esther Rantzen, who works for

| Answer: BBC

Figure 1: An overall architecture of the in-context post-editing procedure of POMEM, consisting of Copier, Recaller,
Fact Retriever, and Scope Classifier: For i-th test query g;, the PU-edited model is first applied to generate an
initial prediction result f; (g;), and Fact Retrieval performs the dense retrieval to find the most similar edit e, € F
using Eq. (4) in Section 4.1.1, i.e., e, = Ret(g, F). Scope classifier S(g, e,) determines whether ¢ is an in-scope
instance for the retrieved edit e, using Eq. (5) in Section 4.1.2. Depending on its scope of g;, Copier or Recaller are
performed as in-context post-editing method using few-shot demonstrations of Eq. (6) in Section 4.1.3, or of Eq. (7)

in Section 4.1.4, respectively.

* In-context post-editing: Suppose that a query
prompt ¢ = (s, r) is given, the in-context post-
editing stage first takes the initially predicted
result o, determines the scope of ¢ based on
its most-relevant fact e, € F, applies a scope-
specific post-editing, i.e., either Copier or Re-
caller, depending on the scope of ¢, as follows:

o= fy(q) ()
eq = Ret (¢, F)

« | Copier(fy,0,eq) ifS(q,eq) =1
¢ Recaller (f;,0) otherwise

3)

where Ret(g, F) is Fact Retriever which finds
the most similar fact (i.e., the edit request)
eq € F to the input query g, referred to as
the retrieved edit, and S(q, e,) is the scope
classifier which determines whether ¢ is in-
scope in ey, (i.e., ¢ € Z(ey)).

4.1 In-Context Post Editing
In this section, we provide more details of compo-
nents for in-context post editing method.

4.1.1 Fact Retriever: Ret(q, F)

Fact Retriever finds the most relevant edit to an
input query g by performing the dense retrieval
between ¢ and all edits in F, based on a sentence
encoder h(s) € R4, which returns the sentence
vector for a sentence s, as follows:

Ret(q, F) = argmax, ¢ rcos (h(q), h(e)) (4)

where the pre-trained sentence encoder (Reimers
and Gurevych, 2019) is used for h.

4.1.2 Scope Classifier: S(q, e,)

Scope Classifier deploys Siamese neural networks
similar to (Ranasinghe et al., 2019; Neculoiu et al.,
2016), using an additional multi-layer perception
(MLP) layers which performs the binary classifica-
tion, as follows:

[1 ifo(MLP(h(q) — h(eq))) > 0.5
S, €q) = { 0 otherwise
&)
where o is the sigmoid function and the parameters
of MLP are separately trained in an extra training
dataset as in Appendix E.

4.1.3 Copier

Copier guides the model to extract an answer di-
rectly from an in-context retrieved edit “relevant”
to a given query. Copier prepares few-shot demon-
(4)

strations D;, = {dfg ~ where d;, is formed
based on the following template:

Input: ¢ @ f5(¢®)

Retrieval: e u)

Answer: obj(e) (6)

where & is the concatenation operator of strings,
¢'9 is i-th query part in D;y,, ey = Ret(¢(®), and
obj(e) is the selector that returns an “object” part
in an edit e.

Score 1 Efficacy T Generalization T Locality T

Model Editor SS AS ES EA PS PA NS NA
Base 305 02 229 03 239 0.1 773 10.7

ROME 504 04 519 04 495 04 499 04

GPT2-XL MEMIT 71.5 180 795 46.0 67.0 23.4 69.2 9.8
POMEM 86.7 351 99.2 90.1 919 78.3 73.3 16.2
Base 213 05 152 04 158 04 83.5 147

ROME 508 0.2 513 02 50.6 0.1 50.7 0.1
GPT-] MEND 252 45 176 3.15 20.1 3.18 80.8 23.7
MEMIT 87.6 26.8 99.1 96.1 949 69.9 73.5 11.5
SERAC 86.5 284 99.1 96.1 82.0 59.7 80.7 12.7

POMEM 90.3 435 998 955 964 87.0 779 21.3

Table 1: The performances of editing 10,000 requests in Counterfact dataset, under GPT2-XL and GPT-J settings,
comparing POMEM with other baselines — Base (the unedited model), ROME, MEMIT, MEND, and SERAC.

4.1.4 Recaller

Recaller forces the model to “recall” a predic-
tion of an “original” unedited model to a given
query, regardless of the current prediction of fy.
To gear the edited model to recall an “original”
prediction, Recaller uses few-shot demonstrations

. 1% .
Dout = {d(jjt} where d(oi)t is formed as fol-
j=1
lows:
Input: ¢¥ @ f5(q")
Answer: fo(q")) (7)

where ¢U) is j-th query part in Dyy;. Different
from Eq. (6), Retrieval does not appear and
Answer part uses the original prediction.

Copier and Recaller finalize the prompts by ap-
pending the test case following the same form of
their demonstrations, as in Appendix F, which also
include some examples.

5 Experimental & Analysis

5.1 Setup

We adopted MEMIT(Meng et al., 2022b) for a PU
method and evaluate our method on CounterFact
dataset with GPT2-XL (1.5B) and GPT-J (6B) lan-
guage model. See Appendix A, C, and D for the
details of MEMIT, the description of CounterFact
dataset, and the evaluation metrics.

5.1.1 Main Results

Table 1 presents the results of POMEM on the
Counterfact dataset under GPT2-XL and GPT-J,
comparing to Base (i.e., the unedited base model),
ROME (Meng et al., 2022a), MEMIT (Meng
et al., 2022b), MEND (Mitchell et al., 2022a), and

SERAC (Mitchell et al., 2022b). As in MEMIT
(Meng et al., 2022b), the experiments reveals again
that ROME method struggles with low perfor-
mances because it injects large amounts of knowl-
edge into a single layer, which are substantially im-
proved by MEMIT. We also observe that MEMIT
demonstrates weak locality, showing a non-trivial
gap compared to the Base model, and its general-
ization is far from optimal, particularly when us-
ing GPT-2 XL. It is clearly shown that POMEM
outperforms MEMIT both generalization and local-
ity, confirming that the proposed in-context post-
editing, based on Copier and Recaller, effectively
revises initially predicted results to correct ones,
thereby leading to these improvements.

6 Discuss & Conclusion

In this paper, we proposed POMEM based on two
types of in-context knowledge post-editing meth-
ods — Copier and Recaller — which are designed
in scope-specific manners for in-scope and out-of-
scope queries, respectively.

In future work, we would like to examine
whether POMEM is effective on other PU meth-
ods such as meta learning and parameter expan-
sion methods, comparing to the locate-then-edit
methods. Given the recent advances in sequential
editing (Huang et al., 2023), event-level editing
(Liu et al., 2024; Peng et al., 2024), reasoning-
aware editing tasks (Zhong et al., 2023), it would
be worthy to explore how in-context post-editing
of POMEM is generalized on these new variants of
tasks.

Limitations

In our current setting, few-shot demonstrations
used for Copier and Recaller in in-context post
editing are fixed across all test quests. Given that
the demonstration selection and ordering are impor-
tant in ICL (Liu et al., 2022b; Rubin et al., 2022;
Lu et al., 2022), however, POMEM could be en-
hanced by dynamically selecting or ordering few-
shot examples, more effectively for a current input
query. In addition, POMEM currently relies on
a simple format of prompts that only capture the
key required information, and advanced prompting
formats also need to be explored, as the prompt
engineering is increasingly important in effectively
exploiting ICL abilities of LLMs (Dong et al., 2023;
Wang et al., 2023b).

The proposed POMEM is currently evaluated
only under MEMIT as a PU method, however, it
could generally be applicable to other types of PU
methods such as meta learning (De Cao et al., 2021;
Mitchell et al., 2022a; Tan et al., 2024) and param-
eter expansion methods (Dong et al., 2022a; Dai
etal., 2022; Huang et al., 2023). It would be worthy
to explore POMEM on other PU methods and to
examine the effect of the selection of a PU method
in the in-context post-editing.

In an architectural design, POMEM relies on
Scope Classifier, a parametric model, not being
designed in an ICL manner. As a result, POMEM’s
in-context post-editing is not purely designed based
on ICL mechanism. While we tried to explore
the ICL-based scope classifier in Appendix E, its
performance is not effective. Enabling all required
components of POMEM under ICL mechanism
would be a valuable future direction, as the post-
editing method could be realized as the process of
chain-of-thought (CoT) (Wei et al., 2022), without
relying on an external parametric model.

References

Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson,
and Mor Geva. 2024. Evaluating the ripple effects
of knowledge editing in language models. Transac-
tions of the Association for Computational Linguis-
tics, 12:283-298.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao
Chang, and Furu Wei. 2022. Knowledge neurons in
pretrained transformers. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 8493—
8502, Dublin, Ireland. Association for Computational
Linguistics.

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Edit-
ing factual knowledge in language models. arXiv
preprint arXiv:2104.08164.

Qingxiu Dong, Damai Dai, Yifan Song, Jingjing Xu,
Zhifang Sui, and Lei Li. 2022a. Calibrating factual
knowledge in pretrained language models. Findings
of Empirical Methods in Natural Language Process-
ing (EMNLP).

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong
Wu, Baobao Chang, Xu Sun, Jingjing Xu, Lei Li, and
Zhifang Sui. 2023. A survey on in-context learning.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong
Wu, Baobao Chang, Xu Sun, Jingjing Xu, and Zhi-
fang Sui. 2022b. A survey for in-context learning.
arXiv preprint arXiv:2301.00234.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning
research, 12(7).

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2021. Transformer feed-forward layers are key-
value memories. In Empirical Methods in Natural
Language Processing (EMNLP).

Hengrui Gu, Kaixiong Zhou, Xiaotian Han, Ninghao
Liu, Ruobing Wang, and Xin Wang. 2023. Pokemqa:
Programmable knowledge editing for multi-hop ques-
tion answering. arXiv preprint arXiv:2312.15194.

Youcheng Huang, Wengiang Lei, Zheng Zhang,
Jiancheng Lv, and Shuicheng Yan. 2024. See the
unseen: Better context-consistent knowledge-editing
by noises. arXiv preprint arXiv:2401.07544.

Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou,
Wenge Rong, and Zhang Xiong. 2023. Transformer-
patcher: One mistake worth one neuron. In The
Eleventh International Conference on Learning Rep-
resentations.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459-9474.

Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang, Jun
Ma, and Jie Yu. 2023. Pmet: Precise model editing
in a transformer. arXiv preprint arXiv:2308.08742.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2022a. What
makes good in-context examples for GPT-3? In
Proceedings of Deep Learning Inside Out (Deel 1O
2022): The 3rd Workshop on Knowledge Extrac-
tion and Integration for Deep Learning Architectures,
pages 100-114, Dublin, Ireland and Online. Associa-
tion for Computational Linguistics.

https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2022.acl-long.581
http://arxiv.org/abs/2301.00234
https://openreview.net/forum?id=4oYUGeGBPm
https://openreview.net/forum?id=4oYUGeGBPm
https://openreview.net/forum?id=4oYUGeGBPm
https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.18653/v1/2022.deelio-1.10

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2022b. What
makes good in-context examples for GPT-3?7 In
Proceedings of Deep Learning Inside Out (DeeLIO
2022): The 3rd Workshop on Knowledge Extrac-
tion and Integration for Deep Learning Architectures,
pages 100-114, Dublin, Ireland and Online. Associa-
tion for Computational Linguistics.

Jiateng Liu, Pengfei Yu, Yuji Zhang, Sha Li, Zixuan
Zhang, and Heng Ji. 2024. Evedit: Event-based
knowledge editing with deductive editing boundaries.
arXiv preprint arXiv:2402.11324.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2022. Fantastically ordered
prompts and where to find them: Overcoming few-
shot prompt order sensitivity. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
8086-8098, Dublin, Ireland. Association for Compu-
tational Linguistics.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022a. Locating and editing factual asso-
ciations in GPT. Advances in Neural Information
Processing Systems, 35.

Kevin Meng, Arnab Sen Sharma, Alex Andonian,
Yonatan Belinkov, and David Bau. 2022b. Mass
editing memory in a transformer. arXiv preprint
arXiv:2210.07229.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea
Finn, and Christopher D Manning. 2022a. Fast model
editing at scale. In International Conference on
Learning Representations.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christo-
pher D Manning, and Chelsea Finn. 2022b. Memory-
based model editing at scale. In International Con-
ference on Machine Learning, pages 15817-15831.
PMLR.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess
Smith, and Jacob Steinhardt. 2023. Progress mea-
sures for grokking via mechanistic interpretability.
arXiv preprint arXiv:2301.05217.

Paul Neculoiu, Maarten Versteegh, and Mihai Rotaru.
2016. Learning text similarity with Siamese recur-
rent networks. In Proceedings of the 1st Workshop
on Representation Learning for NLP, pages 148—157,
Berlin, Germany. Association for Computational Lin-
guistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

Hao Peng, Xiaozhi Wang, Chunyang Li, Kaisheng Zeng,
Jiangshan Duo, Yixin Cao, Lei Hou, and Juanzi Li.
2024. Event-level knowledge editing. arXiv preprint
arXiv:2402.13093.

Tharindu Ranasinghe, Constantin Orasan, and Rus-
lan Mitkov. 2019. Semantic textual similarity with
Siamese neural networks. In Proceedings of the Inter-
national Conference on Recent Advances in Natural
Language Processing (RANLP 2019), pages 1004—
1011, Varna, Bulgaria. INCOMA Ltd.

Tilman Réuker, Anson Ho, Stephen Casper, and Dylan
Hadfield-Menell. 2023. Toward transparent ai: A
survey on interpreting the inner structures of deep
neural networks. In 2023 IEEE Conference on Secure
and Trustworthy Machine Learning (SaTML), pages
464-483. IEEE.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timo-
thy Lillicrap, and Gregory Wayne. 2019. Experience
replay for continual learning. In Advances in Neural
Information Processing Systems, volume 32. Curran
Associates, Inc.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant.
2022. Learning to retrieve prompts for in-context
learning. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 2655-2671, Seattle, United States.
Association for Computational Linguistics.

Chenmien Tan, Ge Zhang, and Jie Fu. 2024. Massive
editing for large language models via meta learning.
In International Conference on Learning Representa-
tions.

Peng Wang, Ningyu Zhang, Xin Xie, Yunzhi Yao,
Bozhong Tian, Mengru Wang, Zekun Xi, Siyuan
Cheng, Kangwei Liu, Guozhou Zheng, et al. 2023a.
Easyedit: An easy-to-use knowledge editing frame-
work for large language models. arXiv preprint
arXiv:2308.07269.

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai,
Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric P
Xing, and Zhiting Hu. 2023b. Promptagent:
Strategic planning with language models enables
expert-level prompt optimization. arXiv preprint
arXiv:2310.16427.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824-24837.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://openreview.net/pdf?id=0DcZxeWfOPt
https://openreview.net/pdf?id=0DcZxeWfOPt
https://openreview.net/pdf?id=0DcZxeWfOPt
https://doi.org/10.18653/v1/W16-1617
https://doi.org/10.18653/v1/W16-1617
https://doi.org/10.18653/v1/W16-1617
https://doi.org/10.26615/978-954-452-056-4_116
https://doi.org/10.26615/978-954-452-056-4_116
https://doi.org/10.26615/978-954-452-056-4_116
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://proceedings.neurips.cc/paper_files/paper/2019/file/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper.pdf
https://doi.org/10.18653/v1/2022.naacl-main.191
https://doi.org/10.18653/v1/2022.naacl-main.191
https://doi.org/10.18653/v1/2022.naacl-main.191
https://openreview.net/pdf?id=L6L1CJQ2PE
https://openreview.net/pdf?id=L6L1CJQ2PE
https://openreview.net/pdf?id=L6L1CJQ2PE

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng,
Zhoubo Li, Shumin Deng, Huajun Chen, and Ningyu
Zhang. 2023. Editing large language models: Prob-
lems, methods, and opportunities. In Proceedings
of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 10222-10240,
Singapore. Association for Computational Linguis-
tics.

Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong
Wu, Jingjing Xu, and Baobao Chang. 2023. Can we
edit factual knowledge by in-context learning? arXiv
preprint arXiv:2305.12740.

Zexuan Zhong, Zhengxuan Wu, Christopher D Man-
ning, Christopher Potts, and Danqgi Chen. 2023.
Mquake: Assessing knowledge editing in language
models via multi-hop questions. arXiv preprint
arXiv:2305.14795.

A PU method for Editing: MEMIT

POMEM needs to first perform a PU method by
injecting a set of massive edits to the parametric
memory, to obtain an edited model, as in Figure 2

We use MEMIT (Meng et al., 2022b) as such a
PU method for editing stage in Eq. (1), which is
an extensible multi-layer update algorithm, to in-
ject a massive set of edits into the language model.
Given the range of layers R to be updated, let
L = maz (R) be a target layer. For i-th edit
ei = (si,1i,0f) € &, a set of enlarged factual
prompts, P; = {z; & p (si, ri)}le are prepared to
enhance “generalization” of editing where random
prefixes x;, that cover various contexts that (s;, r;)
appear, are prepended into a templated prompt
p(si, ;). The optimization to predict the target
object o] under P; leads to the residual vector J;
using Eq. (8), which refer to the extent of updating
the hidden state b} at layer L.

P

1
0; «—argming — E
P ®)

—logPg) (07 | 25 & p (50,73)]

where the G (hf—i— = 6;) operation is called “hook-
ing,” which uses the adjusted hidden state h*+ =
d; to execute the transformer.

Then, §; is propagated across predefined editing
layers | € R = {l;...L},ie., &/(L —1+1),
which leads to obtain the increments Al to update
the MLP weights in layers in R, resulting in the

updated hidden representation at the layer L:

hl =n? + i attn (hé’1>
1=1

3 [(Wha A reta (Wl ()]

=1
©)
where, h? is the initial embedding of input token,
~ and relu is layernorm and ReLU activation func-
tion. Appendix A.l presents further details for
calculating Al for updating the MLP weights.
Appendix B.2 describes the hyperparameter de-
sign of MEMIT under different LLM models.

A.1 Updating MLP weights in MEMIT

It is assumed that the the MLP layer stores facts as
key-memory pairs, as in (Geva et al., 2021). The
MLP output layer weight after massive editing is
defined as:

n
R 2
Wout 2 argmin Z HWkl —my; (10)
W=t

where k; is defined as encoded subject vector for
i-th edit, m; is its corresponding “target” memory
representation. During editing, as in Eq. (9), A
is calculated to update W, resulting in a new
weight matrix Wout to inject the new association.

Wout = Wout + A (11)

By distinguishing old knowledge from new one,
Eq. (10) is further decomposed into

2
+

n
Wout £ argmin (Z HWkZ —my;
W i=1

5% [

i=n+1

(12)

The above formula can be optimized by solving
the normal equation. Meng et al. (2022b) described
it in block form as follows.

Wout[KO K |[Ko K]TZ

(13)
[My My J[Ko Ky]

According to formula 11, formula 13 is further
simplified to:

Wou K1 KT
(14)

A (KoKj + K1 K1) = MiK{ —

https://doi.org/10.18653/v1/2023.emnlp-main.632
https://doi.org/10.18653/v1/2023.emnlp-main.632
https://doi.org/10.18653/v1/2023.emnlp-main.632

App Inventor for Android was developed by Adobe. \‘; -~ m

i(si, T;, 0]){ Emma Willis, who is employed by Google.
The mother tongue of Danielle Darrieux is English.

a Post-edit model

@ Base model

h Knowledge Injection

Figure 2: PU-based massive knowledge editing: Inject new knowledge into the base model to produce an edited

model.

Suppose that C' £ KoK{ and R = My — W, K1,
where C' is a constant proportional to the non-
central covariance of K, and R is the residual of
the new memory representations and the old ones
for the required edits, corresponding to §; which is
evenly distributed across the remaining layers.

Eq. (14) is simplified to:

A=RKT(C+K K™ (5

Foreachl € R = {ly ... L}, its massive edit
requests are reflected in K7 and M7, which consists
of a set of pairs of all key vectors and their target
memory representations as follows:

KlzKlz[kll...k;}
:Rl:[rll...rﬂ

of) € & are com-

(16)

where kf and rﬁ for e; = (si,7i,0

puted as:
1 P
K= FZH T @ s;) (17)
7j=1
b= §/(L—141) (18)

where k' (z) = relu (W}~ (z)).

Under K; = K' and M; = R', we apply Eq.
(15) to finalize compute A’ used to update the MLP
weights at layer [.

B Implementation Detail

B.1 Experiment Environment

All editing and evaluation experiments were run on
a workstation with NVIDIA RTX A6000 GPU. The
pre-trained weights of the loaded language model
come from HuggingFace transformers (Wolf et al.,
2019) in version 4.30.1, and Pytorch (Paszke et al.,
2019) version is 2.01.

B.2 Editing Hyperparameters

All hyperparameters about using MEMIT to edit
GPT2-XL and GPT-J can be found in the EasyEdit

Model n t R
GPT2-XL | 0.5 20 [13,14,15,16,17]
GPT-J 05 25 [3,4,5,6,7, 8]

Table 2: Optimization parameters and editing layer of
language model.

code (Wang et al., 2023a). The important parame-
ters are shown in table 2. ¢ and n are the number
of steps and learning rate of ; optimization respec-
tively, and R is the model layer to be edited.

C DataSet

The form of data in Counterfact is mainly rep-
resented by the cloze-style. For the edit data
ei = (s4,r;,0;) € &, its definition form is as in
table 3. The editing process writes (s;,7;) — 0} to
the model to replace the previously pointed o;.

In addition, there is a set £ for evaluating Effi-
cacy. The set Z for evaluating Generalization is
rewritten from £ in order to test the generalization
performance of the post-edit model. The set O for
testing Locality, which represents the same seman-
tics as £ but unrelated facts, in order to test the
deterioration of the model after editing.

D Evaluation Metrics

In order to be consistent with previous
works (Mitchell et al., 2022a; Meng et al.,
2022a) on the comparison of counterfact dataset
results, we report the evaluation formulas in
Efficacy, Generalization and Locality respectively.

D.1 Efficacy

Efficacy Success(ES), that is formula 19, is the
proportion of cases where the output o] probability
of the fact e; from the set £ is greater than o;.
B(siray~e Lo (07 | (sisri)) > fo (0i | (si,73))}
(19)
Efficacy Accuracy(EA), the formula 20 evalu-

S; Edwin of Northumbria

triple-level

T The official religion of {} is _

0; Christianity
o} Islam
& (si,ri) | The official religion of Edwin of Northumbria is _
(s, 1) Edwin of Northumbria follows the religion of _
v Edwin of Northumbria is affiliated with the religion _
The official religion of Charles Aznavour is _
Nicolas Sarkozy is affiliated with the religion _
Andrew Johnson is affiliated with the religion _
The official religion of Paul is _
o (50,17 Ringo Starr is follower of _

The official religion of Nicolas Sarkozy is _

The official religion of Andrew Johnson is _
Orson Welles is affiliated with the religion _
Lady Gaga is follower of _

Quentin Tarantino is affiliated with the religion _

Table 3: Formulation of the Counterfact Dataset. It is displayed at the triple-level, including subject s;, relation
r;, original object o;, and new object o}. From the set-level, it shows editing facts set &£, relevant facts set Z and

irrelevant facts set O.

ates whether the most likely output token is o]

Eov oyt {argmaxf$ (0] (siy13)) = } 20)

D.2 Generalization

Similar to Efficacy, the fact ¢ from the in-scope
set Z is used to test Paraphrase Success(PS),
formula 21, and Paraphrase Accuracy(PA), for-
mula 22.

E(s; i~z {f5 (07 | (8i:73)) > f5 (0 | (si,73))}
(2D

Eop oyt {argmaxf; (0] (siy13)) = })

D.3 Locality (or Specificity)

The Neighborhood Success(NS), and Neighbor-
hood Accuracy(NA), metrics of the fact ¢ from
the out-of-scope set O are evaluated in terms of Lo-
cality, formula 23 and formula 24. We expect the
model not to change the answers to these irrelevant
facts after editing, they should output the original
answer o;.

E(sirino {5 (07 | (si,m4)) < fg (0i | (si,7:))}
(23)

E(s; r)~0 {argmaxfék (o (siy15)) = 01} (24)

In addition, we also introduce Success Score(SS)
and Accuracy Score(AS), which represent the har-
monic mean of the evaluation results of (ES, PS,
NS) and (EA, PA, NA) respectively.

E Methods of Scope Classification

POMEM uses the Siamese neural network clas-
sifier for S(g, ;) as in Section 4.1.2. To verify
Siamese network classifier, we present the ablation
study comparing four scope classification methods,
denoted as follows:

* POMEM;¢: The ICL-based scope classifi-
cation based on properly-designed few-shot
examples. A prompt is designed for analyz-
ing whether ¢ and e, are related, as shown in
Table 4.

* POMEMg,;;: The classification based on
subject matching classification by checking
where subj(e,) = subj(q) where subj(s) is a
selection function of a subject in s.

e POMEM~y},,.: The threshold-based classifica-
tion by checking whether the cosine similarity
between a query and a retrieved edit is above
the given threshold 7, i.e., cos(h(q), h(eq)) >
T.

* POMEMg;4n,: The proposed Siamese neural
network classifier as described in Section 4.1.

Table 5 compares the performances of four scope
classifiers, in terms of the classification accuracy. It
is shown that the proposed Siamese neural network
(i.e., POMEMg;) shows the best classification
result, outperforming other methods, while ILC-
based method (i.e., POMEM;) shows the worse
performance by failing to correctly classify out-of-
scope queries.

Table 6 compares the editing performances us-
ing four scope classifiers under POMEM, in terms
of knowledge editing evaluation metrics, under
GPT2-XL and GPT-J settings. POMEMg;,, and
POMEMg,;; show the best performing results
when using GPT-J.

E.1 Details of the Siamese Neural Network

The subnetworks of the Siamese neural network
utilize the "all-MiniLM-L6-v2" (Reimers and
Gurevych, 2019) for encoding ¢ and e,. The en-
coding function is defined as h(). The distance
between two feature vectors is computed using
h(q) — h(eq), which indicates the similarity be-
tween the input sample pairs. An additional MLP
layer is employed for binary classification, taking
h(q) — h(eq) as input and mapping the output to
a single dimension to determine the similarity be-
tween g and e,.

The training data is sourced from unused por-
tions of the Counterfact dataset. From each group’s
unused data, two samples are extracted from the
in-scope knowledge and two from the out-of-scope
knowledge. These samples are then combined with
the edited data from the same group to form a com-
plete dataset. For labeling, in-scope data is as-
signed a ground truth label of 1, while out-of-scope
knowledge is assigned a ground truth label of 0.
The binary classification MLP is trained using the
Adam (Duchi et al., 2011) optimizer with a learn-
ing rate of 1 x 1073, Training is conducted for
3 epochs on the entire dataset. The loss function
utilized is Binary Cross Entropy with Logits Loss.

F Demonstrations Detail

Copier and Recaller use different types of demon-
strations, D;, and D,,; as presented in Section
4.1.3-4.1.4.

Copier finalizes the in-context post-editing

10

prompt by appending the test case:

prompt;,, =
Input: ¢ f5(q)
Retrieval: e,
Answer: (25)

which leads to complete the function of Copier as
follows:

Copier (fy,0,¢eq) = f5 (Din & prompt;,) (26)

Similarly, Recaller uses the test part of in-context
prompt as follows:
prompt,,, =

Input: ¢ f5(q)

Answer: 227)
which leads to complete the function of Copier as
follows:

Recaller (fg,0) = f§ (Dour ® prompt,,;) (28)

Table 7 mainly shows the demonstrations built
for the Counterfact dataset.

G Case Study

Table 8a and and 8b illustrate the case studies of
in-scope and out-of-scope knowledge using two
test fact examples from the Counterfactual dataset
that were successfully corrected and recalled.

More specifically, tables present the following:
an input query ¢g to be evaluated (marked in red),
a preliminary answer resulting by a PU method
(marked in purple), a retrieved fact e, = Ret(q, F)
(marked in blue) from the edited facts F, few-shot
demonstrations (i.e., D;;,, or Dy,;), a test prompt,
which consists of an input query ¢, a preliminary
answer f;(q), a retrieved fact e, (i.e,, eq is op-
tionally required only for in-scope queries), and a
querying prompt Answer: (marked in).

The total prompts with few-shot demonstrations
are fed into the edited model f, to generate a final
answer (marked in).

Are "South East Cape, which is located in" and "South East Cape, which is located in" related?
Yes

Are "Johann Heinrich Burchard, who has the position of" and "Joachim Meisner has the position of" related?

Are "The original language of Khamosh was" and "The language of Khamosh was" related?
Yes

Are "The language of Magbool was" and "The original language of Dhool is" related?

Are "M’Sila Province can be found in" and: "M’Sila Province is located in" related?
Yes

Are "Wolfgang Ketterle’s occupation is" and "Martin Klebba’s occupation is" related?

Are "32nd Indiana Monument is in" and "32nd Indiana Monument is within" related?
Yes

Are "Angela Smith, Baroness Smith of Basildon is native to" and "Nicky Barnes is native to" related?

Table 4: In-context demonstrations for classifying relevance.

Method in-scope out-of-scope all
POMEM;cr, 94.63 15.69 33.91
POMEMg; 99.14 84.82 88.12
POMEMrp,, 93.92 83.59 85.97
POMEMg;om | 88.09 89.99 89.55

Table 5: Accuracy of four methods for in-scope and out-scope classification

Score 1 Efficacy Generalization T Locality 1
Model Editor SS AS ES EA PS PA NS NA
POMEM;¢c;, 75.1 27.1 793 529 754 48.6 71.1 14.0
POMEMg,;,; 87.7 341 99.1 89.8 96.4 85.7 727 154

GPT2-XL POMEM7:, 869 328 99.1 89.8 942 824 72.4 147
POMEMg;q, 86.7 351 99.2 901 919 78.3 73.3 16.2
POMEM;cr, 851 193 998 948 97.1 88.1 669 75

GPT.J POMEMg,;,; 903 426 99.8 955 97.6 92.2 773 204

POMEM7r, 90.1 41.8 99.8 955 96.6 89.5 773 199
POMEMg;am, 903 43.5 998 955 964 87.0 779 213

Table 6: The comparison results of using four scope classifiers in POMEM, which result from performing the
massive knowledge editing on 10,000 in the Counterfact dataset.

11

Input: The mother tongue of Danielle Darrieux is English.
Retrieval: The mother tongue of Danielle Darrieux is English.
Answer: English

Input: Edwin of Northumbria follows the religion of Islam.
Retrieval: The official religion of Edwin of Northumbria is Islam.
Answer: Islam

Input: The occupation of Juan Rulfo is the.
Retrieval: The occupation of Juan Rulfo is politician.
Answer: politician

Input: Beryl Cook died at the.
Retrieval: Beryl Cook passed away in Chicago.
Answer: Chicago

Input: Theo Crosby passed away in Chicago.
Retrieval: Theo Crosby passed away in Chicago.
Answer: Chicago

Input: Zaheer Khan follows the religion of Catholicism.
Retrieval: Zaheer Khan is follower of Catholicism.
Answer: Catholicism

(a) Demonstrations D;,, of Copier for in-context post-editing designed to handle in-scope queries,
whose form is defined in Eq. (6).

Input: The official religion of Charles Aznavour is Christianity.
Answer: Christianity

Input: Elcho Island Airport, located in Indonesia.
Answer: Australia

Input: The language of Barbarella is English.
Answer: English

Input: Choi Sung-yong is a native speaker of French.
Answer: Korean

Input: Roman Catholic Archdiocese of Sydney’s headquarters are in the.
Answer: Sydney

Input: Lars Onsager, who holds a citizenship from the.
Answer: Norway

(b) Demonstrations D, of Recaller for in-context post-editing designed to handle out-of-scope queries,
whose form is defined in Eq. (7).

Table 7: Details of demonstrations of Copier and Recaller, denoted as D;,, and D,,; which are selected from
Counterfact dataset.

12

q = (s},r}) | David Rivett works as _
fo (@) a

€eq David Rivett’s occupation is composer.

(a) A case study of Copier. The retrieval part is related to the input query, and is concatenated with the
in-scope in-context demonstrations D;,, for post-editing.

q=(s,1) In Cantavieja, they understand _
f5(q) English

€q In Asturias, they understand German.
Dout

q+ f3(q)

0*

(b) A case study of Recaller. The retrieval part is unrelated to the input part, and is concatenated with
the out-of-scope in-context demonstrations D, for recalling a result of the unedited base model.

Table 8: Illustrations of Copier and Recaller on the selected case examples in Counterfact dataset. The red part is
the input query g to be evaluated to a PU-edited model f;. The purple part is a preliminary answer generated by a
PU model, i.e., f; (g), the blue part is the retrieved edit e, by Retriever, the parts are prompts of either Copier

and Recaller with few-shot demonstrations, and the part is a final answer generated after the in-context
post-editing.

13

	Introduction
	Related Works
	PU Approach
	Memory-based Approach

	Task Definition: Massive Knowledge Editing
	Method
	In-Context Post Editing
	 Fact Retriever: Ret(q, F)
	Scope Classifier: S(q,eq)
	Copier
	Recaller

	Experimental & Analysis
	Setup
	Main Results

	Discuss & Conclusion
	PU method for Editing: MEMIT
	Updating MLP weights in MEMIT

	Implementation Detail
	Experiment Environment
	Editing Hyperparameters

	DataSet
	Evaluation Metrics
	Efficacy
	Generalization
	Locality (or Specificity)

	Methods of Scope Classification
	Details of the Siamese Neural Network

	Demonstrations Detail
	Case Study

