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A young man with dark hair waits on a brightly lit subway platform in the evening, clutching a satchel and watching the departures board. He shifts impatiently as a gust of wind ...

At a lively night market under glowing lanterns, a young woman in a white cape admires miniature glass bottles at a strange stall. She selects one with purple mist; the bored  …

In a dim garage, a young woman with long dark hair kneels on the floor. Wearing a black top and gold earrings, she retrieves a small black utility bag from beneath a workbench …

On a music box, a translucent rainbow cartoon figurine stands still, its body casting a soft, colorful glow onto the polished surface. A pink flower fairy doll, with a gentle smile,  …

A man with a warm smile and a young woman with long black hair met, clasping hands and smiling brightly. They leaned toward each other, radiating warmth and love. Side by …

Figure 1: Subject-to-video generation by Kaleido covering humans, objects, and controlled back-
grounds in both single and multi-subject cases.

ABSTRACT

We present Kaleido, a subject-to-video (S2V) generation framework, which aims
to synthesize subject-consistent videos conditioned on multiple reference images
of target subjects. Despite recent progress in S2V generation models, existing ap-
proaches remain inadequate at maintaining multi-subject consistency and at han-
dling background disentanglement, often resulting in lower reference fidelity and
semantic drift under multi-image conditioning. These shortcomings can be at-
tributed to several factors. Primarily, the training dataset suffers from a lack of
diversity and high-quality samples, as well as cross-paired data, i.e., paired sam-
ples whose components originate from different instances. In addition, the current
mechanism for integrating multiple reference images is suboptimal, potentially
resulting in the confusion of multiple subjects. To overcome these limitations, we
propose a dedicated data construction pipeline, incorporating low-quality sample
filtering and diverse data synthesis, to produce consistency-preserving training
data. Moreover, we introduce Reference Rotary Positional Encoding (R-RoPE)
to process reference images, enabling stable and precise multi-image integration.
Extensive experiments across numerous benchmarks demonstrate that Kaleido
significantly outperforms previous methods in consistency, fidelity, and gener-
alization, marking an advance in S2V generation. The source code and trained
model checkpoints for this study are available at here.
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1 INTRODUCTION

Recent years have witnessed rapid and highly promising advances in video generation. Inspired in
part by the success of Sora, diffusion models integrated with Diffusion Transformers (DiT) (Peebles
& Xie, 2023; Esser et al., 2024) have emerged as a prevailing paradigm and get further developed.
Commercial models like Veo3 (DeepMind) and Kling (Kuaishou) have already achieved video qual-
ity on par with professional production standards, introducing a new workflow paradigm for video
content creation that greatly improves efficiency while reducing production costs. In the open-source
domain, models such as Wan (Wang et al., 2025) and CogVideoX (Yang et al., 2025) not only share
these advantages, but also facilitate customized fine-tuning for specific applications.

User Study
Kaleido Vs VACE

Kaleido Vs Vidu Q1

Kaleido Vs Kling

Figure 2: Subject-to-video evaluation (left) and user study results comparing Kaleido with VACE,
Kling, and Vidu-Q1 (right).

Current pretraining video generation research primarily focuses on two major tasks: text-to-
video (T2V) and image-to-video (I2V) generation. The former synthesizes videos directly from
textual descriptions, often yielding content with high creative diversity but also considerable ran-
domness. The latter transforms a static image into a dynamic video, imposing a strict constraint of
identical first frame, which tends to limit creative flexibility. Consequently, the need for more flex-
ible control over video generation has grown increasingly strong. Subject-to-video (S2V) genera-
tion, which aims to synthesize subject-consistent videos conditioned on multiple reference images
of target subjects, has attracted rising attention. Commercial systems such as Vidu (Bao et al., 2024)
and Kling (Kuaishou) exemplify this trend, demonstrating substantial potential in industries such as
e-commerce and advertising.

The S2V task requires decoupling target subjects from given reference images and generating videos
according to textual prompts, while maintaining the appearance of the subjects consistently. The
subjects encompass a wide range of visual entities, including humans, objects, and backgrounds.
It unifies the creativity of T2V generation and the controllability of I2V generation, enabling more
flexible control in video generation.

However, existing open-source S2V models remain inferior to their closed-source counterparts. This
gap is primarily reflected in the difficulty of maintaining consistent visual appearances across diverse
subject compositions, as well as in producing high-quality videos. This performance gap can be
primarily attributed to two fundamental challenges:

• Lack of effective training data. In most recent data construction pipelines, reference im-
ages are naively selected from video frames. Models trained on such data often tend to
completely replicate the subjects in reference images (without altering their viewpoints,
poses, or other dynamic attributes), rather than decoupling the subjects and focusing on
their intrinsic characteristics. Consequently, generated videos may inherit extraneous el-
ements, such as superfluous background details or irrelevant objects present in the refer-
ence images, which are usually undesirable in videos. Furthermore, existing models often
struggle to preserve satisfactory consistency in various scenarios, including multi-subject
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compositions or scenes involving animated characters. This limitation is largely due to the
insufficient coverage and quality of training data.

• Inadequate conditioning strategies. Current strategies for incorporating reference image
information into the generation pipeline are generally suboptimal, hindering the model’s
ability to efficiently capture and represent the subject’s characteristics. For example, Phan-
tom (Liu et al., 2025) adopts latent feature concatenation along the sequence dimension,
while this method may cause different reference objects to overlap spatially, leading to
undesirable compositional artifacts. VACE (Jiang et al., 2025) employs an adapter-based
architecture, but it needs a non-negligibly additional inference cost.

We introduce a set of methods that allow open-source models to attain performance on par with
closed-source counterparts. Our contributions can be summarized as follows:

• A comprehensive data construction pipeline. Our data pipeline employs multi-class sam-
pling, stringent filters, and cross-paired data construction to enrich subject and scene di-
versity, elevate overall data fidelity, and ensure subjects are disentangled from extraneous
elements.

• An effective image condition injection method, dubbed R-Rope, which introduces rotary
position encoding for subject tokens to maximize the model’s ability to integrate informa-
tion from multiple reference images. This mechanism improves multi-image and multi-
subject S2V consistency, while maintaining computational efficiency.

• A state-of-the-art (SOTA) open-source S2V model. Extensive experiments show that our
approach achieves excellent S2V performance in terms of subject fidelity, background dis-
entanglement, and general generation quality, substantiating its effectiveness for building
general-purpose, subject-consistent video generation models.

Furthermore, we will open-source both our data pipeline and pretrained S2V model to support
the community and provide a strong foundation for future research on subject-to-video generation.

2 RELATED WORK

Reference-guided generation has been widely studied in both image and video domains. In the
image domain, methods such as DreamBooth (Ruiz et al., 2023) explored personalized generation
by fine-tuning diffusion models on a small set of reference images, enabling the preservation of
subject-specific characteristics. Extensions such as IP-Adapter (Ye et al., 2023) further enhanced
reference conditioning by leveraging multiple input images and contextual information, although
these works remain limited to static image synthesis. In parallel, video generation has undergone a
rapid evolution: GAN-based approaches (Goodfellow et al., 2014) initially struggled with stability
and temporal coherence, while diffusion models based on U-Net architectures introduced notable
improvements in quality. More recently, Diffusion Transformers have brought substantial progress
in controllability, text alignment, and long-range temporal consistency, giving rise to a variety of
downstream tasks including video editing, video inpainting, and text-to-video generation.

Building upon these advances, the subject-to-video (S2V) task has emerged as a natural exten-
sion of reference-guided generation. Proprietary systems such as Vidu (Bao et al., 2024) and
Kling (Kuaishou) demonstrated the feasibility of generating videos from reference images, attract-
ing significant attention but limiting community access due to their closed-source nature. The sub-
sequent release of open-source frameworks such as VACE (Jiang et al., 2025) , Phantom (Liu et al.,
2025) and SkyReels-A2 (Fei et al., 2025) accelerated research in this field, enabling applications
ranging from digital human generation to virtual try-on and face-swapping. Despite these develop-
ments, existing S2V models (Jiang et al., 2024; Zhou et al., 2024; Wang et al., 2024) still face persis-
tent challenges. In particular, many approaches rely on directly concatenating reference embeddings
with video latents, which often leads to insufficient background disentanglement and degraded sub-
ject fidelity. When the reference subject appears in complex backgrounds, models frequently carry
over background artifacts into the generated video. Moreover, in multi-subject or multi-image set-
tings, the lack of dedicated mechanisms for reference alignment commonly results in token disorder
and weakened temporal consistency.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Our work builds on these foundations while addressing the limitations of prior S2V approaches.
By introducing a more comprehensive data pipeline and improved training strategies, we aim to
enhance both background disentanglement and subject fidelity, moving toward a more general and
robust framework for subject-aware video generation.

3 DATASET CONSTRUCTION PIPELINE

3.1 MOTIVATION

Subject-to-Video (S2V) generation addresses the challenge of synthesizing videos of a specific sub-
ject, conditioned on reference images and textual prompts. Achieving high-quality S2V in broad
open-world scenarios relies on the availability of training data that is diverse in content and consists
strictly of decoupled image-video pairs. In such pairs, the visual attributes of the subject must be
independent of the surrounding context.

Previous work primarily utilizes datasets designed for subject-driven image generation or limited
video tasks, which do not adequately meet these requirements. This leads to three significant limita-
tions: a lack of subject and scene diversity hinders generalizability; inconsistent annotation quality
decreases controllability; and image-video pairs are entangled with background information. Con-
sequently, current S2V models often rely on separate segmentation or subject extraction steps during
inference, preventing true end-to-end subject conditioning and restricting compositional flexibility.

To address these constraints and facilitate the development of genuinely end-to-end S2V models ap-
plicable in unconstrained scenarios, we propose a new dataset construction pipeline. Our approach
incorporates robust grounding and segmentation, along with advanced filtering techniques and a
cross-paired composition strategy designed to enforce subject-background disentanglement at scale.
This process produces diverse, high-quality data pairs essential for training models capable of di-
rectly synthesizing videos from unsegmented reference images and flexible prompts, thus advancing
S2V research towards practical deployment in open-domain applications.

3.2 PIPELINE DESIGN

Origin Video
VLM

Captioning &
Subject extraction

“A lady with an afro hairstyle in a 
blue vest sits on a bed, playing with 

a Shiba Inu dog. She tempts the dog 
with a treat, pets its head, while 
sunlight casts their shadows on the 
bedroom wall with plant paintings.”

Caption & Subject(s)

& SAM

Grounding & 
Segmenting

Masked Subject(s)

Augmentation Training PairsFiltering Pipeline

4) Quality Filtering

Dark Fragmented Blurry Good

3) W/O Face Filtering

with Facew/o Face

2) Clip Filtering (by I2T Similarity)

Chair 𝑆!"#=0.3 laptop 𝑆!"#=0.6 bus𝑆!"#=0.9 cat 𝑆!"#=0.9

1) Size & Overlap Filtering

Too Small Too Large IoU Filtering

3) Quality Filtering again

Reconstructing new backgrounds from 
high-quality mask images

FLUX
Inpainting

1) Background Inpainting

2) Motion Change

Altering the pose of the target in images 
using a diffusion model.

FLUX
Redux

1) Input Video

2) Input reference Image(s)

Random sample an image of dog

Random sample an image of lady

3) Input Text

“A lady with an afro hairstyle 
in a blue vest sits on a bed, 
playing with a Shiba Inu dog…”

Figure 3: Scalable multi-stage data pipeline for subject-to-video (S2V) generation, where data aug-
mentation enables the creation of cross-paired samples for robust training.
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To achieve these objectives, we propose a scalable, multi-stage dataset construction pipeline 3 tai-
lored to the needs of S2V. The process is summarized as follows:

(1) Video Preprocessing and Captioning. We start by slicing large-scale raw video collections
into shorter clips, each containing coherent actions or events. An automatic captioning model gener-
ates textual descriptions for each clip, ensuring alignment between the visual and textual modalities.

(2) Subject Category Definition and Candidate Identification. To further enhance diversity, we
construct a broad taxonomy of subject categories covering various domains (e.g., humans, objects,
backgrounds). This taxonomy comprises over 100 distinct subject categories and includes over 800
candidate synonyms and instances, enabling captions to be matched against a rich vocabulary to
identify candidate subjects (classv) for further processing. This method enables scalable subject
discovery without manual annotation, thus enriching the dataset with diverse subjects.

(3) Grounding and Segmentation. For accurate localization of subject regions, we employ
Grounding DINO (Liu et al., 2024) for robust localization and SAM (Kirillov et al., 2023) for fine-
grained segmentation. This combination ensures both semantic correctness and boundary precision,
which are essential for effective subject-centric video generation.

(4) Filtering and Validation. To guarantee data quality, we implement several filtering strategies:
(i) Size Filtering: Removes excessively small or large instances; (ii) CLIP-Based Classification:
Verifies category alignment against textual descriptions; (iii) IoU-Based Filtering: Excludes in-
stances with significant overlapping regions, ensuring distinct subject representation; and (iv) Qual-
ity Checks: Brightness and blur assessments filter out low-quality samples. For human categories,
we use InsightFace to retain only instances with valid frontal faces, enhancing identity preservation.

(5) Augmentation via Background Disentanglement. One of the key challenges in S2V is the en-
tanglement of subject and background. To mitigate this issue, we apply inpainting techniques (Labs
et al., 2025) to segmented regions in the reference images, effectively erasing background informa-
tion. During training, the model is encouraged to reconstruct subject appearances from the reference
images while relying on textual prompts for background synthesis. This strategy prevents overfitting
to incidental background cues and enhances subject transferability across various scenes.

(6) Augmentation via Pose and Motion Enrichment. Finally, to improve diversity and avoid
overfitting to frame-level similarity, we utilize Flux Redux (Labs et al., 2025) to enrich reference
images with novel poses and motions not present in the original video frames. This enhancement
encourages the model to learn a more generalizable representation of subject identity that is robust
to motion variations.

The resulting pipeline not only yields high-quality, background-independent subject annotations, but
also provides a versatile framework applicable to a wide range of downstream applications. More
importantly, it establishes a unified perspective on S2V, laying the groundwork for future research
focused on subject-specific personalization and multi-task unification.

4 FRAMEWORK

We explore an innovative framework for video generation based on diffusion models. Our primary
focus is on integrating multiple reference images to improve the video generation process. Given a
set of reference images I1, I2, . . . , In, a textual input T , and the target video V , our objective can be
formulated as follows.

V = G(I1, I2, . . . , In, T ; z) (1)

where z represents the stochastic noise variable intrinsic to the video generation process. The goal is
for V to be visually coherent, effectively encapsulating information from the reference images and
adhering to textual guidance.

4.1 PRELIMINARIES

Text-to-video (T2V) synthesis extends diffusion-based modeling into the spatio-temporal domain,
aiming to transform Gaussian noise variables ϵ ∼ N (0, I) into coherent videos x0 that correspond

5
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to a textual description. Modern approaches employ latent diffusion schemes, where a spatio-
temporal autoencoder E(·) compresses videos into a compact latent tensor Z ∈ RT×C×H×W , with
T denoting the temporal dimension, H × W the spatial resolution, and C the channel dimension.
Within this latent space, transformer-based denoising networks vθ iteratively remove noise, lever-
aging spatio-temporal self-attention and relative positional encodings (e.g., 3D Rotary Positional
Embeddings) to capture long-range dependencies. Text conditioning is incorporated by encoding
prompts through a pretrained encoder τθ(y), with fusion between latent video and text features via
cross-attention layers. For training, we adopt Flow Matching (Esser et al., 2024), where noise is
injected as xt = (1− t)x0 + tϵ, and the model is optimized with the loss.

L = Ex0,t,y,v

[
∥v − vθ(E(x0), t, τθ(y))∥22

]
, (2)

where t is the diffusion timestep, and v = dx
dt = ϵ− x0.

4.2 METHOD
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“A lady with an afro 
hairstyle in a blue 
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playing with a Shiba 
Inu dog…”

Text Input

Figure 4: Illustration of our subject-to-video framework. (a) Multiple reference images are injected
for guided video generation. (b) Video tokens use 3D RoPE positional encoding, while (c) reference
images utilize R-RoPE for distinct spatial-temporal positioning.

In this work, we adopt a straightforward condition injection strategy to combine image conditions
with video sequences for S2V tasks. Rather than employing complex adapter-based modules, we
utilize a simple concatenation scheme to merge the encoded image conditions and video noise rep-
resentations along the sequence dimension. Specifically, the input sequence is formulated as:

X = [I1, I2, · · · , In, z] (3)

This approach preserves the inherent structure of the original base model and enables efficient, sta-
ble learning by minimizing architectural modifications. However, direct concatenation with adjacent
position ids introduces a new challenge: the model may misinterpret image conditions as consecu-
tive frames within the video sequence, potentially disrupting temporal continuity and degrading the
quality of the generated video. To address this, it is essential for the model to differentiate image
tokens from video tokens and fully understand their respective roles.

To facilitate this distinction, we introduce the Reference Rotary Positional Encoding (R-RoPE)
mechanism. As illustrated in Figure 4, conventional 3D RoPE encodes video tokens using positional
vectors in the form (t, h, w), where t is the temporal frame index and h,w denote spatial dimensions,
each starting from zero. For image conditions, we modify the positional vectors so that their spa-
tial dimensions are shifted to start from the maximum observed dimensions of the video sequence
(Hmax, Wmax), ensuring that image tokens occupy distinct positions and are easily separable from
video tokens within the model’s spatial-temporal embedding space. Furthermore, the temporal posi-
tions of image conditions are individually assigned, beginning from t = 0 for each image. Formally,
the positional vectors for each image Ii is defined as:

Posi = [i− 1, Hmax : shiftH,Wmax : shiftW ] (4)

6
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Vidu Q1 Kling VACE Phantom SkyReels Kaleido

Model Type Closed-source Open-source

General Video Quality Metrics
Subject Consistency 0.956 0.925 0.927 0.946 0.847 0.956
Background Consistency 0.956 0.940 0.934 0.952 0.892 0.953
Motion Smoothness 0.993 0.992 0.988 0.989 0.985 0.991
Aesthetic Quality 0.654 0.636 0.617 0.614 0.524 0.662
Imaging Quality 0.695 0.695 0.709 0.719 0.621 0.718

Text-Alignment Metric
ViClip Score 0.230 0.230 0.218 0.231 0.198 0.226

S2V-Specific Metrics
S2V Decoupling 0.317 0.316 0.284 0.308 0.247 0.319
S2V Consistency 0.704 0.696 0.710 0.697 0.682 0.723

Table 1: Quantitative results on S2V generation. Our Kaleido achieves performance across general
metrics. On task-specific metrics, S2V Consistency and S2V Decoupling, Kaleido attains the best
scores, demonstrating superior subject preservation and irrelevant information disentanglement.

where i indexes the image conditions, and shiftH, shiftW indicate the sum of Hmax and the height
of the reference image, and the sum of Wmax and the width of the reference image, respectively. This
explicit separation in the positional encoding prevents mixing of spatial relationships between the
video sequence and the injected image conditions. By leveraging this concatenation-based condition
injection and positional encoding, our model distinguishes between video and image information
and generates consistent, high-quality video output within the Diffusion Transformer architecture.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

Our model is fine-tuned from Wan2.1-T2V-14B through a two-stage training paradigm. The pre-
training stage uses 2M pairs for 10K steps with a learning rate of 1e-5 and batch size of 256, followed
by supervised fine-tuning (SFT) on 0.5M pairs for 5K steps with the learning rate reduced to 5e-6.
Training is performed with the AdamW optimizer (Kingma & Ba, 2015), leveraging Fully Sharded
Data Parallel (FSDP) and Sequence Parallelism to maximize efficiency.

5.2 EVALUATION METRICS

To comprehensively evaluate S2V generation, we consider metrics in three aspects. For overall video
quality, we use five standard measures from VBench (Huang et al., 2024): subject consistency, back-
ground consistency, motion smoothness, aesthetic quality, and imaging quality. Semantic alignment
with prompts is assessed using the ViCLIP (Wang et al., 2023) score.

We further introduce two dedicated metrics for reference-image correspondence: S2V Consistency:
measures how well the subject identity from the reference images is preserved in the generated video.
Subjects are detected and segmented using Grounding Dino and Segment Anything; CLIP features
are extracted, and for each frame the maximum similarity with reference images is computed and
averaged. S2V Decoupling: evaluates the model’s ability to disentangle background information.
The subject regions are masked out in both reference images and video frames; CLIP features are
extracted from the backgrounds, and the score is defined as 1− similarity (higher is better).

To ensure robust evaluation, we construct a diverse test set covering humans, animals, cartoons, and
objects, including 400 high-quality reference images and over 170 multisubject cases. These metrics
together provide a comprehensive and balanced assessment of our model’s performance.

5.3 MAIN RESULTS

Quantitative Results Table 1 summarizes the quantitative comparison of our method against both
closed-source and open-source models. Across the five conventional metrics adopted from VBench,
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our model achieves competitive performance, particularly excelling in Subject Consistency and Aes-
thetic Quality. In terms of motion smoothness, background consistency, and imaging quality, our
method closely matching top closed-source models.

For task-specific metrics, our method demonstrates clear advantages. We obtain the highest score
on S2V Consistency (0.723) and S2V Decoupling (0.319), indicating that our model more faithfully
preserves subject identity from reference images while better disentangling background information.
These results highlight the effectiveness of our data construction strategy and architectural design
for handling subject-to-video generation.

In addition to automatic metrics, we conduct a user study evaluating four key aspects: Video Quality,
Prompt Alignment, S2V Consistency and S2V decoupling. As illustrated in Figure 2, human raters
consistently prefer our Kaleido model over both open-source and closed-source models. Notably,
Kaleido achieves the highest ratings in Video Quality, S2V Consistency, and S2V Decoupling, further
confirming the superiority of our approach from a human-centric perspective.

Qualitative Results As shown in Figure 5, we present qualitative comparisons across several repre-
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On a bedroom floor, a brown sloth plushie wrestles with a magenta schoolbag, 
unzips it, and proudly pulls out a bright yellow alarm clock, hopping with joy.
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On a busy red carpet, a blonde woman in a patterned blazer faces the cameras 
with bold red lipstick, holding a confident, captivating gaze before moving on 
with a subtle smile.
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In a cozy, warmly lit room, a fluffy corgi lounges on a rug while a golden-
collared kitten crouches, eyes locked on its twitching tail. With a playful leap, 
the kitten bats at the tip, making the corgi lift its head .
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A blue-grey creature with yellow eyes stands on a street at a bustling night market. 
Amid the warm bokeh lights of vendor stalls, it tilts its head playfully while holding 
two skewers of shiny candied hawthorn, as if offering them to the viewer.

Figure 5: Qualitative comparisons , Kaleido clearly demonstrates superior capabilities on S2V De-
coupling, S2V Consistency and Video Quality.

sentative scenarios. The results reveal that VACE struggles to disentangle irrelevant information, as
background elements from the reference images consistently appear in the generated videos. Vidu,
on the other hand, occasionally introduces redundant repetitions of reference images, causing cer-
tain subjects to appear multiple times within the generated video. Phantom exhibits similar issues
and further suffers from slightly lower overall video quality. In contrast, both Kling and our model
outperform other approaches in terms of S2V consistency and disentanglement of irrelevant infor-
mation. However, Kling occasionally produces errors in reference fidelity—for example, in the
animal case, where a small dog is incorrectly rendered with a bell around its neck. Overall, our
method achieves a more balanced performance across multiple dimensions, demonstrating substan-
tially stronger disentanglement capability while attaining S2V Consistency comparable to that of
closed-source models.
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Concat ShiftW ShiftH ShiftW&H

S2V Consistency 0.661 0.679 0.687 0.708
S2V Decoupling 0.296 0.297 0.304 0.310

Table 2: Ablation: Comparison of R-RoPE
Positional Encoding Variants.

w/ Cross-Paired w/o Cross-Paired

S2V Consistency 0.708 0.670
S2V Decoupling 0.310 0.297

Table 3: Ablation: Impact of Cross-Paired
Data Inclusion.

5.4 ABLATION STUDY

We conduct comprehensive ablation studies to evaluate the effects of key components in our method-
ology. Specifically, we analyze the impact of cross-paired data construction on subject-relevant
disentanglement and the influence of our proposed R-RoPE positional encoding strategy.
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Inside a brightly lit retro diner, a young woman in Minnie Mouse ears sits in a red booth, leaning 
over a tall milkshake. She gently stirs it with a long spoon, watching the creamy liquid swirl, then 
lifts the spoon and follows a drop of milkshake with her eyes.

In a dusty antique shop, a doll with long brown hair sits on a shelf reading a miniature book. A 
cartoon figurine in a large white hat slides down a painting frame, quietly joining her. He offers a 
button as a bookmark, while the doll accepts the button and places it on her book.

Sunlight fills a cozy living room, shining on the polished wooden floor. A fluffy brown teddy bear 
with a blue ice pack on its head sits on the floor, holding a white ceramic bowl full of blueberries. 
On the side of the bowl, “Bon Appétit” is written in gold. The bear picks up a plump blueberry 
with its paw, brings it to its stitched smile, enjoys the taste, and happily reaches for another.
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In a busy airport lounge, a golden-yellow, Muppet-like creature in a brown tweed suit, white shirt, 
and black tie sits comfortably near a large window. With expressive eyes and tufted ears, he 
opens his bag, takes out a travel guidebook, and studies it attentively. Outside the window, 
airplanes and their tail wings can be seen on the tarmac.

(a) Example of ablation results with and without Cross-Paired data. (b) Example of ablation results with and without R-RoPE.

Figure 6: Ablation visualizations. (a) Effect of Cross-Paired data. (b) Effect of R-RoPE.

Effect of Cross-Paired Data Construction. To assess the contribution of Cross-Paired data con-
struction to disentangling subject-specific and irrelevant information, we compare models trained
with and without this data. As shown in Table 3, excluding Cross-Paired data leads to a notable
decrease in both S2V Consistency and S2V Decoupling metrics, demonstrating its effectiveness.
Figure 6a further illustrates that Cross-Paired data training enables the model to better separate
the subject from unrelated elements, such as backgrounds and handheld objects. This promotes
generation of diverse backgrounds while maintaining focus on the subject, thus facilitating robust
decoupling between subject and irrelevant information representations.
Effect of R-RoPE Positional Encoding. We further ablate the proposed R-RoPE positional
encoding by considering four settings: (1) baseline (without R-RoPE), (2) shifting only width
(ShiftW), (3) shifting only height (ShiftH), and (4) shifting both width and height (ShiftWH). As
reported in Table 2, simultaneous spatial shifts result in the highest subject consistency and irrele-
vant information decoupling. Furthermore, Figure 6 demonstrates that R-RoPE mitigates reference
confusion and subject overlap in multi-subject scenarios. These findings confirm that our R-RoPE
design is essential for enhancing multi-reference integration and preventing reference-token mis-
alignment during generation.

6 CONCLUSION

In this work, We introduced Kaleido, a subject-to-video generation framework to addresses the
challenges of multi-subject consistency and background disentanglement under multi-image condi-
tioning. By constructing a diverse and high-quality training dataset with cross-paired samples, and
by proposing the R-RoPE positional encoding strategy, Kaleido achieves superior subject preser-
vation and irrelevant information separation, outperforming open-source models and approaching
closed-source models.
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A APPENDIX

A.1 DATA PIPELINE AND DATASET DETAILS

Our data pipeline comprises two essential stages:

(1) High-quality Subject Segmentation: We first perform robust subject segmentation to obtain
precise masks of target subjects from raw video frames. Only those instances passing stringent
quality criteria (size, clarity, semantic alignment) are retained for downstream processing.

(2) Cross-Paired Sample Construction: Rather than using segmented subjects with their origi-
nal backgrounds, we construct cross-paired data samples. In this process, segmented subjects are
composited with backgrounds or video clips from different, unrelated sources. This ensures that the
model learns to disentangle subject identity from background and pose, thereby preventing it from
overfitting to trivial copy-paste solutions or memorizing original contexts.

To further ensure dataset quality, we conducted a manual evaluation of the constructed dataset (seg-
mentation subset). The results were favorable, owing to the use of high-confidence thresholds during
the automated filtering stage — including strict localization thresholds in Grounding DINO, high
CLIP similarity thresholds for category filtering, and high-confidence face detection for human sub-
jects. The evaluation shows that the CLIP-based category filter achieves a success rate of over 92%,
and face detection exceeds 95% accuracy, confirming the reliability of our pipeline.

For model robustness, we adopt a balanced training data ratio:

crop : segment : inpainting : redux = 1 : 5 : 3 : 1

where crop refers to cropped subjects, segment indicates high-quality segmentation, inpainting
means removing backgrounds via generative inpainting, and redux refers to pose/motion augmen-
tation. Importantly, we find that inpainting and redux samples serve primarily as guidance, so their
proportions are kept moderate.

Figure 7: Statistics of our training dataset. .

Role of Cross-Pair Data. As illustrated in Fig. 6, training with only crop or segment inputs easily
leads the model to memorize reference-image backgrounds and poses, resulting in copy-paste–like
artifacts. Cross-paired samples mitigate this issue by explicitly breaking the correlation between
subject identity and its original context, thereby enforcing stronger subject–background disentan-
glement and improving generalization.

To further quantify this effect, we conduct an ablation study on the proportion of cross-paired sam-
ples in training. As shown in Table A.1, introducing a moderate amount of cross-pairing (20–40%)
significantly improves both consistency and decoupling. However, excessively large ratios (e.g.,
80%) begin to degrade performance, suggesting that cross-pair data act as a regularizer: insufficient
cross-pairing fails to eliminate context coupling, whereas overly aggressive cross-pairing suppresses
high-fidelity subject signals required for S2V generation.

In addition, while inpainting and redux samples provide valuable supervisory signals—such as im-
proving motion robustness and enhancing background flexibility—their contributions saturate when
used excessively. Therefore, maintaining these samples at moderate proportions is crucial for pre-
serving the balance between subject fidelity and generalization.
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Cross-Pair Ratio Consistency Decoupling
0% 0.670 0.297

20% 0.692 0.306
40% 0.708 0.310
60% 0.673 0.312
80% 0.664 0.307

Table 4: Impact of cross-pair ratios on subject consistency and subject–background decoupling.

A.2 DESIGN AND ANALYSIS OF R-ROPE

Motivation. Our goal is to investigate how a subject-to-video (S2V) model can more efficiently
learn extra visual conditions—multiple reference images—during video generation. Existing ap-
proaches generally fall into two categories. (1) Adapter-based methods (e.g., VACE), which insert
additional transformer layers for conditioning. Achieving competitive performance requires stack-
ing many layers, introducing substantial increases in FLOPs and parameter count (e.g., adding 0.5×
parameters to a 1.3B model). (2) Sequence-concatenation methods (e.g., Phantom), which keep
base model parameters frozen and inject reference information by directly appending image tokens
along the sequence dimension, thus retaining computational efficiency.

Motivated by these observations, we adopt Sequence-Concatenation for injecting subject condi-
tions. We explored both Channel-Concatenation and Sequence-Concatenation. Although channel
concatenation works well in I2V settings due to spatial alignment between image and video frames,
it is less suitable for S2V, where alignment relies on semantic correspondence rather than spatial
correspondence. Consistent with this hypothesis, our experiments(Table 6) show that channel con-
catenation and produces noticeably inferior S2V subject fidelity.

However, direct sequence concatenation introduces a clear issue: when reference images are ap-
pended as the last few frames, the model exhibits subject overlap artifacts (see Fig. 6), i.e.. This
indicates that treating images as ordinary video frames disrupts the temporal generation prior. These
observations motivate designing a positional encoding mechanism that explicitly distinguishes be-
tween video tokens and reference-image tokens. Rotary Position Embedding (RoPE) naturally pro-
vides the necessary degrees of freedom.

Design of R-RoPE. We extend RoPE by applying deterministic shifts along the spatial (H/W)
and temporal (T) index only to reference-image tokens, while keeping video tokens untouched.
The design follows three principles: (1) video and image tokens must be easily distinguishable;
(2) different reference images should be separable; (3) no artificial temporal continuity should be
implied among images.

Evaluated Variants. To systematically examine which indices carries meaningful conditioning
signals, we evaluate the following R-RoPE variants:

Method Subject Background
ShiftW&H 0.708 0.310
ShiftW&H w/o overlap 0.690 0.296
Staggered Negative Time Shift (T = -3, -2, -1) 0.683 0.276
Fixed-Time Encoding (T = -1) 0.644 0.298
Future-Shifted Time Encoding (T = +1, +2, +3) 0.667 0.300
Channel-Concat 0.632 0.285

Table 5: Extended evaluation of R-RoPE variants for S2V conditioning. Metrics correspond to
subject consistency (left) and background consistency (right).

• Spatial-only variants: ShiftW&H: all reference images share identical spatial shifts.
ShiftW&H w/o overlap: each reference image receives an independent spatial shift, re-
moving overlap in the (H,W) RoPE indices.
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• Temporal-shift variants: We define three families of temporal manipulations, each cor-
responding to how the t-indices of reference images are assigned: Here, T denotes the
pseudo-time index along the temporal dimension, with negative values representing posi-
tions before the video sequence, and positive values after it.

– Fixed-Time Encoding (T = -1): for each reference subject, all associated images are
assigned a fixed negative time index T = −1.

– Staggered Negative Time Encoding (T = -3, -2, -1): for each reference subject, the
images are assigned progressively earlier negative time indices, e.g., T = −3,−2,−1.

– Future-Shifted Time Encoding (T = +1, +2, +3): for each reference subject, the
images are assigned time indices following the final frame of the video sequence, e.g.,
T = N + 1, N + 2, where N is the number of video frames.

Results. Table A.2 summarizes the quantitative performance for all newly evaluated variants. The
spatial-only R-RoPE with shared H/W shifts yields the best subject fidelity and background con-
sistency. In contrast, temporal shifts consistently underperform: either fixing the time index,
assigning staggered negative indices, or shifting references into future frames all introduce modality
bias that degrades the model’s ability to learn subject semantics.

Summary. Overall, the extended analysis reveals: (1) S2V requires semantic-level conditioning,
making sequence concatenation more suitable than channel concatenation; (2) positional embed-
dings are critical to prevent reference-image duplication artifacts; (3) spatial-only R-RoPE with
shared H/W shifts is the most stable and effective design, while temporal shifts introduce modal-
ity inconsistency and consistently degrade performance.
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