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Eugenia Mylona, MSc,* Joël Castelli, MD,* Caroline Lafond, PhD,*
Peter B. Greer, PhD,y,z Jason A. Dowling, PhD,x John Baxter, PhD,*
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Summary
Various methods have
recently been developed to
generate pseudo-CT images
for magnetic resonance
imagingebased prostate
dose planning. Several
generative adversarial net-
works and U-Net deep
learning methods with
different loss functions and
parameters were investigated
in this study. In comparison
with the patch-based method,
these methods appear partic-
ularly promising for clinical
use, owing to their low
image and dose
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Purpose: Deep learning methods (DLMs) have recently been proposed to
generate pseudo-CT (pCT) for magnetic resonance imaging (MRI) based dose
planning. This study aims to evaluate and compare DLMs (U-Net and generative
adversarial network [GAN]) using various loss functions (L2, single-scale
perceptual loss [PL], multiscale PL, weighted multiscale PL) and a patch-based
method (PBM).
Methods and Materials: Thirty-nine patients received a volumetric modulated arc
therapy for prostate cancer (78 Gy). T2-weighted MRIs were acquired in addition
to planning CTs. The pCTs were generated from the MRIs using 7 configurations:
4 GANs (L2, single-scale PL, multiscale PL, weighted multiscale PL), 2 U-Net
(L2 and single-scale PL), and the PBM. The imaging endpoints were mean absolute
error and mean error, in Hounsfield units, between the reference CT (CTref) and the
pCT. Dose uncertainties were quantified as mean absolute differences between the
dose volume histograms (DVHs) calculated from the CTref and pCT obtained by each
method. Three-dimensional gamma indexes were analyzed.
Results: Considering the image uncertainties in the whole pelvis, GAN L2 and U-Net
L2 showed the lowest mean absolute error (�34.4 Hounsfield units). The mean errors
were not different than 0 (P � .05). The PBM provided the highest uncertainties. Very
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uncertainties, as well as fast

calculation time.
few DVH points differed when comparing GAN L2 or U-Net L2 DVHs and CTref
DVHs (P � .05). Their dose uncertainties were �0.6% for the prostate planning target
Volume V95%, �0.5% for the rectum V70Gy, and �0.1% for the bladder V50Gy. The
PBM, U-Net PL, and GAN PL presented the highest systematic dose uncertainties.
The gamma pass rates were >99% for all DLMs. The mean calculation time to
generate 1 pCT was 15 s for the DLMs and 62 min for the PBM.
Conclusions: Generating pCT for MRI dose planning with DLMs and PBM provided
low-dose uncertainties. In particular, the GAN L2 and U-Net L2 provided the lowest
dose uncertainties together with a low computation time. Crown Copyright � 2019
Published by Elsevier Inc. All rights reserved.
Introduction

Magnetic resonance imaging (MRI) is clearly superior to
computed tomography (CT) for organ delineation and
could therefore improve tumor targeting in dose planning.1

However, MRI does not provide electron density
information that is necessary for dose calculation. To
overcome this issue, several methods have been developed
to generate pseudo-CTs (pCTs) for MRI-based dose
planning.2,3 These methods can be divided into 4
categories: bulk density methods (BDM)4-8; probabilistic
methods9; atlas-based methods (ABM)10-17; and more
recently, machine learning methods such as patch-based
methods (PBM), including random forest modeling18-22

and deep learning methods (DLMs).23-29 The BDMs
assign homogeneous densities to the volumes of interest
(VOIs) that are manually delineated from the patient’s
MRI. Probabilistic methods use a probability density
function to determine the corresponding Hounsfield Unit
(HU) of each voxel of the patient’s MRI. The ABMs
involve complex nonrigid registrations of CT-MRI atlases
with the patient’s MRI, followed by a CT fusion step to
obtain the pCT. The PBMs select the k closest CT patches
from a training cohort for a given MRI patch from the
patient. The selected CT patches are then fused to generate
the corresponding pCT patch. This process is reiterated for
each patient’s MRI patch to obtain the whole pCT.

DLMs enable the computational models that are
composed of multiple processing layers to learn
representations of data with multiple levels of abstraction.30

Deep learning has recently been introduced in radiation
therapy for multiple applications, such as image
segmentation, image processing and reconstruction, image
registration, treatment planning, and radiomics.31-37 DLMs
have been more recently proposed for pCT generation from
MRI.38-43 They are particularly appealing because of their
fast computation time. These methods model relations
between the HU values of the CTs and the intensities of the
MRIs by training neural networks. Once the optimal
network parameters are estimated, the model can be finally
applied to a test patient MRI to generate its corresponding
pCT. One of the first DLMs for pCT generation from MRI
was based on the U-Net architecture (U-Net DLM).23 More
recently, DLMs that use a generative adversarial network
(GAN DLM) architecture have also been proposed
(Fig. 1),24,25,27,29,44 with the theoretical advantage of GAN
compared with U-Net to provide more realistic pCTs by
obtaining an adversarial feedback from a discriminator
network. Although GAN and U-Net DLMs provide
promising preliminary results, they most often use a
standard loss function (L2 and L1 norms), which may also
produce blurring and loss of details.29 Perceptual loss could
overcome this issue by mimicking human visual perception
using similar features (such as multiscale features), but it
has never been investigated in this pCT generation
application.45-47 Network hyperparameters such as layer
level, the number and weight associated with each level (for
perceptual loss), and the discriminator weight compared
with the generator weight can also affect the image
accuracy. Overall, all these DLM configurations lack a
thorough dose evaluation for pCT generation from MRI.

We previously showed that PBM provided lower
imaging and dose uncertainties in the pelvis compared
with ABM and BDM.20 PBM was found to be faster than
ABM. In another study, the U-Net DLM with L2 loss
function has been shown to provide better imaging
results than the ABM, similar dosimetric results as the
ABM, and fewer uncertainties than BDM.48 However,
even though the PBMs and DLMs can be considered the
most suitable methods for MRI-based dose planning,
they have never been compared. Finally, U-Net and GAN
DLMs have never been dosimetrically compared in the
literature.

This study aims to evaluate and compare the U-Net and
GAN DLMs using various hyperparameters and loss
functions (L2, single-scale PL, multiscale PL, weighted
multiscale PL), in addition to PBM, for prostate cancer
MRI-only dose planning.
Methods and Materials

Thirty-nine patients received a volumetric modulated arc
therapy for localized prostate cancer. The ethics approval
for the study protocol was provided by the local area health
ethics committee, and informed consent was obtained from
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Fig. 1. U-Net and generative adversarial network (GAN) deep learningetrained architectures with different implemented loss
functions. I corresponds to the training MRI and C to the corresponding training CT. Two deep learning neural networks (U-Net and
GAN) were trained with 4 loss functions (L2 loss, single-scale perceptual loss, multiscale perceptual [MP] loss, and weighted
multiscale perceptual [WMP] loss) yielding 6 different deep learning training strategies: U-Net with L2 loss (U-Net L2), U-Net
with single-scale perceptual loss (U-Net PL), GAN with L2 loss (GAN L2), GAN with single-scale perceptual loss (GAN PL),
GAN with multiscale perceptual loss (GAN MPL), and GAN with weighted multiscale perceptual loss (GAN WMPL). For each
patient from the training database, the CT and MRI training images were first nonrigidly coregistered. The deep learning method
(DLM) architecture of the U-Net was symmetrical, with N encoding and decoding units each. The contracting path consisted of 12,
3 � 3 convolution layers with stride 2 for down-sampling, each followed by batch normalization and ReLU activation function. To
train the U-Net DLM, 2 different loss functions were implemented: L2 loss and single-scale perceptual loss. The VGG16 network
was used to compute the features inside the CT and pseudo-CT (pCT) images. The training of the GAN consists of 2 competing
multilayer networks: the generator and the discriminator. The generator is used as a regression model to provide pCTs from
magnetic resonance images (MRIs). The generator employed in this study has the same architecture than the previously described
U-Net. The discriminator aims to distinguish the real image (ground truth) from the realistic fake image (pCT) produced by the
generator. The GANs are formulated mathematically as a minimax game between these 2 networks, which is solved by alternating
gradient optimization. The input data of the generator are MRI and registered CT images that provide pCTs. Then, the discriminator
classifies these pCTs as real or fake CTs until the discriminator cannot determine whether the pCT looks like a real CTor not. In the
testing step, for a new given test patient, the MRI goes through the trained network to obtain the corresponding pCT.
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all patients.10 The study follows the same workflow
described in our previous study.20

Image acquisition

Patients had both an initial CT (CTinitial) and 3T MRI in the
treatment position (Appendix 1, available online at https://doi.
org/10.1016/j.ijrobp.2019.08.049).20 The CT scans were
acquired with a GE LightSpeedRT large-bore scanner or a
Toshiba Aquilion. The MRI was acquired with a 3T Siemens
Skyra MRI scanner. For MRI acquisition, 3D T2-weighted
SPACE sequences were considered with the following
parameters: TE Z 102 ms, TR Z 1200 ms, flip angle Z 35�,
field-of-viewZ 430 � 430 � 200 mm3, and voxel sizeZ 1.6
mm3.

MRI preprocessing and intrapatient CT to MRI
registration

The T2-weighted images were preprocessed for normali-
zation and correction of image nonuniformity (Appendix 2,
available online at https://doi.org/10.1016/j.ijrobp.2019.08.
049).10,12 Even if the delay between the acquisition of
CTinitial and MRI was kept as short as possible, the patient’s
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anatomy could still be different between acquisitions. To
minimize these pelvic anatomy variations between CT and
MRI,10 each CTinitial was registered to its corresponding
MRI by using a rigid registration49 followed by a nonrigid
registration.50 This registered CT was considered as the
reference (CTref).

For all pCT generation methods, the entire cohort
(39 patients) was randomly split 3 times with nonrepeated
patients between training (n Z 25) and validation cohorts.
For validation, the model was trained independently on
each of the 3 different training cohorts. The patients in the
validation cohorts were all different (14 þ 14 þ 11 patients,
respectively). Thus, the number of patients in the
training/validation cohorts were 25/14, 25/14, and 25/11.

PBM for pseudo-CT generation

The PBM is detailed in reference 20 and Appendix 3
(available online at https://doi.org/10.1016/j.ijrobp.2019.
08.049). To summarize, this method can be divided into
the 4 following steps.

(1) An interpatient rigid and affine group-wise registra-
tion was performed to match all preprocessed MR
images into the same coordinate system. Then, the
obtained transformations were applied to the corre-
sponding CT images to propagate them into the same
coordinate system.

(2) A feature extraction step was performed to obtain
spatial, textural, and gradient information from the
registered MRI, followed by patch partitioning
with overlap.51 The selected features were the
multiscale MR intensities, Shannon entropy, and
the norm of the gradient.51 The patch partitioning
was conducted on each feature image and the
related CT image. The Cartesian coordinates of the
centered location of the patches were used as
the spatial information.

(3) An approximate nearest neighbor search model52 was
generated to select the training patches closest to the
target MRI patches. Several randomized KD-trees were
trained on the full training feature patch set. These KD-
trees aimed to organize the feature patches in a data
structure, thereby performing the nearest neighbor
search more efficiently. The feature patches from the
target MRI were iteratively given as the input of the
randomized KD-trees. Ten feature patches (from the
training cohort) closest to the target feature patches
were then successively selected. After each iteration,
only the CT patches related to the 10 closest feature
patches were stored.

(4) A multipoint-wise aggregation scheme was conducted
to generate the pCT patches. For each target feature

patch centered at a location v, only the closest related

CT patches near v were fused by weighted means. The

weights were obtained by computing the normalized

Euclidian distances between the target feature patch
and the closest feature patches. The weighted mean

was used to estimate the pCT HU value at location v.

The PBM was implemented in Cþþ using the Insight
ToolKit library.53 The training computation time was
approximately 24 hours (without GPU and cluster
architecture).

DLMs for pseudo-CT generation

Figure 1 depicts the overall workflow of the compared
DLMs with distinct implemented loss functions. As
illustrated, 2 different networks (U-Net and GAN)
trained with different loss functions constituted a set of
6 training strategies: (1) U-Net with L2 loss (U-Net L2);
(2) U-Net with single-scale perceptual loss (U-Net PL);
(3) GAN with L2 loss (GAN L2); (4) GAN with
single-scale perceptual loss (GAN PL); (5) GAN with
multiscale perceptual loss; and (6) GAN with weighted
multiscale perceptual loss.

U-Net DLM

The U-Net DLM was implemented based upon a 2D
architecture similar to the one proposed by Han.23 This
architecture was composed of 2 networks called
encoding and decoding parts. The encoding part aimed to
extract the multiscale features from the target MRI. This
network was composed of 12 convolutional layers,
followed by batch normalization and ReLu activation
functions.54 The filter numbers of these layers were 64, 64,
128, 128, 256, 256, 256, 512, 512, 512, 512, and 512, and
the filter size was 3 � 3 (stride Z 1). To obtain multiscale
information, some of the features were down-sampled
using convolutional layers with a filter size of 2 � 2 and
stride Z 2.

The decoding part aimed to gradually reconstruct the
pCT using the features computed in the encoding
part. This network was a mirror version of the
encoding part. For feature up-sampling, transposed 2D
convolutional layers were used with a filter size of 2 � 2
and stride Z 2. To obtain the pCT, the last layer of
the decoding part was a convolution layer with 1 filter
(size Z 1 � 1).

One of the differences between our U-Net DLM and the
one proposed by Han23 is how feature map down-sampling
and up-sampling were performed. We used 2D convolu-
tional filters (with stride Z 2 x 2) and 2D transpose
convolutional filters, instead of max pooling and up pooling
as suggest by Han.23 The advantage of using these
convolutional filters is that their related weights can be
optimized during the training process, allowing
computation of new features for better data representation.
Conversely, the max pooling is a fixed operation where no
new feature is computed. Additionally, we added batch
normalization after some convolutional layers to improve
the convergence of the loss function during the gradient

https://doi.org/10.1016/j.ijrobp.2019.08.049
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descent. Finally, the number of convolutional layers linking
the encoding and decoding parts was decreased. The aim of
this change was to reduce the blur effect in pCTs, which
arises when applying too many convolution filters to the
low resolution feature maps.

As shown in Figure 1, to train our U-Net DLM, 2
different loss functions were implemented: L2 loss23,29 and
single-scale perceptual loss.45 The L1 loss function was not
considered in this study because it was used as an
evaluation metric (see imaging endpoints section). The L2
loss aimed to minimize the differences between the CT and
pCT voxels. This loss function was defined as:

LU�NetðI; CÞZ k C�U �NetðIÞk22
where I is the MRI, C is the corresponding CT, U� NetðIÞ
is the pCT generated by the U-Net, and k k22 is the L2
norm.

The single-scale perceptual loss mimics the human
visual system to compare CT and pCT images using similar
features as opposed to only the intensities.24,45 The VGG16
network was pretrained from the ImageNet data set,
available in Keras,55 and used to compute the features
inside the CT and pCT images, The choice of VGG16 was
justified because this network is often used for perceptual
loss computation in the literature and appears relevant for
different tasks (image deblurring, super resolution, etc)45,55

The perceptual loss function was defined as:

LU�NetðI; CÞZ k VGGðCÞ �VGGðU�NetðIÞÞk22
where VGG is the output of the 7th VGG16 convolutional
layer. The choice 7th VGG layer is justified in Appendix
4.1 (available online at https://doi.org/10.1016/j.ijrobp.
2019.08.049).

GAN DLM

The GAN DLM architecture was composed of 2 networks:
a generator (G) and a discriminator (D), which were trained
in competition with each other and illustrated in Figure 1.

Generator network

The generator network aimed to provide pCTs from the
patient MRIs. The generator network used a 2D
architecture identical to the previously described U-Net
DLM. Besides the previously defined L256 and single-scale
perceptual loss functions, 2 multiscale versions of
perceptual losses were implemented, including a weighted
multiscale implementation.

The evenly weighted multiscale perceptual loss aimed to
first compute the L2 norm between the CT and pCTs
feature for some VGG layers. These layers correspond to
each scale change in the VGG architecture. Then, the
obtained L2 norms integrated in the perceptual loss were
averaged considering the multiscale information of each
layer (Appendix 4.2, available online at https://doi.org/10.
1016/j.ijrobp.2019.08.049). This multiscale perceptual
loss was described as:

LGðI; CÞZ 1

cardðSÞ
X

i ˛ S

k VGGiðCÞ�VGGiðGðIÞÞk22

Where SZf2; 5; 7; 10; 13g; I is the MRI, C is the
corresponding CT, G(I) is the pCT produced by the
generator, VGGi is the ith VGG16 convolutional layer, and
k k22 is the L2 norm.

The weighted version of multiscale perceptual loss
follows the same principle as the loss described previously.
However, the L2 norms obtained from the VGG layers were
weighted to give more importance to the layers yielding the
lowest mean absolute error (MAE) (Appendix 4.2, avail-
able online at https://doi.org/10.1016/j.ijrobp.2019.08.049).
The weighted multiscale perceptual loss was described as
follows:

LGðI; CÞZ 1

cardðSÞ
X

i ˛ S

wi k VGGiðCÞ�VGGiðGðIÞÞk22

Where wiZ e� ðMAEiðC; GðIÞÞÞ with MAEi is the mean
absolute error between CTs and pCTs generated by the
GAN using the ith VGG16 convolutional layer for
perceptual loss computation. The considered MAEs were
computed inside the whole pelvis.

Discriminator network

The discriminator network aimed to classify the generated
pCT image as real or fake CT. Thus, the output of this
network is a probability value ranging between 0 and 1
depending on whether the generated pCT seems to be fake
or real, respectively. The architecture was composed of 6
convolutional layers and 1 fully connected layer.
Each convolutional layer was followed by batch
normalization and Leaky-ReLu activation functions. The
number of filters for these layers were 8, 16, 32, 64, 64, and
64. The filter size was 3 � 3 (stride Z 2) for the first 4
layers and 1 � 1 (stride Z 1) for the remaining layers. The
fully connected layer had 1 filter followed by a sigmoid
activation function.

The loss function of the discriminator was a binary
cross entropy29,45,57 defined as: LDðGðIÞ; CÞZ �Pn

iZ 1Ci log ðGðIÞiÞ þ ð1 � CiÞ log ð1 � GðIÞiÞ; where
G(I) is the pCT computed by the generator from the target
MRI I, C is the corresponding CT, and n is the number of
voxels inside the C and I images.

The generator and discriminator losses were combined
to form the following adversarial loss: LadversarialðI; CÞZ
l1LDðI; CÞþ l2LGðI; CÞ; where I is the MRI, C is the
corresponding CT, LDðI; CÞ is the discriminator loss,
LGðI; CÞ is the generator loss, and l1 and l2 are the weights
for the discriminator and generator losses, respectively. The
discriminator was first trained using the discriminator loss,
followed by the generator training using the fully adver-
sarial loss. These training steps were performed iteratively
and stopped when the discriminator could not accurately

https://doi.org/10.1016/j.ijrobp.2019.08.049
https://doi.org/10.1016/j.ijrobp.2019.08.049
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https://doi.org/10.1016/j.ijrobp.2019.08.049
https://doi.org/10.1016/j.ijrobp.2019.08.049


Largent et al. International Journal of Radiation Oncology � Biology � Physics6
determine whether the pCTs provided by the generator
looked like true or false CTs.
Training of the U-Net and GAN methods

The U-Net and GAN DLMs were trained using anatomi-
cally paired data: axial 2D slices of the training CT and MR
images (3600 slices). Data augmentation was performed to
increase the size of the training cohort. It was conducted by
randomly applying affine registrations on the slices
(translated by -5% to 5% per axis, rotated by -10� to þ10�,
sheared by -10� to 10�). A minibatch size of 5 slices and
300 epochs was considered. The choice of this minibatch
size is detailed in Appendix 4.3 (available online at https://
doi.org/10.1016/j.ijrobp.2019.08.049). The network pa-
rameters were optimized using the Adam algorithm.58 The
parameters of this algorithm were aZ 1 � 10�4, b1 Z
0:9, and b2Z 0:9: For the GAN, the weights of the

discriminator and generator loss functions were l1Z5 and
l2Z1, respectively. The convergence curves of the GAN
with perceptual loss (generator and discriminator) are pre-
sented in Appendix 4.4 (available online at https://doi.org/
10.1016/j.ijrobp.2019.08.049).

The U-Net and GAN DLMs were implemented in Py-
thon using Keras.59 The training computation time of each
network was approximately 24 hours with a GPU Nvidia
GTX 1070 TI 8 GB.

The stochastic effect on the training of each pCT gen-
eration method (U-Net, GAN, and PBM) was assessed by
repeating 3 pCT generations (training and validation) for
each group (25/14, 25/14, and 25/11) and for each method
(Appendix 5, available online at https://doi.org/10.1016/j.
ijrobp.2019.08.049).
Delineation and dose calculation on reference CT
and pseudo-CT

Organ delineation was performed on CTref by a senior
oncologist in agreement with the GETUG/RECORAD
group recommendation (Appendix 6, available online at
https://doi.org/10.1016/j.ijrobp.2019.08.049).60 The con-
tours were rigidly propagated from CTref to pCT.

A volumetric modulated arc therapy was planned on
the CTref images with the Pinnacle v.9.10 (Philips)
treatment planning system for prostate and seminal ves-
icles. The collapsed cone convolution algorithm was
used for dose calculation. A sequential treatment was
delivered with a total dose of 50 Gy to the prostate and
seminal vesicles, followed by a boost of 28 Gy in the
prostate (at 2 Gy per fraction). GETUG doseevolume
constraints were applied to the organs-at-risk
(Appendix 6, available online at https://doi.org/10.
1016/j.ijrobp.2019.08.049).60 The beam parameters
used to compute the dose from CTref were used to
calculate the dose from pCT.
Endpoints and statistical analyses

Imaging and dosimetric endpoints were considered for the
39 patients in a cross validation, using the 7 pCT generation
configurations: PBM, U-Net with L2 loss (U-Net L2), U-
Net with single-scale perceptual loss (U-Net PL), GAN
with L2 loss (GAN L2), GAN with single-scale perceptual
loss (GAN PL), GAN with multiscale perceptual loss, and
GAN with weighted multiscale perceptual loss.
Imaging endpoints

To compare the imaging accuracy of different pCT genera-
tion methods, a voxel-wise comparison of the HU between
CTref and pCTwas performed. To accomplish this, the MAE
and the mean error (ME) were calculated between the CTref

and pCTobtained from the 7 configurations. These endpoints
were defined as:MAEZ1

n

Pn
iZ 1

��HUCTref ðiÞ�HUpCTðiÞ
�� and

MEZ 1
n

Pn
iZ 1HUCTref ðiÞ� HUpCTðiÞ: They were calcu-

lated in the entire body, soft tissues (prostate, rectum, and
bladder) and pelvic bones (femoral heads). Table E1 lists the
mean HU values of the CTref inside each VOI.

Dosimetric endpoints

The accuracy of the methods was first evaluated by
computing the dose uncertainty (MAE) and systematic
dose uncertainty (ME). The dose uncertainty was
defined by the differences in mean absolute values
across dose volume histograms (DVHs) calculated from
the dose on the CTref and the pCTs. The systematic
dose uncertainty was computed as the mean DVH dif-
ferences between the CTref and pCT. These uncertainties
were reported for the RTOG/GETUG reference DVH
points60,61 and the entire DVH of the VOI (prostate
planning target volume, bladder, rectum, and femoral
heads). The DVH bin size was 5 cGy. The mean dose
(Dmean) was also considered. A spatial dose evaluation
was finally conducted by performing 3D gamma ana-
lyses (local, 1%/1 mm, dose thresholds 10% and 30%)
using the dose distributions from CTref and pCTs.

Statistical analysis

Wilcoxon signed-rank tests were performed to compare
the endpoints. For the MAE (image and dose), these tests
were used to compare the lowest MAE among all the
methods to the MAE of each other method and also to
compare MAE of the GAN PL method to the MAE of the
U-Net PL. For the ME (image and dose), these tests were
used to compare the ME of each method to 0 (null dis-
tribution). For the DVH comparisons across the pCT
generation methods, a nonparametric permutation test was
performed62 to control the presence of false positives in
case of multiple statistical tests (5 cGy DVH bin-wise). In

https://doi.org/10.1016/j.ijrobp.2019.08.049
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Table 1 Imaging endpoints comparing the reference CT with the pseudo-CTs obtained by each method for the entire pelvis, soft
tissue, and bone

Endpoints

(HU)

Methods used to generate pseudo-CT

Patch-based

method

U-Net methods GAN methods

L2 PL L2 PL MPL WMPL

Entire pelvis MAE 44.7 � 11.4* 34.4 � 7.7 36.8 � 6.0*
,y 34.1 � 7.5 34.9 � 6.4* 35.6 � 6.2* 35.1 � 6.8*

ME 9.9 � 18.1* -1.0 � 14.2 3.3 � 13.6 -1.1 � 13.7 4.1 � 13.9 1.9 � 13.3 1.2 � 14.0

Soft tissue

only

Entire soft

tissues

MAE 36.4 � 11.3* 26.7 � 6.4 29.2 � 5.2*
,y 26.5 � 6.4 27.1 � 5.3* 27.8 � 5.0* 27.4 � 5.6*

ME 6.0 � 19.0 -2.6 � 14.7 0.9 � 14.0 -2.8 � 14.3 1.3 � 14.8 -0.6 � 14.1 -1.2 � 14.8

Prostate

(CTV)

MAE 20.6 � 6.0* 18.1 � 5.2 22.2 � 4.9*
,y 17.7 � 4.49 23.3 � 5.9* 21.6 � 3.7* 22.9 � 5.8*

ME 8.2 � 15.0* 0.8 � 12.9 14.4 � 11.5* 0.3 � 12.0 16.8 � 11.5* 12.3 � 11.2* 13.9 � 13.8*

Bladder MAE 21.1 � 9.0* 18.6 �7.4 19.3 � 10.0 18.8 � 8.9 19.6 � 9.3 20.2 � 10.0 19.9 � 9.3*

ME 10.7 � 14.0* 3.4 � 13.6 5.3 � 16.6* 3.7 � 14.6 7.7 � 15.5* 3.4 � 16.4 5.7 � 16.4*

Rectum MAE 78.0 � 60.5* 65.0 � 65.7 68.6 � 66.1y 68.3 � 64.4 72.9 � 68.6 69.2 � 65.5 71.3 � 68.5

ME 7.0 � 73.2* -24.0 � 72.5 -17.5 � 74.1 -20.5 � 73.6 -11.3 � 78.9 -16.6 � 76.3 -16.0 � 77.2

Bone only Whole

pelvic

bone

MAE 143.6 � 27.8* 125.3 � 22.0* 126.3 � 22.1* 123.9 � 20.6 127.9 � 22.3* 127.1 � 21.1* 126.7 � 21.2*

ME 58.3 � 45.5* 20.2 � 42.3* 32.7 � 41.8* 19.4 � 41.4* 39.7 � 40.8* 31.8 � 41.4* 28.8 � 41.3*

Femoral

heads

MAE 109.3 � 27.0* 102.0 � 24.4* 103.8 � 22.5* 100.2 � 20.4 104.7 � 21.5* 104.9 � 19.2* 104.6 � 20.9*

ME 36.5 � 49.9* 5.0 � 49.5 21.9 � 48.8* 5.1 � 47.2 29.8 � 48.0* 16.9 � 48.1* 19.6 � 48.0*

Abbreviations: CTVZ clinical target volume; MAEZ mean absolute error; MEZ mean error; GANZ generative adversarial network; U-Net L2Z
U-Net using a L2 loss; U-Net PL Z U-Net using a single-scale perceptual loss (layer 7); GAN L2 Z generative adversarial network using a L2 loss;

GAN PLZ generative adversarial network using a single-scale perceptual loss (layer 7); GAN MPLZ generative adversarial network using a multiscale

perceptual loss; GAN WMPL Z generative adversarial network using a weighted multiscale perceptual loss.

The imaging endpoint values are expressed as mean � standard deviation.

* The Wilcoxon test was used, first to compare the MAE of the GAN with L2 loss to those of the other methods, and second to compare the ME of the

methods to a null distribution. Significant differences were considered at P � .05.
y The Wilcoxon test was also used to compare the MAE of the GAN with perceptual loss to those of the U-Net with perceptual loss. Significant

differences were considered at P � .05.
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this case, 1000 permutations were performed where for
each permutation i, randomly selected DVHs were
swapped (CTref to pCT, and vice versa) and the average
difference was computed for each dose-bin. For each
permuted sample and the original sample, the average
difference was then normalized to the standard deviation
computed over all the 1000 permutations and the
maximum observed difference was selected as test-
statistic (TS ). A distribution of TS across all the
permuted samples (TSi,max) was obtained and compared
with the one from the observed sample (TSmax). The
adjusted P value was therefore computed as the probability
of having a TSmax greater than the TSi,max compared with a
significance level of 5% (P � .05). The corresponding
percentile over the distribution of all the TSi,max gives a
threshold value that determines the dose DVH bins where
statistically significant dose difference arises. Unlike bin-
wise tests, the permutation test gives a single number
that summarizes the discrepancy of the DVHs between the
2 groups, rather than the discrepancy of a particular bin
and, therefore, it accounts for multiple comparisons. The
mathematical formulation of the permutation test can be
found in Chen et al.63 The test allowed us to report a robust
bin-wise comparison across the DVH value of each
method, but also to compare the lowest MAE among all the
methods to the MAE of each method and the ME of each
method to 0.
The Friedman test was used to compare the MAE or the
ME of each pCT method between the 3 different trainings
(1, 2, and 3; Appendix 5, available online at https://doi.org/
10.1016/j.ijrobp.2019.08.049). Results were considered as
significant when P � .05.
Results

Imaging endpoints and calculation time

Examples of MRI, CTref, and pCTs generated by each
method are illustrated in Figure E1 (available online at
https://doi.org/10.1016/j.ijrobp.2019.08.049).

Table 1 lists the imaging endpoints corresponding to
each pCT generation method for the VOIs. The GAN L2
and U-Net L2 showed the lowest MAE and ME (in absolute
value) for soft tissue and bone. The GAN PL showed
significantly lower MAE for the whole pelvis and the soft
tissue than the U-Net PL. The PBM provided the highest
corresponding values. Except for the bone, the MEs of
GAN L2 and U-Net L2 were not significantly different
from a null distribution. Assessing the stochastic effect, the
3 measurements by method confirmed that GAN L2 and U-
Net L2 provided the lowest image uncertainties (Appendix
5, available online at https://doi.org/10.1016/j.ijrobp.2019.
08.049).

https://doi.org/10.1016/j.ijrobp.2019.08.049
https://doi.org/10.1016/j.ijrobp.2019.08.049
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Fig. 2. Mean doseevolume histograms (DVHs) for prostate planning target volume (PTV), bladder, rectum, and femoral
heads from the reference computed tomography (CT) and pseudo-CTs generated by each method. Permutation tests were
used to compare the DVHs from the reference CT to those of the pseudo-CT generation methods. *Significant differences (P
� .05) between the DVHs. Abbreviations: U-Net L2 Z U-Net using a L2 loss; U-Net PL Z U-Net using a single-scale
perceptual loss (layer 7); GAN L2 Z generative adversarial network using a L2 loss; GAN PL Z generative adversarial
network using a single-scale perceptual loss (layer 7); GAN MPL Z generative adversarial network using a multiscale
perceptual loss; GAN WMPL Z generative adversarial network using a weighted multiscale perceptual loss.
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The mean calculation time to generate 1 pCT was 15
seconds for the DLMs and 62 minutes for the PBM
(without using cluster architecture or GPU parallelization).

Dosimetric endpoints

Figure 2 shows the mean DVHs for the CTref and each
method by VOI. No DVH points significantly differed when
comparing GAN L2 or U-Net L2 DVHs and CTref DVHs.
Most of the points with significant differences were
observed for the PBM, GAN PL, and U-Net PL.
Figure 3 displays the dose uncertainties (MAE) of each
method along the DVHs by VOI. GAN L2 provided the
lowest dose uncertainties compared with the other
methods. The PBM presented the highest dose un-
certainties. Figure E2 (available online at https://doi.org/
10.1016/j.ijrobp.2019.08.049) displays the systematic
dose uncertainties (ME) of each method along the DVHs
by VOI. The GAN L2 and U-Net L2 presented the lowest
ME (in absolute value). The MEs of these methods were
not significantly different from a null distribution along the
DVH. The PBM, GAN PL, and U-Net PL provided the

https://doi.org/10.1016/j.ijrobp.2019.08.049
https://doi.org/10.1016/j.ijrobp.2019.08.049
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Fig. 3. Dose uncertainties (mean absolute error) for all pseudo-CT generation methods along the entire dose volume
histogram (DVH) for the prostate Planning Target Volume (PTV), bladder, rectum, and femoral heads. The dose uncertainty is
defined as the mean absolute DVH differences between the reference CT and the pCT corresponding to each method.
Permutation tests were used to compare the absolute DVH differences of the generative adversarial network (GAN) L2
method to those of the other methods. *Significant differences (P � .05). Abbreviations: U-Net L2 Z U-Net using a L2 loss;
U-Net PL Z U-Net using a single-scale perceptual loss (layer 7); GAN L2 Z generative adversarial network using a L2 loss;
GAN PL Z generative adversarial network using a single-scale perceptual loss (layer 7); GAN MPL Z generative adver-
sarial network using a multiscale perceptual loss; GAN WMPL Z generative adversarial network using a weighted multi-
scale perceptual loss.
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highest ME (in absolute value). Table 2 lists the mean
doses to target volume and organs-at-risk and dose un-
certainties (MAE) and systematic dose uncertainties (ME)
for specific DVH points. The GAN L2 and U-Net L2
showed the lowest MAE and ME. No statistically signifi-
cant differences were found between MAE of GAN PL and
U-Net PL.

Table 3 displays the mean gamma and gamma pass
rate values calculated from the CTref and pCT dose
distributions for each method. The highest mean gamma
values were found for the U-Net L2 and GAN L2. The
lowest gamma-pass rate and highest mean gamma values
were found for the PBM.

Figure E3 (available online at https://doi.org/10.1016/j.
ijrobp.2019.08.049) illustrates the pCTs, dose distribu-
tions, and gamma maps obtained from a patient.
Discussion

A total of 6 DLMs for pelvis pCT generation from MRI
were investigated and compared with a PBM. Several

https://doi.org/10.1016/j.ijrobp.2019.08.049
https://doi.org/10.1016/j.ijrobp.2019.08.049


Table 2 Reference dose values, dose uncertainties (MAE), and systematic dose uncertainties (ME) for each pseudo-CT generation
method for each volume of interest

Volumes of interest Prostate CTV Prostate PTV Rectum Bladder Femoral heads

Dosimetric endpoints D99% (cGy) Dmean (cGy) V95% (%) Dmean (cGy) V70Gy (%) Dmax (cGy) Dmean (cGy) V50Gy (%) Dmax (cGy) Dmean (cGy) V30Gy (%) Dmean (cGy)

Reference CT values 7628 � 50 7869 � 52 97.1 � 1.4 7816 � 47 7.5 � 3.0 7331 � 166 3603 � 277 22.4 � 11.5 7784 � 101 2951 � 981 11.8 � 6.5 1992 � 249

Dose uncertainties (MAE)

Patch-based method 39 � 24* 36 � 22* 0.6 � 0.6 35 � 20* 0.5 � 0.9 48 � 58 19 � 15* 0.2 � 0.1 32 � 22* 12 � 10* 0.3 � 0.3* 7 � 6*

U-Net method

L2 31 � 31* 29 � 24* 0.6 � 0.5 28 � 23 0.5 � 0.5 45 � 45 15 � 14 0.1 � 0.1 26 � 26 9 � 10 0.3 � 0.3* 6 � 5*

PL 38 � 23* 35 � 19* 0.6 � 0.6 35 � 17* 0.6 � 0.8 53 � 65* 18 � 14* 0.2 � 0.1 30 � 19 10 � 9 0.3 � 0.2 7 � 5*

GAN method

L2 28 � 26 26 � 24 0.6 � 0.5 26 � 22 0.5 � 0.8 45 � 59 15 � 13 0.1 � 0.1 25 � 23 9 � 9 0.2 � 0.2 5 � 5

PL 38 � 24* 36 � 21* 0.6 � 0.6 35 � 19* 0.5 � 0.8 50 � 65 18 � 15* 0.2 � 0.1 31 � 19 11 � 9* 0.3 � 0.2 7 � 5

MPL 34 � 22* 32 � 19 0.6 � 0.6 32 � 17 0.5 � 0.8 48 � 63 16 � 13 0.1 � 0.1 28 � 19 10 � 8 0.3 � 0.2 6 � 5

WMPL 36 � 22* 34 � 20* 0.6 � 0.5 33 � 18* 0.5 � 0.8 50 � 64 18 � 14* 0.2 � 0.1 29 � 19 10 � 9 0.3 � 0.2 7 � 5*

Systematic dose uncertainty (ME)

Patch-based method -16 � 43* -12 � 41 -0.3 � 0.8* -13 � 39* -0.3 � 0.8* -31 � 69* -12 � 21* -0.1 � 0.2 -11 � 37 -5 � 15* -0.1 � 0.4 -2 � 9*

U-Net method

L2 1 � 40 5 � 38 -0.1 � 0.8 3 � 36 -0.2 � 0.9 -17 � 73.3 -3 � 21 0.0 � 0.2 5.4 � 36 1 � 13 0.0 � 0.3 1 � 8

PL -20 � 40* -15 � 37* -0.3 � 0.8* -16 � 36* -0.4 � 0.9* -36 � 76* -11 � 21* 0.0 � 0.2* -9.6 � 34 -3 � 13* -0.1 � 0.3 -3 � 8*

GAN method

L2 1 �38 6 � 35 -0.1 � 0.8 4 � 34 -0.2 � 0.9 -16 � 73 -3 � 20 0.0 � 0.2 6 � 34 0 � 13 0.0 � 0.3 1 � 7

PL -22 � 40* -17 � 38* -0.3 � 0.8* -17 � 36* -0.4 � 0.9* -36 � 74* -11 � 21* -0.1 � 0.2* -12 � 34* -4 � 14* -0.2 � 0.4* -4 � 8*

MPL -14 � 39* -10 � 36 -0.3 � 0.8* -11 � 35 -0.3 � 0.9* -29 � 74* -8 � 20* -0.0 � 0.2 -7 � 33 -2 � 13 -0.1 � 0.3 -2 � 7

WMPL -13 � 40 -9 � 39 -0.2 � 0.8 -9 � 37 -0.3 � 0.9* -31 � 75* -8 � 21* 0.0 � 0.2 -5 � 35 -2 � 14 -0.1 � 0.3 -2 � 8

Abbreviations: CTV Z clinical target volume; PTV Z planning target volume; ME Z mean error; MAE Z mean absolute error; GAN Z generative

adversarial network; CTZ computed tomography; pCTZ pseudo computed tomography; DVHZ doseevolume histogram; U-Net L2Z U-Net using a

L2 loss; U-Net PL Z U-Net using a single-scale perceptual loss (layer 7); GAN L2 Z generative adversarial network using a L2 loss; GAN PL Z
generative adversarial network using a single-scale perceptual loss (layer 7); GAN MPLZ generative adversarial network using a multiscale perceptual

loss; GAN WMPL Z generative adversarial network using a weighted multiscale perceptual loss.

The mean values of DHV points are reported for the reference CT. The dose uncertainty is defined as the mean absolute DVH differences between the

DVH calculated from the reference CT and those obtained from the pCTs. The systematic dose uncertainty is defined as the mean DVH differences

between the DVH calculated from the reference CT and those obtained from the pCTs.

* The Wilcoxon test was used, first to compare the dose uncertainty (MAE) of the GAN with L2 loss to those of the other methods, and second, to

compare the systematic dose uncertainty (ME) of the methods to a null distribution. Significant differences were considered at P � .05.
yThe Wilcoxon test was also used to compare the dose uncertainties (MAE) of the GAN with perceptual loss to those of the U-Net with perceptual loss.

Significant differences were considered at P � .05. Notice no significant differences were found between MAE from the GAN with perceptual loss to

those from the U-Net with perceptual loss.
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hyperparameters of the DLMs were optimized according
to imaging endpoints (Appendix 4, available online
at https://doi.org/10.1016/j.ijrobp.2019.08.049). Compared
with the CTref, the pCTs generated by DLMs and PBM
provided overall low dose uncertainties, thereby making
them clinically acceptable for MRI-based prostate dose
planning (Fig. 2). Regarding dose accuracy and calculation
time, in comparison with PBM, DLMs appear particularly
promising for clinical use. Among DLMs, the most
accurate methods are GAN L2 and U-Net L2 (Table 2, Figs.
2 and 3, and Fig. E2, available online at https://doi.org/10.
1016/j.ijrobp.2019.08.049).

Deep learning has been used for pCT generation from
MRI exclusively in the brain23,25,26,57 and pelvis.27,29,48,64-66

In the pelvis, 4 deep learning architectures have been used:
fully convolutional network,65 deep embedding
convolutional neural network,66 U-Net,48,64 and GAN
architecture without perceptual loss.27,29 Imaging and dose
endpoints have been considered to evaluate these methods
within the scope of radiation therapy. All 6 studies
evaluated the imaging endpoints in cohorts ranging from 15
to 39 patients, among which Arabi et al48 used the same
cohort of patients than used in the present study. In the
entire pelvis, the MAEs were 42.4 HU65 and 42.5 HU66
when fully convolutional network and deep embedding
convolutional neural network architectures were used,
respectively. Using a U-Net architecture, the MAEs were
30 HU64 and 32.7 HU.48 Using a GAN architecture, the
MAEs were 60 HU27 and 39.0 HU.29 Although the
comparison can only be indirect, our proposed GAN L2 and
U-Net L2 DLM compared favorably with an MAE value of
34.1 HU and 34.4 HU, respectively.

Only 4 studies in the literature evaluated the dose
uncertainties: 3 in the pelvis27,48,64 and 1 in the brain,26

considering various dosimetric endpoints. In the pelvis,
the mean dose uncertainties reported using U-Net and GAN
DLMs were lower than 0.2% and 0.5% in all the
VOIs.27,48,64 Our mean dose uncertainties with GAN DLMs
appear comparable (Table 2). In the literature, the reported
mean gamma pass-rates were 98%64 and 95%48 with a
1%/1 mm criteria (in 2D), and 95% with a 2%/2 mm
criteria (in 3D).27 In comparison, we obtained a higher
gamma pass-rate (99%) with our GAN and U-Net DLMs
(Table 3).

In our study, compared with the PBM, our GAN and
U-Net DLMs provided lower imaging uncertainties, with
the lowest for GAN L2 and U-Net L2 (Table 1). The
perceptual loss in U-Net and GAN did not decrease the HU

https://doi.org/10.1016/j.ijrobp.2019.08.049
https://doi.org/10.1016/j.ijrobp.2019.08.049
https://doi.org/10.1016/j.ijrobp.2019.08.049


Table 3 Mean gamma and gamma pass-rate calculated from the reference CT and pseudo-CT dose distributions according to each
method

Gamma pass-
rate (%) Mean gamma

Gamma pass-
rate (%) Mean gamma

1%/1 mm, 10% low dose threshold 1%/1 mm, 30% low dose threshold

Methods used to
generate
pseudo-CT

Patch-based method 98.7 � 1.4* 0.47 � 0.20* 99.5 � 1.3 0.40 � 0.16*

U-Net methods L2 99.2 � 1.0 0.39 � 0.17 99.5 � 1.5 0.33 � 0.19
PL 99.3 � 0.8 0.42 � 0.13*

,y 99.8 � 0.6 0.37 � 0.15*

GAN methods L2 99.1 � 1.0 0.39 � 0.16 99.6 � 1.3 0.32 � 0.18
PL 99.3 � 0.9* 0.41 � 0.15 99.7 � 0.9 0.38 � 0.16*

MPL 99.2 � 0.8 0.40 � 0.14 99.7 � 0.9 0.35 � 0.15
WMPL 99.3 � 0.8* 0.40 � 0.13 99.6 � 1.1 0.36 � 0.16*

Abbreviations: CT Z computed tomography; U-Net L2 Z U-Net using a L2 loss; U-Net PL Z U-Net using a single-scale perceptual loss (layer 7);

GAN L2 Z generative adversarial network using a L2 loss; GAN PL Z generative adversarial network using a single-scale perceptual loss (layer 7);

GAN MPL Z generative adversarial network using a multiscale perceptual loss; GAN WMPL Z generative adversarial network using a weighted

multiscale perceptual loss.

Values are mean � standard deviation

* The Wilcoxon test was used to compare the gamma values of the GAN with L2 loss to those of the other methods. Significant differences were

considered at P � .05.
y The Wilcoxon test was also used to compare the gamma values of the GAN with perceptual loss to those of the U-Net with perceptual loss.

Significant differences were considered at P � .05.
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uncertainty. This may be explained by the choice of our
evaluation metric (HU difference, required within a dose
calculation perspective), and not considering image quality
metrics (universal image quality index67) such as peak
signal-to-noise ratio, normalized mutual information,68

structural SIMilarity,69 visual information fidelity,70 and
learned perceptual image patch similarity47,71 used in
computer vision applications. These image quality metrics
were not considered in this study as they are not relevant
for dose evaluation.

Although the perceptual loss does not seem to provide
any advantage for dose calculation, this loss function
may be relevant for other image processing tasks like
segmentation and registration within a CBCT-based
IGRT. Moreover, for the bone, the addition of an
adversarial term tends to decrease the imaging uncer-
tainty in the GAN.

Considering all the methods, the largest uncertainties
were observed for the bone (up to 144 HU for MAE), which
are related to the highest HU values in the bone (345 HU,
Table E1, available online at https://doi.org/10.1016/j.
ijrobp.2019.08.049). For the rectum, large uncertainties
were also observed (up to 78 HU for MAE, Table 1),
potentially related to the difference in gas pockets between
the MRI and CTref. However, all these methods seemed to
incorrectly reproduce the real air pockets (when they were
present both on CT and MRI), as illustrated in Figure E1
(available online at https://doi.org/10.1016/j.ijrobp.2019.
08.049; sagittal views). This issue could be explained by
the complex detection of air pockets with the T2 MRI and
lack of variability of air pockets in the training cohort.

GAN PL and GAN L2 provided significantly lower
imaging uncertainties (MAE) than U-Net PL and U-Net L2,
respectively. GAN L2 and U-Net L2 presented the lowest
dose uncertainties (MAE) (Table 2 and Fig. 3) without any
systematic dose uncertainties (ME) (Table 2 and Fig. E2,
available online at https://doi.org/10.1016/j.ijrobp.2019.08.
049). Nevertheless, these results appeared more robust with
the adversarial term of the GAN discriminator loss function
(Appendix 5, available online at https://doi.org/10.1016/j.
ijrobp.2019.08.049). In our previous study that compared
the BDM, ABM, and PBM, PBM was found to be the most
accurate pCT generation method. Figure E4 (available
online at https://doi.org/10.1016/j.ijrobp.2019.08.049)
compares the 9 strategies in the whole series of patients
(BDM, ABM, PBM, and the 6 DLMs). This figure confirms
that GAN L2 and U-Net L2 are the most accurate methods,
and ABM and BDM are the least accurate. Overall, the
dose uncertainties of the pCTs of each method are small
and unlikely to be clinically relevant in terms of local
control and toxicity.

Our study presents some limitations. First, before the
learning process, nonrigid registration was used to align
pelvic anatomies between MRI and CTref, with the intrinsic
uncertainties linked to the deformable image registration
algorithm. However, we previously quantified these geo-
metric uncertainties in reference 20 by calculating the Dice
scores before registration (CTinitial vs MRI) and after
registration (CTref vs MRI) for the prostate, seminal vesi-
cles, bladder, and rectum volumes. We found that all Dice
scores were significantly improved by the nonrigid regis-
tration (P � .05). Furthermore, these registrations did not
correct the gas volatility in the digestive structures. The
dose uncertainties related to rectal variations were quanti-
fied in our previous study using the PBM.20 The gas
correction (gas inside the pCT was deleted and replaced by
the gas from the CTref) yielded a significant lowest dose
uncertainty for the rectum between V15 Gy and V25 Gy.
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Second, we investigated only the T2-weighted MRI se-
quences. DLMs may be sensitive to variations in MRI, and
other MR sequences could have been used. Because of the
relative low number of patients, the optimization was per-
formed with only 1 of the 3 draws. No test set was therefore
used, potentially exposing our optimization to a bias. Even
if the pCTs generated by DLMs and PBM provided overall
low dose uncertainties, an outlier analysis should be per-
formed on an independent and large enough data set. The
GAN DLM was trained with 2D axial slices and not with
3D images because of the GPU memory limitations. To
overcome this issue, 3D patches could have been used
during the training, however, at the expense of the
contextual information inclusion. Indeed, small 3D patches
(32 � 32 � 32 or 64 � 64 � 64) ignore the global anatomic
information, as opposed to a 2D slice. In addition, 3D ar-
chitectures are often shallow compared with 2D architec-
tures.29 Another solution could be brought by the
generation of pCTs from individual 2D axial, sagittal, and
coronal slices fused together, adding 30 more seconds once
the networks are trained. Finally, other emerging deep
learning architectures such as the cycle-GAN, which may
have allowed us to overcome some intraindividual cor-
egistration issues, could have been investigated.
Conclusions

To generate pCT for MRI-based prostate dose planning,
DLMs appear to be particularly promising for clinical
practice owing to the low dose uncertainty and fast calcu-
lation time. The U-Net and GAN DLMs with L2 loss
function provide the lowest dose uncertainties. These MRI
approaches in prostate cancer radiation therapy, which do
not require any CT, could thereby improve the accuracy of
VOI delineation and can also be used for (re)planning in the
MRI-LINAC workflow.72
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