
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

IS PURE EXPLOITATION SUFFICIENT IN EXOGENOUS
MDPS WITH LINEAR FUNCTION APPROXIMATION?

Anonymous authors
Paper under double-blind review

ABSTRACT

Exogenous MDPs (Exo-MDPs) capture sequential decision-making where un-
certainty comes solely from exogenous inputs that evolve independently of the
learner’s actions. This structure is especially common in operations research appli-
cations such as inventory control, energy storage, and resource allocation, where
exogenous randomness (e.g., demand, arrivals, or prices) drives system behavior.
Despite decades of empirical evidence that greedy, exploitation-only methods work
remarkably well in these settings, theory has lagged behind: all existing regret guar-
antees for Exo-MDPs rely on explicit exploration or tabular assumptions. We show
that exploration is unnecessary. We propose Pure Exploitation Learning (PEL) and
prove the first general finite-sample regret bounds for exploitation-only algorithms
in Exo-MDPs. In the tabular case, PEL achieves Õ(H2|Ξ|

√
K). For large, continu-

ous endogenous state spaces, we introduce LSVI-PE, a simple linear-approximation
method whose regret is polynomial in the feature dimension, exogenous state space,
and horizon, independent of the endogenous state and action spaces. Our analysis
introduces two new tools: counterfactual trajectories and Bellman-closed feature
transport, which together allow greedy policies to have accurate value estimates
without optimism. Experiments on synthetic and resource-management tasks show
PEL consistently outperforming baselines. Overall, our results overturn the con-
ventional wisdom that exploration is required, demonstrating that in Exo-MDPs,
pure exploitation is enough.

1 INTRODUCTION

Sequential decision-making under uncertainty is central to a wide range of domains, from inventory
control and energy storage to cloud resource management and supply chains (Madeka et al., 2022;
Yu et al., 2021; Sinclair et al., 2023b; Oroojlooyjadid et al., 2022). In these applications the system
dynamics are shaped by controllable endogenous states and exogenous inputs that evolve indepen-
dently of the agent’s actions. Exogenous Markov Decision Processes (Exo-MDPs) formalize this
setting by partitioning states into endogenous and exogenous components, where actions only affect
the former (Mao et al., 2018; Sinclair et al., 2023b). This separation models many practical settings
where randomness is external (e.g. demands, arrivals, or prices) yet crucial for optimal control.

A striking empirical observation across these domains is that pure exploitation works extremely well.
Classical approximate dynamic programming (ADP) and OR techniques repeatedly solve, act, and
update from observed trajectories without deliberate exploration, and are deployed at industrial scale.
Existing results show these schemes can converge in structured settings. For example, Nascimento &
Powell (2009) prove convergence for lagged asset acquisition under concavity, demonstrating that
pure exploitation can even outperform ϵ-greedy exploration. More broadly, Powell (2022) highlights
post-decision states and trajectory-based evaluation as foundational principles enabling effective
exploitation-driven learning in practice. However, the theoretical guarantees in this line rely heavily
on structure such as concavity or piecewise linearity.

In contrast, the reinforcement learning (RL) literature provides strong statistical guarantees for
Exo-MDPs but almost always through explicit exploration. Sinclair et al. (2023b) develop hindsight-
and replay-based methods that reuse exogenous traces, and Wan et al. (2024) establish a connection
to linear-mixture models with regret bounds depending only on the exogenous cardinality. While
these results underscore the power of exogenous structure, they either require exploration, assume
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tabular endogenous spaces, or rely on optimistic planning. This creates a fundamental mismatch
with practice in operations research, where exploitation-heavy methods dominate. Hence a central
question remains:

Can pure exploitation strategies achieve near-optimal regret in Exo-MDPs under linear function
approximation at scale?

OUR CONTRIBUTIONS.

Pure exploitation learning paradigm. We introduce PEL (Pure Exploitation Learning), a unified
exploitation-only framework for Exo-MDPs in which the learner repeatedly fits value approximations
from observed trajectories and then acts greedily with respect to them. Prior ADP results are largely
asymptotic or depend on problem-specific concavity, while existing RL guarantees for Exo-MDPs
typically assume tabular structure, impose optimism, or reduce to linear mixtures, none of which
address simple greedy methods under function approximation. A key structural observation is
that in Exo-MDPs the exogenous process evolves independently of the agent’s actions, so every
trajectory provides unbiased information about all policies. This enables powerful data reuse: a
single exogenous trace can be replayed to evaluate any policy’s performance, eliminating the need for
deliberate exploration. We resolve this gap by leveraging this philosophy and giving the first general
finite-sample regret guarantees for PEL in Exo-MDPs with linear function approximation (LFA).

Exo-bandits and tabular Exo-MDP. To illustrate the core philosophy of PEL, we first analyze multi-
armed bandits with exogenous information and tabular Exo-MDPs. In both settings we establish regret
guarantees for pure exploitation, complementing and simplifying prior exploration-based approaches.
These results form the basis for our extension to Exo-MDPs with LFA. Classical optimism-based
analysis fails for PEL, and we propose a new regret decomposition and counterfactual analysis to
derive a sublinear regret independent of endogenous space and action space size.

Extension to LFA. We then propose and analyze LSVI-PE (Least-Squares Value Iteration with
Pure Exploitation), a backward value-iteration procedure that (i) builds empirical models of the
exogenous process, (ii) constructs regression targets using post-decision states that disentangle action
choice from exogenous randomness, and (iii) fits linear value approximations using data gathered
entirely from greedy trajectories. Two technical ideas drive our analysis: (a) a counterfactual trajectory
construction that enables reasoning about the value estimates produced under alternative endogenous
traces, and (b) an anchor-closed Bellman-transport condition that controls how approximate Bellman
updates propagate through the fitted linear representation. The resulting regret bounds are polynomial
in the feature dimension, exogenous state cardinality, and horizon, and critically demonstrate that
explicit exploration is unnecessary because exogenous data reuse suffices.

Necessity of Exo-MDP structure for PEL. The Exo-MDP assumptions are not only sufficient
and realistic, but also necessary for PEL to work. If either the endogenous transition or the reward
function is unknown, the problem no longer fits the Exo-MDP class, and exogenous traces cannot be
reused for counterfactual evaluation. In such settings, any PEL algorithm necessarily incurs linear
regret, showing that pure exploitation succeeds only under Exo-MDP structure.

Paper organization. Section 2 reviews related work and Section 3 formalizes the Exo-MDP model.
Section 4 analyzes pure exploitation in the tabular setting, and Section 5 introduces LSVI-PE with
its regret analysis under linear function approximation. Section 6 reports empirical results. Section 7
concludes the paper. Proofs are deferred to the appendix for space considerations.

2 RELATED WORK

We briefly review the most salient related works here and refer to Appendix B for more details.

Exo-MDPs. Exogenous MDPs, a sub-class of structured MDPs, were introduced by Powell (2022)
and further studied in an evolving line of work (Dietterich et al., 2018; Efroni et al., 2022; Sinclair
et al., 2023b; Powell, 2022). For instance, Dietterich et al. (2018); Efroni et al. (2022) considered
factorizations that filter out the exogenous process, simplifying algorithms but yielding suboptimal
policies since ignoring exogenous states may discard useful information. Sinclair et al. (2023b)
analyzed hindsight optimization, showing that its regret can be bounded by the hindsight bias, a
problem-dependent quantity. Most closely related to our work, Wan et al. (2024) establish statistical
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connections between Exo-MDPs and linear mixture models and design exploration-based algorithms
with regret guarantees in fully discrete Exo-MDPs, assuming finite endogenous and exogenous state
spaces and primarily i.i.d. exogenous inputs, with a Markovian extension. Overall, existing results
largely focus on discrete endogenous dynamics and i.i.d. (or simplified) exogenous processes and
typically rely on explicit exploration or optimism. In contrast, we study Exo-MDPs with continuous
endogenous states and Markovian exogenous processes, and we provide the first near-optimal finite-
sample regret guarantees for pure exploitation strategies in this more general setting.

Exploitation-based ADP. A parallel line of work in ADP shows that greedy or exploitation-oriented
strategies can succeed under strong structural assumptions. Nascimento & Powell (2009) propose a
pure-exploitation ADP method for the lagged asset acquisition model, leveraging concavity of the
value function to guarantee convergence without explicit exploration. Nascimento & Powell (2013)
extend this to vector-valued controls in storage problems under similar conditions. More broadly,
Jiang & Powell (2015) and Powell (2022) highlight methods such as Monotone-ADP and post-
decision state exploitation schemes that reduce the need for exploration by exploiting monotonicity or
other structural regularities. However, these methods either assume discrete state and action spaces,
rely on asymptotic convergence, or require structural conditions like convexity or piecewise-linearity.
In contrast, we provide finite-sample regret guarantees for pure exploitation in general Exo-MDPs
without any explicit structural assumptions.

MDPs with LFA. Recent work on RL with LFA has studied various linear structures, including
MDPs with low Bellman rank (Jiang et al., 2017; Dann et al., 2018), linear MDPs (Yang & Wang,
2019; Jin et al., 2020), low inherent Bellman error (Zanette et al., 2020), and linear mixture MDPs
(Jia et al., 2020; Ayoub et al., 2020; Zhou et al., 2021). Our results contribute to this literature by
establishing near-optimal regret guarantees for Exo-MDPs with LFA under pure exploitation.

3 PRELIMINARIES AND PROBLEM SETTING

Notation. We write [N ] := {1, 2, · · · , N} for any positive integers N . For a matrix A, we use ∥A∥
to denote its operator norm. We use I{·} to denote the indicator function. For any x ∈ R, we define
[x]+ := max{x, 0}. We use Õ(·) to denote O(·) omitting logarithmic factors. A table of notation is
provided in Appendix A.

MDPs with Exogenous States. We consider Exogenous Markovian Decision Processes (Exo-
MDPs) with Markovian exogenous dynamics, a subclass of MDPs that explicitly separates the state
into endogenous and exogenous components (Dietterich et al., 2018; Efroni et al., 2022; Sinclair
et al., 2023b; Powell, 2022). Here, a state s = (x, ξ) factorizes into an endogenous (system) state
x ∈ X and exogenous input ξ ∈ Ξ. Intuitively, the exogenous state ξh captures all randomness
(e.g., demand, arrivals, or prices), while the endogenous state xh captures the system’s internal
configuration. Because actions cannot influence ξh, the agent cannot manipulate future randomness,
which is central to our pure-exploitation results. Formally, an Exo-MDP is defined by the tuple
M(P, f, r) = (X × Ξ,A,P, r,H). At each stage h, the agent selects an action ah = πh(sh) ∈ A
given the current state sh = (xh, ξh) under their policy π = (πh)h∈[H] ∈ Π where Π = {(πh)h∈[H] :
πh : X × Ξ→ A}. The exogenous state evolves as a Markov process ξh+1 ∼ Ph(·|ξh), independent
of xh and ah.1 Throughout we assume the exogenous state space is discrete, which is well-aligned
in operations research where the exogenous randomness corresponds to discrete demand levels
in inventory control (Besbes & Muharremoglu, 2013; Cheung et al., 2023) or job types in cloud
computing systems (Balseiro et al., 2020; Sinclair et al., 2023b).

Conditional on (xh, ah, ξh), the endogenous process evolves and the reward function is specified by
deterministic functions:

xh+1 = f(xh, ah, ξh+1), rh = r(xh, ah, ξh) ∈ [0, 1].

The endogenous dynamics are still stochastic, only deterministic as a function of the exogenous state
distribution through f . The full transition kernel from a state can be written as P (sh+1|sh, ah) =
1[f(xh, ah, ξh+1) = xh+1]Ph(ξh+1 | ξh).
Remark 1 (Example application). These modeling assumptions are well-motivated in many op-
eration research applications, especially resource management. For example, in inventory con-
trol, the endogenous state xh is the on-hand inventory level, while the exogenous state ξh is the

1We discuss the general m-Markovian setting in Appendix C.
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demand realization at time h (Madeka et al., 2022). Actions ah correspond to order quantities.
The system transition function are deterministic given demand, e.g. the newsvendor dynamics
xh+1 = f(xh, ah, ξh+1) = max{xh + ah − ξh+1, 0}. The reward depends on sales revenue and
holding or stockout costs, r(xh, ah, ξh). The only randomness arises from the exogenous demand
process. We give more examples of Exo-MDPs in Appendix C.1.3.

Value Functions and Bellman Equations. For a policy π, the action-value functions and state-value
functions at step h are defined as:

Qπ
h (s, a) := E

[∑H
τ=h r(xτ , aτ , ξτ ) | (sh, ah) = (s, a), π

]
, V π

h (s) := Qπ
h (s, πh(s)) .

We also define hindsight value functions for a fixed exogenous trace ξ>h = (ξh+1, . . . , ξH):

Qπ
h (s, a, ξ>h) :=

∑H
τ=h r(sτ , aτ , ξτ ) | (sh, ah) = (s, a), π, V π

h (s, ξ>h) := Qπ
h (s, πh(s), ξ>h) .

These are deterministic once ξ>h are fixed, so no Monte Carlo sampling is required under the known
functions f and g. Sinclair et al. (2023b) show that unconditional values are expectations over
hindsight values, i.e. for every h ∈ [H], (s, a) ∈ S ×A, and policy π,

Qπ
h(s, a) = Eξ>h

[Qπ
h (s, a, ξ>h)] , V π

h (s) = Eξ>h
[V π

h (s, ξ>h)] ,

where the expectation is taken over the conditional distribution ξ>h ∼ Ph (· | ξh).
Online Learning. We consider an agent interacting with the Exo-MDP over K episodes. At the
beginning of episode k, the agent starts from an initial state sk1 and commits to a policy π̂k ∈ Π.
At each step h, the agent observes skh = (xk

h, ξ
k
h), takes action akh = π̂k

h(s
k
h), receives reward

r(xk
h, a

k
h, ξ

k
h), observes ξkh+1, and transitions to xk

h+1 = f(xk
h, a

k
h, ξ

k
h+1). Each episode has H steps.

The performance of an algorithm is measured by its cumulative simple regret over K episodes:

SR(alg, k) := V π⋆

1 (s1)− V π̂k

1 , CR (alg,K) :=
∑K

k=1

[
V π⋆

1 (s1)− V π̂k

1 (s1)
]
,

where π⋆ = argmaxπ∈Π V π
1 (s) is the optimal policy and π̂k is the policy employed in episode k.

The initial exogenous state ξk1 in each episode can be arbitrarily chosen. For each (k, h) ∈ [K]× [H],
we denote by Hk

h ≜
(
s11, a

1
1, s

1
2, a

1
2, . . . , s

1
H , a1H , . . . , skh, a

k
h

)
the (random) history up to step h of

episode k. We define Fk ≜ Hk−1
H as the history up to episode k − 1. We use ξk := (ξl)l∈[k] to

denote the exogenous trace up to the end of episode k.

4 PURE EXPLOITATION LEARNING IN TABULAR EXO-MDPS

We now illustrate the philosophy of Pure Exploitation Learning (PEL). In Exo-MDPs, the only
unknown component is the exogenous process, which evolves according to a Markov chain inde-
pendent of the agent’s actions. As a result, trajectories collected under any policy provide unbiased
information about this process, so explicit exploration is not required. PEL builds on this observation:
instead of adding optimism or randomization, PEL algorithms repeatedly fit empirical models or
value functions from observed exogenous traces and then acts greedily with respect to these estimates.
To summarize we define PEL algorithms as:

Definition 1 (Informal). PEL denotes the family of algorithms that, at each round or episode,
construct an empirical value function from previously observed exogenous traces and act by greedily
maximizing this function, with no optimism or forced exploration.

We next make PEL concrete in two simple settings: (i) an Exo-bandit warm-up (H = 1) and (ii) the
tabular Exo-MDP. After presenting regret guarantees and computational remarks, we conclude with
an impossibility example showing that PEL can fail in general MDPs without exogenous structure.
We then move onto the linear function approximation case.

4.1 WARM-UP: EXO-BANDITS

We start with multi-armed bandits with exogenous information (coinciding with bandits with full
feedback), an Exo-MDP with no states and H = 1. At each round k the agent selects arm ak, an

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

exogenous input ξk is realized, and because the reward map r(a, ξ) is known the agent can evaluate
the reward r(a, ξk) of all arms. Following Wan et al. (2024) we call this setting an Exo-Bandit.

Here, the PEL strategy reduces to the classic Follow-The-Leader (FTL) strategy: at round k
simply choose the arm with the largest empirical mean reward ak ∈ argmaxa∈A µ̂a(k) :=
1

k−1

∑k−1
s=1 r(a, ξs). This procedure is entirely exploration free, unlike in classical bandits where

exploration schemes such as UCB or Thompson Sampling are essential for learning (Auer et al.,
2002; Russo et al., 2018). This contrast illustrates how exogenous information fundamentally changes
the role of exploration since the algorithm can use the counterfactual information inferred from the
observed exogenous information.

Proposition 1. Assume rewards are σ2-sub-Gaussian. Then the expected per-round simple re-

gret of FTL satisfies SR (FTL, k) ≤
√

2σ2 logA
k−1 , and consequently the cumulative regret obeys

CR (FTL,K) ≤ 2σ
√
(K − 1) logA.

The proof is provided in Appendix F.1. These regret bounds recover standard full-information or
experts-type guarantees and are are minimax-optimal (Cesa-Bianchi & Lugosi, 2006; Shalev-Shwartz
et al., 2012). The point here is not novelty but an illustration: when full feedback is available via the
exogenous feedback, simple PEL suffices, and additional exploration is no longer necessary.

4.2 TABULAR EXO-MDPS

We now extend PEL to finite-horizon Exo-MDPs with finite state and action spaces. Since exogenous
traces can be reused across policies, one can form unbiased value estimates and apply Follow-the-
Leader (FTL) at the policy level. This yields near-optimal regret bounds, consistent with Sinclair
et al. (2023b), but evaluating all policies amounts to empirical risk minimization (ERM) over Π. This
is computationally infeasible in general since |Π| ≤ |A|H|X ||Ξ|. See Appendix D for a discussion of
this algorithm and the result.

To address this, we consider a more practical PEL instance, Predict-Then-Optimize (PTO). PTO first
estimates the exogenous transition kernels P̂k

h(· | ξh) (e.g., via empirical counts or MLE), and then
plugs them into standard dynamic programming to compute greedy policies:

Q̂k
h(sh, ah) := r(xh, ah, ξh) + Eξh+1|ξh

[
V̂ k
h+1(f(xh, ah, ξh+1), ξh+1); P̂k

]
,

π̂k
h(sh) ∈ argmax

ah

Q̂k
h(sh, ah), V̂ k

h (sh) := Q̂k
h(sh, π̂

k
h(sh)).

The following theorem bounds the cumulative regret of PTO under Markovian exogenous noise by
reducing model error to exogenous-row errors, yielding rates independent of |X | and |A|.
Theorem 1 (Regret of PTO under Markovian exogenous process). With high probability, the cumula-
tive regret of PTO after K episodes satisfies

CR (PTO,K) ≤ Õ
(
H2|Ξ|

√
K
)
.

A key challenge is that classical optimism-based analysis fails for pure exploitation in Exo-MDPs.
Even though the only unknown is the exogenous kernel PΞ, the optimistic inequality V π⋆

1 −V̂
k,πk

1 ≤ 0
does not hold, so the usual simulation-lemma telescoping breaks. We instead introduce a new regret
decomposition with two double value gaps, separating model errors for π⋆ and πk. While the
on-policy term can be bounded as in classical analyses, the term for π⋆ cannot—its trajectory is
never observed. This motivates our use of counterfactual trajectories that follow π⋆ but share
the same exogenous realization ξk. Conditioning on the exogenous filtration allows a simulation-
lemma bound without requiring visitations under π⋆. This rewrites the value gaps purely in terms
of exogenous-kernel errors, replacing state-action counts by policy-independent exogenous counts
Ck

h(ξh), resolving the policy-misalignment issue and yielding sublinear regret independent of the
endogenous state and action spaces.

Unlike the exhaustive ERM/FTL approach, which is statistically sound but computationally infeasible,
PTO provides a practical and efficient PEL implementation. It runs in time polynomial in |X |, |A|,
and H , while preserving regret guarantees that depend only mildly on the exogenous cardinality |Ξ|.
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4.3 IMPOSSIBILITY: PURE EXPLOITATION CAN FAIL IN GENERAL MDPS

To understand why the Exo-MDP structure is essential for PEL, we examine what happens when its
key assumptions are violated. Specifically, we consider PEL when either the endogenous transition
function f or the reward function r is unknown.

Proposition 2. For any pure-exploitation algorithm, there exists a tabular MDP with unknown
transition function f or unknown reward function r on which the algorithm suffers linear regret.

The proof is provided in Section C.1.2. This result shows that once f or r is unknown, the class of
otherwise tabular Exo-MDPs already contains instances where every PEL algorithm incurs linear
regret. In such settings, pure exploitation is not minimax-sufficient. Hence, the Exo-MDP structure
is not just sufficient, it is the critical condition that makes it possible for PEL to achieve sublinear
regret, in sharp contrast to the general tabular MDP setting with unknown f or r.

Discussion. While this section considered simple tabular Exo-MDPs, we showed that pure ex-
ploitation suffices: exploration is unnecessary because exogenous randomness is decoupled from the
agent’s actions, and Exo-MDP structure is necessary for PEL to work. With the right implementation
(e.g., PTO), PEL is both statistically and computationally efficient. However, these results hinge on
tabular representations, limiting scalability. In the next section, we extend these ideas to continuous
state and action spaces under linear function approximation.

5 LINEAR FUNCTION APPROXIMATION

The previous section established that PEL suffices in tabular Exo-MDPs. However, in order to
make this useful for more realistic and high-dimensional problems, we need to move beyond finite
endogenous state spaces. This section develops LSVI-PE, a simple and efficient pure-exploitation
algorithm under linear function approximation. Our algorithm leverages two structural ideas: (i)
post-decision states, which remove the confounding between actions and exogenous noise; and (ii)
counterfactual trajectories, the same principle that underpinned our tabular analysis.

Continuous Exo-MDPs. We now consider Exo-MDPs with continuous endogenous states xh ∈ X ,
continuous actions ah ∈ A, and finite exogenous states ξh ∈ Ξ over horizon H . This extension is
essential for modeling realistic operations research and control applications, where system states (e.g.,
inventory levels, resource capacities, storage levels) and actions are naturally continuous. Following
the ADP literature (Nascimento & Powell, 2009; 2013; Powell, 2022), we assume that the dynamics
decompose into two steps:

xa
h = fa(xh, ah) ∈ X a ⊂ X (post–decision state), xh+1 = g

(
xa
h, ξh+1

)
∈ X (next state),

with ξh+1 ∼ Ph(· | ξh). For any policy π, we define the post–decision value function

V π,a
h (xa, ξ) = Eξ′∼Ph(·|ξ)

[
V π
h+1

(
g(xa, ξ′), ξ′

) ]
,

which represents the expected downstream value after committing to action ah but before the next
exogenous state is revealed. The pre-decision value function then decomposes as

V π
h (x, ξ) = r

(
x, π(x, ξ), ξ

)
+ V π,a

h

(
fa(x, π(x, ξ)), ξ

)
.

The optimal policy also obeys

V ⋆
h (x, ξ) = max

a∈A

{
r(x, a, ξ) + V ⋆,a

h

(
fa(x, a), ξ

)}
, V ⋆,a

h (xa, ξ) = Eξ′∼Ph(·|ξ)

[
V ⋆
h+1

(
g(xa, ξ′), ξ′

)]
.

We now formalize the definition of Exo-MDP with linear function approximation (LFA):

Definition 2. An Exo-MDP is said to satisfy post–decision LFA with respect to a known feature
mapping ϕ : X → Rd if, for every policy π, step h, and state (xa, ξ) ∈ X × Ξ,

V π,a
h (xa, ξ) = ϕ(xa)⊤wπ

h(ξ),

where supxa ∥ϕ(xa)∥2 ≤ 1, and the weight vectors satisfy supπ,h,ξ ∥wπ
h(ξ)∥2 ≤

√
d.

6
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Thus, post-decision LFA can be viewed as an Exo-MDP analogue of the linear MDP assumption,
tailored to exploit the separation between endogenous dynamics and exogenous randomness. We
denote the optimal weights by w⋆

h(ξ) := wπ⋆

h (ξ) so that V ⋆,a
h (xa, ξ) = ϕ(xa)⊤w⋆

h(ξ).

Since the endogenous state space X may be continuous, we cannot directly regress on all post-
decision states. To make the LFA identifiable and the least-squares updates well defined, we introduce
a finite collection of representative post-decision states whose feature vectors span the feature space.

Assumption 1 (Anchor set). For each step h, there exist N ≥ d fixed post–decision states
{xa

h(n)}Nn=1 such that the feature matrix Φh :=
[
ϕ(xa

h(1)), . . . , ϕ(x
a
h(N))

]
∈ Rd×N has full

row rank, i.e., rank(Φh) = d.

Together, the LFA assumption and anchor condition provide a tractable representation that supports
efficient algorithms while keeping regret bounds polynomial in the feature dimension d rather than
the size of the underlying endogenous state or action spaces. We also emphasize that Assumption 1 is
standard in the ADP literature (Nascimento & Powell, 2009; 2013).

5.1 ALGORITHM

In this section, we present our algorithm Least-Squares Value Iteration with Pure Exploitation
(LSVI-PE) for Exo-MDPs with LFA. See Algorithm 1 for pseudo-code.

High-level intuition. Our algorithm LSVI-PE alternates between two phases:

1. Policy evaluation (backward pass): At each stage h, we construct Bellman regression targets
using the empirical exogenous model P̂h (Line 10). Then we run least-squares regression on the
anchor states to produce weight vectors wk

h(ξ) for each exogenous state ξ and stage h, defining a
linear approximation for the value function as V k,a

h (xa, ξ) = ϕ(xa)⊤wk
h(ξ) ≈ V ⋆

h (x
a, ξ).

2. Policy execution (forward pass): In episode k, the agent acts greedily with respect to these value
estimates (Line 19). The observed exogenous trajectory is used to refine the empirical estimate P̂.

Before moving onto the regret analysis we briefly comment on several aspects of the algorithm.

Role of anchor states. Anchor states {xa
h(n)}Nn=1 are chosen to guarantee that the feature matrix

Φh has full row rank (Assumption 1). This ensures that the regression weights wk
h(ξ) are unique.

Intuitively, anchors serve as representative endogenous states: they provide just enough coverage of
the feature space to propagate accurate value estimates without requiring samples from the entire
(possibly continuous) state space.

Anchor states are not unknown structural assumptions but design choices made by the learner.
Assumption 1 simply requires fixing a finite set of post–decision states whose feature vectors span the
space. These serve as the representative grid underlying the feature map (e.g., hat bases, spline knots,
or tile centers (Sutton et al., 1998)). This mirrors standard practice in RL with LFA, where choosing
ϕ implicitly specifies the underlying basis points. Such anchor constructions are routine in ADP and
operations-research applications, including inventory control and storage systems, where practitioners
exploit domain structure (e.g., piecewise linearity or convexity) to select natural breakpoints as
anchors (Nascimento & Powell, 2009; 2013; Powell, 2022).

Exploration-free design. Conventional RL algorithms with LFA rely on explicit exploration
mechanisms. For instance, LSVI-UCB (Jin et al., 2020) enforces optimism in the value estimates,
while RLSVI (Osband et al., 2016) injects random perturbations into regression targets. In contrast,
LSVI-PE is a pure exploitation algorithm: all updates come directly from empirical exogenous
trajectories observed along greedy play. The independence of the exogenous process makes this
design both natural and theoretically justified, and we later show it achieves near-optimal regret.

Computational efficiency. In LSVI-PE, regression targets are computed only at the anchor states,
and updates decompose stage by stage. This structure makes the algorithm scalable when the
endogenous state and action spaces are continuous. Compared to FTL-style policy search, which
requires evaluating every policy, LSVI-PE is implementable in polynomial time.
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Algorithm 1 LSVI-PE

Require: Anchor states {xa
h(n)}

H,N
h=1,n=1; feature map ϕ : X → Rd

1: Precompute: For each h, set Φh ← [ϕ(xa
h(1)), . . . , ϕ(x

a
h(N))] ∈ Rd×N and Σh ← ΦhΦ

⊤
h

2: Initialize: For each h and ξ, ξ′ ∈ Ξ, set counts Ch(ξ, ξ
′) ← 0 and P̂0

h(ξ
′|ξ) ← 1/|Ξ|; set

w0
h(ξ)← 0 for all h ∈ [H + 1], ξ

3: for k = 1 to K do // Episode loop
4: // Policy computation using data up to k − 1 //
5: for h = H down to 1 do
6: for each ξ ∈ Ξ do
7: bkh(ξ)← 0 ∈ Rd

8: for n = 1 to N do
9: Define x′

n(ξ
′)← g

(
xa
h(n), ξ

′) for each ξ′ ∈ Ξ

10: ykh(n; ξ)←
∑

ξ′∈Ξ P̂k−1
h (ξ′|ξ)·maxa′∈A

{
r
(
x′
n(ξ

′), a′, ξ′
)
+ ϕ
(
fa(x′

n(ξ
′), a′)

)⊤
wk

h+1(ξ
′)
}

11: bkh(ξ)← bkh(ξ) + ϕ(xa
h(n)) y

k
h(n; ξ)

12: end for
13: wk

h(ξ)← Σ−1
h bkh(ξ) // Least squares on anchors

14: end for
15: end for
16: // Act in episode k with {wk

h} and collect data ξk //
17: Receive xk

1 ; observe ξk1
18: for h = 1 to H do
19: akh ∈ argmaxa∈A

{
r(xk

h, a, ξ
k
h) + ϕ

(
fa(xk

h, a)
)⊤
wk

h(ξ
k
h)
}

20: xk,a
h ← fa(xk

h, a
k
h); observe ξkh+1; set xk

h+1 ← g(xk,a
h , ξkh+1)

21: Update counts: Nk
h (ξh, ξh+1)← Nk−1

h (ξh, ξh+1) + I{(ξh, ξh+1) = (ξkh, ξ
k
h+1)};

22: end for
23: Update empirical model: For all h, ξ, ξ′, P̂k

h(ξ
′|ξ)← Nk

h (ξ,ξ′)∑
ζ∈Ξ Nk

h (ξ,ζ)
.

24: end for
25: Output: wk

h(ξ) for each h and ξ

5.2 REGRET ANALYSIS

Before presenting our main result we introduce some additional notation. Let ϕh(n) := ϕ(xa
h(n))

and define the anchor feature matrix Φh := [ϕh(1), . . . , ϕh(N)] ∈ Rd×N . We also define λ0 :=
minh∈[H] λmin(Σh) > 0, where Σh = ΦhΦ

⊤
h is the anchor covariance. Fix h, π, and ξ′ ∈ Ξ. We

define the post-decision transition operator as T π
h (ξ′) : X a → X a as

T π
h (ξ′)(xa) := fa

(
g(xa, ξ′), π

(
g(xa, ξ′), ξ′

))
.

This represents one step of evolution:

xa ξ′−−→ x′ π−−→ a′
fa

−−→ (xa)′ as the compressed arrow xa ξ′

==⇒
π

(xa)′ = T π
h (ξ′)(xa).

We introduce two additional assumptions to establish our regret guarantees. We begin with a weaker
requirement: that the anchor states are closed under the Bellman operator. Intuitively, this condition
ensures that when an anchor state undergoes one step of post-decision transition, its image remains in
the span of the anchor feature representation.
Assumption 2 (Anchor-closed Bellman transport (weaker)). For any π, h ∈ [H], and ξ′ ∈ Ξ, there
exists a matrix Mπ

h (ξ
′) ∈ Rd×d with supπ,ξ′,h ∥Mπ

h (ξ
′)∥2 ≤ 1 such that for every anchor xa

h(n),

ϕ
(
T π
h (ξ′)(xa

h(n))
)
= Mπ

h (ξ
′)ϕ(xa

h(n)).

Note that this establishes the one-step image of any anchor under the post-decision transition lies in
the same feature span and is linearly transported by Mπ

h (ξ
′).

Assumption 3. For any xa, ϕ(xa) is in the nonnegative cone of Φ.
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Assumption 3 ensures the pointwise policy-improvement: the greedy update makes all anchor
residuals nonnegative, and thus guarantees improvement at arbitrary post-decision states.
Theorem 2. Under Assumption 2-3, the regret of LSVI-PE after K episodes satisfies

CR (LSVI-PE,K) ≤ Õ
((√

N/λ0 +
√
d
)
|Ξ|H

√
K
)
.

PEL achieves standard sublinear regret under Assumption 2, with dependence on the feature di-
mension d, the number of anchors and their conditioning via

√
N/λ0, and the exogenous state

size |Ξ|, while remaining independent of the size of the endogenous state and action spaces. In
well-conditioned designs (e.g., λ0 = Θ(1) and N ≈ d), the bound simplifies to Õ(|Ξ|H

√
dK).

The intuition behind the proof parallels the tabular setting. We adopt a new decomposition that
requires controlling two value gaps. The key step is to bound the optimal-policy gap using a simulation
lemma applied not to the realized trajectory of πk, but to a counterfactual trajectory generated under
π⋆ while sharing the same realized exogenous sequence. Assumption 2 ensures that all Bellman
regression targets remain in the anchor span, so each stage-h update reduces to a well-conditioned
least-squares problem governed by λ0. Along the counterfactual process, the proof decomposes the
error into (i) Bellman regression errors at the anchors and (ii) exogenous-model errors, and then
couples both components to the observed exogenous trajectory through martingale concentration on
the estimated exogenous rows. This contrasts sharply with standard linear-MDP optimism analyses,
which rely on confidence sets and self-normalized concentration in parameter space; here the central
analytic objects are the counterfactual trajectories and the exogenous martingales that enable a
stage-wise telescoping of Bellman errors and yield the Õ(

√
K) regret bound without optimism. Full

proofs are in Appendix G.

Our next assumption strengthens Assumption 2 to hold for all xa instead of just the anchors:
Assumption 4 (Global Bellman-closed transport (stronger)). For any π, h ∈ [H], and ξ′ ∈ Ξ, there
exists Mπ

h (ξ
′) with supπ,ξ′,h ∥Mπ

h (ξ
′)∥2 ≤ 1 such that for all xa, ϕ

(
T π
h (ξ′)(xa)

)
= Mπ

h (ξ
′)ϕ(xa).

Under this we can establish the following regret guarantee:
Theorem 3. Under Assumption 4, the regret of LSVI-PE after K episodes satisfies

CR (LSVI-PE,K) ≤ Õ
((

H +
√
N/λ0

)
|Ξ|H

√
K
)
.

While both theorems share the same dependence on K, this refinement tightens the guarantees when
H < d. Although Assumption 4 is stricter than what LSVI-PE requires, we show it yields sharper
propagation bounds when exact closure is plausible (or enforced by feature design).

We provide a detailed discussion of the anchor-set assumptions in Appendix C.2, including the role
and selection of anchor states, connections to coreset and Frank-Wolfe methods, the invertibility and
conditioning of Σh, the reasonableness of Assumptions 2-4, and several weakenings and relaxations.
Below we briefly highlight the intuition behind Assumptions 2- 4.

Discussion on Assumptions 2 to 4. Many Exo-MDPs such as storage problems or linearizable
post-decision dynamics naturally induce linear transport within common LFA classes (linear splines,
tile coding, localized RBFs, etc). Moreover, the constraint ∥Mπ

h (ξ
′)∥2 ≤ 1 ensures that one-step

feature transport is non-expansive, a standard stability condition in ADP/LFA analyses. Additional
discussion of Assumptions 2 to 4 is provided in Appendix E.

LSVI-PE with misspecification (approximation) error. When Assumptions 2 to 4 fails and the
true value functions do not lie exactly in the linear span, or the function class is misspecified, Theorem
5 shows that the regret bounds match the earlier ones with an additive O(KεBE) where εBE measures
the measures the inherent Bellman error2 (approximation gap between the true Bellman updates and
the best function in the linear class). This bias term is unavoidable in general, since even an oracle
learner suffers an O(KεBE) cumulative bias (Zanette et al., 2020).
Theorem 4. Assume Assumption 1 holds. Fix δ ∈ (0, 1). Then with probability at least 1− δ,

CR (LSVI-PE,K) ≤ Õ
((

H +
√

N
λ0

)
|Ξ|H

√
K +

H√
λ0

K εBE

)
.

2Formal definition is provided in Appendix E.1
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6 NUMERICAL EXPERIMENTS

6.1 TABULAR EXO-MDP

Setup. We evaluate on synthetic tabular Exo-MDPs with
endogenous state space X = [5], exogenous state space
Ξ = [5], and action set A = [3] and horizon T = 5, and
K = 250 episodes. Rewards are drawn i.i.d. as r(x, a, ξ) ∼
Unif(0, 1). Endogenous dynamics are deterministic, xh+1 =
f(xh, ah, ξh+1) = (xh + ah + ξh+1) mod X, while the
exogenous process is a Markov chain with transition matrix
Py sampled row-wise from a Dirichlet prior.
Comparisons. We compare PTO with its optimistic counter-
part PTO-Opt (using optimistic model P̃k) and PTO-Lite
(lightweight estimate P̃k using sub-sampling).
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Figure 1: Comparison of PTO,
PTO-Opt and PTO-Lite.

Figure 1 illustrates the benefit of PEL. Despite no explicit exploration, PTO outperforms PTO-Lite
and the exploration-heavy baseline PTO-Opt in cumulative regret.

6.2 STORAGE CONTROL

Setup. We consider a storage control setting where xh ∈ X = [0, C] denotes the current storage
level. After taking action ah ∈ A = [−amax, amax], the system transitions to the post-decision
state xa

h = fa(xh, a) = clip[0,C]

(
xh + η+a+ − 1

η− a−
)

. The exogenous component is the discrete
price. The storage level is modeled as xh+1 = g(xa

h, ξh+1) = αxa
h, α ∈ (0, 1], with default α = 1.

The reward function is r(xh, ah, ξh) = −ξhah − αc|ah| − βhxh, capturing the market transaction,
transaction cost, and holding penalty respectively.

Features and anchors. We discretizeX using anchors ρn = n−1
N−1C for n ∈ [N ]. A one-dimensional

hat basis is employed: for any xa, the feature vector ϕ(xa) ∈ RN has at most two nonzero entries.
Let ∆ = ρj+1 − ρj . If xa ∈ [ρj , ρj+1], then ϕj(x

a) =
ρj+1−xa

∆ , ϕj+1(x
a) =

xa−ρj

∆ , with all other
coordinates zero. At anchor points, the basis reduces to canonical vectors, ϕ(ρn) = en, so that
Φh = IN and Σh = ΦhΦ

⊤
h = IN .

Comparisons. In Figure 2 we compare LSVI-PE with optimism-based exploration LSVI-Opt.
Across all instances, LSVI-PE consistently outperforms LSVI-Opt, emphasizing that in Exo-
MDPs exploitation strategies dominate optimism-based ones.

We provide scaled-up experimental setup and comprehensive comparisons in Appendix H.
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(a) H = 6
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(b) H = 8
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(c) H = 10

Figure 2: Comparison of LSVI-PE and LSVI-Opt across three different time horizon lengths.

7 CONCLUSION

We show that exploitation is sufficient in Exo-MDPs: introducing PEL, we give the first finite-sample
regret bounds for PEL under tabular and LFA, and demonstrate PEL outperforms optimism-based
baselines on synthetic and resource-management benchmarks. Future work include relax structural
assumptions (richer function classes, continuous or partially observed exogenous processes) while
preserving exploitation’s sample efficiency.
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ETHICS STATEMENT

This research is foundational and develops theoretical results on reinforcement learning in Exo-
MDPs with linear function approximation. As such, it does not raise any direct ethical concerns.
However, applications of our algorithms to specific domains (e.g., inventory control, pricing, or
resource allocation) may influence real-world decision-making that affects people and organizations.
We therefore encourage practitioners to carefully consider ethical implications such as fairness,
accessibility, and potential unintended consequences when deploying these methods in practice.

REPRODUCIBILITY STATEMENT

All proofs of theorems and lemmas are included in the appendix, and we clearly specify all assump-
tions used in our analysis. Algorithmic details (see Algorithms 1 and 2) are provided to ensure
transparency. Our empirical results are based on synthetic Exo-MDP benchmarks and resource-
management tasks, both of which we describe in Section 6 and Appendix H. We will release code
and simulation environments to facilitate full reproducibility of our experiments.
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network for the beer game: Deep reinforcement learning for inventory optimization. Manufacturing
& Service Operations Management, 24(1):285–304, 2022.

Ian Osband, Benjamin Van Roy, and Zheng Wen. Generalization and exploration via randomized
value functions. In International Conference on Machine Learning, pp. 2377–2386. PMLR, 2016.

Warren B Powell. Reinforcement Learning and Stochastic Optimization: A Unified Framework for
Sequential Decisions, volume 22. Taylor & Francis, 2022.

Hanzhang Qin, David Simchi-Levi, and Ruihao Zhu. Sailing through the dark: Provably sample-
efficient inventory control. Available at SSRN 4652347, 2023.

Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen, et al. A tutorial on
thompson sampling. Foundations and Trends® in Machine Learning, 11(1):1–96, 2018.

Ilya O Ryzhov, Martijn RK Mes, Warren B Powell, and Gerald van den Berg. Bayesian exploration
for approximate dynamic programming. Operations research, 67(1):198–214, 2019.

Devavrat Shah and Qiaomin Xie. Q-learning with nearest neighbors. Advances in Neural Information
Processing Systems, 31, 2018.

Shai Shalev-Shwartz et al. Online learning and online convex optimization. Foundations and Trends®
in Machine Learning, 4(2):107–194, 2012.

Sean R Sinclair, Siddhartha Banerjee, and Christina Lee Yu. Adaptive discretization in online
reinforcement learning. Operations Research, 71(5):1636–1652, 2023a.

Sean R Sinclair, Felipe Vieira Frujeri, Ching-An Cheng, Luke Marshall, Hugo De Oliveira Barbalho,
Jingling Li, Jennifer Neville, Ishai Menache, and Adith Swaminathan. Hindsight learning for
mdps with exogenous inputs. In International Conference on Machine Learning, pp. 31877–31914.
PMLR, 2023b.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Jia Wan, Sean R Sinclair, Devavrat Shah, and Martin J Wainwright. Exploiting exogenous structure
for sample-efficient reinforcement learning. arXiv preprint arXiv:2409.14557, 2024.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Lin Yang and Mengdi Wang. Sample-optimal parametric q-learning using linearly additive features.
In International conference on machine learning, pp. 6995–7004. PMLR, 2019.

Liang Yu, Shuqi Qin, Meng Zhang, Chao Shen, Tao Jiang, and Xiaohong Guan. A review of deep
reinforcement learning for smart building energy management. IEEE Internet of Things Journal, 8
(15):12046–12063, 2021.

Andrea Zanette, Alessandro Lazaric, Mykel Kochenderfer, and Emma Brunskill. Learning near
optimal policies with low inherent bellman error. In International Conference on Machine Learning,
pp. 10978–10989. PMLR, 2020.

Zhongjun Zhang, Shipra Agrawal, Ilan Lobel, Sean R Sinclair, and Christina Lee Yu. Reinforcement
learning in mdps with information-ordered policies. arXiv preprint arXiv:2508.03904, 2025.

Dongruo Zhou, Quanquan Gu, and Csaba Szepesvari. Nearly minimax optimal reinforcement learning
for linear mixture markov decision processes. In Conference on Learning Theory, pp. 4532–4576.
PMLR, 2021.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A TABLE OF NOTATION

Table 1: List of common notations.

Symbol Definition
Exo-MDP specification

X Endogenous (system) state space
Ξ Exogenous state space
A Action space
H Planning horizon
K Number of episodes
xt ∈ X Endogenous state at time t
ξt ∈ Ξ Exogenous input at time t
at ∈ A Action at time t
f : X ×A× Ξ→ X Endogenous transition function, xt+1 = f(xt, at, ξt)
P(ξ′ | ξ) Exogenous transition kernel
r : X ×A× Ξ→ [0, 1] Reward function
π : X × Ξ→ A Policy mapping state to action
V π
h (x, ξ) Value function of policy π at stage h

Qπ
h(x, a, ξ) State-action value function of policy π at stage h

Regret(K) Cumulative regret after K episodes
Pure Exploitation Framework

PEL Pure Exploitation Learning framework
FTL Pure Exploitation algorithm for Exo-bandits (H = 1) and tabular Exo-MDPs
LSVI-PE Pure Exploitation algorithm for Exo-MDPs with linear function approximation

LFA
ϕ(x) Feature map of state x
d Feature dimension
θh Parameter vector at stage h

P̂h Empirical estimate of exogenous transition at stage h

Q̂h, V̂h Estimated Q- and value functions
ι Logarithmic factor log(2KH|Ξ|/δ) in regret bounds

Storage Control Example
C Storage capacity
xh ∈ [0, C] Storage level at stage h
ξh ∈ Ξ Price at stage h
ah = (a+h , a

−
h ) Charge (a+) / discharge (a−) actions

η+, η− Charging/discharging efficiencies
xa
h Post-decision state after action ah

P̂(ξ′|ξ) Estimated price transition kernel
Theoretical Analysis

δ Confidence parameter in high-probability bounds
N number of anchor points
O(·), Õ(·) Standard big-O and log-suppressed complexity notation

B DETAILED RELATED WORK

Exo-MDPs. Exogenous MDPs, a structured sub-class of MDPs, have been introduced and studied
in a growing line of work (Powell, 2022; Dietterich et al., 2018; Efroni et al., 2022; Sinclair et al.,
2023b; Feng et al., 2021; Alvo et al., 2023; Chen et al., 2024). Early approaches (e.g., Dietterich et al.
(2018); Efroni et al. (2022)) exploit factorizations that filter out the exogenous process, simplifying
learning but potentially yielding suboptimal policies since policies agnostic to the exogenous states
need not be optimal. Other work leverages hindsight optimization, bounding regret by the hindsight
bias, a problem-dependent quantity (Sinclair et al., 2023b; Feng et al., 2021). Across this literature,
the dominant assumptions are that endogenous states and actions are discrete and that guarantees
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rely on optimism or tabular analysis. More recently, Wan et al. (2024) connect Exo-MDPs to linear
mixture MDPs, proving regret bounds that are independent from the size of the endogenous state
and action spaces, but their results apply only to discrete endogenous states. In contrast, we study
Exo-MDPs with continuous endogenous states and Markovian exogenous processes, and establish
the first near-optimal regret guarantees for pure exploitation under linear function approximation.

Exploitation-based ADP. A parallel line of research in ADP has shown that greedy or exploitation
only strategies can succeed under strong structural assumptions. Nascimento & Powell (2009) analyze
a pure-exploitation ADP method for the lagged asset acquisition model, where the concavity of the
value function guarantees convergence without explicit exploration. Nascimento & Powell (2013)
extend this approach to storage problems with vector-valued controls under similar conditions. More
broadly, Jiang & Powell (2015) and Powell (2022) survey methods such as Monotone-ADP and
post-decision exploitation schemes which reduce the need for exploration by leveraging monotonicity
or other structural regularities. Related work has also sought to mitigate exploration using Bayesian
beliefs (Ryzhov et al., 2019) or by exploiting factored state representations (Guestrin et al., 2003;
Kveton et al., 2006). However, these methods generally assume discrete state and action spaces, or
depend on strong structural conditions (e.g. concavity or monotonicity). In contrast, we provide finite-
sample regret guarantees for pure exploitation in general Exo-MDPs with continuous endogenous
states and Markovian exogenous components.

Regret analysis of pure exploitation (exploration-free) methods. Recent work has begun char-
acterizing when greedy policies can still achieve sublinear regret. Bastani et al. (2021) show that
in contextual bandits, a fully greedy algorithm attains O(

√
T ) regret under a covariate diversity

assumption. Civitavecchia & Papini push this into RL, proving that greedy LSVI (no bonus) can
yield sublinear regret under sufficient feature diversity. Jedor et al. (2021) analyze greedy strategies
in multi-armed bandits and delineate regimes where pure exploitation suffices. Bayati et al. (2020)
demonstrate that in many-armed regimes, greedy policies exploit a “free exploration” effect emerging
from the tail structure of the prior to achieve sublinear regret. Kim & Oh (2024) gives a broader
class of context distributions under which greedy linear contextual bandits enjoy poly-logarithmic
regret Kim & Oh (2024). Efroni et al. (2019) show that in finite MDPs, one can match minimax
regret bounds by using greedy planning on estimated models (i.e. no explicit exploration). These
results suggest that under strong structural or distributional conditions, pure exploitation may rival
exploration-based methods, albeit in narrower settings than general theory guarantees.

MDPs with function approximation. RL with structural assumptions has been studied under
both nonparametric and parametric models. Nonparametric approaches, such as imposing Lipschitz
continuity or smoothness conditions on the Q-function, offer flexibility but suffer from exponential
dependence on state/action dimension (Shah & Xie, 2018; Sinclair et al., 2023a). Parametric
approaches trade model flexibility for computational tractability, typically assuming that the MDP can
be well-approximated by a linear representation. This has fueled a rich literature on RL with linear
function approximation, spanning settings such as low Bellman rank (Jiang et al., 2017; Dann et al.,
2018), linear MDPs (Yang & Wang, 2019; Jin et al., 2020; Hu et al., 2024), low inherent Bellman
error (Zanette et al., 2020), and linear mixture MDPs (Jia et al., 2020; Ayoub et al., 2020; Zhou et al.,
2021). Indeed, Exo-MDPs are closely related to linear mixture MDPs. Wan et al. (2024) establish a
structural equivalence between the two, but only in the case of discrete endogenous and exogenous
spaces. Our contribution focuses on adapting the machinery of linear function approximation to Exo-
MDPs for continuous endogenous spaces, and show that their properties allow for pure exploitation
strategies to achieve near-optimal regret.

Exo-MDPs in practice. A growing empirical literature has applied function approximation (typically
using neural networks) to Exo-MDPs in operations research applications, particular in inventory
control and resource management problems (Madeka et al., 2022; Alvo et al., 2023; Fan et al.,
2024; Qin et al., 2023). These works demonstrate strong practical performance but provide limited
theoretical guarantees. In contrast, our contribution simplifies the function class to linear function
approximation, which allows us to obtain sharp regret bounds while retaining the structural advantage
of Exo-MDPs. Moreover, while some prior work focused on heuristic policy classes such as base
stock policies (Agrawal & Jia, 2022; Zhang et al., 2025), our algorithms converge to the true optimal
policy, thereby avoiding the suboptimality inherent to such restricted classes. Lastly we note that RL
has been applied to various other problems in operations research (without exploiting their Exo-MDP
structure) including ride-sharing systems (Feng et al., 2021), stochastic queuing networks (Dai &
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Gluzman, 2021), and jitter buffers (Fang et al., 2019). Applications of our method can potentially
improve sample efficiency in these applications by exploiting the underlying exogenous structure.

C DISCUSSION ON EXO-MDP MODELING ASSUMPTIONS

C.1 KNOWN TRANSITION FUNCTIONS AND REWARD FUNCTIONS.

Our model assumes that the endogenous dynamics f and the reward function r are known and
deterministic given the exogenous state. While this assumption is more restrictive than the fully
general unknown MDP model typically studied in the RL literature, it is well-motivated in many
operations research domains. Indeed, inventory control, pricing, scheduling, and resource allocation
problems are often modeled with deterministic system dynamics where the only uncertainty arises
from exogenous randomness (Powell, 2022). This assumption also aligns with the practice of
simulator-based design, widely adopted in queueing and inventory control studies (e.g., Madeka et al.
(2022); Alvo et al. (2023); Che et al. (2024)).

We highlight several aspects of the assumption that the transition and reward function f and r are
known below.

C.1.1 SUFFICIENCY

These assumptions are precisely what make pure exploitation viable. Once f and r are known the only
source of uncertainty is the exogenous distribution Ph(· | ξ) which is independent of the learner’s
actions. This structure enables data reuse and counterfactual value estimation and is the basis for our
regret guarantees. No analysis of PE in even fully tabular Exo-MDP (with Markovian exogeneous
proceses). We establish the regret bound of PE in tabular Exo-MDP, and more importantly, we are the
first to show the effectiveness of PE in the case of continuous endogenous state space and continuous
action space.

C.1.2 NECESSITY

First, we show that in Proposition 2 and Theorem 6 that there exist 2-armed Bernoulli bandits such
that PEL (FTL, greedy w.r.t. empirical means) suffers linear regret.

Impossibility with unknown reward functions. Because a (1-step) bandit is a special case of a
tabular Exo-MDP with unknown reward function, this directly yields:

Corollary 1. Consider the class of tabular Exo-MDPs with horizon H = 1, a single state x, and
a finite action set A. The reward of each action a ∈ A is an unknown random variable with mean
µ(a) := E[r(a, ξ)]. Any pure-exploitation algorithm suffers Ω(K) expected regret on some MDP in
this class.

Proof. A 1-step, 1-state tabular Exo-MDP with unknown reward function is exactly a stochastic
MAB, with each action corresponding to an arm and the (unknown) random reward Ra = r(a, ξ).
Theorem 6 then yields an instance on which any pure-exploitation algorithm has Ω(K) regret.

Over the class of tabular Exo-MDPs with unknown reward function r, pure exploitation is not
minimax-optimal. No pure-exploitation algorithm can guarantee O(K) regret in the worst case.

Impossibility with unknown transition functions. Unknown transition functions and known
terminal reward are equivalent (from the learner’s perspective) to unknown rewards of the two actions
at h = 1. A pure-exploitation algorithm that plans greedily from an estimated model behaves just
like a pure-greedy bandit algorithm on the two “effective arms” corresponding to “go to state 1 or 2”.
Formaly, we let A be any pure-exploitation algorithm that uses its estimates of the transition function
(e.g., empirical transition frequencies) to choose, in each episode, an action at x(0) that maximizes its
current estimated value function, never choosing actions whose estimated value is strictly smaller
than another action’s estimated value.

Corollary 2. Consider tabular Exo-MDPs with horizon H = 2, state space X = {x(0), x(1), x(2)},
and action set A = {1, 2}. The initial state is always x(0). At the first step h = 1, the transition from
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x(0) under action a ∈ {1, 2} is random:

x(i(a)) = f(x(0), a, ξ),

where each action a leads to stochastic state x(i(a)) ∈ {x(1), x(2)}. At the second step h = 2, the
episode terminates and a (known) deterministic reward is obtained, and the initial return for each
action a is given by

Ra = P(i(a) = 1)r(x(1)) + P(i(a) = 2)r(x(2)).

In particular, we choose f and r(x(1)), r(x(2)) such that

R1 = 1
2 +∆, R2 = 1

2 ,

for some fixed ∆ ∈ (0, 1/4], independently across episodes. Then there exists a choice of f and
r(x(1)), r(x(2)) such that the expected cumulative regret of A over K episodes is Ω(K).

Proof. From the learner’s perspective, each action a ∈ {1, 2} induces an unknown expected return
equal to the (known) reward of the state it deterministically reaches at h = 2. Thus the problem is
equivalent to a two-armed bandit with unknown means 1

2 +∆ and 1
2 . A pure-exploitation algorithm

that always selects an action with maximal estimated value behaves exactly like a pure-greedy bandit
algorithm on these two arms. By the same argument as in Theorem 6, there exists an stochastic
assignment of actions to terminal states such that the algorithm suffers Ω(K) expected regret.

Necessity of known endogenous transition functions and rewards. Corollaries 1 and 2 show that,
as soon as either the reward function r or the transition function f is unknown, the class of tabular
Exo-MDPs already contains instances where any pure-exploitation algorithm incurs linear regret. In
particular, pure exploitation is not minimax-sufficient in these settings.

By contrast, in our Exo-MDP framework we assume that the endogenous dynamics f and reward
function r are known, and only the exogenous kernel is unknown. This structural assumption is
crucial. It allows us to design pure-exploitation algorithms that achieve sublinear regret, in sharp
contrast to the tabular Exo-MDP setting with unknown f or r.

C.1.3 REASONABLENESS

Example applications of Exo-MDP We have introduced the storage control in Section 6.1. See (Pow-
ell, 2022; Sinclair et al., 2023a) for a more exhaustive list.

Inventory control. In classical inventory models, the endogenous state xh is the on-hand inventory
level, while the exogenous state ξh is the demand realization at time h (Madeka et al., 2022). Actions
ah correspond to order quantities. The system dynamics are deterministic given demand, e.g. the
newsvendor dynamics xh+1 = f(xh, ah, ξh+1) = max{xh + ah − ξh+1, 0}. The reward depends
on sales revenue and holding or stockout costs, r(xh, ah, ξh). The only randomness arises from the
exogenous demand process, making this a canonical instance of an Exo-MDP.

Cloud resource allocation. In cloud computing and service systems, the endogenous state xh may
represent the allocation of resources (e.g., virtual machines, CPU quotas, or bandwidth) across job
requests (Sinclair et al., 2023b). The exogenous state ξh captures job arrivals at time h, which evolve
independently of the resource allocation policy. Actions ah correspond to scheduling decisions,
and the reward reflects performance metrics such as throughput or delay penalties. The exogenous
job-arrival process drives all stochasticity, while the system dynamics (queue updates, resource usage)
are deterministic given arrivals.

C.2 DISCUSSIONS ON ANCHOR SET

C.2.1 KNOWLEDGE OF ANCHOR SET

While knowing the anchor set a priori appears strong from a general RL perspective, this assumption
is well-motivated in our Exo-MDP setting:

Anchor states are designed by the learner. Assumption 1 requires that we fix a finite collection of
post-decision states xa

h(n) such that the feature matrix Φh := [ϕ(xa
h(1)), . . . , ϕ(x

a
h(N))] has full
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row rank. These states are the representative grid that the practitioner chooses when constructing
the feature map ϕ, including hat basis, spline knots, tile centers (Sutton et al., 1998). This mirrors
standard RL with LFA, where the learner chooses ϕ and implicitly chooses the basis points on which
ϕ is built.

This is standard in ADP and matches how Exo-MDPs are implemented in practice. Anchor states are
standard in ADP for control and operation research applications Nascimento & Powell (2009; 2013);
Powell (2022). In applications like inventory control and storage systems Nascimento & Powell
(2009; 2013), practitioners often can exploit domain knowledge and problem structure, e.g. piecewise-
linearity or convexity of the value functions Powell (2022). For instance, with piecewise-linear hat
features, anchors are just the breakpoints of the basis functions Nascimento & Powell (2013); Powell
(2022). This is also shown in our storage control example in Section 6.2.

C.2.2 CONNECTIONS TO CORESET AND FRANK-WOLFE PROCEDURES

The anchors in Assumption 1 act as a small, well-conditioned spanning set of feature vectors,
analogous in spirit to coresets used in linear RL and ADP. We clarify the connections and differences
below.

Anchor sets serve the similar purpose as coresets in linear RL and ADP. In our paper, anchor sets
provide a well-conditioned spanning set of feature vectors enabling stable value regression and
Bellman transport. This is similar to the concept of coresets or representative set in linear bandits and
RL, e.g. Mahalanobis-distance representative sets in Yang & Wang (2019) with well-conditioned
feature coverage, optimal design in Lattimore & Szepesvári (2020) with minimal set of points that
well-condition the Gram matrix, coreset with well-conditioned feature coverage in Eaton et al. (2025).

Regarding the connections between coreset and Frank-Wolfe (FW) methods, which arises in convex
optimization. Specifically, the coreset there represents small subset of points that approximately
represents a much larger dataset for the purpose of convex optimization. FW constructs such coresets
by iteratively selecting “anchor” points via the linear minimization oracle. This idea has been used
in problems such as learning convex bodies Clarkson (2010), sparse convex optimization Jaggi
(2013), and practical large-scale machine learning Bachem et al. (2017). However, FW-based coreset
construction has largely remained within the convex optimization literature rather than RL settings
involving linear function approximation.

In contrast, in our Exo-MDP setting, the anchor set is designed a priori using domain knowledge and
problem structure. In many structured control problems they can be constructed a priori, without
observing any data. For example, in inventory or resource-storage problems, anchors can be naturally
chosen as a grid of storage levels, e.g., extreme low / high and intermediate points, which are natural
design points for value approximation.

Extension from domain-driven anchors to algorithmic construction. Our currunt method leverages
domain knowlege or problem struture. When such problem-dependent design choice is difficult, it is
a promising direction to adapts anchor selection online. We first generate large pool of candidate
post-decision states, and adaptively construct the anchors by FW-like methods.

C.2.3 INVERTABILITY AND WELL CONDITIONEDNESS

Anchors are fully user-selected, and practitioners can exploit domain knowledge or problem structure
to construct a well-spread collection of feature vectors. In principle, one can precompute the anchor
feature vectors ϕ(xa

n) offline, prior to learning, ensuring that Σ is full-rank and well-conditioned. For
example, in the storage control experiment in Section 6.2, a simple uniform grid yields Σ = IN and
λ0 = 1.

Ridge regression, however, is a promising method to improve the invertibility/numerical stability
while tradeoffing bias. While we can improve the invertibility of Σ by carefully designing the anchors
and features, such process can be computationally heavy sometimes. Regularization can replace strict
invertibility with a controlled bias term. It trades a small bias controlled by β for numerical stability.
We now provide a short theoretical sketch showing how a β-regularizer impacts the regret bound.
The regret bound in Theorem 2 states

(
√
N/λ0 +

√
d
)
|Ξ|H

√
K.
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Letting λβ := λ0 + β, then reg. reduces the conditioning part of the regret bound to (
√

N/λβ +√
d)|Ξ|H

√
K. However, it introduces the additional bias as it solves a reguralized problem

min
w
∥Σhw − y∥22 + β∥w∥22.

So even if the model is perfectly realizable (no approximation error), we can show that his induces an
extra Bellman error term of order β

λβ

√
d, which then propagates through the horizon and across K

episodes. Therefore, the total regret bound is worsened as

(
√

N/λβ +
√
d
)
|Ξ|H

√
K +

H√
λβ

K
β

λβ

√
d.

In the realizable setting our main theory takes β = 0, so no extra bias term appears. If one adds a
small ridge term βI numerical stability, the analysis can be interpreted as introducing an effective
inherent Bellman error of size ϵridge = O( β

λβ

√
d), which adds an βH

√
dK

λ
3
2
β

. Thus ridge reduces only

constants in the O(
√
K) term, but introduces an additional linear-in-K contribution, which vanishes

as β → 0.

C.2.4 EXAMPLE WHERE ASSUMPTION 4 HOLDS

Models. Consider an storage control Exo-MDP where the endogenous (pre-decision) storage state is
xh ∈ [0, Rmax]. At each stage the controller chooses an action ah ∈ A(xh, ξh) ⊂ R, which produces
the post-decision storage

xa
h = Π[0,Rmax]

(
xh + ah

)
,

where Π denotes projection onto [0, Rmax]. After acting, the exogenous state evolves as ξh+1 ∼ P(· |
ξh) and the storage evolves according to

xh+1 = Π[0,Rmax]

(
A(ξh+1)x

a
h + b(ξh+1)

)
,

with efficiency/retention factor A(ξ′) ∈ [0, 1] and inflow/outflow b(ξ′) ∈ R. The next post-decision
storage under policy π is then

xa
h+1 = Π[0,Rmax]

(
xh+1 + π(xh+1, ξh+1)

)
.

The one-period reward is a bounded measurable function rh(xh, ah, ξh).

Basis, anchors, and value representation. Choose storage anchors 0 = ρ0 < ρ1 < · · · < ρN =
Rmax. Define nonnegative, nodal, partition-of-unity piecewise-linear hat functions {ηk(ρ)}Nn=0, and
set

ϕ(ρ) = (η0(ρ), . . . , ηN (ρ)), ϕ(ρn) = en.

Thus each ϕ(ρ) is a convex combination of anchor vectors. The post-decision value is represented
using storage-only features and information-dependent weights:

V π,a
h (xa, ξ) = ϕ(xa)⊤ wπ

h(ξ),

where wπ
h(ξ) ∈ RN+1 and [wπ

h(ξ)]n = V π,a
h (ρn, ξ). At the terminal time, weights encode salvage

values, e.g. wπ
H(ξ) = 0 or [wπ

H(ξ)]n = S(ρn, ξ).

Recall that Assumption 4 holds if for each h, policy π, and exogenous realization ξ′, there exists
a storage-feature transport matrix Mπ

h (ξ
′) ∈ R(N+1)×(N+1) such that for all post-decision storage

states xa ∈ [0, Rmax],

ϕ
(
Π
(
αh,π(ξ

′)xa + βh,π(ξ
′)
))

= Mπ
h (ξ

′)ϕ(xa),

where αh,π(ξ
′) and βh,π(ξ

′) are the coefficients induced by the composition of the storage dynamics
and the policy’s action, followed by projection. Crucially, Mπ

h (ξ
′) does not depend on xa, so the

identity holds globally. The weights evolve linearly in expectation over ξ′:

wπ
h(ξ) = Eξ′∼P(·|ξ)

[
Mπ

h (ξ
′)⊤ wπ

h+1(ξ
′)
]
.
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This formulation is reasonable under the following conditions. First, the post-decision to next
pre-decision mapping is affine in ra, possibly followed by clipping. Second, the policy π is piecewise-
affine in r, so that the overall map to rah+1 is affine with clipping. Third, the storage basis ϕ is
translation-stable: for any affine map r 7→ Π(αr + β) there exists a fixed sparse matrix Sα,β

such that ϕ(Π(αr + β)) = Sα,βϕ(r) for all r. Finally, since ϕ forms a partition of unity and
clipping corresponds to convex mixing with boundary anchors, each Mπ

h (ξ
′) is row-stochastic or

sub-stochastic, and therefore non-expansive with ∥Mπ
h (ξ

′)∥∞ ≤ 1.

C.2.5 WHEN ASSUMPTION 3 HOLDS

Assumption 3 requires that every post-decision feature vector can be written as a nonnegative
combination of a fixed set of anchor feature vectors. This section lists common modeling choices
under which the condition is automatically satisfied and gives a simple recipe to enforce it in practice.
Assumption 3 aligns with widely used feature constructions in ADP/RL (tabular, hat/spline, histogram,
grid/ReLU bases).

Tabular features. With one-hot features, each post-decision state corresponds to a standard basis
vector, which is in the conic (indeed, convex) hull of the anchor set by construction.

Storage with piecewise-linear (hat) features. Let 0 = ρ0 < ρ1 < · · · < ρN = Rmax be
storage anchors and define nonnegative, nodal, partition-of-unity hat functions {ηn}Nn=0. Set ϕ(ρ) =
(η0(ρ), . . . , ηN (ρ)) so that ϕ(ρn) = en and

∑
n ηn(ρ) = 1 for all ρ. For any post-decision level

xa ∈ [0, Rmax], we have ϕ(xa) =
∑

n ηn(x
a)ϕ(ρn) with ηn(x

a) ≥ 0, so ϕ(xa) lies in the conic
hull of the anchor features (in fact, in their convex hull). Clipping at the bounds 0 and Rmax simply
mixes with boundary anchors and preserves nonnegativity.

Histogram / indicator bases. If ϕ is formed by nonoverlapping (or softly overlapping) nonnegative
basis functions that sum to at most one (e.g., bin indicators or triangular kernels), then ϕ(xa) is a
nonnegative combination of the anchor features obtained by placing anchors at the bin centers or knot
points.

B-splines and ReLU tiles. Nonnegative partition-of-unity spline bases (e.g., linear B-splines) and
grid-based ReLU “tiles” yield ϕ(xa) with nonnegative entries and local support. Choosing anchors at
the knots/cell corners makes ϕ(xa) a nonnegative combination of anchor feature vectors.

To ensure Assumption 3: (i) include boundary anchors so that clipping/projection maps to anchors;
(ii) use nonnegative, locally supported basis functions that form (approximate) partitions of unity over
the post-decision domain; (iii) place anchors at the basis nodes (knots, cell corners, or representative
states) so that ϕ(state) is a sparse nonnegative combination of anchor columns. If a signed feature
map is preferred (e.g., mean-centered features), a standard fix is a nonnegative lifting ϕ̃ = [ϕ+; ϕ−]
with ϕ+ = max{ϕ, 0} and ϕ− = max{−ϕ, 0}; placing anchors on the lifted coordinates restores the
cone property.

C.2.6 WHEN THE BOUND supπ,ξ,t ∥Mπ
h (ξ)∥2 ≤ 1 HOLDS

Recall under Assumption 2 or Assumption 4 that for each (h, π, ξ′) one builds a mixing matrix

Mπ
h (ξ

′) ∈ R(N+1)×(N+1),

whose n-th row contains the interpolation weights βnj(ξ
′, π) ≥ 0 (usually two nonzeros) taking the

anchor ρn to the next post-decision storage rah+1 and then back onto the anchor grid. Thus each row
sums to 1 (row-stochastic; sub-stochastic at the capacity boundaries when clipping pins to ρ0 or ρN ).
We provide some sufficient conditions for ∥Mπ

h (ξ
′)∥2 ≤ 1 below.

Lipschitz-in-storage dynamics with hat basis. If the continuous map T (r) = Π(αr+β) is 1-Lipschitz
(i.e., |α| ≤ 1) and functions of r are represented on a uniform grid with nodal PLC interpolation, then
the discrete composition operator interpolate ◦ T is nonexpansive on grid values under the Euclidean
norm. This operator is exactly Mπ

h (ξ
′)⊤, hence ∥Mπ

h (ξ
′)∥2 ≤ 1. Intuitively, 1-Lipschitz maps do

not increase distances between storage levels; interpolation preserves (and slightly underestimates)
distances, so the induced linear map is nonexpansive.
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Doubly (sub-)stochastic mixing. If every Mπ
h (ξ

′) is row-stochastic and column-sub-stochastic (all
column sums ≤ 1), then

∥Mπ
h (ξ

′)∥2 ≤
√
∥Mπ

h (ξ
′)∥1 ∥Mπ

h (ξ
′)∥∞ ≤

√
1 · 1 = 1.

Column-sub-stochasticity holds, for example, if the one-step map in storage is monotone and
nonexpansive: ra 7→ Π(αra+β) with |α| ≤ 1, and the basis is nodal hat (partition-of-unity) features
on a uniform grid. Each anchor’s “mass” spreads to at most two neighbors without duplication, and
clipping removes mass near the boundaries.

Decomposition into contractions. If the mixing matrix can be expressed as a convex combination of
contractions,

Mπ
h (ξ

′) =
∑
ℓ

γℓTℓ, γℓ ≥ 0,
∑
ℓ

γℓ = 1, ∥Tℓ∥2 ≤ 1,

then by subadditivity and convexity of the operator norm, ∥Mπ
h (ξ

′)∥2 ≤ 1. Two useful instances
are: Permutation/shift structure: when the map is a grid shift or clipping, each Tℓ is a permutation
(possibly composed with a boundary projector), hence ∥Tℓ∥2 = 1. Row-weighted permutations:
if M =

∑
ℓ DℓΠℓ with Πℓ permutations and Dℓ diagonal with entries in [0, 1], then ∥M∥2 ≤∑

ℓ ∥Dℓ∥2 ≤
∑

ℓ maxi(Dℓ)ii. If the row-wise weights over ℓ sum to ≤ 1, the bound is ≤ 1.

Doubly-stochastic special case. If columns also sum to 1 (e.g., pure permutations, or measure-
preserving monotone maps without clipping on a periodic grid), then M is doubly stochastic and
∥M∥2 ≤ 1 with equality only if M is a permutation.

Furthermore, we provide some methods to check or enforce the assumption. Empirically, one can
draw a batch of ξ′ ∼ Q(· | ξ), build Mπ

h (ξ
′), and compute the largest singular value σmax, verifying

maxσmax ≤ 1 (allowing numerical tolerance). Design-wise, one can ensure nonexpansiveness by
using uniform nodal hat features (partition of unity), storage dynamics with |α| ≤ 1, and capacity
clipping. If some scenarios have |α| > 1 (expansive), increase grid resolution or add a smoothing step
(row-wise convex averaging) that preserves row sums, making M a contraction. For non-uniform
grids or unusual features, “whitening” each local two-anchor block (normalizing columns per cell)
enforces contraction while preserving row sums.

Under storage-only anchors and nodal, nonnegative, partition-of-unity hat basis, and with standard
storage dynamics (affine + clipping) satisfying |α| ≤ 1, the transport matrices Mπ

h (ξ
′) are row-

stochastic and column-sub-stochastic. Hence supπ,ξ,h ∥Mπ
h (ξ)∥2 ≤ 1. This can be verified

numerically, and if needed enforced by smoothing or per-cell normalization without altering the PLC
interpolation semantics.

Connections to Nascimento & Powell (2013). Under the modeling assumptions in Nascimento &
Powell (2013) the bound is justified when one implements the storage-only anchor/hat-basis scheme.
Nascimento & Powell (2013) works in post-decision form and shows that, for each information state,
the value function in the scalar storage is piecewise-linear concave with breakpoints. Each period’s
decision is obtained from a deterministic linear program with vector-valued control, and the algorithm
maintains concavity of slopes via projection. This is exactly the setting where one uses storage-only
anchors {ρn} and nodal hat features. The storage dynamics between periods are affine plus clipping:
the model introduces exogenous changes in storage in post-decision form, so that the next storage is
an additive update (possibly with losses) followed by projection to capacity. This map is 1-Lipschitz
in the storage variable.

With nodal, nonnegative, partition-of-unity hat functions on {ρn}, the push-forward and interpolation
step from an anchor ρn produces a row-stochastic mixing row (two nonzeros in one dimension).
Collecting these rows defines the matrix Mπ

h (ξ). Because the underlying continuous map is 1-
Lipschitz and interpolation is stable, the induced discrete operator on nodal values is nonexpansive in
the Euclidean norm, hence ∥Mπ

h (ξ)∥2 ≤ 1. At capacity boundaries, clipping only reduces distances,
so the bound continues to hold. This is consistent with the PLC/anchor structure and concavity
projection used in the paper. It should be noted that the paper does not phrase its analysis in terms of
an M matrix or a spectral-norm bound. Instead, it proceeds via a dynamic programming operator on
slope vectors with technical conditions ensuring monotonicity, continuity, and convergence. Thus the
spectral-norm assumption is an implied property of the standard discretization, rather than a stated
theorem.
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In summary, for Nascimento & Powell (2013), with the standard storage law (additive exoge-
nous changes with clipping) and the PLC/anchor representation, the discretization induces row-
stochastic (and nonexpansive) mixing operators. Therefore it is reasonable and consistent to assume
supπ,ξ,h ∥Mπ

h (ξ)∥2 ≤ 1, even though the paper establishes convergence via slope-operator mono-
tonicity and continuity rather than an explicit spectral-norm bound.

C.2.7 WEAKENING AND RELAXATIONS

Adaptive anchors selection via coreset/Frank-Wolfe style procedures. The anchors can be viewed as
a small, hand-picked coreset for the endogenous space. In principle, we can learn this coreset from
data via coreset/Frank-Wolfe style procedures and then running LSVI-PE on the resulting anchors.
Analyzing such a scheme requires a second layer of error control between the data-driven anchors
and the optimal anchor set and is beyond the scope of the present work, but we now mention this as a
promising direction in the Conclusion.

Approximate closure assumptions via inherent Bellman error. The realizable analysis (Theorems
2–3) uses Assumptions 2–3 (or 4) to guarantee exact closure of Bellman updates in the anchor span.
However, our agnostic analysis (Theorems 4–5) only requires the basic Assumption 1 plus a finite
inherent Bellman error. In other words, even if the post-decision values are only approximately
representable by the anchor features and the cone/closure conditions only hold approximately, the
regret bound still holds with an additional O(KεBE) bias term. This already provides a quantitative
weakening: violations of Assumptions 2–3 are absorbed into εBE, rather than being ruled out outright.

C.3 ADDITIONAL DISCUSSIONS

m-Markovian exogenous process. Our framework extends to exogenous processes with finite
memory. Specifically, we assume that the exogenous state follows a m-Markov model: at time h, the
augmented state includes the endogenous component xh together with the last m exogenous states,

sh =
(
xh, ξh−m, . . . , ξh

)
.

The next exogenous state ξh+1 is drawn from a conditional distribution that depends only on the most
recent k exogenous states:

ξh+1 ∼ P
(
·
∣∣ ξh−m, . . . , ξh

)
.

This formulation strictly generalizes the i.i.d. and first-order Markov settings while retaining a
compact representation that captures temporal correlations in the exogenous sequence.

D OMITTED DISCUSSION IN SECTION 4

Here we outline the application of PEL (and FTL) to the simpler tabular Exo-MDP settings.

D.1 FTL FOR TABULAR EXO-MDPS

As discussed in Section 4, one can extend the FTL principle to finite-horizon Exo-MDPs with finite
state and action spaces. For any deterministic policy π, using the exogenous traces {ξ1, . . . , ξk−1}
collected up to episode k, we can form the unbiased empirical value estimator:

Ṽ k,π
1 (s1) :=

1

k − 1

k−1∑
l=1

V π
1

(
s1, ξ

l
>1

)
=

1

k − 1

k−1∑
l=1

H∑
h=1

r(xh, πh(sh), ξ
l
h),

where the transitions take the form

sh+1 = (xh+1, ξ
l
h+1), xh+1 = f(xh, ah, ξ

l
h+1).

The FTL algorithm then selects the greedy policy in episode k with respect to these empirical value
estimates:

π̃k ∈ argmax
π∈Π

Ṽ k,π
1 (s1).
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This construction crucially leverages the fact that the exogenous trace distribution ξ is independent
of the agent’s actions. Hence, every exogenous trace can be reused to evaluate all candidate policies
without bias, a property that enables policy-level FTL in Exo-MDPs and sharply contrasts with
general MDPs where action-dependent transitions break this replay.

The following proposition is a restatement of known ERM/FTL-style guarantees in this setting. Note,
however, that the computational cost of an unconstrained search over Π can be prohibitive.

Proposition 3. [FTL guarantee, Theorem 7 in Sinclair et al. (2023b)] For any δ ∈ (0, 1), with
probability at least 1− δ,

SR (FTL,K) ≤ H

√
2 log(2|Π|/δ)

K
.

In the tabular case this gives the stated dependence |Π| ≤ AH|X ||Ξ|.

Motivated by the proof of regret bound of FTL for Exo-MAB, we also provide the expected regret
bound of FTL for Exo-MDP.

Proposition 4. The expected regret of FTL can be bounded as

E[SR (FTL,K)] ≤
√

H2 log |Π|
K

.

In the tabular case this gives the stated dependence |Π| ≤ AH|X ||Ξ|.

Thus, while the statistical guarantees for FTL are strong, the algorithm is computationally infeasible in
practice due to the exponential size of the policy space. This motivates more efficient implementations
of PEL that avoid enumerating Π. In particular, one can estimate the exogenous transition model
directly and then apply dynamic programming to compute greedy policies—an approach we refer to
as Predict-Then-Optimize (PTO) in Section 4.

D.2 PTO UNDER GENERAL m-MARKOVIAN CASE

For the general Markovian setting, PTO learns the transition model P̂ (ξh | ξh−1) to approximate
the true distribution P (ξh | ξh−1). PTO uses the model P̂ (ξh | ξh−1) to solve the Bellman equation.
PTO uses the maximum likelihood estimator of transition model, which is the empirical distribution

P̂ (ξh | ξh−1) :=

k−1∑
l=1

I
{
ξlh−1 = ξh−1, ξ

l
h = ξh

}
/

k−1∑
l=1

I
{
ξlh−1 = ξh−1

}
to solve the Bellman equation

Q̂h(sh, ah) := Eξh|ξh−1

[
r(xh, ah, ξh) + V̂h+1 (f(xh, ah, ξh), ξh) | P̂

]
=: Êξh|ξh−1

[
r(xh, ah, ξh) + V̂h+1 (f(xh, ah, ξh), ξh)

]
V̂h(sh) := max

ah∈A
Q̂h(sh, ah)

π̂h(sh) := argmax
ah∈A

Q̂h(sh, ah),

where sh = (xh, ξh−1). Note that the size of policy set |Π| depends on the m

|Π| =
H∏

h=1

|Πh| =


∏H

h=1 A
|X | = AH|X |,m = 0,∏H

h=1 A
|X ||Ξ| = AH|X ||Ξ|,m = 1,∏H

h=1 A
|X ||Ξ|h−1

= A|X |
∑H

h=1 |Ξ|h−1

= O(A|X ||Ξ|H−1

),m = H.

Proposition 5 (Theorem 6 in Sinclair et al. (2023b)). Suppose that

sup
h∈[T ],ξ<h∈Ξ[h−1]

∥∥∥P̂ (· | ξ<t)− P (· | ξ<t)
∥∥∥
1
≤ ϵ.
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Then we have that
SR (π̂,K) ≤ H2ϵ.

In addition, if each ξh is independent from ξ<h, then ∀δ ∈ (0, 1), with probability at least 1− δ

SR (π̂,K) ≤ H2

√
2|Ξ| log(2H/δ)

K
.

Therefore, the regret of PTO can be bounded as follows.
Corollary 3. Fix δ ∈ (0, 1). with probability at least 1− δ,

SR (FTL,K) ≤


H
√

2H|X | log(A/δ)
K ,m = 0,

H
√

2H|X ||Ξ| log(A/δ)
K ,m = 1,

H
√

2H|X ||Ξ|H−1 log(A/δ)
K ,m = H.

Corollary 4.

E[SR (FTL,K)] ≤


H
√

H|X | log(A)
K ,m = 0,

H
√

H|X ||Ξ| log(A)
K ,m = 1,

H
√

H|X ||Ξ|H−1 log(A)
K ,m = H.

Proof of Proposition 5. Q̂h and V̂h refer to the Q and V values for the optimal policy in M̂ where
the exogenous input distribution is replaced by its estimate P̂(· | ξh−1). Denote by V̂ π

h as the value
function for some policy π in the MDP M̂ . Then V̂ π̂

h = V̂h by construction.

SR (π̂,K) = V ⋆
1 (s1)− V π̂

1 (s1)

= V ⋆
1 (s1)− V̂ π⋆

1 (s1) + V̂ π⋆

1 (s1)− V̂1 (s1) + V̂1 (s1)− V π̂
1 (s1)

≤ 2 sup
π

∣∣∣V π
1 (s1)− V̂ π

1 (s1)
∣∣∣ .

By the simulation lemma, it is bounded above by H2

2 maxs,a,h |Ph(s, a)− P̂h(s, a)|. Since Ph(·|s, a)
is the pushfoward measure of P (· | ξh−1) under mapping f

Ph(s
′ ∈ ·|s, a) = Ph(f(x, a, ξ) ∈ ·|s, a) = P

(
f−1(s, a, ·) | ξh−1

)
,

we have (since f is function)∥∥∥Ph(s, a)− P̂h(s, a)
∥∥∥
1
≤
∥∥∥P̂ (· | ξh−1)− P (· | ξh−1)

∥∥∥
1

and thus
max
s,a,h

∥∥∥Ph(s, a)− P̂h(s, a)
∥∥∥
1
≤ max

h,ξh−1

∥∥∥P̂ (· | ξh−1)− P (· | ξh−1)
∥∥∥
1
.

Then the proof for the first part is finished

SR (π̂,K) ≤ H2 max
h,ξh−1

∥∥∥P̂ (· | ξh−1)− P (· | ξh−1)
∥∥∥
1
.

Now suppose that ξ ∼ P has each ξh independent from ξh−1 and let P̂ be the empirical distribution.
Using the ℓ1 concentration bound shows that the event

E =

{
∀h :

∥∥∥P̂(ξh ∈ ·)− P(ξh ∈ ·)
∥∥∥
1
≤
√

2|Ξ| log(H/δ)

K

}
occurs with probability at least 1− δ. Under E we then have that:

max
h∈[H],ξh−1∈Ξ[h−1]

∥∥∥P̂ (· | ξh−1)− P (· | ξh−1)
∥∥∥
1
≤
√

2|Ξ| log(H/δ)

K
.

Taking this in the previous result shows the claim.
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Remark 2. The quadratic horizon multiplicative factor O(H2) in regret is due to compounding errors
in the distribution shift. In the worst case, ϵ can scale as O(|Ξ|T ) if each ξh is correlated with ξh−1.
Remark 3. Proposition 5 is not valid for the m-Markovian case. A straightforward extension of the
proof for Exo-Bandit is not valid since

V ∗,M = max
π

V π,M ̸= max
π

E[V π,M̂] ≤ E[max
π

V π,M̂] = E[V π̂,M̂].

The inequality is due to that the value function is nonlinear in P and P̂h ̸⊥ P̂t′ for t ̸= t′. In particular,

E[V̂h] = E[rh + P̂hV̂h+1] = rh + E[P̂h(rh+1 + P̂h+1V̂t+2)] = rh + Phrh+1 + E[P̂hP̂h+1V̂t+2]

̸= rh + Phrh+1 + PhPh+1Vt+2.

D.3 REGRET BOUNDS OF OPTIMISM-BASED METHODS FOR TABULAR EXO-MDPS

D.3.1 REGRET BOUND OF UCB FOR EXO-MAB

Proposition 6 (UCB for Exo-MAB). The expected cumulative regret of UCB in the full information
setting with A arms satisfies

CR (UCB,K) ≤
√

2σ2 log(AK2)(K − 1) +O(1).

Proof. With prob. at least 1− δ, the event E holds

∀a ∈ [A], ∀k ∈ [K], |µi − µ̂i(k)| ≤ bi(k) :=

√
2σ2

log(AK/δ)

k − 1
.

Conditioned on event E, the simple regret can be bounded as

SR (UCB, k) = µ⋆ − µak
≤ µ̄1(k)− µak

≤ µ̄ah
(k)− µak

≤ 2bah
(k) = 2

√
2σ2

log(AK/δ)

k − 1
.

The expected simple regret is bounded as

SR (UCB, k) = E[µ⋆ − µak
] = E[µ⋆ − µak

|E]P(E) + E[µ⋆ − µak
|Ec]P(Ec) ≤ 2

√
2σ2

log(AK/δ)

k − 1
+ δ.

Therefore, the expected total regret

CR (UCB,K) ≤
K∑
t=2

2

√
2σ2

log(AK/δ)

k − 1
+ δ ≤

√
2σ2 log(AK/δ)(K − 1) +Kδ.

Choosing δ = 1/K yields

CR (UCB,K) ≤
√
2σ2 log(AK2)(K − 1) +O(1)

≤ O(σ
√

K logA) +O(σ
√
K logK).

D.3.2 REGRET BOUND OF OPTIMISTIC PTO FOR TABULAR EXO-MDP

We consider PTO-Opt, an optimistic version of PTO, which replaces the exogenous transition model
with its optimistic version. In episode k, PTO-Opt performs

Q̄k
h(sh, ah) := r(xh, ah, ξh) + Eξh+1|ξh

[
V̄ k
h+1(f(xh, ah, ξh+1), ξh+1); P̄k

]
= r(xh, ah, ξh) + max

Qh:∥Qt−P̂k
h(ξ)∥1≤ct(ξ)

∑
ξ′

Qh(ξ
′)V̄ k

h+1(f(xh, ah, ξh+1), ξh+1),

π̄k
h(sh) ∈ argmax

ah

Q̄k
h(sh, ah), V̄ k

h (sh) := Q̄k
h(sh, π̄

k
h(sh)).

Proposition 7 (High probability cumulative regret bound of PTO-Opt). Fix any δ ∈ (0, 1). With
probability at least 1− δ,

CR (PTO-Opt,K) ≤ O(H2|Ξ|
√
K log(KH|Ξ|/δ)).

Compared with Theorem 1, PTO-Opt has slightly worse regret bound. This verifies that PEL is
sufficient for tabular Exo-MDP with simple implementations.
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E OMITTED DISCUSSION IN SECTION 5

E.1 LSVI-PE WITH MISSPECIFICATION (APPROXIMATION) ERROR.

Here we consider the case where the function class is misspecified and the true value functions may
not lie exactly in the linear span. To capture this, we introduce the notion of post–decision Bellman
operators.

Write x′ := g(xa, ξ′). For any Uh+1 : X × Ξ→ R,

(T πUh+1)(x
a, ξ) := Eξ′∼Ph(·|ξ)

[
r
(
x′, π(x′, ξ′), ξ′

)
+ Uh+1

(
T π
h (ξ′)(xa), ξ′

)]
,

(T Uh+1)(x
a, ξ) := Eξ′∼Ph(·|ξ)

[
max
a′∈A

{
r(x′, a′, ξ′) + Uh+1

(
fa(x′, a′), ξ′

)}]
.

Let Fh := {(xa, ξ) 7→ ϕ(xa)⊤wh(ξ) : wh(ξ) ∈ Rd} be the post-decision linear class at stage h.

We then have the Bellman errors or approximation errors as follows:

Definition 3 (Inherent Bellman error). Define the (post-decision) inherent Bellman errors

επBE := max
h∈[H]

sup
ξ∈Ξ

sup
Uh+1∈Fh+1

inf
Wh∈Fh

sup
xa

∣∣(TπUh+1)(x
a, ξ)−Wh(x

a, ξ)
∣∣,

εmax
BE := max

h∈[H]
sup
ξ∈Ξ

sup
Uh+1∈Fh+1

inf
Wh∈Fh

sup
xa

∣∣(T Uh+1)(x
a, ξ)−Wh(x

a, ξ)
∣∣.

We will use εBE := max{επ⋆

BE, ε
max
BE }.

Theorem 5. [Agnostic Regret] Assume Assumption 1 holds. Fix δ ∈ (0, 1). Then with probability
at least 1− δ,

Regret(K) ≤ O
(
H
√
Kι + |Ξ|H

(
H +

√
N
λ0

)√
Kι +

H√
λ0

K εBE

)
.

Compared to the realizable case, the regret bound now includes an additional bias term, linear in K,
that scales with the inherent Bellman error εBE. This term is unavoidable in general agnostic settings:
if εBE > 0 is fixed, even an oracle learner suffers an O(KεBE) cumulative bias (Zanette et al., 2020).

F PROOFS OF REGRET BOUNDS IN SECTION 4

F.1 EXO-BANDITS

Proposition 1. Assume rewards are σ2-sub-Gaussian. Then the expected per-round simple re-

gret of FTL satisfies SR (FTL, k) ≤
√

2σ2 logA
k−1 , and consequently the cumulative regret obeys

CR (FTL,K) ≤ 2σ
√
(K − 1) logA.

To show the result we start with the following lemma.

Lemma 1 (Maxima of sub-Gaussian random variables). Let X1, . . . , Xn be independent σ2-sub-
Gaussian random variables. Then

E
[
max
1≤i≤n

Xi

]
≤
√

2σ2 log n

and, for every t > 0,

P
{

max
1≤i≤n

Xi ≥
√
2σ2(logn+ t)

}
≤ e−t,

or equivalently

P
{

max
1≤i≤n

Xi ≥
√

2σ2 log(n/δ)

}
≤ δ,
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Proof. The first part is quite standard: by Jensen’s inequality, monotonicity of exp, and σ2-
subgaussianity, we have, for every λ > 0,

eλE[max1≤i≤n Xi] ≤ Eeλmax1≤i≤n Xi = max
1≤i≤n

EeλXi ≤
n∑

i=1

EeλXi ≤ ne
σ2λ2

2

so, taking logarithms and reorganizing, we have

E
[
max
1≤i≤n

Xi

]
≤ 1

λ
lnn+

λσ2

2
.

Choosing λ :=
√

2 lnn
σ2 proves the first inequality. Turning to the second inequality, let u :=√

2σ2(logn+ t). We have

P
{

max
1≤i≤n

Xi ≥ u

}
= P {∃i,Xi ≥ u} ≤

n∑
i=1

P {Xi ≥ u} ≤ ne−
u2

2σ2 = e−t

the last equality recalling our setting of u.

Now we provide the proof of Proposition 1.

Proof. Observe that the empirical mean is unbiased for each arm at each round,
SR (FTL, k) = µ⋆ − E[µak

] = max
a

E[µa − µak
] = max

a
E[µ̂a(k)− µak

] ≤ E[max
a

µ̂a(k)− µak
]

= E[µ̂ak
(k)− µak

]

≤ E[max
a∈[A]

µ̂a(k)− µa]

≤
√
2σ2 logA/(k − 1),

where the last inequality is due to Lemma 1. Therefore, we have

CR (FTL,K) =

K∑
k=1

SR (FTL, k) ≤
K∑
t=2

√
2σ2 logA/(k − 1) ≤ 2σ

√
(K − 1) logA.

F.2 TABULAR EXO-MDP

Proposition 3. [FTL guarantee, Theorem 7 in Sinclair et al. (2023b)] For any δ ∈ (0, 1), with
probability at least 1− δ,

SR (FTL,K) ≤ H

√
2 log(2|Π|/δ)

K
.

In the tabular case this gives the stated dependence |Π| ≤ AH|X ||Ξ|.

Proof. Observe that V π
1

(
s1, ξ

k
)

are iid r.v.s, each of which has mean V π
1 (s1). Using Hoeffding’s

inequality and a union bound over all policies shows that the event

E =

{
∀π ∈ Π :

∣∣V π
1 (s1)− E [V π

1 (s1)]
∣∣ ≤√H2 log(2|Π|/δ)

2K

}
occurs with probability at least 1− δ. Under E we then have

SR (FTL,K) = V π⋆

1 (s1)− V π̂k

1 (s1)

= V π⋆

1 (s1)− E
[
V π⋆

1 (s1, ξ)
]
+ E

[
V π⋆

1 (s1, ξ)
]
− E

[
V π̂k

1 (s1, ξ)
]

+ E
[
V π̂k

1 (s1, ξ)
]
− V π̂k

1 (s1)

≤ 2

√
H2 log(2|Π|/δ)

2K
.
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Proposition 4. The expected regret of FTL can be bounded as

E[SR (FTL,K)] ≤
√

H2 log |Π|
K

.

In the tabular case this gives the stated dependence |Π| ≤ AH|X ||Ξ|.

Proof. It holds that

E[SR (FTL,K)] = V π⋆

1 (s1)− E[V π̂k

1 (s1)] = max
π

E[E [V π
1 (s1, ξ)]]− E[V π̂k

1 (s1)]

≤ E[max
π

E [V π
1 (s1, ξ)]]− E[V π̂k

1 (s1)]

= E[Ṽ π̂k

1 (s1)− V π̂k

1 (s1)]

≤ E[max
π

Ṽ π
1 (s1)− V π

1 (s1)]

≤
√

H2 log |Π|
K

,

where the last inequality is due to Lemma 1.

F.3 PROOF OF THEOREM 1

Lemma 2 (Data processing inequality, TV distance). Let µ, ν be two probability measures on a
discrete set X and f : X → Y be a mapping. Let f#,µ and f#,ν be the resulting push-forward
measures on the space Y . Then

∥f#,µ − f#,ν∥1 ≤ ∥µ− ν∥1 .

Proof.

∥f#,µ − f#,ν∥1 =
∑
y∈Y

|f#,µ(y)− f#,ν(y)| =
∑
y∈Y

|µ(f−1(y))− ν(f−1(y))|

=
∑
y∈Y

|
∑

x∈f−1(y)

µ(x)−
∑

x∈f−1(y)

ν(x)|

≤
∑
y∈Y

∑
x∈f−1(y)

|µ(x)− ν(x)| ≤
∑
x∈X

|µ(x)− ν(x)| = ∥µ− ν∥1 ,

where the second inequality is due to the triangle inequality.

F.3.1 PROOF USING EXPECTED SIMULATION LEMMA

Lemma 3 (Simulation lemma, expected version). LetM = (P, r) andM = (P ′, r). Define

ϵh(s, a) := ∥Ph(s, a)− P ′
h(s, a)∥1 ≤

√
2S log

Ch(s, a)
.

For any fixed policy π and s1 ∼ ρ,

|V π,M − V π,M′
| ≤ E

[
H−1∑
h=1

(H − h)ϵh(sh, ah)|π, P, ρ

]
.

It also holds that for any s1

|V π,M(s1)− V π,M′
(s1)| ≤ E

[
H−1∑
h=1

(H − h)ϵh(sh, ah)|π, P, s1

]
.
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Proof. For two different MDPs, their values are defined for the same initial distribution ρ(s1)

|V π,M − V π,M′
| = |E[V π,M

1 (s1)]− E[V π,M′

1 (s1)]|

= |E[r1(s1, π1(s1)) + [P1V
π,M
2 ](s1, π1(s1))− r1(s1, π1(s1))− [P ′

1V
π,M′

2 ](s1, π1(s1))]|

= |ρ[P1(V
π,M
2 − V π,M′

2 )](s1, π1(s1)) + ρ[(P1 − P ′
1)V

π,M′

2 ](s1, π1(s1))|

≤ |E[V π,M
2 (s2)− V π,M′

2 (s2)|s2 ∼ ρPπ
1 ]|+ (H − 1) · E[ϵ1(s1, a1)|s1 ∼ ρ, a1 = π1(s1)]

= |V π,M
2 − V π,M′

2 |+ (H − 1) · E[ϵ1(s1, a1)|s1 ∼ ρ, a1 = π1(s1)]

≤ |V π,M
3 − V π,M′

3 ]|+ E[(H − 1)ϵ1(s1, a1) + (H − 2)ϵ1(s2, a2)|π, P, ρ]
· · ·

≤ E

[
H−1∑
h=1

(H − h)ϵh(sh, ah)|π, P, ρ

]
.

Note that the expectation is taken w.r.t.

s1 ∼ ρ1, · · · , ah = πh(sh), sh+1 ∼ Ph(sh, ah), · · · .

The policy π and transitions P, P ′ are considered fixed, which implies that ϵh(s, a) is NOT random
for fixed (s, a).

For k ∈ [K], h ∈ [H], define the filtration as

Fk
h := σ((smh , amh )m∈[k−1],h∈[H], (s

k
h′ , akh′)h′∈[h−1]).

The policy π̂k is measurable w.r.t. Fn
0 , hence

π̂k ⊥ ξk|Fk,

but
π̂k ̸⊥ (skh, a

k
h)h∈[H]|Fk.

Observe that

V ⋆
1 (s1)− V π̂k

1 (s1) = V ⋆
1 (s1)− V̂ k,π⋆

1 (s1) + V̂ k,π⋆

1 (s1)− V̂ k
1 (s1) + V̂ k

1 (s1)− V π̂k

1 (s1)

≤
∣∣∣V π⋆

1 (s1)− V̂ k,π⋆

1 (s1)
∣∣∣+ ∣∣∣V π̂k

1 (s1)− V̂ k,π̂k

1 (s1)
∣∣∣ .

Define

ϵkh(ξh−1) :=
∥∥∥Ph(ξh ∈ ·|ξh−1)− P̂ k

h (ξh ∈ ·|ξh−1)
∥∥∥
1

Ck
h(ξ) :=

k−1∑
m=1

I
{
ξkh = ξ

}
,

where Ck
h(ξ) is defined by Fk

0 .

Key observation Since sh+1 = (f(xh, ah, ξh), ξh) is a mapping of ξh given xh and ah, for any
(deterministic) policy/action sequence and any sh, it follows from Lemma 2

ϵkh(sh, ah) :=
∥∥∥Ph(sh+1 ∈ ·|sh, ah)− P̂ k

h (sh+1 ∈ ·|sh, ah)
∥∥∥
1
≤ ϵkh(ξh−1) ≤ O(

√
|Ξ|ι

Ck
h(ξh−1)

),

which bounds the model estimation error by a policy/action-independent error term. This will lead to
tighter regret bound than directly bounding the model error

ϵkh(sh, ah) ≤ O(

√
|S|ι

Ck
h(sh, ah)

).
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Furthermore, we will see that the use of Exo-state ξh−1 overcomes the misalignment issue since the
sequence ξk−1 is always Fk-measurable. Note that Ck, P̂ k, π̂k are all Fk-measurable, then ϵk(·) is
also Fk-measurable.

The failure of using state-action count. Denote by (skh, a
k
h)h∈[T ] and (s̃kh, ã

k
h)h∈[T ] the sequence

generated by (π̂k, P ) and (π⋆, P ) at the n-th episode. In particular,

s̃k1 = sk1 = xk
1 , ã

k
1 = π⋆

1(s
k
1), s̃

k
2 = (f(s̃k1 , ã

k
1 , ξ

k
1 ), ξ

k
1 ), · · · , s̃kh+1 = (f(s̃kh, ã

k
h, ξ

k
h), ξ

k
h), · · ·

Note that (s̃kh, ã
k
h)h∈[H] is fixed conditional on ξk, so its randomness only comes from ξk. We bound

the random regret as
K∑

k=1

V ⋆
1 − V π̂k

1 ≤
K∑

k=1

V ⋆
1 − V̂ k,π⋆

1 + V̂ k
1 − V π̂k

1 ≤
K∑

k=1

∣∣∣V π⋆

1 − V̂ k,π⋆

1

∣∣∣+ K∑
k=1

∣∣∣V π̂k

1 − V̂ k,π̂k

1

∣∣∣
≤

H−1∑
h=1

(H − h)

K∑
k=1

E
[
ϵkh(s̃

k
h, ã

k
h)|Fk

]
+

H−1∑
h=1

(H − h)

K∑
k=1

E
[
ϵkh(s

k
h, a

k
h)|Fk

]
≤

H−1∑
h=1

(H − h)E

[
K∑

k=1

√
2Sι

Ck
h(s̃

k
h, ã

k
h)
|Fk

]
+

H−1∑
h=1

(H − h)E

[√
2Sι

Ck
h(s

k
h, a

k
h)
|Fk

]
,

where the third inequality is due to Lemma 3 and the last inequality is due to Lemma 2. However, the
key is that the visiting count

Ck
h(s, a) =

k−1∑
m=1

I {(smh , amh ) = (s, a)}

is defined by Fk generated by (π̂, P ). Although we can bound the second term via standard proof,
we cannot obtain an upper bound on the first term. Specifically,

K∑
k=1

√
2Sι

Ck
h(s̃

k
h, ã

k
h)

=

K∑
k=1

∑
s,a

I
{
(s̃kh, ã

k
h) = (s, a)

}√ 2Sι

Ck
h(s̃

k
h, ã

k
h)

=
∑
s,a

K∑
k=1

I
{
(s̃kh, ã

k
h) = (s, a)

}√ 2Sι

Ck
h(s, a)

̸=
∑
s,a

Ck
h(s,a)∑
c=1

√
2Sι

c
.

The last inequality is due to the fact that Ck
h(s, a) does not increase by 1 if (s̃kh, ã

k
h) = (s, a) since

Ck
h counts based on Fk or (skh, a

k
h).

The solution: bounding via exogenous state count. Using Lemma 3 we can get
K∑

k=1

V ⋆
1 − V π̂k

1 ≤
K∑

k=1

V ⋆
1 − V̂ k,π⋆

1 + V̂ k
1 − V π̂k

1 ≤
K∑

k=1

∣∣∣V̂ k,π⋆

1 − V ⋆
1

∣∣∣+ K∑
k=1

∣∣∣V̂ k,π̂k

1 − V π̂k

1

∣∣∣
≤

H−1∑
h=1

(H − h)

K∑
k=1

E
[
ϵkh(s̃

k
h, ã

k
h)|Fk

]
+

H−1∑
h=1

(H − h)

K∑
k=1

E
[
ϵkh(s

k
h, a

k
h)|Fk

]
≤ 2

H−1∑
h=1

(H − h)

K∑
k=1

E

[√
2|Ξ| log(KH/δ)

Ck
h(ξ

k
h−1)

|Fk

]
,

where the expectation in the second line is taken w.r.t. the (s̃kh, ã
k
h)h∈[H] ∼ Pπ⋆

and (skh, a
k
h)h∈[H] ∼

P π̂k

. Taking expectation on both sides, we can get

E

[
K∑

k=1

V ⋆
1 − V π̂k

1

]
≤ 2

H−1∑
h=1

(H − h)E

[
K∑

k=1

√
2|Ξ| log(KH/δ)

Ck
h(ξ

k
h−1)

]
≤ 4H2|Ξ|

√
2N log(KH/δ).
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F.3.2 PROOF VIA MDS SIMULATION LEMMA

Lemma 4 (Simulation lemma, martingale difference). LetM = (P, r) andM′ = (P ′, r). Fix an
arbitrary policy π. Define

ϵh := ∥Ph(sh, πh(sh))− P ′
h(sh, πh(sh))∥1 ≤

√
2S log

Ch(sh, πh(sh))

eh := [Ph|V π,M
h+1 − V π,M′

h+1 |](sh, πh(sh))− |V π,M
h+1 − V π,M′

h+1 |(sh+1),

where eh is a martingale difference sequence w.r.t. the filtration Hh :=
σ(s1, π1(s1), · · · , sh−1, πh−1(sh−1)). Then

|V π,M(s1)− V π,M′
(s1)| ≤

H−1∑
h=1

(eh + (H − h)ϵh).

Lemma 4 bounds a deterministic term by the sum of two random variables.

Proof.

|V π,M
1 (s1)− V π,M′

1 (s1)| = |r1(s1, π1(s1)) + [P1V
π,M
2 ](s1, π1(s1))− r1(s1, π1(s1))− [P ′

1V
π,M′

2 ](s1, π1(s1))|

= |[P1(V
π,M
2 − V π,M′

2 )](s1, π1(s1)) + [(P1 − P ′
1)V

π,M′

2 ](s1, π1(s1))|

≤ [P1|V π,M
2 − V π,M′

2 |](s1, π1(s1)) + |[(P1 − P ′
1)V

π,M′

2 ](s1, π1(s1))|

= |V π,M
2 − V π,M′

2 |(s2) + e1 + |[(P1 − P ′
1)V

π,M′

2 ](s1, π1(s1))|

≤ |V π,M
2 − V π,M′

2 |(s2) + e1 + ϵ1 · (H − 1)

≤ |V π,M
3 − V π,M′

3 |(s3) + e2 + ϵ2 · (H − 2) + e1 + ϵ1 · (H − 1)

≤ · · ·

≤ |V π,M
h − V π,M′

h |(sh) +
H−1∑
h=1

(eh + (H − h)ϵh)

=

H−1∑
h=1

(eh + (H − h)ϵh).

Define

ϵkh(sh, ah) :=
∥∥∥Ph(sh, ah)− P̂ k

h (sh, ah)
∥∥∥
1
≤

√
2Sι

Ck
h(sh, ah)

ekh(sh, ah|π) := [Ph|V π
h+1 − V̂ k,π

h+1|](sh, ah)− |V
π
h+1 − V̂ k,π

h+1|(sh+1),

where ekh is a martingale difference sequence that depends on π through V̂ k,π
h+1. Recall that

(skh, a
k
h)h∈[H] and (s̃kh, ã

k
h)h∈[H] are the sequence generated by (π̂k, P ) and (π⋆, P ) at the k−th

episode, which satisfy s̃kh = sk1 = xk
1 . Using Lemma 4 we can get

K∑
k=1

V ⋆
1 − V π̂k

1 ≤
K∑

k=1

∣∣∣V π⋆

1 (s1)− V̂ n,π⋆

1 (s1)
∣∣∣+ ∣∣∣V π̂

1 (s1)− V̂ n,π̂
1 (s1)

∣∣∣
≤

H−1∑
h=1

K∑
k=1

ekh(s̃
k
h, ã

k
h|π⋆) + (H − h)ϵkh(s̃

k
h, ã

k
h) +

H−1∑
h=1

K∑
k=1

ekh(s
k
h, a

k
h|π̂k) + (H − h)ϵkh(s

k
h, a

k
h)

The key observation is to verify MDS by considering the essential filtration σ((ξk)n) instead of the
full (standard) filtration σ((skh, a

k
h)k,h). Formally, we define the exogenous filtration (sk1 = xk

1)

Gkh := σ((sm1 , ξm)m∈[k−1], s
k
1 , (ξ

k
h′)h′∈[h−1]),
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which is only generated by the exogenous process. This is different from the full filtration

Fk
h := σ((smh , amh )m∈[k−1],h∈[H], (s

k
h′ , akh′)h′∈[h−1], s

k
h).

For any k and h, we can recover/simulate (s̃kh′ , ãkh′)h′≤t from sk1 , π⋆ and ξkh−1 as follows

s̃kh′ = (x̃k
h′ , ξkh′−1), ã

k
h′ = π⋆

h′(s̃kh′), x̃k
h′+1 = f(x̃k

h′ , ãkh′ , ξkh′),

which implies that (s̃kh′ , ãkh′)h′≤t is measurable w.r.t. Gkh . Furthermore, P̂ k
Ξ is measurable w.r.t. Gk

implies V̂ k,π⋆

is measurable w.r.t. Gk. Then

ekh(s̃
k
h, ã

k
h|π⋆) = [Ph|V π⋆

h+1 − V̂ k,π⋆

h+1 |](s̃
k
h, ã

k
h)− |V π⋆

h+1 − V̂ k,π⋆

h+1 |(s̃
k
h+1)

is an MDS w.r.t. Gkh since

E
[
ekh(s̃

k
h, ã

k
h|π⋆)|Gkh

]
= E

[
[Ph|V π⋆

h+1 − V̂ k,π⋆

h+1 |](s̃
k
h, ã

k
h)− |V π⋆

h+1 − V̂ k,π⋆

h+1 |(s̃
k
h+1)|Gkh

]
= [Ph|V π⋆

h+1 − V̂ k,π⋆

h+1 |](s̃
k
h, ã

k
h)− [Ph|V π⋆

h+1 − V̂ k,π⋆

h+1 |](s̃
k
h, ã

k
h)

= 0,

where the second equality is due to that the only non-measurable variable is s̃kh+1, and
ekh(s̃

k
h, ã

k
h|π⋆) ∈ Gkh+1 since s̃kh+1 is measurable w.r.t. Gkh+1.

Since π̂k is measurable w.r.t. Gk, V̂ k,π̂k

and (skh′ , akh′)h′≤t are measurable w.r.t. Gkh . Then

E
[
ekh(s

k
h, a

k
h|π̂k)|Gkh

]
= E

[
[Ph|V π̂k

h+1 − V̂ k,π̂k

h+1 |](s
k
h, a

k
h)− |V π̂k

h+1 − V̂ k,π̂k

h+1 |(s
k
h+1)|Gkh

]
= [Ph|V π̂k

h+1 − V̂ k,π̂k

h+1 |](s
k
h, a

k
h)− [Ph|V π̂k

h+1 − V̂ k,π̂k

h+1 |](s
k
h, a

k
h)

= 0,

and ekh(s
k
h, a

k
h|π̂k) is measurable w.r.t. Gkh+1. Thus ekh(s

k
h, a

k
h|π̂k) is also an MDS w.r.t Gkh . Using the

Azuma-Hoeffding inequality, we obtain w.p. 1− δ′

H−1∑
h=1

K∑
k=1

ekh(s̃
k
h, ã

k
h|π⋆) + ekh(s

k
h, a

k
h|π̂k) ≤ O(H

√
KH log 1/δ′).

We can bound the error terms as
H−1∑
h=1

(H − h)

K∑
k=1

ϵkh(s̃
k
h, ã

k
h) + ϵkh(s

k
h, a

k
h) ≤ 2

H−1∑
h=1

(H − h)

K∑
k=1

√
2|Ξ| log(KH/δ)

Ck
h(ξ

k
h)

≤ 4H2|Ξ|
√
2K log(KH/δ).

Remark 4. We cannot obtain a bound on the expected regret that is independent of δ as the full
information MAB setting since

V ∗,M = max
π

V π,M ̸= max
π

E[V π,M̂] ≤ E[max
π

V π,M̂] = E[V π̂,M̂].

Remark 5. We may obtain a tighter regret bound of O(H
√
|Ξ|KHι) by a finer analysis.

Remark 6. The simulation lemma MDS leads to a high prob. regret bound, while the simulation
lemma expected version leads to a expected regret bound. They are the same order, but the latter one
is weaker.

F.4 PROOFS OF IMPOSSIBILITY RESULTS

Definition 4 (Pure-Exploitation Greedy (PEG) after a finite warm-start). Fix an integer L ≥ 1 (not
growing with K). Warm-start: pull each arm exactly L times (in any order). Greedy phase: for all
subsequent rounds K > AL, play

ak ∈ arg max
a∈[K]

µ̂a(k),

where µ̂a(k) is the empirical mean of arm a over the learner’s own past pulls of a. Ties are broken by
any deterministic rule that is independent of future rewards.
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Lemma 5 (Monotonicity barrier). Consider PEG. Suppose at the start of the greedy phase there exist
arms i, j with µ̂i(KL) = 0 and µ̂j(KL) > 0. Then PEG never pulls arm i again.

Proof. At any time t ≥ KL, the empirical mean of arm i remains exactly 0 unless i is pulled;
conversely, any arm with at least one observed success retains an empirical mean > 0 forever, because
the count of successes for that arm can never drop to zero. Since PEG selects an arm with maximal
empirical mean and µ̂j(k) ≥ µ̂j(KL) > 0 > µ̂i(k) for all t ≥ KL, arm i is never selected.

Theorem 6 (Linear regret for K-armed PEG with L = 1). Fix any K ≥ 2 and any gap ∆ ∈ (0, 1
4 ].

Consider Bernoulli arms with means

µ1 = 1
2 +∆, µ2 = · · · = µK = 1

2 .

Run PEG with warm-start L = 1 (each arm pulled once) and then act greedily. For all T ≥ K,

E[Regret(T )] ≥
(

1
2 −∆

)(
1− 2−(K−1)

)
∆(T −K) = Ω(T ).

Proof. Let Xa,1 ∈ {0, 1} be the first Bernoulli sample from arm a. Consider the warm-start event

E := {X1,1 = 0} ∩
{
∃ b ∈ {2, . . . ,K} : Xb,1 = 1

}
.

Independence gives

P(E) = (1− µ1)
(
1−

K∏
b=2

(1− µb)
)
=
(

1
2 −∆

)(
1− ( 12 )

K−1
)
.

On E, after the K-round warm-start we have µ̂1(K) = 0 and (at least) one suboptimal arm b with
µ̂b(K) = 1. By Lemma 5, PEG never pulls arm 1 again. Hence from round K+1 onward PEG plays
a suboptimal arm every round, incurring per-round regret µ1 −maxa̸=1 µa = ∆. Therefore,

Regret(k) ≥ ∆(T −K) on E,

and taking expectations yields the stated lower bound.

Theorem 7 (Linear regret for any fixed warm-start L). Fix K ≥ 2, any integer L ≥ 1 that does not
grow with T , and any ∆ ∈ (0, 1

4 ]. Consider the same Bernoulli instance as in Theorem 6. If PEG is
run with warm-start size L and then acts greedily, then for all T ≥ KL,

E[Regret(k)] ≥
(

1
2 −∆

)L(
1−

(
1− 2−L

)K−1
)

︸ ︷︷ ︸
a positive constant independent of T

·∆(T −KL) = Ω(k).

Proof. Let Sa,L be the number of successes observed from arm a during the L warm-start pulls of
that arm. Consider

EL := {S1,L = 0} ∩
{
∃ b ∈ {2, . . . ,K} : Sb,L = L

}
.

By independence across arms during the warm-start,

P(S1,L = 0) = (1− µ1)
L =

(
1
2 −∆

)L
, P(Sb,L = L) = µL

b = ( 12 )
L,

and therefore
P(EL) =

(
1
2 −∆

)L(
1−

(
1− 2−L

)K−1
)
.

On EL, after the KL-round warm-start we have µ̂1(KL) = 0 and at least one suboptimal arm b
with µ̂b(KL) = 1. By Lemma 5, PEG never returns to arm 1; consequently it plays a suboptimal
arm in every round t > KL, suffering per-round regret ∆. Taking expectations yields the claimed
bound.

Corollary 5 (Any finite exploration budget). Let an algorithm perform any deterministic, data-
independent exploration schedule of finite length N < ∞ (not growing with T ), after which it
always selects an arm with maximal current empirical mean (deterministic tie-breaking independent
of future rewards). Then there exists a Bernoulli K-armed instance on which the algorithm has
E[Regret(k)] = Ω(k).
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Proof. Map the schedule to some La ≥ 1 pulls per arm a during the exploration phase, with∑
a La = N . Choose means as in Theorem 6 and define the event that the optimal arm produces only

zeros in its L1 pulls while at least one suboptimal arm produces only ones in its Lb pulls. This event
has strictly positive probability

∏
-factor bounded away from 0 (independent of T ). Conditioned

on this event, the post-exploration empirical means create a strict separation (optimal arm at 0, a
suboptimal arm at 1), and Lemma 5 applies verbatim to force perpetual suboptimal play thereafter,
yielding linear regret in T .

Remark 7 (Beyond Bernoulli, bounded rewards). The same conclusion holds for any rewards
supported on [0, 1] when there exists a gap ∆ = µ⋆ − maxa̸=a⋆ > 0. By Hoeffding’s inequality,
for any fixed L there are constants p1, p2 > 0 (depending on L and the arm means) such that with
probability at least p1 the optimal arm’s warm-start average is ≤ µ⋆ − ∆

2 and with probability at least
p2 some suboptimal arm’s warm-start average is ≥ µ⋆ − ∆

4 . The intersection has constant probability
p1p2 > 0, producing a strict empirical mean misranking after the warm-start and thus linear regret by
Lemma 5.

G PROOFS OF REGRET BOUNDS IN SECTION 5

G.1 PROOF OF THEOREM 2

Define δkh(π) := (V k,π
h − V π

h )(skh). We have

δkh(π) = (V k,π
h − V π

h )(skh) = (V k,π
h − V π

h )(xk
h, ξ

k
h−1)

= r(xk
h, π, ξ

k
h−1) + V k,π,a

h (fa(xk
h, π), ξ

k
h−1)− r(xk

h, π, ξ
k
h−1)− V π,a

h (fa(xk
h, π), ξ

k
h−1)

= ϕ(fa(xk
h, π))

⊤(wk,π
h (ξkh−1)− wπ

h(ξ
k
h−1))

=: ϕ(xk,π
h )⊤(wk,π

h (ξkh−1)− wπ
h(ξ

k
h−1))

= ϕ(xk,π
h )⊤Σ−1

h Φh(vk,π
h (ξkh−1)− vπ

h(ξ
k
h−1)),

where

vk,π
h (ξkh−1, n) =

∑
ξkh

P̂ k
h (ξ

k
h|ξkh−1)

[
r(g(xa

h(n), ξ
k
h), π, ξ

k
h) + ϕ(fa(g(xa

h(n), ξ
k
h), π))

⊤wk,π
h+1(ξ

k
h)
]

=:
∑
ξkh

P̂ k
h (ξ

k
h|ξkh−1)

[
r(xk

h+1(n), π, ξ
k
h) + ϕ(fa(xk

h+1(n), π))
⊤wk,π

h+1(ξ
k
h)
]

vπh(ξ
k
h−1, n) =

∑
ξkh

Ph(ξ
k
h|ξkh−1)

[
r(g(xa

h(n), ξ
k
h), π, ξ

k
h) + ϕ(fa(g(xa

h(n), ξ
k
h), π))

⊤wπ
h+1(ξ

k
h)
]

=:
∑
ξkh

Ph(ξ
k
h|ξkh−1)

[
r(xk

h+1(n), π, ξ
k
h) + ϕ(fa(xk

h+1(n), π))
⊤wπ

h+1(ξ
k
h)
]
.

Note that we denote xk,π
h := fa(xk

h, π(x
k
h, ξ

k
h−1)) which implicitly depends on ξkh−1 and xk

h+1(n) :=

g(xa
h(n), ξ

k
h)) which implicitly depends on ξkh. We have

δkh(π) = ϕ(xk,π
h )⊤Σ−1

h Φ⊤
h (v

k,π
h (ξkh−1)− vπ

h(ξ
k
h−1))

= ϕ(xk,π
h )⊤Σ−1

h

∑
k

ϕ(xa
h(n))

∑
ξkh

(P̂ k
h (ξ

k
h|ξkh−1)− Ph(ξ

k
h|ξkh−1))r(x

k
h+1(n), π, ξ

k
h)


+ ϕ(xk,π

h )⊤Σ−1
h

∑
k

ϕ(xa
h(n))·∑

ξkh

P̂ k
h (ξ

k
h|ξkh−1)ϕ(f

a(xk
h+1(n), π))

⊤wk,π
h+1(ξ

k
h)− Ph(ξ

k
h|ξkh−1)ϕ(f

a(xk
h+1(n), π))

⊤wπ
h+1(ξ

k
h)

 .
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Under Assumption 2, we have

wk,π
h (ξkh−1) = Σ−1

h Φh

∑
ξkh

P̂ k
h (ξ

k
h|ξkh−1)

[
r(g(xa

h(·), ξkh), π, ξkh) + ϕ(fa(g(xa
h(·), ξkh), π))⊤w

k,π
h+1(ξ

k
h)
]

= Σ−1
h Φh[P̂

k
h r](ξkh−1) + Σ−1

h

∑
k

ϕh(k)
∑
ξkh

P̂ k
h (ξ

k
h|ξkh−1)(M

π
h (ξ

k
h)ϕh(k))

⊤wk,π
h+1(ξ

k
h)

= Σ−1
h Φh[P̂

k
h r](ξkh−1) + Σ−1

h

∑
k

ϕh(k)ϕh(k)
⊤
∑
ξkh

P̂ k
h (ξ

k
h|ξkh−1)(M

π
h (ξ

k
h))

⊤wk,π
h+1(ξ

k
h)

= Σ−1
h Φh[P̂

k
h r](ξkh−1) +

∑
ξkh

P̂ k
h (ξ

k
h|ξkh−1)(M

π
h (ξ

k
h))

⊤wk,π
h+1(ξ

k
h)

= Σ−1
h Φh[P̂

k
h r](ξkh−1) + [P̂ k

h ((M
π
h )

⊤wk,π
h+1)](ξ

k
h−1).

Similarly, we can get

wπ
h(ξ

k
h−1) = Σ−1

h Φh[Phr](ξkh−1) + [Ph((M
π
h )

⊤wπ
h+1)](ξ

k
h−1).

Thus

wk,π
h − wπ

h = Σ−1
h Φh[(P̂

k
h − Ph)r](ξkh−1) + [P̂ k

h ((M
π
h )

⊤wk,π
h+1)](ξ

k
h−1)− [Ph((M

π
h )

⊤wπ
h+1)](ξ

k
h−1)

= Σ−1
h Φh[(P̂

k
h − Ph)r](ξkh−1) + [(P̂ k

h − Ph)((M
π
h )

⊤wk,π
h+1)](ξ

k
h−1) + [Ph((M

π
h )

⊤(wk,π
h+1 − wπ

h+1))](ξ
k
h−1)

= Σ−1
h Φh[(P̂

k
h − Ph)r](ξkh−1) + [(P̂ k

h − Ph)((M
π
h )

⊤wk,π
h+1)](ξ

k
h−1)

+ [Ph((M
π
h )

⊤(wk,π
h+1 − wπ

h+1))](ξ
k
h−1)− (Mπ

h (ξ
k
h))

⊤(wk,π
h+1 − wπ

h+1)(ξ
k
h) + (Mπ

h (ξ
k
h))

⊤(wk,π
h+1 − wπ

h+1)(ξ
k
h)

=: ϵkh(π) + ekh(π) + (Mπ
h (ξ

k
h))

⊤(wk,π
h+1 − wπ

h+1)(ξ
k
h),

where we define

ekh(π) := [Ph((M
π
h )

⊤(wk,π
h+1 − wπ

h+1))](ξ
k
h−1)− (Mπ

h (ξ
k
h))

⊤(wk,π
h+1 − wπ

h+1)(ξ
k
h),

ϵkh(π) := Σ−1
h Φh[(P̂

k
h − Ph)r](ξkh−1) + [(P̂ k

h − Ph)((M
π
h )

⊤wk,π
h+1)](ξ

k
h−1).

Lemma 6. Let {ϕi}Ki=1 ⊂ Rd, and define

A =

K∑
i=1

ϕiϕ
⊤
i ∈ Rd×d,

which is assumed to be full rank. For ϵi ∈ R and u ∈ Rd, set

ε = (ϵ1, . . . , ϵK)⊤, Φ = [ϕ1 · · · ϕK ] ∈ Rd×K .

Then the following bound holds:∣∣∣∣∣u⊤A−1
K∑
i=1

ϕiϵi

∣∣∣∣∣ ≤ ∥u∥A−1 ∥ε∥2,

where ∥u∥A−1 =
√
u⊤A−1u.

Proof. Observe that

u⊤A−1
K∑
i=1

ϕiϵi = u⊤A−1Φε.

Let A−1/2 denote the symmetric square root of A−1, and define

B := A−1/2Φ ∈ Rd×K .

Then
u⊤A−1Φε = (A−1/2u)⊤(A−1/2Φ)ε = (A−1/2u)⊤Bε.
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Note that
BB⊤ = A−1/2ΦΦ⊤A−1/2 = A−1/2AA−1/2 = Id,

hence ∥B∥2 = 1. By the Cauchy–Schwarz inequality,∣∣(A−1/2u)⊤Bε
∣∣ ≤ ∥A−1/2u∥2 ∥Bε∥2 ≤ ∥A−1/2u∥2 ∥ε∥2.

Finally, ∥A−1/2u∥2 =
√
u⊤A−1u = ∥u∥A−1 , proving the claim.

We obtain the recursion for dkh(π) := wk,π
h − wπ

h as

dkh(π) = ϵkh(π) + ekh(π) + (Mπ
h (ξ

k
h))

⊤dkh+1

=

H∑
s=h

(

s−1∏
h′=h

Mπ
h′(ξkh′))⊤(ϵks(π) + eks(π))

=:

H∑
s=h

ϵ̃ks(π) + ẽks(π).

Note that ekh(π) is an vector-valued MDS w.r.t. Gkh since

E
[
ekh(π)|Gkh

]
= E

[
[Ph((M

π
h )

⊤(wk,π
h+1 − wπ

h+1))](ξ
k
h−1)− (Mπ

h (ξ
k
h))

⊤(wk,π
h+1 − wπ

h+1)(ξ
k
h)|Gkh

]
= 0.

Since Mπ
h′(ξkh′) are Gkh-measurable for h′ ≤ h− 1, we have

E
[
ẽkh(π)|Gkh

]
= E

[
(

h−1∏
h′=1

Mπ
h′(ξkh′))⊤ekh|Gkh

]
= (

h−1∏
h′=1

Mπ
h′(ξkh′))⊤E

[
ekh|Gkh

]
= 0.

Thus ẽks(π) is also a vector-valued MDS w.r.t. Gkh .

Note that Φ is full rank, so ϕ(xa) can be represented as ϕ(xa) = Φα for some α ∈ RK . Under
Assumption 3, we can prove the following lemma.

Lemma 7. For any (n, t, π, xa, ξ), it holds that V k,πk,a
h (xa, ξ) ≥ V k,π,a

h (xa, ξ).

We have

Regret(K) =

K∑
k=1

(
V π⋆

1 (sk1)− V π̂k

1 (sk1)
)

=

K∑
k=1

(
V π⋆

1 − V k,π⋆

1

)
(sk1) +

(
V k,π⋆

1 − V k,πk

1

)
(sk1) +

(
V k,πk

1 − V πk

1

)
(sk1)

≤
K∑

k=1

(
V π⋆

1 − V k,π⋆

1

)
(sk1) +

(
V k,πk

1 − V πk

1

)
(sk1)

=

K∑
k=1

−ϕ(xk,a
1 )⊤δk1 (π

⋆) + ϕ(xk,a
1 )⊤δk1 (π

k)

=

K∑
k=1

H−1∑
h=1

−ϕ(xk,a
1 )⊤(ϵ̃kh(π

⋆) + ẽkh(π
⋆)) + ϕ(xk,a

1 )⊤(ϵ̃kh(π
k) + ẽkh(π

k)).

Note that for any Gkh-measurable policy π, the sequence ϕ(xk,a
1 )⊤ẽkh(π) is an MDS w.r.t. Gkh .

Moreover, ∣∣∣ϕ(xk,a
1 )⊤ẽkh(π)

∣∣∣ ≤ 4
√
d.
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Next, we bound

ϕ(xk,a
1 )⊤ϵ̃kh(π

k) = ϕ(xk,a
1 )⊤

(
h−1∏
h′=1

Mπ
h′(ξkh′)

)⊤

ϵkh

=

(
h−1∏
h′=1

Mπ
h′(ξkh′)ϕ(x

k,a
1 )

)⊤ (
Σ−1

h Φh[(P̂
k
h − Ph)r](ξkh−1) + [(P̂ k

h − Ph)((M
π
h )

⊤wk,π
h+1)](ξ

k
h−1)

)

=

(
h−1∏
h′=1

Mπ
h′(ξkh′)ϕ(x

k,a
1 )

)⊤

Σ−1
h Φh[(P̂

k
h − Ph)r](ξkh−1)

+

(
h−1∏
h′=1

Mπ
h′(ξkh′)ϕ(x

k,a
1 )

)⊤

[(P̂ k
h − Ph)((M

π
h )

⊤wk,π
h+1)](ξ

k
h−1)

=

(
h−1∏
h′=1

Mπ
h′(ξkh′)ϕ(x

k,a
1 )

)⊤

Σ−1
h Φh[(P̂

k
h − Ph)r](ξkh−1)

+

(P̂ k
h − Ph)

(
h∏

h′=1

Mπ
h′(ξkh′)ϕ(x

k,a
1 )

)⊤

wk,π
h+1

 (ξkh−1).

We can bound the first term as(
h−1∏
h′=1

Mπ
h′(ξkh′)ϕ(x

k,a
1 )

)⊤

Σ−1
h Φh[(P̂

k
h − Ph)r](ξkh−1) = (M̃π

h−1ϕ(x
k,a
1 ))⊤Σ−1

h Φh[(P̂
k
h − Ph)r

≤
∥∥∥M̃π

h−1ϕ(x
k,a
1 )
∥∥∥
Σ−1

h

∥∥∥(P̂ k
h − Ph)r

∥∥∥
2

≤
∥∥∥M̃π

h−1ϕ(x
k,a
1 )
∥∥∥
Σ−1

h

√
N
∥∥∥(P̂ k

h − Ph)(ξ
k
h−1)

∥∥∥
1

The second term can be bounded as(P̂ k
h − Ph)

(
h∏

h′=1

Mπ
h′(ξkh′)ϕ(x

k,a
1 )

)⊤

wk,π
h+1

 (ξkh−1)

≤
∥∥∥(P̂ k

h − Ph)(ξ
k
h−1)

∥∥∥
1
·max

ξ′

∣∣∣∣∣∣
(

h∏
h′=1

Mπ
h′(ξkh′)ϕ(x

k,a
1 )

)⊤

wk,π
h+1(ξ

′)

∣∣∣∣∣∣
≤
∥∥∥(P̂ k

h − Ph)(ξ
k
h−1)

∥∥∥
1

∥∥∥∥∥
h∏

h′=1

Mπ
h′(ξkh′)ϕ(x

k,a
1 )

∥∥∥∥∥∥∥∥wk,π
h+1

∥∥∥
≤
∥∥∥(P̂ k

h − Ph)(ξ
k
h−1)

∥∥∥
1

∥∥∥∥∥
h∏

h′=1

Mπ
h′(ξkh′)

∥∥∥∥∥∥∥∥ϕ(xk,a
1 )
∥∥∥∥∥∥wk,π

h+1

∥∥∥
≤
∥∥∥(P̂ k

h − Ph)(ξ
k
h−1)

∥∥∥
1

∥∥∥∥∥
h∏

h′=1

Mπ
h′(ξkh′)

∥∥∥∥∥√d
≤
∥∥∥(P̂ k

h − Ph)(ξ
k
h−1)

∥∥∥
1

h∏
h′=1

∥∥Mπ
h′(ξkh′)

∥∥√d
≤
√
d
∥∥∥(P̂ k

h − Ph)(ξ
k
h−1)

∥∥∥
1
,
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where the last inequality is due to the fact that supπ,ξ,h ∥Mπ
h (ξ)∥ ≤ 1. We can bound the regret as

Regret(K) ≤
K∑

k=1

H−1∑
h=1

−ϕ(xk,a
1 )⊤(ϵ̃kh(π

⋆) + ẽkh(π
⋆)) + ϕ(xk,a

1 )⊤(ϵ̃kh(π
k) + ẽkh(π

k))

≤ O(
√
dKH log 1/δ′) + 2

K∑
k=1

H−1∑
h=1

∥∥∥M̃π
h−1ϕ(x

k,a
1 )
∥∥∥
Σ−1

h

√
N
∥∥∥(P̂ k

h − Ph)(ξ
k
h−1)

∥∥∥
1

+
√
d
∥∥∥(P̂ k

h − Ph)(ξ
k
h−1)

∥∥∥
1

≤ O(
√
dKH log 1/δ′) + 2

∑
h

(
√
N/λ0 +

√
d)
∑
k

√
|Ξ|ι

Ck
h(ξ

k
h−1)

≤ O(
√
dKH log 1/δ′) + 2

∑
h

(
√
N/λ0 +

√
d)|Ξ|

√
Kι

≤ O(
√
N/λ0 +

√
d)|Ξ|H

√
Kι.

G.2 PROOF OF THEOREM 3

Recall that

δkh(π) = ϕ(xk,π
h )⊤(wk,π

h (ξkh−1)− wπ
h(ξ

k
h−1))

= ϕ(xk,π
h )⊤dkh(π) = ϕ(xk,π

h )⊤(ϵkh(π) + ekh(π) + (Mπ
h (ξ

k
h))

⊤dkh+1(π))

= ϕ(xk,π
h )⊤

[
Σ−1

h Φh[(P̂
k
h − Ph)r](ξkh−1) + [(P̂ k

h − Ph)((M
π
h )

⊤wk,π
h+1)](ξ

k
h−1)

]
+ ϕ(xk,π

h )⊤
[
Ph((M

π
h )

⊤(wk,π
h+1 − wπ

h+1))](ξ
k
h−1)− (Mπ

h (ξ
k
h))

⊤(wk,π
h+1 − wπ

h+1)(ξ
k
h)
]

+ ϕ(xk,π
h )⊤(Mπ

h (ξ
k
h))

⊤(wk,π
h+1 − wπ

h+1)(ξ
k
h)

= ϕ(xk,π
h )⊤Σ−1

h Φh[(P̂
k
h − Ph)r](ξkh−1) + ϕ(xk,π

h )⊤Σ−1
h Φh[(P̂

k
h − Ph)((M

π
h )

⊤wk,π
h+1)](ξ

k
h−1)

+ [Ph(ϕ(x
k,π
h+1)

⊤(wk,π
h+1 − wπ

h+1))](ξ
k
h−1)

− ϕ(xk,π
h+1)

⊤(wk,π
h+1 − wπ

h+1)(ξ
k
h) + ϕ(xk,π

h+1)
⊤(wk,π

h+1 − wπ
h+1)(ξ

k
h)

=: ϵ̄kh(π) + ēkh(π) + δkh+1(π),

where we used Mπ
h (ξ

k
h)ϕ(x

k,π
h ) = ϕ(xk,π

h+1) under Assumption 4. Note that ēks(π) is an MDS w.r.t.
Gkh since

E
[
ēkh(π)|Gkh

]
= E

[
[Ph(ϕ(x

k,π
h+1)

⊤(wk,π
h+1 − wπ

h+1))](ξ
k
h−1)− ϕ(xk,π

h+1)
⊤(wk,π

h+1 − wπ
h+1)(ξ

k
h)|Gkh

]
= 0.

In addition, the following holds almost surely

∣∣ēkh(π)∣∣ = ∣∣∣[Ph(ϕ(x
k,π
h+1)

⊤(wk,π
h+1 − wπ

h+1))](ξ
k
h−1)− ϕ(xk,π

h+1)
⊤(wk,π

h+1 − wπ
h+1)(x

k,π
h , ξkh)

∣∣∣
=
∣∣∣[Ph(V

k,π,a
h+1 − V k,π,a

h+1 )](ξkh−1)− (V k,π,a
h+1 − V k,π,a

h+1 )(xk,π
h+1, ξ

k
h)
∣∣∣

≤ 2(H − 1− h).
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We can bound ϵ̄kh(π) as

ϵ̄kh(π) = ϕ(xk,π
h )⊤Σ−1

h Φh[(P̂
k
h − Ph)r](ξkh−1) + ϕ(xk,π

h )⊤[(P̂ k
h − Ph)((M

π
h )

⊤wk,π
h+1)](ξ

k
h−1)

= ϕ(xk,π
h )⊤Σ−1

h Φh[(P̂
k
h − Ph)r](ξkh−1) + [(P̂ k

h − Ph)ϕ(x
k,π
h+1)

⊤wk,π
h+1)](ξ

k
h−1)

= ϕ(xk,π
h )⊤Σ−1

h Φh[(P̂
k
h − Ph)r](ξkh−1) + [(P̂ k

h − Ph)V
k,π,a
h+1 ](xk,π

h , ξkh−1)

≤
∥∥∥ϕ(xk,π

h )
∥∥∥
Σ−1

h

∥∥∥[(P̂ k
h − Ph)r](ξkh−1)

∥∥∥+ ∥∥∥(P̂ k
h − Ph)(ξ

k
h−1)

∥∥∥
1
(H − h)

≤
∥∥∥ϕ(xk,π

h )
∥∥∥
Σ−1

h

√
N
∥∥∥(P̂ k

h − Ph)(ξ
k
h−1)

∥∥∥
1
+
∥∥∥(P̂ k

h − Ph)(ξ
k
h−1)

∥∥∥
1
(H − h)

=
∥∥∥(P̂ k

h − Ph)(ξ
k
h−1)

∥∥∥
1

(√
N
∥∥∥ϕ(xk,π

h )
∥∥∥
Σ−1

h

+H − h

)
≤

√
|Ξ|ι

Ck
h(ξ

k
h−1)

(√
N
∥∥∥ϕ(xk,π

h )
∥∥∥
Σ−1

h

+H − h

)
Unrolling the recursion of δkh(π), we have

δk1 (π) =

H−1∑
s=1

ϵ̄ks(π) + ēks(π).

Lemma 8. For any (n, t, π, xa, ξ), it holds that V k,πk,a
h (xa, ξ) ≥ V k,π,a

h (xa, ξ).

Proof. The proof follows from induction. Observe that holds when h = H − 1. For any (xa, ξ),
using the definition of πk, we have

V k,π,a
h (xa, ξ) = ϕ(xa)⊤wk,π

h (ξ)

= ϕ(xa)⊤
(
Σ−1

h Φh[P̂
k
h r](ξ) + [P̂ k

h ((M
π
h )

⊤wk,π
h+1)](ξ)

)
= ϕ(xa)⊤Σ−1

h Φh[P̂
k
h r](ξ) + [P̂ k

hϕ(x
a
h+1)⊤w

k,π
h+1](ξ)

= ϕ(xa)⊤Σ−1
h Φh[P̂

k
h r](ξ) + [P̂ k

hV
k,π,a
h+1 ](xa, ξ)

≥ ϕ(xa)⊤Σ−1
h Φh[P̂

k
h r](ξ) + [P̂ k

hV
k,π′,a
h+1 ](xa, ξ)

= V k,π′,a
h (xa, ξ).

Now we bound the regret

Regret(K) =

K∑
k=1

(
V π⋆

1 (sk1)− V π̂k

1 (sk1)
)

=

K∑
k=1

(
V π⋆

1 − V k,π⋆

1

)
(sk1) +

(
V k,π⋆

1 − V k,πk

1

)
(sk1) +

(
V k,πk

1 − V πk

1

)
(sk1)

≤
K∑

k=1

(
V π⋆

1 − V k,π⋆

1

)
(sk1) +

(
V k,πk

1 − V πk

1

)
(sk1)

=

K∑
k=1

−δk1 (π⋆) + δk1 (π
k)

=

K∑
k=1

H−1∑
h=1

−(ϵ̄ks(π⋆) + ēks(π
⋆)) + ϵ̄ks(π

k) + ēks(π
k)

≤ O(H
√

KH log 1/δ′) + 2

H−1∑
h=1

(√
N
∥∥∥ϕ(xk,π

h )
∥∥∥
Σ−1

h

+H − h

) K∑
k=1

√
2|Ξ| log(KH/δ)

Ck
h(ξ

k
h)

≤ O(H
√

KH log 1/δ′) + 4(H2 +H
√
N/λ0)|Ξ|

√
2K log(KH/δ).
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G.3 PROOF OF THEOREM 5

We start with two simple geometric and statistical facts.

Lemma 9 (Anchor LS predictor stability). For any t, ξ, any anchor vectors y, u ∈ RK , and any xa,∣∣ϕ(xa)⊤Σ−1
h Φh(y − u)

∣∣ ≤ λ
−1/2
0 ∥y − u∥2 .

Proof. By Cauchy-Schwarz,
∣∣ϕ⊤A−1Φ(y − u)

∣∣ ≤ ∥ϕ∥2 ∥∥A−1Φ
∥∥ ∥y − u∥2. Since ∥ϕ∥ ≤ 1 and∥∥A−1Φ

∥∥ = σmin(Φ)
−1 = λ

−1/2
0 , the claim follows.

Lemma 10 (Row-wise empirical transition concentration). Fix t and ξ. Let g : Ξ → [0,H] and
suppose P̂n(· | ξ) is the empirical distribution from m = nk

h(ξ) ≥ 1 i.i.d. samples of ξ′ drawn from
P (· | ξ) (across episodes). Then for any δ ∈ (0, 1),

Pr
(∣∣(P̂n − P )g

∣∣ ≤ H

√
log(2/δ)

2m

)
≥ 1− δ.

Proof. (P̂n−P )g = 1
m

∑m
i=1 Zi−E[Zi] where Zi := g(ξ′i) ∈ [0, H] with ξ′i ∼ P (· | ξ) i.i.d. Apply

Hoeffding’s inequality.

The concentration will be lifted to uniform (over n, t, ξ) events via a union bound and the standard
summation

∑M
j=1(mj + 1)−1/2 ≤ 2

√
M .

Proof. We follow a the one-step decomposition as in the proof of Theorem 3, carefully adding the
misspecification term.

Fix any reference policy π (we will take π = π⋆ at the end). Let skh = (xk
h, ξ

k
h) be the state visited in

episode n by the coupling argument used in LSVI analyses (or simply the realized trajectory under
the deployed policy at episode n). Denote the value error

δkh(π) :=
(
V k,π
h − V π

h

)
(skh),

where V k,π is the value when Bellman backups use P̂n and parameters wn
· , while V π uses the true

model and the ideal parameters wπ
· that linearly represent the values of π as well as possible (defined

below).

Let vk,πh (ξ) ∈ RN and vπh(ξ) ∈ RN be the anchor target vectors under (empirical) greedy backup
and (true) π-backup, respectively:[

vk,πh (ξ)
]
n
=
∑
ξ′

P̂n(ξ′|ξ)
[
r
(
xh(n), a

k
h(n, ξ), ξ

′)+ ϕ
(
fa(xh(n), a

k
h(n, ξ))

)⊤
wn

h+1(ξ
′)
]
,

[
vπh(ξ)

]
n
=
∑
ξ′

P (ξ′|ξ)
[
r
(
xh(n), π, ξ

′)+ ϕ
(
fa(xh(n), π)

)⊤
wπ

h+1(ξ
′)
]
.

The LS predictor at xa,k
h := fa(xk

h,Σ
k
h) is ϕ(xa,n

h )⊤Σ−1
h Φh(·). Hence

δkh(π) = ϕ(xa,n
h )⊤Σ−1

h Φh

(
vk,πh (ξnk−1)− vπh(ξ

n
k−1)

)
.

Write, with gk,πh+1(n, ξ
′) := r(·) + ϕ(·)⊤wk

h+1(ξ
′) and gπh+1 defined analogously with wπ

h+1,

vk,πh − vπh = (P̂n − P ) gk,πh+1︸ ︷︷ ︸
(A) transition error

+ P
(
gk,πh+1 − gπh+1

)︸ ︷︷ ︸
(B) propagation

+ ρπh︸︷︷︸
(C) misspecification

,

where ρπh := vπh − uπ
h and uπ

h is the anchor vector of

Wπ
h ∈ argmin

W∈Fh

sup
xa

∣∣(TπV π
h+1)(x

a, ξkh)−W (xa, ξkh)
∣∣.

By Definition 3, ∥ρπh∥∞ ≤ εBE.
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Apply Lemma 9 to equation G.3:

|δkh(π)| ≤ λ
−1/2
0

(∥∥∥(P̂n − P )gk,πh+1

∥∥∥
2
+
∥∥∥P (gk,πh+1 − gπh+1

)∥∥∥
2
+ ∥ρπh∥2

)
≤ λ

−1/2
0

(∥∥∥(P̂n − P )gk,πh+1

∥∥∥
2
+
∥∥∥gk,πh+1 − gπh+1

∥∥∥
2
+
√
N εBE

)
,

since P is a contraction in ℓ2 and rewards/values are in [0, H] so g ∈ [0, H] coordinate-wise.

Fix t, ξ. Lemma 10 with a union bound over k ≤ K, t ≤ H , ξ ∈ Ξ yields with probability 1− δ/2
that ∥∥∥(P̂n − P )gk,πh+1

∥∥∥
2
≤ H

√
|Ξ|

√
log
(
2HK|Ξ|/δ

)
2nk

h(ξ)

uniformly. Summing these martingale-like increments along the sample path and using
∑M

j=1(nj +

1)−1/2 ≤ 2
√
M gives the contribution

C̃2 |Ξ|H
√

K logHK|Ξ|
δ

per stage, which after accounting for the LS geometry (the Σ−1
h Φh factor) and the greedy-vs-policy

coupling yields

C2 |Ξ|
(
H2 +H

√
N
λ0

)√
K logHK|Ξ|

δ .

Here the H2 and H
√
N/λ0 arise from H-step propagation/telescoping and the LS projection norm

as in standard LSVI analyses; constants are absorbed.

The term
∥∥∥gk,πh+1 − gπh+1

∥∥∥
2

is linear in |V k,π
h+1 − V π

h+1|, hence in |δnh+1(π)|. Unfolding over t =

1, . . . ,H and using Freedman/Bernstein-type arguments for the resulting martingale differences (and
rewards bounded by 1) gives

C1 H

√
K logHK|Ξ|

δ .

By Lemma 9 and ∥ρπh∥2 ≤
√
N εBE,∣∣ϕ(xa,n

h )⊤Σ−1
h Φh ρ

π
h

∣∣ ≤ λ
−1/2
0

√
N εBE.

Summing over t = 1, . . . ,H gives Hλ
−1/2
0

√
N εBE per episode. The standard comparison of π̂n

with π⋆ doubles this constant but stays of the same order; summing over n = 1, . . . ,K yields

C3
H√
λ0

K εBE.

Combining (4)–(6) with a union bound over the high-probability events gives the claimed inequality
with probability at least 1− δ.

H DETAILED NUMERICAL EXPERIMENTS

H.1 TABULAR MDP

We conduct numerical experiments using tabular Exo-MDPs, and display the model estimation error
over episodes and the regret comparison of PTO, PTO-Opt and PTO-Lite in Figure 3. We provide
the implementation details below.

• Model estimation. PTO or LSVI-PE estimates the model P̂t(y
′ | y) from past episodes (counts

per time-step) and solves backward DP using P̂t .
• Optimistic model. At each Bellman backup the PTO-Opt solves
maxQ:∥Q−P̂∥1≤bonus

∑
y′ Q(y′)V (y′) by mass transfer to obtain an optimistic expectation.

• Policy evaluation. All algorithms are evaluated by exact backward induction on the true Py to
obtain stage-1 value functions V (·, ·, 1).
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• Regret and model error. Per episode we measure instantaneous regret as
∑

x,y

(
V ⋆
x,y,1 − V π

x,y,1

)
and report cumulative regret

∑
k≤K (averaged across runs). Model error is measured by the average

Frobenius norm 1
T

∑
t ∥P̂t − Py∥F .

Baseline methods. We compare the PTO to PTO-Opt (Section D.3.2) that solves a constrained
ℓ1- subproblem for optimistic model with confidence radius bonus = c

√
2Y log(KY/0.01)/Nt,y

(default c = 0.3). We also implement three PTO-Lite baselines with subsampling ratios of 0.2,
0.5, and 0.8 for comparison, serving as the natural intermediate points between PEL algorithms and
exploration-heavy methods. Instead of constructing the full empirical exogenous model from all
episodes, Lite subsamples the historical exogenous transitions at each stage. The resulting subsampled
dataset is used to compute a lightweight estimate, reducing computation while keeping the model
statistically representative.
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Figure 3: Comparison of PTO, PTO-Opt and PTO-Lite.

H.2 STORAGE CONTROL

We display the model estimation error over episodes and the regret comparison between LSVI-PE
and LSVI-Opt in Figure 4 across three Exo-MDPs with different horizon lengths. Across H ∈
{6, 8, 10}, LSVI-PE consistently outperforms LSVI-Opt in cumulative regret.

We also analyze three expanded Exo-MDPs with state/action spaces scaled and planning horizons
increased, and the results are presented in Figure 5. LSVI-Opt and three LSVI-Lite variants
are implemented as baselines. Across all these enlarged benchmarks, LSVI-PE maintains the best
overall performance, and Lite achieves performance close to LSVI-PE, validating that PEL remains
effective even under aggressive subsampling of exogenous traces.

We provide the pseudo-code of LSVI-PE for storage control in Algorithm 2.

Baseline method. LSVI-Opt differs from LSVI-PE in Line 12 of Algorithm 2. Specifically,
LSVI-Opt computes the optimistic target

ykh(n)←
∑
ξ′∈Ξ

P̃ k
h (ξ

′ | ξ)· max
a′∈[−amax,amax]

{
r
(
g(ρn, ξ

′), a′, ξ′
)
+ ϕ
(
fa(g(ρn, ξ

′), a′)
)⊤

wk
h+1(ξ

′)
}
,

where P̃ k
h is the optimistic model obtained by solving the ℓ1 constrained subproblem around P̂ k

h with
confidence radius bonus = c

√
2Y log(KY/0.01)/Nt,y (default c = 0.5).

Detailed setup for Case I. We numerically analyze a storage control problem with continuous
endogenous state space X = [0, C], discrete exogenous state space Ξ = [Y ], and continuous
action space A = [−amax, amax]. X is discretized by N anchors. The default parameters are
C = 10, Y = 10, amax = 2, N = 10, and K = 100 epsiodes. Three time horizon lengths
H ∈ {6, 8, 10} are evaluated for comparison. The exogenous variable is the discrete power price with
the following transition rules applied: a 70 % probability exists of either remaining in the original
state or transitioning to an adjacent state, with the remaining 30 % assigned to uniform selection
among all feasible states.
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Detailed setup for Case II. We analyze three expanded storage control problem cases, where both
the state spaces and planning horizons are scaled by factors of 2x to 4x relative to the original settings.
To observe the long-term performance and convergence characteristics of each algorithm, we increase
the number of running episodes to 200. The subsample factors of the three Lite baselines are 0.2, 0.5,
and 0.8, respectively. All other experimental configurations remain consistent with Case I.

Computational efficiency. The major computational overhead of Algorithm 2 is to solve the optimal
action for a given state skh at each time-step h

π̂k
h(x

k
h, ξ

k
h) = arg max

a∈[−amax,amax]

{
r(xk

h, a, ξ
k
h) + ϕ

(
fa(xk

h, a)
)⊤

wk
h+1(ξ

k
h)
}
.

We emphasize this step is computationally efficient via anchor enumeration due to the LP structure of
the subproblem.
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(a) H = 6
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(b) H = 8
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(c) H = 10

Figure 4: Comparison of LSVI-PE and LSVI-Opt across three different time horizon lengths in
Case I.
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(a) H = 20,Ξ = 20, N = 20
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(b) H = 30,Ξ = 30, N = 30
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(c) H = 40,Ξ = 40, N = 40

Figure 5: Comparison of LSVI-PE, LSVI-Opt and LSVI-PE-Lite under three different experi-
mental scales in Case II.
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Algorithm 2 LSVI-PE for storage control

Require: Horizon H; capacity C; anchors ρn = n−1
N−1C, n = 1...N ; hat features ϕ : [0, C]→RN

with ϕ(ρn) = en
Require: Action set A = [−amax, amax]; efficiencies η+, η− > 0; leakage α ∈ (0, 1]
Require: Reward r(s, a, ξ) = ξa − αc|a| − βhs; post-decision fa(s, a) = clip

(
s + η+a+ −

1
η− a−, 0, C

)
; pre-decision update g(sa, ξ′) = αsa

Require: Price codebook Ξ = {ζ1, . . . , ζR}; dataset of k price trajectories {ξℓh}
k,H
ℓ=1,h=1 with ξℓh ∈ Ξ

1: Update P̂ k
h (· | ξ): for each (h, ξ),

P̂ k
h (ξ

′ | ξ) =

{
Nk

h (ξ,ξ′)∑
z Nk

h (ξ,z)
,
∑

z N
k
h (ξ, z) > 0

1
R , otherwise (unvisited row)

where Nk
h (ξ, ξ

′) =
∑k

ℓ=1 1{ξℓh = ξ, ξℓh+1 = ξ′}.
2: Backward Value Iteration:
3: for h = H down to 1 do
4: for each ξ ∈ Ξ do
5: // Design at post-decision anchors (identity under hat basis)
6: Φh ← [ϕ(ρ1), . . . , ϕ(ρn)]; ah ← ΦhΦ

⊤
h // Φh = IK , ah = IK

7: bkh(ξ)← 0 ∈ RK

8: for n = 1 to N do
9: if h = H then

10: ykh(n)← 0
11: else
12: ykh(n) ←

∑
ξ′∈Ξ

P̂ k
h (ξ

′ | ξ) · max
a′∈[−amax,amax]

{
r
(
g(ρn, ξ

′), a′, ξ′
)

+

ϕ
(
fa(g(ρn, ξ

′), a′)
)⊤

wk
h+1(ξ

′)
}

13: // Inner max is 1-D LP (piecewise linear); solve via breakpoint enumeration
14: end if
15: bkh(ξ)← bkh(ξ) + ϕ(ρn) y

k
h(n) // writes ykh(n) into entry k

16: end for
17: wk

h(ξ)← Σ−1
h bkh(ξ) // with Σh = IN : wk

h(ξ) = [ykh(1), . . . , y
k
h(N)]⊤

18: end for
19: end for
20: Output:
21: V̂ k,a

h (xa, ξ) = ϕ(xa)⊤wk
h(ξ), for all (sa, ξ, h)

22: return V̂ k,a
h
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I DECLARATION OF THE USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) to assist in proofreading and improving the language,
grammar, and clarity of this manuscript. The authors retain full responsibility for all intellectual
content, results, and claims presented in this paper.
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