

000 001 002 003 004 005 IS PURE EXPLOITATION SUFFICIENT IN EXOGENOUS 006 MDPs WITH LINEAR FUNCTION APPROXIMATION? 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029

ABSTRACT

030
031 Exogenous MDPs (Exo-MDPs) capture sequential decision-making where un-
032 certainty comes solely from exogenous inputs that evolve independently of the
033 learner’s actions. This structure is especially common in operations research appli-
034 cations such as inventory control, energy storage, and resource allocation, where
035 exogenous randomness (e.g., demand, arrivals, or prices) drives system behavior.
036 Despite decades of empirical evidence that greedy, exploitation-only methods work
037 remarkably well in these settings, theory has lagged behind: all existing regret guar-
038 antees for Exo-MDPs rely on explicit exploration or tabular assumptions. We show
039 that exploration is unnecessary. We propose Pure Exploitation Learning (PEL) and
040 prove the first general finite-sample regret bounds for exploitation-only algorithms
041 in Exo-MDPs. In the tabular case, PEL achieves $\tilde{O}(H^2|\Xi|\sqrt{K})$. For large, continu-
042 ous endogenous state spaces, we introduce LSVI-PE, a simple linear-approximation
043 method whose regret is polynomial in the feature dimension, exogenous state space,
044 and horizon, independent of the endogenous state and action spaces. Our analysis
045 introduces two new tools: counterfactual trajectories and Bellman-closed feature
046 transport, which together allow greedy policies to have accurate value estimates
047 without optimism. Experiments on synthetic and resource-management tasks show
048 PEL consistently outperforming baselines. Overall, our results overturn the con-
049 ventional wisdom that exploration is required, demonstrating that in Exo-MDPs,
050 pure exploitation is enough.

1 INTRODUCTION

051 Sequential decision-making under uncertainty is central to a wide range of domains, from inventory
052 control and energy storage to cloud resource management and supply chains (Madeka et al., 2022;
053 Yu et al., 2021; Sinclair et al., 2023b; Oroojlooyjadid et al., 2022). In these applications the system
054 dynamics are shaped by controllable endogenous states and exogenous inputs that evolve indepen-
055 dently of the agent’s actions. Exogenous Markov Decision Processes (Exo-MDPs) formalize this
056 setting by partitioning states into endogenous and exogenous components, where actions only affect
057 the former (Mao et al., 2018; Sinclair et al., 2023b). This separation models many practical settings
058 where randomness is *external* (e.g. demands, arrivals, or prices) yet crucial for optimal control.

059 A striking empirical observation across these domains is that *pure exploitation works extremely well*.
060 Classical approximate dynamic programming (ADP) and OR techniques repeatedly solve, act, and
061 update from observed trajectories *without deliberate exploration*, and are deployed at industrial scale.
062 Existing results show these schemes can converge in structured settings. For example, Nascimento &
063 Powell (2009) prove convergence for lagged asset acquisition under concavity, demonstrating that
064 pure exploitation can even outperform ϵ -greedy exploration. More broadly, Powell (2022) highlights
065 post-decision states and trajectory-based evaluation as foundational principles enabling effective
066 exploitation-driven learning in practice. However, the theoretical guarantees in this line rely heavily
067 on structure such as concavity or piecewise linearity.

068 In contrast, the reinforcement learning (RL) literature provides strong statistical guarantees for
069 Exo-MDPs *but almost always through explicit exploration*. Sinclair et al. (2023b) develop hindsight-
070 and replay-based methods that reuse exogenous traces, and Wan et al. (2024) establish a connection
071 to linear-mixture models with regret bounds depending only on the exogenous cardinality. While
072 these results underscore the power of exogenous structure, they either require exploration, assume

054 tabular endogenous spaces, or rely on optimistic planning. This creates a fundamental mismatch
 055 with practice in operations research, where exploitation-heavy methods dominate. Hence a central
 056 question remains:

057
 058 *Can pure exploitation strategies achieve near-optimal regret in Exo-MDPs under linear function*
 059 *approximation at scale?*

060
 061 **OUR CONTRIBUTIONS.**

062 **Pure exploitation learning paradigm.** We introduce PEL (Pure Exploitation Learning), a unified
 063 exploitation-only framework for Exo-MDPs in which the learner repeatedly fits value approximations
 064 from observed trajectories and then acts greedily with respect to them. Prior ADP results are largely
 065 asymptotic or depend on problem-specific concavity, while existing RL guarantees for Exo-MDPs
 066 typically assume tabular structure, impose optimism, or reduce to linear mixtures, none of which
 067 address simple greedy methods under function approximation. A key structural observation is
 068 that in Exo-MDPs the exogenous process evolves independently of the agent’s actions, so every
 069 trajectory provides unbiased information about *all* policies. This enables powerful data reuse: a
 070 single exogenous trace can be replayed to evaluate any policy’s performance, eliminating the need for
 071 deliberate exploration. We resolve this gap by leveraging this philosophy and giving the first general
 072 finite-sample regret guarantees for PEL in Exo-MDPs with linear function approximation (LFA).

073 **Exo-bandits and tabular Exo-MDP.** To illustrate the core philosophy of PEL, we first analyze multi-
 074 armed bandits with exogenous information and tabular Exo-MDPs. In both settings we establish regret
 075 guarantees for pure exploitation, complementing and simplifying prior exploration-based approaches.
 076 These results form the basis for our extension to Exo-MDPs with LFA. Classical optimism-based
 077 analysis fails for PEL, and we propose a new regret decomposition and counterfactual analysis to
 078 derive a sublinear regret independent of endogenous space and action space size.

079 **Extension to LFA.** We then propose and analyze LSVI-PE (Least-Squares Value Iteration with
 080 Pure Exploitation), a backward value-iteration procedure that (i) builds empirical models of the
 081 exogenous process, (ii) constructs regression targets using post-decision states that disentangle action
 082 choice from exogenous randomness, and (iii) fits linear value approximations using data gathered
 083 entirely from greedy trajectories. Two technical ideas drive our analysis: (a) a counterfactual trajectory
 084 construction that enables reasoning about the value estimates produced under alternative endogenous
 085 traces, and (b) an anchor-closed Bellman-transport condition that controls how approximate Bellman
 086 updates propagate through the fitted linear representation. The resulting regret bounds are polynomial
 087 in the feature dimension, exogenous state cardinality, and horizon, and critically demonstrate that
 088 explicit exploration is unnecessary because exogenous data reuse suffices.

089 **Necessity of Exo-MDP structure for PEL.** The Exo-MDP assumptions are not only sufficient
 090 and realistic, but also necessary for PEL to work. If either the endogenous transition or the reward
 091 function is unknown, the problem no longer fits the Exo-MDP class, and exogenous traces cannot be
 092 reused for counterfactual evaluation. In such settings, any PEL algorithm necessarily incurs linear
 093 regret, showing that pure exploitation succeeds only under Exo-MDP structure.

094 **Paper organization.** Section 2 reviews related work and Section 3 formalizes the Exo-MDP model.
 095 Section 4 analyzes pure exploitation in the tabular setting, and Section 5 introduces LSVI-PE with
 096 its regret analysis under linear function approximation. Section 6 reports empirical results. Section 7
 097 concludes the paper. Proofs are deferred to the appendix for space considerations.

098
 099 **2 RELATED WORK**

100 We briefly review the most salient related works here and refer to Appendix B for more details.

102 **Exo-MDPs.** Exogenous MDPs, a sub-class of structured MDPs, were introduced by Powell (2022)
 103 and further studied in an evolving line of work (Dietterich et al., 2018; Efroni et al., 2022; Sinclair
 104 et al., 2023b; Powell, 2022). For instance, Dietterich et al. (2018); Efroni et al. (2022) considered
 105 factorizations that filter out the exogenous process, simplifying algorithms but yielding suboptimal
 106 policies since ignoring exogenous states may discard useful information. Sinclair et al. (2023b)
 107 analyzed hindsight optimization, showing that its regret can be bounded by the hindsight bias, a
 108 problem-dependent quantity. Most closely related to our work, Wan et al. (2024) establish statistical

108 connections between Exo-MDPs and linear mixture models and design exploration-based algorithms
 109 with regret guarantees in fully discrete Exo-MDPs, assuming finite endogenous and exogenous state
 110 spaces and primarily i.i.d. exogenous inputs, with a Markovian extension. Overall, existing results
 111 largely focus on discrete endogenous dynamics and i.i.d. (or simplified) exogenous processes and
 112 typically rely on explicit exploration or optimism. In contrast, we study Exo-MDPs with *continuous*
 113 *endogenous states* and *Markovian exogenous processes*, and we provide the first near-optimal finite-
 114 sample regret guarantees for *pure exploitation* strategies in this more general setting.

115 **Exploitation-based ADP.** A parallel line of work in ADP shows that greedy or exploitation-oriented
 116 strategies can succeed under strong structural assumptions. Nascimento & Powell (2009) propose a
 117 pure-exploitation ADP method for the lagged asset acquisition model, leveraging concavity of the
 118 value function to guarantee convergence without explicit exploration. Nascimento & Powell (2013)
 119 extend this to vector-valued controls in storage problems under similar conditions. More broadly,
 120 Jiang & Powell (2015) and Powell (2022) highlight methods such as Monotone-ADP and post-
 121 decision state exploitation schemes that reduce the need for exploration by exploiting monotonicity or
 122 other structural regularities. However, these methods either assume discrete state and action spaces,
 123 rely on asymptotic convergence, or require structural conditions like convexity or piecewise-linearity.
 124 In contrast, we provide finite-sample regret guarantees for pure exploitation in *general* Exo-MDPs
 125 without any explicit structural assumptions.

126 **MDPs with LFA.** Recent work on RL with LFA has studied various linear structures, including
 127 MDPs with low Bellman rank (Jiang et al., 2017; Dann et al., 2018), linear MDPs (Yang & Wang,
 128 2019; Jin et al., 2020), low inherent Bellman error (Zanette et al., 2020), and linear mixture MDPs
 129 (Jia et al., 2020; Ayoub et al., 2020; Zhou et al., 2021). Our results contribute to this literature by
 130 establishing near-optimal regret guarantees for Exo-MDPs with LFA under pure exploitation.

131 3 PRELIMINARIES AND PROBLEM SETTING

132 **Notation.** We write $[N] := \{1, 2, \dots, N\}$ for any positive integers N . For a matrix A , we use $\|A\|$
 133 to denote its operator norm. We use $\mathbb{I}\{\cdot\}$ to denote the indicator function. For any $x \in \mathbb{R}$, we define
 134 $[x]^+ := \max\{x, 0\}$. We use $\tilde{\mathcal{O}}(\cdot)$ to denote $\mathcal{O}(\cdot)$ omitting logarithmic factors. A table of notation is
 135 provided in Appendix A.

136 **MDPs with Exogenous States.** We consider Exogenous Markovian Decision Processes (Exo-
 137 MDPs) with Markovian exogenous dynamics, a subclass of MDPs that explicitly separates the state
 138 into *endogenous* and *exogenous* components (Dietterich et al., 2018; Effroni et al., 2022; Sinclair
 139 et al., 2023b; Powell, 2022). Here, a state $s = (x, \xi)$ factorizes into an endogenous (system) state
 140 $x \in \mathcal{X}$ and exogenous input $\xi \in \Xi$. Intuitively, the exogenous state ξ_h captures all randomness
 141 (e.g., demand, arrivals, or prices), while the endogenous state x_h captures the system’s internal
 142 configuration. Because actions cannot influence ξ_h , the agent cannot manipulate future randomness,
 143 which is central to our pure-exploitation results. Formally, an Exo-MDP is defined by the tuple
 144 $\mathcal{M}(\mathbb{P}, f, r) = (\mathcal{X} \times \Xi, \mathcal{A}, \mathbb{P}, r, H)$. At each stage h , the agent selects an action $a_h = \pi_h(s_h) \in \mathcal{A}$
 145 given the current state $s_h = (x_h, \xi_h)$ under their policy $\pi = (\pi_h)_{h \in [H]} \in \Pi$ where $\Pi = \{(\pi_h)_{h \in [H]} : \pi_h : \mathcal{X} \times \Xi \rightarrow \mathcal{A}\}$. The exogenous state evolves as a Markov process $\xi_{h+1} \sim \mathbb{P}_h(\cdot | \xi_h)$, independent
 146 of x_h and a_h .¹ Throughout we assume the exogenous state space is discrete, which is well-aligned
 147 in operations research where the exogenous randomness corresponds to discrete demand levels
 148 in inventory control (Besbes & Muharremoglu, 2013; Cheung et al., 2023) or job types in cloud
 149 computing systems (Balseiro et al., 2020; Sinclair et al., 2023b).

150 Conditional on (x_h, a_h, ξ_h) , the endogenous process evolves and the reward function is specified by
 151 deterministic functions:

$$152 \quad x_{h+1} = f(x_h, a_h, \xi_{h+1}), \quad r_h = r(x_h, a_h, \xi_h) \in [0, 1].$$

153 The endogenous dynamics are still stochastic, only deterministic as a function of the exogenous state
 154 distribution through f . The full transition kernel from a state can be written as $P(s_{h+1}|s_h, a_h) =$
 155 $1[f(x_h, a_h, \xi_{h+1}) = x_{h+1}] \mathbb{P}_h(\xi_{h+1} | \xi_h)$.

156 **Remark 1** (Example application). These modeling assumptions are well-motivated in many op-
 157 eration research applications, especially resource management. For example, in inventory con-
 158 trol, the endogenous state x_h is the on-hand inventory level, while the exogenous state ξ_h is the

159 ¹We discuss the general m -Markovian setting in Appendix C.

162 demand realization at time h (Madeka et al., 2022). Actions a_h correspond to order quantities.
 163 The system transition function are deterministic given demand, e.g. the newsvendor dynamics
 164 $x_{h+1} = f(x_h, a_h, \xi_{h+1}) = \max\{x_h + a_h - \xi_{h+1}, 0\}$. The reward depends on sales revenue and
 165 holding or stockout costs, $r(x_h, a_h, \xi_h)$. The only randomness arises from the exogenous demand
 166 process. We give more examples of Exo-MDPs in Appendix C.1.3.

167 **Value Functions and Bellman Equations.** For a policy π , the action-value functions and state-value
 168 functions at step h are defined as:

$$170 \quad Q_h^\pi(s, a) := \mathbb{E} \left[\sum_{\tau=h}^H r(x_\tau, a_\tau, \xi_\tau) \mid (s_h, a_h) = (s, a), \pi \right], \quad V_h^\pi(s) := Q_h^\pi(s, \pi_h(s)).$$

172 We also define *hindsight value functions* for a fixed exogenous trace $\xi_{>h} = (\xi_{h+1}, \dots, \xi_H)$:

$$174 \quad Q_h^\pi(s, a, \xi_{>h}) := \sum_{\tau=h}^H r(s_\tau, a_\tau, \xi_\tau) \mid (s_h, a_h) = (s, a), \pi, \quad V_h^\pi(s, \xi_{>h}) := Q_h^\pi(s, \pi_h(s), \xi_{>h}).$$

175 These are deterministic once $\xi_{>h}$ are fixed, so no Monte Carlo sampling is required under the known
 176 functions f and g . Sinclair et al. (2023b) show that unconditional values are expectations over
 177 hindsight values, i.e. for every $h \in [H], (s, a) \in \mathcal{S} \times \mathcal{A}$, and policy π ,

$$179 \quad Q_h^\pi(s, a) = \mathbb{E}_{\xi_{>h}} [Q_h^\pi(s, a, \xi_{>h})], \quad V_h^\pi(s) = \mathbb{E}_{\xi_{>h}} [V_h^\pi(s, \xi_{>h})],$$

180 where the expectation is taken over the conditional distribution $\xi_{>h} \sim \mathbb{P}_h(\cdot \mid \xi_h)$.

182 **Online Learning.** We consider an agent interacting with the Exo-MDP over K episodes. At the
 183 beginning of episode k , the agent starts from an initial state s_1^k and commits to a policy $\hat{\pi}^k \in \Pi$.
 184 At each step h , the agent observes $s_h^k = (x_h^k, \xi_h^k)$, takes action $a_h^k = \hat{\pi}_h^k(s_h^k)$, receives reward
 185 $r(x_h^k, a_h^k, \xi_h^k)$, observes ξ_{h+1}^k , and transitions to $x_{h+1}^k = f(x_h^k, a_h^k, \xi_{h+1}^k)$. Each episode has H steps.
 186 The performance of an algorithm is measured by its cumulative simple regret over K episodes:

$$187 \quad \text{SR}(\text{alg}, k) := V_1^{\pi^*}(s_1) - V_1^{\hat{\pi}^k}, \quad \text{CR}(\text{alg}, K) := \sum_{k=1}^K [V_1^{\pi^*}(s_1) - V_1^{\hat{\pi}^k}(s_1)],$$

189 where $\pi^* = \arg \max_{\pi \in \Pi} V_1^\pi(s)$ is the optimal policy and $\hat{\pi}^k$ is the policy employed in episode k .
 190 The initial exogenous state ξ_1^k in each episode can be arbitrarily chosen. For each $(k, h) \in [K] \times [H]$,
 191 we denote by $\mathcal{H}_h^k \triangleq (s_1^k, a_1^k, s_2^k, a_2^k, \dots, s_H^k, a_H^k, \dots, s_h^k, a_h^k)$ the (random) history up to step h of
 192 episode k . We define $\mathcal{F}_k \triangleq \mathcal{H}_H^{k-1}$ as the history up to episode $k-1$. We use $\xi^k := (\xi^l)_{l \in [k]}$ to
 193 denote the exogenous trace up to the end of episode k .

195 4 PURE EXPLOITATION LEARNING IN TABULAR EXO-MDPs

198 We now illustrate the philosophy of *Pure Exploitation Learning* (PEL). In Exo-MDPs, the only
 199 unknown component is the *exogenous* process, which evolves according to a Markov chain inde-
 200 pendent of the agent’s actions. As a result, trajectories collected under *any policy* provide unbiased
 201 information about this process, so explicit exploration is *not required*. PEL builds on this observation:
 202 instead of adding optimism or randomization, PEL algorithms repeatedly *fit* empirical models or
 203 value functions from observed exogenous traces and then acts *greedily* with respect to these estimates.
 204 To summarize we define PEL algorithms as:

205 **Definition 1** (Informal). PEL denotes the family of algorithms that, at each round or episode,
 206 construct an empirical value function from previously observed exogenous traces and act by greedily
 207 maximizing this function, with no optimism or forced exploration.

208 We next make PEL concrete in two simple settings: (i) an Exo-bandit warm-up ($H = 1$) and (ii) the
 209 tabular Exo-MDP. After presenting regret guarantees and computational remarks, we conclude with
 210 an impossibility example showing that PEL can fail in general MDPs without exogenous structure.
 211 We then move onto the linear function approximation case.

213 4.1 WARM-UP: EXO-BANDITS

215 We start with multi-armed bandits with exogenous information (coinciding with bandits with full
 216 feedback), an Exo-MDP with no states and $H = 1$. At each round k the agent selects arm a_k , an

216 exogenous input ξ_k is realized, and because the reward map $r(a, \xi)$ is known the agent can evaluate
 217 the reward $r(a, \xi_k)$ of *all* arms. Following Wan et al. (2024) we call this setting an Exo-Bandit.
 218

219 Here, the PEL strategy reduces to the classic Follow-The-Leader (FTL) strategy: at round k
 220 simply choose the arm with the largest empirical mean reward $a_k \in \arg \max_{a \in \mathcal{A}} \hat{\mu}_a(k) :=$
 221 $\frac{1}{k-1} \sum_{s=1}^{k-1} r(a, \xi_s)$. This procedure is entirely exploration free, unlike in classical bandits where
 222 exploration schemes such as UCB or Thompson Sampling are essential for learning (Auer et al.,
 223 2002; Russo et al., 2018). **This contrast illustrates how exogenous information fundamentally changes**
 224 **the role of exploration since the algorithm can use the *counterfactual* information inferred from the**
 225 **observed exogenous information.**

226 **Proposition 1.** Assume rewards are σ^2 -sub-Gaussian. Then the expected per-round simple re-
 227 gret of FTL satisfies $\text{SR}(\text{FTL}, k) \leq \sqrt{\frac{2\sigma^2 \log A}{k-1}}$, and consequently the cumulative regret obeys
 228 $\text{CR}(\text{FTL}, K) \leq 2\sigma\sqrt{(K-1)\log A}$.
 229

230 The proof is provided in Appendix F.1. These regret bounds recover standard full-information or
 231 experts-type guarantees and are are minimax-optimal (Cesa-Bianchi & Lugosi, 2006; Shalev-Shwartz
 232 et al., 2012). The point here is not novelty but an illustration: when full feedback is available via the
 233 exogenous feedback, simple PEL suffices, and additional exploration is no longer necessary.
 234

235 4.2 TABULAR EXO-MDPs

236 We now extend PEL to finite-horizon Exo-MDPs with finite state and action spaces. Since exogenous
 237 traces can be reused across policies, one can form unbiased value estimates and apply Follow-the-
 238 Leader (FTL) at the policy level. This yields near-optimal regret bounds, consistent with Sinclair
 239 et al. (2023b), but evaluating all policies amounts to empirical risk minimization (ERM) over Π . This
 240 is computationally infeasible in general since $|\Pi| \leq |\mathcal{A}|^{H|\mathcal{X}||\Xi|}$. See Appendix D for a discussion of
 241 this algorithm and the result.
 242

243 To address this, we consider a *more practical* PEL instance, Predict-Then-Optimize (PTO). PTO first
 244 estimates the exogenous transition kernels $\hat{\mathbb{P}}_h^k(\cdot | \xi_h)$ (e.g., via empirical counts or MLE), and then
 245 plugs them into standard dynamic programming to compute greedy policies:
 246

$$\begin{aligned} \hat{Q}_h^k(s_h, a_h) &:= r(x_h, a_h, \xi_h) + \mathbb{E}_{\xi_{h+1} | \xi_h} [\hat{V}_{h+1}^k(f(x_h, a_h, \xi_{h+1}), \xi_{h+1}); \hat{\mathbb{P}}^k], \\ \hat{\pi}_h^k(s_h) &\in \arg \max_{a_h} \hat{Q}_h^k(s_h, a_h), \quad \hat{V}_h^k(s_h) := \hat{Q}_h^k(s_h, \hat{\pi}_h^k(s_h)). \end{aligned}$$

250 The following theorem bounds the cumulative regret of PTO under Markovian exogenous noise by
 251 reducing model error to *exogenous-row* errors, yielding rates independent of $|\mathcal{X}|$ and $|\mathcal{A}|$.
 252

253 **Theorem 1** (Regret of PTO under Markovian exogenous process). With high probability, the cumula-
 254 tive regret of PTO after K episodes satisfies
 255

$$\text{CR}(\text{PTO}, K) \leq \tilde{\mathcal{O}}(H^2|\Xi|\sqrt{K}).$$

257 A key challenge is that classical optimism-based analysis fails for pure exploitation in Exo-MDPs.
 258 Even though the only unknown is the exogenous kernel P_Ξ , the optimistic inequality $V_1^{\pi^*} - \hat{V}_1^{k, \pi^k} \leq 0$
 259 does not hold, so the usual simulation-lemma telescoping breaks. We instead introduce a *new regret*
 260 *decomposition* with two *double value gaps*, separating model errors for π^* and π^k . While the
 261 on-policy term can be bounded as in classical analyses, the term for π^* cannot—its trajectory is
 262 never observed. This motivates our use of *counterfactual trajectories* that follow π^* but share
 263 the same exogenous realization ξ^k . Conditioning on the exogenous filtration allows a simulation-
 264 lemma bound without requiring visitations under π^* . This rewrites the value gaps purely in terms
 265 of exogenous-kernel errors, replacing state-action counts by policy-independent exogenous counts
 266 $C_h^k(\xi_h)$, resolving the policy-misalignment issue and yielding sublinear regret independent of the
 267 endogenous state and action spaces.

268 Unlike the exhaustive ERM/FTL approach, which is statistically sound but computationally infeasible,
 269 PTO provides a practical and efficient PEL implementation. It runs in time polynomial in $|\mathcal{X}|$, $|\mathcal{A}|$,
 and H , while preserving regret guarantees that depend only mildly on the exogenous cardinality $|\Xi|$.
 270

270 4.3 IMPOSSIBILITY: PURE EXPLOITATION CAN FAIL IN GENERAL MDPs
271272 To understand why the Exo-MDP structure is essential for PEL, we examine what happens when its
273 key assumptions are violated. Specifically, we consider PEL when either the endogenous transition
274 function f or the reward function r is unknown.275 **Proposition 2.** For any pure-exploitation algorithm, there exists a tabular MDP with unknown
276 transition function f or unknown reward function r on which the algorithm suffers linear regret.
277278 The proof is provided in Section C.1.2. This result shows that once f or r is unknown, the class of
279 otherwise tabular Exo-MDPs already contains instances where every PEL algorithm incurs linear
280 regret. In such settings, pure exploitation is not minimax-sufficient. Hence, the Exo-MDP structure
281 is not just sufficient, it is the critical condition that makes it possible for PEL to achieve sublinear
282 regret, in sharp contrast to the general tabular MDP setting with unknown f or r .
283284 **Discussion.** While this section considered simple tabular Exo-MDPs, we showed that pure ex-
285 ploitation suffices: exploration is unnecessary because exogenous randomness is decoupled from the
286 agent’s actions, and Exo-MDP structure is necessary for PEL to work. With the right implementation
287 (e.g., PTO), PEL is both statistically and computationally efficient. However, these results hinge on
288 tabular representations, limiting scalability. In the next section, we extend these ideas to continuous
289 state and action spaces under linear function approximation.
290291 5 LINEAR FUNCTION APPROXIMATION
292293 The previous section established that PEL suffices in tabular Exo-MDPs. However, in order to
294 make this useful for more **realistic and high-dimensional** problems, we need to move beyond finite
295 endogenous state spaces. This section develops LSVI-PE, a simple and efficient pure-exploitation
296 algorithm under linear function approximation. Our algorithm leverages two structural ideas: (i)
297 **post-decision states, which remove the confounding between actions and exogenous noise;** and (ii)
298 **counterfactual trajectories, the same principle that underpinned our tabular analysis.**299 **Continuous Exo-MDPs.** We now consider Exo-MDPs with continuous endogenous states $x_h \in \mathcal{X}$,
300 continuous actions $a_h \in \mathcal{A}$, and finite exogenous states $\xi_h \in \Xi$ over horizon H . **This extension is**
301 **essential for modeling realistic operations research and control applications, where system states** (e.g.,
302 **inventory levels, resource capacities, storage levels**) **and actions are naturally continuous.** Following
303 the ADP literature (Nascimento & Powell, 2009; 2013; Powell, 2022), we assume that the dynamics
304 decompose into two steps:
305

306
$$x_h^a = f^a(x_h, a_h) \in \mathcal{X}^a \subset \mathcal{X} \text{ (post-decision state)}, \quad x_{h+1} = g(x_h^a, \xi_{h+1}) \in \mathcal{X} \text{ (next state)},$$

307 with $\xi_{h+1} \sim \mathbb{P}_h(\cdot | \xi_h)$. For any policy π , we define the *post-decision value function*
308

309
$$V_h^{\pi, a}(x^a, \xi) = \mathbb{E}_{\xi' \sim \mathbb{P}_h(\cdot | \xi)} \left[V_{h+1}^{\pi} \left(g(x^a, \xi'), \xi' \right) \right],$$

310 which represents the expected downstream value after committing to action a_h but before the next
311 exogenous state is revealed. The pre-decision value function then decomposes as
312

313
$$V_h^{\pi}(x, \xi) = r(x, \pi(x, \xi), \xi) + V_h^{\pi, a}(f^a(x, \pi(x, \xi)), \xi).$$

314 The optimal policy also obeys
315

316
$$V_h^*(x, \xi) = \max_{a \in \mathcal{A}} \left\{ r(x, a, \xi) + V_h^{\pi, a}(f^a(x, a), \xi) \right\}, \quad V_h^{\pi, a}(x^a, \xi) = \mathbb{E}_{\xi' \sim \mathbb{P}_h(\cdot | \xi)} \left[V_{h+1}^*(g(x^a, \xi'), \xi') \right].$$

317
318 We now formalize the definition of Exo-MDP with linear function approximation (LFA):
319320 **Definition 2.** An Exo-MDP is said to satisfy **post-decision LFA** with respect to a known feature
321 mapping $\phi: \mathcal{X} \rightarrow \mathbb{R}^d$ if, for every policy π , step h , and state $(x^a, \xi) \in \mathcal{X} \times \Xi$,
322

323
$$V_h^{\pi, a}(x^a, \xi) = \phi(x^a)^\top w_h^{\pi}(\xi),$$

324 where $\sup_{x^a} \|\phi(x^a)\|_2 \leq 1$, and the weight vectors satisfy $\sup_{\pi, h, \xi} \|w_h^{\pi}(\xi)\|_2 \leq \sqrt{d}$.
325

324 Thus, post-decision LFA can be viewed as an Exo-MDP analogue of the linear MDP assumption,
 325 tailored to exploit the separation between endogenous dynamics and exogenous randomness. We
 326 denote the optimal weights by $w_h^*(\xi) := w_h^{\pi^*}(\xi)$ so that $V_h^{\star,a}(x^a, \xi) = \phi(x^a)^\top w_h^*(\xi)$.
 327

328 Since the endogenous state space \mathcal{X} may be continuous, we cannot directly regress on all post-
 329 decision states. To make the LFA identifiable and the least-squares updates well defined, we introduce
 330 a finite collection of representative post-decision states whose feature vectors span the feature space.

331 **Assumption 1** (Anchor set). For each step h , there exist $N \geq d$ fixed post-decision states
 332 $\{x_h^a(n)\}_{n=1}^N$ such that the feature matrix $\Phi_h := [\phi(x_h^a(1)), \dots, \phi(x_h^a(N))] \in \mathbb{R}^{d \times N}$ has full
 333 row rank, i.e., $\text{rank}(\Phi_h) = d$.

335 Together, the LFA assumption and anchor condition provide a tractable representation that supports
 336 efficient algorithms while keeping regret bounds polynomial in the feature dimension d rather than
 337 the size of the underlying endogenous state or action spaces. We also emphasize that Assumption 1 is
 338 standard in the ADP literature (Nascimento & Powell, 2009; 2013).

340 5.1 ALGORITHM

342 In this section, we present our algorithm **Least-Squares Value Iteration with Pure Exploitation**
 343 (LSVI-PE) for Exo-MDPs with LFA. See Algorithm 1 for pseudo-code.

344 **High-level intuition.** Our algorithm LSVI-PE alternates between two phases:

- 347 **1. Policy evaluation (backward pass):** At each stage h , we construct Bellman regression targets
 348 using the empirical exogenous model $\hat{\mathbb{P}}_h$ (Line 10). Then we run least-squares regression on the
 349 anchor states to produce weight vectors $w_h^k(\xi)$ for each exogenous state ξ and stage h , defining a
 350 linear approximation for the value function as $V_h^{k,a}(x^a, \xi) = \phi(x^a)^\top w_h^k(\xi) \approx V_h^*(x^a, \xi)$.
- 351 **2. Policy execution (forward pass):** In episode k , the agent acts greedily with respect to these value
 352 estimates (Line 19). The observed exogenous trajectory is used to refine the empirical estimate $\hat{\mathbb{P}}$.

354 Before moving onto the regret analysis we briefly comment on several aspects of the algorithm.

356 **Role of anchor states.** Anchor states $\{x_h^a(n)\}_{n=1}^N$ are chosen to guarantee that the feature matrix
 357 Φ_h has full row rank (Assumption 1). This ensures that the regression weights $w_h^k(\xi)$ are unique.
 358 Intuitively, anchors serve as representative endogenous states: they provide just enough coverage of
 359 the feature space to propagate accurate value estimates without requiring samples from the entire
 360 (possibly continuous) state space.

361 Anchor states are not unknown structural assumptions but design choices made by the learner.
 362 Assumption 1 simply requires fixing a finite set of post-decision states whose feature vectors span the
 363 space. These serve as the representative grid underlying the feature map (e.g., hat bases, spline knots,
 364 or tile centers (Sutton et al., 1998)). This mirrors standard practice in RL with LFA, where choosing
 365 ϕ implicitly specifies the underlying basis points. Such anchor constructions are routine in ADP and
 366 operations-research applications, including inventory control and storage systems, where practitioners
 367 exploit domain structure (e.g., piecewise linearity or convexity) to select natural breakpoints as
 368 anchors (Nascimento & Powell, 2009; 2013; Powell, 2022).

369 **Exploration-free design.** Conventional RL algorithms with LFA rely on explicit exploration
 370 mechanisms. For instance, LSVI-UCB (Jin et al., 2020) enforces optimism in the value estimates,
 371 while RLSVI (Osband et al., 2016) injects random perturbations into regression targets. In contrast,
 372 LSVI-PE is a *pure exploitation* algorithm: all updates come directly from empirical exogenous
 373 trajectories observed along greedy play. **The independence of the exogenous process makes this
 374 design both natural and theoretically justified, and we later show it achieves near-optimal regret.**

375 **Computational efficiency.** In LSVI-PE, regression targets are computed only at the anchor states,
 376 and updates decompose stage by stage. This structure makes the algorithm scalable when the
 377 endogenous state and action spaces are continuous. Compared to FTL-style policy search, which
 requires evaluating every policy, LSVI-PE is implementable in polynomial time.

378

Algorithm 1 LSVI-PE

379

Require: Anchor states $\{x_h^a(n)\}_{h=1,n=1}^{H,N}$; feature map $\phi : \mathcal{X} \rightarrow \mathbb{R}^d$

1: **Precompute:** For each h , set $\Phi_h \leftarrow [\phi(x_h^a(1)), \dots, \phi(x_h^a(N))] \in \mathbb{R}^{d \times N}$ and $\Sigma_h \leftarrow \Phi_h \Phi_h^\top$

2: **Initialize:** For each h and $\xi, \xi' \in \Xi$, set counts $C_h(\xi, \xi') \leftarrow 0$ and $\hat{\mathbb{P}}_h^0(\xi'|\xi) \leftarrow 1/|\Xi|$; set $w_h^0(\xi) \leftarrow \mathbf{0}$ for all $h \in [H+1]$,

3: **for** $k = 1$ to K **do** *// Episode loop*

4: // Policy computation using data up to $k-1$ //

5: **for** $h = H$ down to 1 **do**

6: **for** each $\xi \in \Xi$ **do**

7: $b_h^k(\xi) \leftarrow \mathbf{0} \in \mathbb{R}^d$

8: **for** $n = 1$ to N **do**

9: Define $x'_n(\xi') \leftarrow g(x_h^a(n), \xi')$ for each $\xi' \in \Xi$

10: $y_h^k(n; \xi) \leftarrow \sum_{\xi' \in \Xi} \hat{\mathbb{P}}_h^{k-1}(\xi'|\xi) \max_{a' \in \mathcal{A}} \left\{ r(x'_n(\xi'), a', \xi') + \phi(f^a(x'_n(\xi'), a'))^\top w_{h+1}^k(\xi') \right\}$

11: $b_h^k(\xi) \leftarrow b_h^k(\xi) + \phi(x_h^a(n)) y_h^k(n; \xi)$

12: **end for**

13: $w_h^k(\xi) \leftarrow \Sigma_h^{-1} b_h^k(\xi)$ *// Least squares on anchors*

14: **end for**

15: **end for**

16: // Act in episode k with $\{w_h^k\}$ and collect data ξ^k //

17: Receive x_1^k ; observe ξ_1^k

18: **for** $h = 1$ to H **do**

19: $a_h^k \in \arg \max_{a \in \mathcal{A}} \left\{ r(x_h^k, a, \xi_h^k) + \phi(f^a(x_h^k, a))^\top w_h^k(\xi_h^k) \right\}$

20: $x_h^{k,a} \leftarrow f^a(x_h^k, a_h^k)$; observe ξ_{h+1}^k ; set $x_{h+1}^k \leftarrow g(x_h^{k,a}, \xi_{h+1}^k)$

21: Update counts: $N_h^k(\xi_h, \xi_{h+1}) \leftarrow N_h^{k-1}(\xi_h, \xi_{h+1}) + \mathbb{I}\{(\xi_h, \xi_{h+1}) = (\xi_h^k, \xi_{h+1}^k)\}$;

22: **end for**

23: **Update empirical model:** For all $h, \xi, \xi', \hat{\mathbb{P}}_h^k(\xi'|\xi) \leftarrow \frac{N_h^k(\xi, \xi')}{\sum_{\zeta \in \Xi} N_h^k(\xi, \zeta)}$.

24: **end for**

25: **Output:** $w_h^k(\xi)$ for each h and ξ

408

409

5.2 REGRET ANALYSIS

411

Before presenting our main result we introduce some additional notation. Let $\phi_h(n) := \phi(x_h^a(n))$ and define the anchor feature matrix $\Phi_h := [\phi_h(1), \dots, \phi_h(N)] \in \mathbb{R}^{d \times N}$. We also define $\lambda_0 := \min_{h \in [H]} \lambda_{\min}(\Sigma_h) > 0$, where $\Sigma_h = \Phi_h \Phi_h^\top$ is the anchor covariance. Fix h, π , and $\xi' \in \Xi$. We define the *post-decision transition operator* as $\mathcal{T}_h^\pi(\xi') : \mathcal{X}^a \rightarrow \mathcal{X}^a$ as

416

$$\mathcal{T}_h^\pi(\xi')(x^a) := f^a \left(g(x^a, \xi'), \pi(g(x^a, \xi'), \xi') \right).$$

417

This represents one step of evolution:

419

420

421

$$x^a \xrightarrow{\xi'} x' \xrightarrow{\pi} a' \xrightarrow{f^a} (x^a)' \quad \text{as the compressed arrow} \quad x^a \xrightarrow[\pi]{\xi'} (x^a)' = \mathcal{T}_h^\pi(\xi')(x^a).$$

422

We introduce two additional assumptions to establish our regret guarantees. We begin with a weaker requirement: that the anchor states are *closed under the Bellman operator*. Intuitively, this condition ensures that when an anchor state undergoes one step of post-decision transition, its image remains in the span of the anchor feature representation.

426

427

Assumption 2 (Anchor-closed Bellman transport (weaker)). For any $\pi, h \in [H]$, and $\xi' \in \Xi$, there exists a matrix $M_h^\pi(\xi') \in \mathbb{R}^{d \times d}$ with $\sup_{\pi, \xi', h} \|M_h^\pi(\xi')\|_2 \leq 1$ such that for every anchor $x_h^a(n)$,

428

429

$$\phi(\mathcal{T}_h^\pi(\xi')(x_h^a(n))) = M_h^\pi(\xi') \phi(x_h^a(n)).$$

430

431

Note that this establishes the one-step image of any anchor under the post-decision transition lies in the same feature span and is linearly transported by $M_h^\pi(\xi')$.

Assumption 3. For any x^a , $\phi(x^a)$ is in the nonnegative cone of Φ .

432 Assumption 3 ensures the pointwise policy-improvement: the greedy update makes all anchor
 433 residuals nonnegative, and thus guarantees improvement at arbitrary post-decision states.

434 **Theorem 2.** Under Assumption 2-3, the regret of `LSVI-PE` after K episodes satisfies

$$436 \text{CR}(\text{LSVI-PE}, K) \leq \tilde{\mathcal{O}}\left(\left(\sqrt{N/\lambda_0} + \sqrt{d}\right)|\Xi|H\sqrt{K}\right).$$

438 PEL achieves standard sublinear regret under Assumption 2, with dependence on the feature di-
 439 mension d , the number of anchors and their conditioning via $\sqrt{N/\lambda_0}$, and the exogenous state
 440 size $|\Xi|$, while remaining independent of the size of the endogenous state and action spaces. In
 441 well-conditioned designs (e.g., $\lambda_0 = \Theta(1)$ and $N \approx d$), the bound simplifies to $\tilde{\mathcal{O}}(|\Xi|H\sqrt{dK})$.
 442

443 The intuition behind the proof parallels the tabular setting. We adopt a new decomposition that
 444 requires controlling two value gaps. The key step is to bound the optimal-policy gap using a simulation
 445 lemma applied not to the realized trajectory of π^k , but to a *counterfactual trajectory* generated under
 446 π^* while sharing the same realized exogenous sequence. Assumption 2 ensures that all Bellman
 447 regression targets remain in the anchor span, so each stage- h update reduces to a well-conditioned
 448 least-squares problem governed by λ_0 . Along the counterfactual process, the proof decomposes the
 449 error into (i) Bellman regression errors at the anchors and (ii) exogenous-model errors, and then
 450 couples both components to the observed exogenous trajectory through martingale concentration on
 451 the estimated exogenous rows. This contrasts sharply with standard linear-MDP optimism analyses,
 452 which rely on confidence sets and self-normalized concentration in parameter space; here the central
 453 analytic objects are the counterfactual trajectories and the exogenous martingales that enable a
 454 stage-wise telescoping of Bellman errors and yield the $\tilde{\mathcal{O}}(\sqrt{K})$ regret bound without optimism. Full
 455 proofs are in Appendix G.

456 Our next assumption strengthens Assumption 2 to hold for all x^a instead of just the anchors:

457 **Assumption 4** (Global Bellman-closed transport (stronger)). For any $\pi, h \in [H]$, and $\xi' \in \Xi$, there
 458 exists $M_h^\pi(\xi')$ with $\sup_{\pi, \xi', h} \|M_h^\pi(\xi')\|_2 \leq 1$ such that for all x^a , $\phi(\mathcal{T}_h^\pi(\xi')(x^a)) = M_h^\pi(\xi')\phi(x^a)$.

459 Under this we can establish the following regret guarantee:

460 **Theorem 3.** Under Assumption 4, the regret of `LSVI-PE` after K episodes satisfies

$$462 \text{CR}(\text{LSVI-PE}, K) \leq \tilde{\mathcal{O}}\left((H + \sqrt{N/\lambda_0})|\Xi|H\sqrt{K}\right).$$

464 While both theorems share the same dependence on K , this refinement tightens the guarantees when
 465 $H < d$. Although Assumption 4 is stricter than what `LSVI-PE` requires, we show it yields sharper
 466 propagation bounds when exact closure is plausible (or enforced by feature design).

467 We provide a detailed discussion of the anchor-set assumptions in Appendix C.2, including the role
 468 and selection of anchor states, connections to coresets and Frank-Wolfe methods, the invertibility and
 469 conditioning of Σ_h , the reasonableness of Assumptions 2-4, and several weakenings and relaxations.
 470 Below we briefly highlight the intuition behind Assumptions 2-4.

471 **Discussion on Assumptions 2 to 4.** Many Exo-MDPs such as storage problems or linearizable
 472 post-decision dynamics naturally induce linear transport within common LFA classes (linear splines,
 473 tile coding, localized RBFs, etc). Moreover, the constraint $\|M_h^\pi(\xi')\|_2 \leq 1$ ensures that one-step
 474 feature transport is non-expansive, a standard stability condition in ADP/LFA analyses. Additional
 475 discussion of Assumptions 2 to 4 is provided in Appendix E.

476 **LSVI-PE with misspecification (approximation) error.** When Assumptions 2 to 4 fails and the
 477 true value functions do not lie exactly in the linear span, or the function class is misspecified, Theorem
 478 5 shows that the regret bounds match the earlier ones with an additive $O(K\varepsilon_{\text{BE}})$ where ε_{BE} measures
 479 the measures the inherent Bellman error² (approximation gap between the true Bellman updates and
 480 the best function in the linear class). This bias term is unavoidable in general, since even an oracle
 481 learner suffers an $O(K\varepsilon_{\text{BE}})$ cumulative bias (Zanette et al., 2020).

482 **Theorem 4.** Assume Assumption 1 holds. Fix $\delta \in (0, 1)$. Then with probability at least $1 - \delta$,

$$484 \text{CR}(\text{LSVI-PE}, K) \leq \tilde{\mathcal{O}}\left(\left(H + \sqrt{\frac{N}{\lambda_0}}\right)|\Xi|H\sqrt{K} + \frac{H}{\sqrt{\lambda_0}}K\varepsilon_{\text{BE}}\right).$$

485 ²Formal definition is provided in Appendix E.1

486 6 NUMERICAL EXPERIMENTS
487488 6.1 TABULAR EXO-MDP
489

490 **Setup.** We evaluate on synthetic tabular Exo-MDPs with
491 endogenous state space $\mathcal{X} = [5]$, exogenous state space
492 $\Xi = [5]$, and action set $\mathcal{A} = [3]$ and horizon $T = 5$, and
493 $K = 250$ episodes. Rewards are drawn i.i.d. as $r(x, a, \xi) \sim$
494 $\text{Unif}(0, 1)$. Endogenous dynamics are deterministic, $x_{h+1} =$
495 $f(x_h, a_h, \xi_{h+1}) = (x_h + a_h + \xi_{h+1}) \bmod X$, while the
496 exogenous process is a Markov chain with transition matrix
497 P_y sampled row-wise from a Dirichlet prior.

498 **Comparisons.** We compare PTO with its optimistic counterpart
499 PTO-Opt (using optimistic model $\tilde{\mathbb{P}}^k$) and PTO-Lite
500 (lightweight estimate $\tilde{\mathbb{P}}^k$ using sub-sampling).

501 Figure 1 illustrates the benefit of PEL. Despite no explicit exploration, PTO
502 outperforms PTO-Lite and the exploration-heavy baseline PTO-Opt in cumulative regret.

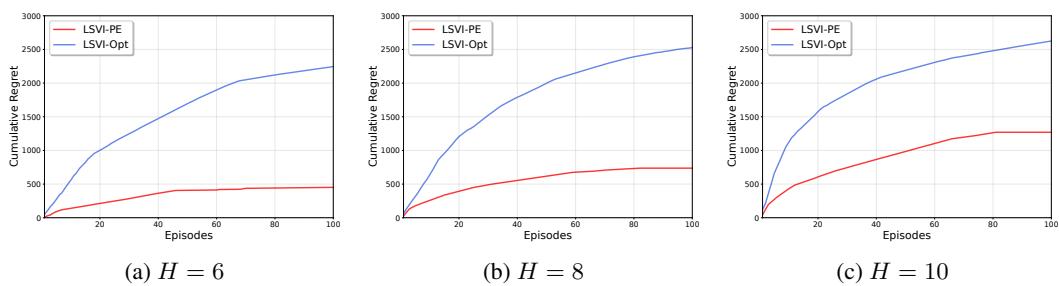
503 6.2 STORAGE CONTROL
504

505 **Setup.** We consider a storage control setting where $x_h \in \mathcal{X} = [0, C]$ denotes the current storage
506 level. After taking action $a_h \in \mathcal{A} = [-a_{\max}, a_{\max}]$, the system transitions to the post-decision
507 state $x_h^a = f^a(x_h, a) = \text{clip}_{[0, C]}(x_h + \eta^+ a^+ - \frac{1}{\eta^-} a^-)$. The exogenous component is the discrete
508 price. The storage level is modeled as $x_{h+1} = g(x_h^a, \xi_{h+1}) = \alpha x_h^a$, $\alpha \in (0, 1]$, with default $\alpha = 1$.
509 The reward function is $r(x_h, a_h, \xi_h) = -\xi_h a_h - \alpha_c |a_h| - \beta_h x_h$, capturing the market transaction,
510 transaction cost, and holding penalty respectively.

511 **Features and anchors.** We discretize \mathcal{X} using anchors $\rho_n = \frac{n-1}{N-1}C$ for $n \in [N]$. A one-dimensional
512 hat basis is employed: for any x^a , the feature vector $\phi(x^a) \in \mathbb{R}^N$ has at most two nonzero entries.
513 Let $\Delta = \rho_{j+1} - \rho_j$. If $x^a \in [\rho_j, \rho_{j+1}]$, then $\phi_j(x^a) = \frac{\rho_{j+1} - x^a}{\Delta}$, $\phi_{j+1}(x^a) = \frac{x^a - \rho_j}{\Delta}$, with all other
514 coordinates zero. At anchor points, the basis reduces to canonical vectors, $\phi(\rho_n) = e_n$, so that
515 $\Phi_h = I_N$ and $\Sigma_h = \Phi_h \Phi_h^\top = I_N$.

517 **Comparisons.** In Figure 2 we compare LSVI-PE with optimism-based exploration LSVI-Opt.
518 Across all instances, LSVI-PE consistently outperforms LSVI-Opt, emphasizing that in Exo-
519 MDPs exploitation strategies dominate optimism-based ones.

520 We provide scaled-up experimental setup and comprehensive comparisons in Appendix H.
521



522 523 524 525 526 527 528 529 Figure 2: Comparison of LSVI-PE and LSVI-Opt across three different time horizon lengths.
530 531 532 533 534 535

7 CONCLUSION

536 We show that exploitation is sufficient in Exo-MDPs: introducing PEL, we give the first finite-sample
537 regret bounds for PEL under tabular and LFA, and demonstrate PEL outperforms optimism-based
538 baselines on synthetic and resource-management benchmarks. Future work include relax structural
539 assumptions (richer function classes, continuous or partially observed exogenous processes) while
preserving exploitation's sample efficiency.

540 ETHICS STATEMENT
541

542 This research is foundational and develops theoretical results on reinforcement learning in Exo-
543 MDPs with linear function approximation. As such, it does not raise any direct ethical concerns.
544 However, applications of our algorithms to specific domains (e.g., inventory control, pricing, or
545 resource allocation) may influence real-world decision-making that affects people and organizations.
546 We therefore encourage practitioners to carefully consider ethical implications such as fairness,
547 accessibility, and potential unintended consequences when deploying these methods in practice.
548

549 REPRODUCIBILITY STATEMENT
550

551 All proofs of theorems and lemmas are included in the appendix, and we clearly specify all assump-
552 tions used in our analysis. Algorithmic details (see Algorithms 1 and 2) are provided to ensure
553 transparency. Our empirical results are based on synthetic Exo-MDP benchmarks and resource-
554 management tasks, both of which we describe in Section 6 and Appendix H. We will release code
555 and simulation environments to facilitate full reproducibility of our experiments.
556

557 REFERENCES
558

559 Shipra Agrawal and Randy Jia. Learning in structured mdps with convex cost functions: Improved
560 regret bounds for inventory management. *Operations Research*, 70(3):1646–1664, 2022.

561 Matias Alvo, Daniel Russo, and Yash Kanoria. Neural inventory control in networks via hindsight
562 differentiable policy optimization. *arXiv preprint arXiv:2306.11246*, 2023.

563 Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
564 problem. *Machine learning*, 47(2):235–256, 2002.

565 Alex Ayoub, Zeyu Jia, Csaba Szepesvari, Mengdi Wang, and Lin Yang. Model-based reinforcement
566 learning with value-targeted regression. In *International Conference on Machine Learning*, pp.
567 463–474. PMLR, 2020.

568 Olivier Bachem, Mario Lucic, and Andreas Krause. Practical coresets constructions for machine
569 learning. *arXiv preprint arXiv:1703.06476*, 2017.

570 Santiago Balseiro, Haihao Lu, and Vahab Mirrokni. Dual mirror descent for online allocation
571 problems. In *International Conference on Machine Learning*, pp. 613–628. PMLR, 2020.

572 Hamsa Bastani, Mohsen Bayati, and Khashayar Khosravi. Mostly exploration-free algorithms for
573 contextual bandits. *Management Science*, 67(3):1329–1349, 2021.

574 Mohsen Bayati, Nima Hamidi, Ramesh Johari, and Khashayar Khosravi. Unreasonable effectiveness
575 of greedy algorithms in multi-armed bandit with many arms. *Advances in Neural Information
576 Processing Systems*, 33:1713–1723, 2020.

577 Omar Besbes and Alp Muharremoglu. On implications of demand censoring in the newsvendor
578 problem. *Management Science*, 59(6):1407–1424, 2013.

579 Nicolo Cesa-Bianchi and Gábor Lugosi. *Prediction, learning, and games*. Cambridge university
580 press, 2006.

581 Ethan Che, Jing Dong, and Hongseok Namkoong. Differentiable discrete event simulation for queuing
582 network control. *arXiv preprint arXiv:2409.03740*, 2024.

583 Haozhe Chen, Ang Li, Ethan Che, Tianyi Peng, Jing Dong, and Hongseok Namkoong. Qgym:
584 Scalable simulation and benchmarking of queuing network controllers. *arXiv preprint
585 arXiv:2410.06170*, 2024.

586 Wang Chi Cheung, David Simchi-Levi, and Ruihao Zhu. Nonstationary reinforcement learning: The
587 blessing of (more) optimism. *Management Science*, 69(10):5722–5739, 2023.

594 Luca Civitavecchia and Matteo Papini. Exploration-free reinforcement learning with linear function
 595 approximation. In *Reinforcement Learning Conference*.
 596

597 Kenneth L Clarkson. Coresets, sparse greedy approximation, and the frank-wolfe algorithm. *ACM
 598 Transactions on Algorithms (TALG)*, 6(4):1–30, 2010.

599 Jim G Dai and Mark Gluzman. Queueing network controls via deep reinforcement learning. *Stochastic
 600 Systems*, 2021.

601

602 Christoph Dann, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E
 603 Schapire. On oracle-efficient pac rl with rich observations. *Advances in neural information
 604 processing systems*, 31, 2018.

605

606 Thomas Dietterich, George Trimponias, and Zhitang Chen. Discovering and removing exogenous
 607 state variables and rewards for reinforcement learning. In *International Conference on Machine
 608 Learning*, pp. 1262–1270. PMLR, 2018.

609

610 Eric Eaton, Marcel Hussing, Michael Kearns, Aaron Roth, Sikata Bela Sengupta, and Jessica
 611 Sorrell. Replicable reinforcement learning with linear function approximation. *arXiv preprint
 612 arXiv:2509.08660*, 2025.

613

614 Yonathan Efroni, Nadav Merlis, Mohammad Ghavamzadeh, and Shie Mannor. Tight regret bounds
 615 for model-based reinforcement learning with greedy policies. *Advances in Neural Information
 Processing Systems*, 32, 2019.

616

617 Yonathan Efroni, Dylan J Foster, Dipendra Misra, Akshay Krishnamurthy, and John Langford.
 618 Sample-efficient reinforcement learning in the presence of exogenous information. In *Conference
 619 on Learning Theory*, pp. 5062–5127. PMLR, 2022.

620

621 Xiaoyu Fan, Boxiao Chen, Tava Lennon Olsen, Hanzhang Qin, and Zhengyuan Zhou. Don’t follow
 622 rl blindly: Lower sample complexity of learning optimal inventory control policies with fixed
 ordering costs. *Available at SSRN 4828001*, 2024.

623

624 Joyce Fang, Martin Ellis, Bin Li, Siyao Liu, Yasaman Hosseinkashi, Michael Revow, Albert
 625 Sadovnikov, Ziyuan Liu, Peng Cheng, Sachin Ashok, David Zhao, Ross Cutler, Yan Lu, and
 626 Johannes Gehrke. Reinforcement learning for bandwidth estimation and congestion control in
 627 real-time communications. *arXiv preprint arXiv:1912.02222*, 2019.

628

629 Jiekun Feng, Mark Gluzman, and Jim G Dai. Scalable deep reinforcement learning for ride-hailing.
 In *2021 American Control Conference (ACC)*, pp. 3743–3748. IEEE, 2021.

630

631 Carlos Guestrin, Daphne Koller, Ronald Parr, and Shobha Venkataraman. Efficient solution algorithms
 632 for factored mdps. *Journal of Artificial Intelligence Research*, 19:399–468, 2003.

633

634 Yichun Hu, Nathan Kallus, and Masatoshi Uehara. Fast rates for the regret of offline reinforcement
 learning. *Mathematics of Operations Research*, 2024.

635

636 Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In *International
 637 conference on machine learning*, pp. 427–435. PMLR, 2013.

638

639 Matthieu Jedor, Jonathan Louëdec, and Vianney Perchet. Be greedy in multi-armed bandits. *arXiv
 preprint arXiv:2101.01086*, 2021.

640

641 Zeyu Jia, Lin Yang, Csaba Szepesvari, and Mengdi Wang. Model-based reinforcement learning with
 642 value-targeted regression. In *Learning for Dynamics and Control*, pp. 666–686. PMLR, 2020.

643

644 Daniel R Jiang and Warren B Powell. An approximate dynamic programming algorithm for monotone
 645 value functions. *Operations research*, 63(6):1489–1511, 2015.

646

647 Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E Schapire. Context-
 648 tual decision processes with low bellman rank are pac-learnable. In *International Conference on
 649 Machine Learning*, pp. 1704–1713. PMLR, 2017.

648 Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
 649 learning with linear function approximation. In *Conference on learning theory*, pp. 2137–2143.
 650 PMLR, 2020.

651 Seok-Jin Kim and Min-hwan Oh. Local anti-concentration class: Logarithmic regret for greedy linear
 652 contextual bandit. *Advances in Neural Information Processing Systems*, 37:77525–77592, 2024.

653 Branislav Kveton, Milos Hauskrecht, and Carlos Guestrin. Solving factored mdps with hybrid state
 654 and action variables. *Journal of Artificial Intelligence Research*, 27:153–201, 2006.

655 Tor Lattimore and Csaba Szepesvári. *Bandit algorithms*. Cambridge University Press, 2020.

656 Dhruv Madeka, Kari Torkkola, Carson Eisenach, Anna Luo, Dean P Foster, and Sham M Kakade.
 657 Deep inventory management. *arXiv preprint arXiv:2210.03137*, 2022.

658 Hongzi Mao, Shaileshh Bojja Venkatakrishnan, Malte Schwarzkopf, and Mohammad Alizadeh.
 659 Variance reduction for reinforcement learning in input-driven environments. *arXiv preprint
 660 arXiv:1807.02264*, 2018.

661 Juliana Nascimento and Warren B Powell. An optimal approximate dynamic programming algorithm
 662 for concave, scalar storage problems with vector-valued controls. *IEEE Transactions on Automatic
 663 Control*, 58(12):2995–3010, 2013.

664 Juliana M Nascimento and Warren B Powell. An optimal approximate dynamic programming
 665 algorithm for the lagged asset acquisition problem. *Mathematics of Operations Research*, 34(1):
 666 210–237, 2009.

667 Afshin Oroojlooyjadid, MohammadReza Nazari, Lawrence V Snyder, and Martin Takáč. A deep q-
 668 network for the beer game: Deep reinforcement learning for inventory optimization. *Manufacturing
 669 & Service Operations Management*, 24(1):285–304, 2022.

670 Ian Osband, Benjamin Van Roy, and Zheng Wen. Generalization and exploration via randomized
 671 value functions. In *International Conference on Machine Learning*, pp. 2377–2386. PMLR, 2016.

672 Warren B Powell. *Reinforcement Learning and Stochastic Optimization: A Unified Framework for
 673 Sequential Decisions*, volume 22. Taylor & Francis, 2022.

674 Hanzhang Qin, David Simchi-Levi, and Ruihao Zhu. Sailing through the dark: Provably sample-
 675 efficient inventory control. Available at SSRN 4652347, 2023.

676 Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen, et al. A tutorial on
 677 thompson sampling. *Foundations and Trends® in Machine Learning*, 11(1):1–96, 2018.

678 Ilya O Ryzhov, Martijn RK Mes, Warren B Powell, and Gerald van den Berg. Bayesian exploration
 679 for approximate dynamic programming. *Operations research*, 67(1):198–214, 2019.

680 Devavrat Shah and Qiaomin Xie. Q-learning with nearest neighbors. *Advances in Neural Information
 681 Processing Systems*, 31, 2018.

682 Shai Shalev-Shwartz et al. Online learning and online convex optimization. *Foundations and Trends®
 683 in Machine Learning*, 4(2):107–194, 2012.

684 Sean R Sinclair, Siddhartha Banerjee, and Christina Lee Yu. Adaptive discretization in online
 685 reinforcement learning. *Operations Research*, 71(5):1636–1652, 2023a.

686 Sean R Sinclair, Felipe Vieira Frujeri, Ching-An Cheng, Luke Marshall, Hugo De Oliveira Barbalho,
 687 Jingling Li, Jennifer Neville, Ishai Menache, and Adith Swaminathan. Hindsight learning for
 688 mdps with exogenous inputs. In *International Conference on Machine Learning*, pp. 31877–31914.
 689 PMLR, 2023b.

690 Richard S Sutton, Andrew G Barto, et al. *Reinforcement learning: An introduction*, volume 1. MIT
 691 press Cambridge, 1998.

692 Jia Wan, Sean R Sinclair, Devavrat Shah, and Martin J Wainwright. Exploiting exogenous structure
 693 for sample-efficient reinforcement learning. *arXiv preprint arXiv:2409.14557*, 2024.

702 Lin Yang and Mengdi Wang. Sample-optimal parametric q-learning using linearly additive features.
703 In *International conference on machine learning*, pp. 6995–7004. PMLR, 2019.
704

705 Liang Yu, Shuqi Qin, Meng Zhang, Chao Shen, Tao Jiang, and Xiaohong Guan. A review of deep
706 reinforcement learning for smart building energy management. *IEEE Internet of Things Journal*, 8
707 (15):12046–12063, 2021.

708 Andrea Zanette, Alessandro Lazaric, Mykel Kochenderfer, and Emma Brunskill. Learning near
709 optimal policies with low inherent bellman error. In *International Conference on Machine Learning*,
710 pp. 10978–10989. PMLR, 2020.
711

712 Zhongjun Zhang, Shipra Agrawal, Ilan Lobel, Sean R Sinclair, and Christina Lee Yu. Reinforcement
713 learning in mdps with information-ordered policies. *arXiv preprint arXiv:2508.03904*, 2025.
714

715 Dongruo Zhou, Quanquan Gu, and Csaba Szepesvari. Nearly minimax optimal reinforcement learning
716 for linear mixture markov decision processes. In *Conference on Learning Theory*, pp. 4532–4576.
717 PMLR, 2021.
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 A TABLE OF NOTATION
757758 Table 1: List of common notations.
759

760 Symbol	761 Definition
<i>Exo-MDP specification</i>	
\mathcal{X}	Endogenous (system) state space
Ξ	Exogenous state space
\mathcal{A}	Action space
H	Planning horizon
K	Number of episodes
$x_t \in \mathcal{X}$	Endogenous state at time t
$\xi_t \in \Xi$	Exogenous input at time t
$a_t \in \mathcal{A}$	Action at time t
$f : \mathcal{X} \times \mathcal{A} \times \Xi \rightarrow \mathcal{X}$	Endogenous transition function, $x_{t+1} = f(x_t, a_t, \xi_t)$
$\mathbb{P}(\xi' \xi)$	Exogenous transition kernel
$r : \mathcal{X} \times \mathcal{A} \times \Xi \rightarrow [0, 1]$	Reward function
$\pi : \mathcal{X} \times \Xi \rightarrow \mathcal{A}$	Policy mapping state to action
$V_h^\pi(x, \xi)$	Value function of policy π at stage h
$Q_h^\pi(x, a, \xi)$	State-action value function of policy π at stage h
$\text{Regret}(K)$	Cumulative regret after K episodes
<i>Pure Exploitation Framework</i>	
PEL	Pure Exploitation Learning framework
FTL	Pure Exploitation algorithm for Exo-bandits ($H = 1$) and tabular Exo-MDPs
LSVI-PE	Pure Exploitation algorithm for Exo-MDPs with linear function approximation
<i>LFA</i>	
$\phi(x)$	Feature map of state x
d	Feature dimension
θ_h	Parameter vector at stage h
\hat{P}_h	Empirical estimate of exogenous transition at stage h
\hat{Q}_h, \hat{V}_h	Estimated Q - and value functions
ι	Logarithmic factor $\log(2KH \Xi /\delta)$ in regret bounds
<i>Storage Control Example</i>	
C	Storage capacity
$x_h \in [0, C]$	Storage level at stage h
$\xi_h \in \Xi$	Price at stage h
$a_h = (a_h^+, a_h^-)$	Charge (a^+) / discharge (a^-) actions
η^+, η^-	Charging/discharging efficiencies
x_h^a	Post-decision state after action a_h
$\hat{\mathbb{P}}(\xi' \xi)$	Estimated price transition kernel
<i>Theoretical Analysis</i>	
δ	Confidence parameter in high-probability bounds
N	number of anchor points
$\mathcal{O}(\cdot), \tilde{\mathcal{O}}(\cdot)$	Standard big- O and log-suppressed complexity notation

800
801 B DETAILED RELATED WORK
802

803 **Exo-MDPs.** Exogenous MDPs, a structured sub-class of MDPs, have been introduced and studied
804 in a growing line of work (Powell, 2022; Dietterich et al., 2018; Efroni et al., 2022; Sinclair et al.,
805 2023b; Feng et al., 2021; Alvo et al., 2023; Chen et al., 2024). Early approaches (e.g., Dietterich et al.
806 (2018); Efroni et al. (2022)) exploit factorizations that filter out the exogenous process, simplifying
807 learning but potentially yielding suboptimal policies since policies agnostic to the exogenous states
808 need not be optimal. Other work leverages hindsight optimization, bounding regret by the hindsight
809 bias, a problem-dependent quantity (Sinclair et al., 2023b; Feng et al., 2021). Across this literature,
the dominant assumptions are that endogenous states and actions are discrete and that guarantees

810 rely on optimism or tabular analysis. More recently, Wan et al. (2024) connect Exo-MDPs to linear
 811 mixture MDPs, proving regret bounds that are independent from the size of the endogenous state
 812 and action spaces, but their results apply only to discrete endogenous states. In contrast, we study
 813 Exo-MDPs with *continuous endogenous states* and *Markovian exogenous processes*, and establish
 814 the first near-optimal regret guarantees for *pure exploitation* under linear function approximation.

815 **Exploitation-based ADP.** A parallel line of research in ADP has shown that greedy or exploitation
 816 only strategies can succeed under strong structural assumptions. Nascimento & Powell (2009) analyze
 817 a pure-exploitation ADP method for the lagged asset acquisition model, where the concavity of the
 818 value function guarantees convergence without explicit exploration. Nascimento & Powell (2013)
 819 extend this approach to storage problems with vector-valued controls under similar conditions. More
 820 broadly, Jiang & Powell (2015) and Powell (2022) survey methods such as Monotone-ADP and
 821 post-decision exploitation schemes which reduce the need for exploration by leveraging monotonicity
 822 or other structural regularities. Related work has also sought to mitigate exploration using Bayesian
 823 beliefs (Ryzhov et al., 2019) or by exploiting factored state representations (Guestrin et al., 2003;
 824 Kveton et al., 2006). However, these methods generally assume discrete state and action spaces, or
 825 depend on strong structural conditions (e.g. concavity or monotonicity). In contrast, we provide finite-
 826 sample regret guarantees for pure exploitation in general Exo-MDPs with continuous endogenous
 827 states and Markovian exogenous components.

828 **Regret analysis of pure exploitation (exploration-free) methods.** Recent work has begun char-
 829 acterizing when greedy policies can still achieve sublinear regret. Bastani et al. (2021) show that
 830 in contextual bandits, a fully greedy algorithm attains $O(\sqrt{T})$ regret under a covariate diversity
 831 assumption. Civitavecchia & Papini push this into RL, proving that greedy LSVI (no bonus) can
 832 yield sublinear regret under sufficient feature diversity. Jedor et al. (2021) analyze greedy strategies
 833 in multi-armed bandits and delineate regimes where pure exploitation suffices. Bayati et al. (2020)
 834 demonstrate that in many-armed regimes, greedy policies exploit a “free exploration” effect emerging
 835 from the tail structure of the prior to achieve sublinear regret. Kim & Oh (2024) gives a broader
 836 class of context distributions under which greedy linear contextual bandits enjoy poly-logarithmic
 837 regret Kim & Oh (2024). Efroni et al. (2019) show that in finite MDPs, one can match minimax
 838 regret bounds by using greedy planning on estimated models (i.e. no explicit exploration). These
 839 results suggest that under strong structural or distributional conditions, pure exploitation may rival
 840 exploration-based methods, albeit in narrower settings than general theory guarantees.

841 **MDPs with function approximation.** RL with structural assumptions has been studied under
 842 both nonparametric and parametric models. Nonparametric approaches, such as imposing Lipschitz
 843 continuity or smoothness conditions on the Q -function, offer flexibility but suffer from exponential
 844 dependence on state/action dimension (Shah & Xie, 2018; Sinclair et al., 2023a). Parametric
 845 approaches trade model flexibility for computational tractability, typically assuming that the MDP can
 846 be well-approximated by a linear representation. This has fueled a rich literature on RL with linear
 847 function approximation, spanning settings such as low Bellman rank (Jiang et al., 2017; Dann et al.,
 848 2018), linear MDPs (Yang & Wang, 2019; Jin et al., 2020; Hu et al., 2024), low inherent Bellman
 849 error (Zanette et al., 2020), and linear mixture MDPs (Jia et al., 2020; Ayoub et al., 2020; Zhou et al.,
 850 2021). Indeed, Exo-MDPs are closely related to linear mixture MDPs. Wan et al. (2024) establish a
 851 structural equivalence between the two, but only in the case of *discrete* endogenous and exogenous
 852 spaces. Our contribution focuses on adapting the machinery of linear function approximation to Exo-
 853 MDPs for *continuous* endogenous spaces, and show that their properties allow for pure exploitation
 854 strategies to achieve near-optimal regret.

855 **Exo-MDPs in practice.** A growing empirical literature has applied function approximation (typically
 856 using neural networks) to Exo-MDPs in operations research applications, particular in inventory
 857 control and resource management problems (Madeka et al., 2022; Alvo et al., 2023; Fan et al.,
 858 2024; Qin et al., 2023). These works demonstrate strong practical performance but provide limited
 859 theoretical guarantees. In contrast, our contribution simplifies the function class to *linear* function
 860 approximation, which allows us to obtain sharp regret bounds while retaining the structural advantage
 861 of Exo-MDPs. Moreover, while some prior work focused on heuristic policy classes such as base
 862 stock policies (Agrawal & Jia, 2022; Zhang et al., 2025), our algorithms converge to the *true optimal*
 863 *policy*, thereby avoiding the suboptimality inherent to such restricted classes. Lastly we note that RL
 864 has been applied to various other problems in operations research (without exploiting their Exo-MDP
 865 structure) including ride-sharing systems (Feng et al., 2021), stochastic queuing networks (Dai &

864 Gluzman, 2021), and jitter buffers (Fang et al., 2019). Applications of our method can potentially
 865 improve sample efficiency in these applications by exploiting the underlying exogenous structure.
 866

867 C DISCUSSION ON EXO-MDP MODELING ASSUMPTIONS

868 C.1 KNOWN TRANSITION FUNCTIONS AND REWARD FUNCTIONS.

869 Our model assumes that the endogenous dynamics f and the reward function r are known and
 870 deterministic given the exogenous state. While this assumption is more restrictive than the fully
 871 general unknown MDP model typically studied in the RL literature, it is well-motivated in many
 872 operations research domains. Indeed, inventory control, pricing, scheduling, and resource allocation
 873 problems are often modeled with deterministic system dynamics where the only uncertainty arises
 874 from exogenous randomness (Powell, 2022). This assumption also aligns with the practice of
 875 simulator-based design, widely adopted in queueing and inventory control studies (e.g., Madeka et al.
 876 (2022); Alvo et al. (2023); Che et al. (2024)).

877 We highlight several aspects of the assumption that the transition and reward function f and r are
 878 known below.

879 C.1.1 SUFFICIENCY

880 These assumptions are precisely what make pure exploitation viable. Once f and r are known the only
 881 source of uncertainty is the exogenous distribution $\mathbb{P}_h(\cdot | \xi)$ which is independent of the learner’s
 882 actions. This structure enables data reuse and counterfactual value estimation and is the basis for our
 883 regret guarantees. No analysis of PE in even fully tabular Exo-MDP (with Markovian exogenous
 884 processes). We establish the regret bound of PE in tabular Exo-MDP, and more importantly, we are the
 885 first to show the effectiveness of PE in the case of continuous endogenous state space and continuous
 886 action space.

887 C.1.2 NECESSITY

888 First, we show that in Proposition 2 and Theorem 6 that there exist 2-armed Bernoulli bandits such
 889 that PEL (FTL, greedy w.r.t. empirical means) suffers linear regret.

890 **Imp possibility with unknown reward functions.** Because a (1-step) bandit is a special case of a
 891 tabular Exo-MDP with unknown reward function, this directly yields:

892 **Corollary 1.** Consider the class of tabular Exo-MDPs with horizon $H = 1$, a single state x , and
 893 a finite action set \mathcal{A} . The reward of each action $a \in \mathcal{A}$ is an unknown random variable with mean
 894 $\mu(a) := \mathbb{E}[r(a, \xi)]$. Any pure-exploitation algorithm suffers $\Omega(K)$ expected regret on some MDP in
 895 this class.

896 *Proof.* A 1-step, 1-state tabular Exo-MDP with unknown reward function is exactly a stochastic
 897 MAB, with each action corresponding to an arm and the (unknown) random reward $R_a = r(a, \xi)$.
 898 Theorem 6 then yields an instance on which any pure-exploitation algorithm has $\Omega(K)$ regret. \square

900 Over the class of tabular Exo-MDPs with unknown reward function r , pure exploitation is not
 901 minimax-optimal. No pure-exploitation algorithm can guarantee $\mathcal{O}(K)$ regret in the worst case.

902 **Imp possibility with unknown transition functions.** Unknown transition functions and known
 903 terminal reward are equivalent (from the learner’s perspective) to unknown rewards of the two actions
 904 at $h = 1$. A pure-exploitation algorithm that plans greedily from an estimated model behaves just
 905 like a pure-greedy bandit algorithm on the two “effective arms” corresponding to “go to state 1 or 2”.
 906 Formally, we let \mathcal{A} be any pure-exploitation algorithm that uses its estimates of the transition function
 907 (e.g., empirical transition frequencies) to choose, in each episode, an action at $x^{(0)}$ that maximizes its
 908 current estimated value function, never choosing actions whose estimated value is strictly smaller
 909 than another action’s estimated value.

910 **Corollary 2.** Consider tabular Exo-MDPs with horizon $H = 2$, state space $\mathcal{X} = \{x^{(0)}, x^{(1)}, x^{(2)}\}$,
 911 and action set $\mathcal{A} = \{1, 2\}$. The initial state is always $x^{(0)}$. At the first step $h = 1$, the transition from

918 $x^{(0)}$ under action $a \in \{1, 2\}$ is random:

$$919 \quad x^{(i(a))} = f(x^{(0)}, a, \xi),$$

920 where each action a leads to stochastic state $x^{(i(a))} \in \{x^{(1)}, x^{(2)}\}$. At the second step $h = 2$, the
921 episode terminates and a (known) deterministic reward is obtained, and the initial return for each
922 action a is given by

$$923 \quad R_a = \mathbb{P}(i(a) = 1)r(x^{(1)}) + \mathbb{P}(i(a) = 2)r(x^{(2)}).$$

924 In particular, we choose f and $r(x^{(1)}), r(x^{(2)})$ such that

$$925 \quad R_1 = \frac{1}{2} + \Delta, \quad R_2 = \frac{1}{2},$$

926 for some fixed $\Delta \in (0, 1/4]$, independently across episodes. Then there exists a choice of f and
927 $r(x^{(1)}), r(x^{(2)})$ such that the expected cumulative regret of \mathcal{A} over K episodes is $\Omega(K)$.

928 *Proof.* From the learner’s perspective, each action $a \in \{1, 2\}$ induces an unknown expected return
929 equal to the (known) reward of the state it deterministically reaches at $h = 2$. Thus the problem is
930 equivalent to a two-armed bandit with unknown means $\frac{1}{2} + \Delta$ and $\frac{1}{2}$. A pure-exploitation algorithm
931 that always selects an action with maximal estimated value behaves exactly like a pure-greedy bandit
932 algorithm on these two arms. By the same argument as in Theorem 6, there exists an stochastic
933 assignment of actions to terminal states such that the algorithm suffers $\Omega(K)$ expected regret. \square

934 **Necessity of known endogenous transition functions and rewards.** Corollaries 1 and 2 show that,
935 as soon as either the reward function r or the transition function f is unknown, the class of tabular
936 Exo-MDPs already contains instances where any pure-exploitation algorithm incurs *linear* regret. In
937 particular, pure exploitation is not minimax-sufficient in these settings.

938 By contrast, in our Exo-MDP framework we assume that the endogenous dynamics f and reward
939 function r are known, and only the exogenous kernel is unknown. This structural assumption is
940 crucial. It allows us to design pure-exploitation algorithms that achieve sublinear regret, in sharp
941 contrast to the tabular Exo-MDP setting with unknown f or r .

942 C.1.3 REASONABLENESS

943 **Example applications of Exo-MDP** We have introduced the storage control in Section 6.1. See (Pow-
944 ell, 2022; Sinclair et al., 2023a) for a more exhaustive list.

945 **Inventory control.** In classical inventory models, the endogenous state x_h is the on-hand inventory
946 level, while the exogenous state ξ_h is the demand realization at time h (Madeka et al., 2022). Actions
947 a_h correspond to order quantities. The system dynamics are deterministic given demand, e.g. the
948 newsvendor dynamics $x_{h+1} = f(x_h, a_h, \xi_{h+1}) = \max\{x_h + a_h - \xi_{h+1}, 0\}$. The reward depends
949 on sales revenue and holding or stockout costs, $r(x_h, a_h, \xi_h)$. The only randomness arises from the
950 exogenous demand process, making this a canonical instance of an Exo-MDP.

951 **Cloud resource allocation.** In cloud computing and service systems, the endogenous state x_h may
952 represent the allocation of resources (e.g., virtual machines, CPU quotas, or bandwidth) across job
953 requests (Sinclair et al., 2023b). The exogenous state ξ_h captures job arrivals at time h , which evolve
954 independently of the resource allocation policy. Actions a_h correspond to scheduling decisions,
955 and the reward reflects performance metrics such as throughput or delay penalties. The exogenous
956 job-arrival process drives all stochasticity, while the system dynamics (queue updates, resource usage)
957 are deterministic given arrivals.

958 C.2 DISCUSSIONS ON ANCHOR SET

959 C.2.1 KNOWLEDGE OF ANCHOR SET

960 While knowing the anchor set a priori appears strong from a general RL perspective, this assumption
961 is well-motivated in our Exo-MDP setting:

962 Anchor states are designed by the learner. Assumption 1 requires that we fix a finite collection of
963 post-decision states $x_h^a(n)$ such that the feature matrix $\Phi_h := [\phi(x_h^a(1)), \dots, \phi(x_h^a(N))]$ has full

972 row rank. These states are the representative grid that the practitioner chooses when constructing
 973 the feature map ϕ , including hat basis, spline knots, tile centers (Sutton et al., 1998). This mirrors
 974 standard RL with LFA, where the learner chooses ϕ and implicitly chooses the *basis points* on which
 975 ϕ is built.

976 This is standard in ADP and matches how Exo-MDPs are implemented in practice. Anchor states are
 977 standard in ADP for control and operation research applications Nascimento & Powell (2009; 2013);
 978 Powell (2022). In applications like inventory control and storage systems Nascimento & Powell
 979 (2009; 2013), practitioners often can exploit *domain knowledge* and *problem structure*, e.g. piecewise-
 980 linearity or convexity of the value functions Powell (2022). For instance, with piecewise-linear hat
 981 features, anchors are just the breakpoints of the basis functions Nascimento & Powell (2013); Powell
 982 (2022). This is also shown in our storage control example in Section 6.2.

984 C.2.2 CONNECTIONS TO CORESET AND FRANK-WOLFE PROCEDURES

985 The anchors in Assumption 1 act as a small, well-conditioned spanning set of feature vectors,
 986 analogous in spirit to coresets used in linear RL and ADP. We clarify the connections and differences
 987 below.

988 Anchor sets serve the similar purpose as coresets in linear RL and ADP. In our paper, anchor sets
 989 provide a well-conditioned spanning set of feature vectors enabling stable value regression and
 990 Bellman transport. This is similar to the concept of coresets or representative set in linear bandits and
 991 RL, e.g. Mahalanobis-distance representative sets in Yang & Wang (2019) with well-conditioned
 992 feature coverage, optimal design in Lattimore & Szepesvári (2020) with minimal set of points that
 993 well-condition the Gram matrix, coreset with well-conditioned feature coverage in Eaton et al. (2025).

994 Regarding the connections between coresets and Frank-Wolfe (FW) methods, which arises in convex
 995 optimization. Specifically, the coreset there represents small subset of points that approximately
 996 represents a much larger dataset for the purpose of convex optimization. FW constructs such coresets
 997 by iteratively selecting “anchor” points via the linear minimization oracle. This idea has been used
 998 in problems such as learning convex bodies Clarkson (2010), sparse convex optimization Jaggi
 999 (2013), and practical large-scale machine learning Bachem et al. (2017). However, FW-based coreset
 1000 construction has largely remained within the convex optimization literature rather than RL settings
 1001 involving linear function approximation.

1002 In contrast, in our Exo-MDP setting, the anchor set is designed a priori using domain knowledge and
 1003 problem structure. In many structured control problems they can be constructed a priori, without
 1004 observing any data. For example, in inventory or resource-storage problems, anchors can be naturally
 1005 chosen as a grid of storage levels, e.g., extreme low / high and intermediate points, which are natural
 1006 design points for value approximation.

1007 Extension from domain-driven anchors to algorithmic construction. Our currunt method leverages
 1008 domain knowlege or problem struture. When such problem-dependent design choice is difficult, it is
 1009 a promising direction to adapts anchor selection online. We first generate large pool of candidate
 1010 post-decision states, and adaptively construct the anchors by FW-like methods.

1012 C.2.3 INVERTABILITY AND WELL CONDITIONEDNESS

1014 Anchors are fully user-selected, and practitioners can exploit domain knowledge or problem structure
 1015 to construct a well-spread collection of feature vectors. In principle, one can precompute the anchor
 1016 feature vectors $\phi(x_n^a)$ offline, prior to learning, ensuring that Σ is full-rank and well-conditioned. For
 1017 example, in the storage control experiment in Section 6.2, a simple uniform grid yields $\Sigma = I_N$ and
 1018 $\lambda_0 = 1$.

1019 Ridge regression, however, is a promising method to improve the invertibility/numerical stability
 1020 while tradeoffing bias. While we can improve the invertibility of Σ by carefully designing the anchors
 1021 and features, such process can be computationally heavy sometimes. Regularization can replace strict
 1022 invertibility with a controlled bias term. It trades a small bias controlled by β for numerical stability.
 1023 We now provide a short theoretical sketch showing how a β -regularizer impacts the regret bound.
 1024 The regret bound in Theorem 2 states

$$1025 (\sqrt{N/\lambda_0} + \sqrt{d}) |\Xi| H \sqrt{K}.$$

1026 Letting $\lambda_\beta := \lambda_0 + \beta$, then reg. reduces the conditioning part of the regret bound to $(\sqrt{N/\lambda_\beta} +$
 1027 $\sqrt{d})|\Xi|H\sqrt{K}$. However, it introduces the additional bias as it solves a regularized problem
 1028

$$1029 \min_w \|\Sigma_h w - y\|_2^2 + \beta\|w\|_2^2.$$

1030 So even if the model is perfectly realizable (no approximation error), we can show that this induces an
 1031 extra Bellman error term of order $\frac{\beta}{\lambda_\beta}\sqrt{d}$, which then propagates through the horizon and across K
 1032 episodes. Therefore, the total regret bound is worsened as

$$1033 (\sqrt{N/\lambda_\beta} + \sqrt{d})|\Xi|H\sqrt{K} + \frac{H}{\sqrt{\lambda_\beta}}K\frac{\beta}{\lambda_\beta}\sqrt{d}.$$

1034 In the realizable setting our main theory takes $\beta = 0$, so no extra bias term appears. If one adds a
 1035 small ridge term βI for numerical stability, the analysis can be interpreted as introducing an effective
 1036 inherent Bellman error of size $\epsilon_{\text{ridge}} = \mathcal{O}(\frac{\beta}{\lambda_\beta}\sqrt{d})$, which adds an $\frac{\beta H\sqrt{d}K}{\lambda_\beta^{\frac{3}{2}}}$. Thus ridge reduces only
 1037 constants in the $\mathcal{O}(\sqrt{K})$ term, but introduces an additional linear-in- K contribution, which vanishes
 1038 as $\beta \rightarrow 0$.

1039 C.2.4 EXAMPLE WHERE ASSUMPTION 4 HOLDS

1040 **Models.** Consider an storage control Exo-MDP where the endogenous (pre-decision) storage state is
 1041 $x_h \in [0, R_{\max}]$. At each stage the controller chooses an action $a_h \in \mathcal{A}(x_h, \xi_h) \subset \mathbb{R}$, which produces
 1042 the post-decision storage

$$1043 x_h^a = \Pi_{[0, R_{\max}]}(x_h + a_h),$$

1044 where Π denotes projection onto $[0, R_{\max}]$. After acting, the exogenous state evolves as $\xi_{h+1} \sim \mathbb{P}(\cdot |$
 1045 $\xi_h)$ and the storage evolves according to

$$1046 x_{h+1} = \Pi_{[0, R_{\max}]}(A(\xi_{h+1}) x_h^a + b(\xi_{h+1})),$$

1047 with efficiency/retention factor $A(\xi') \in [0, 1]$ and inflow/outflow $b(\xi') \in \mathbb{R}$. The next post-decision
 1048 storage under policy π is then

$$1049 x_{h+1}^a = \Pi_{[0, R_{\max}]}(x_{h+1} + \pi(x_{h+1}, \xi_{h+1})).$$

1050 The one-period reward is a bounded measurable function $r_h(x_h, a_h, \xi_h)$.

1051 **Basis, anchors, and value representation.** Choose storage anchors $0 = \rho_0 < \rho_1 < \dots < \rho_N =$
 1052 R_{\max} . Define nonnegative, nodal, partition-of-unity piecewise-linear hat functions $\{\eta_k(\rho)\}_{n=0}^N$, and
 1053 set

$$1054 \phi(\rho) = (\eta_0(\rho), \dots, \eta_N(\rho)), \quad \phi(\rho_n) = e_n.$$

1055 Thus each $\phi(\rho)$ is a convex combination of anchor vectors. The post-decision value is represented
 1056 using storage-only features and information-dependent weights:

$$1057 V_h^{\pi, a}(x^a, \xi) = \phi(x^a)^\top w_h^\pi(\xi),$$

1058 where $w_h^\pi(\xi) \in \mathbb{R}^{N+1}$ and $[w_h^\pi(\xi)]_n = V_h^{\pi, a}(\rho_n, \xi)$. At the terminal time, weights encode salvage
 1059 values, e.g. $w_H^\pi(\xi) = 0$ or $[w_H^\pi(\xi)]_n = S(\rho_n, \xi)$.

1060 Recall that Assumption 4 holds if for each h , policy π , and exogenous realization ξ' , there exists
 1061 a storage-feature transport matrix $M_h^\pi(\xi') \in \mathbb{R}^{(N+1) \times (N+1)}$ such that for all post-decision storage
 1062 states $x^a \in [0, R_{\max}]$,

$$1063 \phi\left(\Pi(\alpha_{h, \pi}(\xi') x^a + \beta_{h, \pi}(\xi'))\right) = M_h^\pi(\xi') \phi(x^a),$$

1064 where $\alpha_{h, \pi}(\xi')$ and $\beta_{h, \pi}(\xi')$ are the coefficients induced by the composition of the storage dynamics
 1065 and the policy's action, followed by projection. Crucially, $M_h^\pi(\xi')$ does not depend on x^a , so the
 1066 identity holds globally. The weights evolve linearly in expectation over ξ' :

$$1067 w_h^\pi(\xi) = \mathbb{E}_{\xi' \sim \mathbb{P}(\cdot | \xi)} [M_h^\pi(\xi')^\top w_{h+1}^\pi(\xi')].$$

1080 This formulation is reasonable under the following conditions. First, the post-decision to next
 1081 pre-decision mapping is affine in r^a , possibly followed by clipping. Second, the policy π is piecewise-
 1082 affine in r , so that the overall map to r_{h+1}^a is affine with clipping. Third, the storage basis ϕ is
 1083 translation-stable: for any affine map $r \mapsto \Pi(\alpha r + \beta)$ there exists a fixed sparse matrix $S_{\alpha,\beta}$
 1084 such that $\phi(\Pi(\alpha r + \beta)) = S_{\alpha,\beta}\phi(r)$ for all r . Finally, since ϕ forms a partition of unity and
 1085 clipping corresponds to convex mixing with boundary anchors, each $M_h^\pi(\xi')$ is row-stochastic or
 1086 sub-stochastic, and therefore non-expansive with $\|M_h^\pi(\xi')\|_\infty \leq 1$.
 1087

1088 C.2.5 WHEN ASSUMPTION 3 HOLDS 1089

1090 Assumption 3 requires that every post-decision feature vector can be written as a nonnegative
 1091 combination of a fixed set of *anchor* feature vectors. This section lists common modeling choices
 1092 under which the condition is automatically satisfied and gives a simple recipe to enforce it in practice.
 1093 Assumption 3 aligns with widely used feature constructions in ADP/RL (tabular, hat/spline, histogram,
 1094 grid/ReLU bases).

1095 **Tabular features.** With one-hot features, each post-decision state corresponds to a standard basis
 1096 vector, which is in the conic (indeed, convex) hull of the anchor set by construction.

1097 **Storage with piecewise-linear (hat) features.** Let $0 = \rho_0 < \rho_1 < \dots < \rho_N = R_{\max}$ be
 1098 storage anchors and define nonnegative, nodal, partition-of-unity hat functions $\{\eta_n\}_{n=0}^N$. Set $\phi(\rho) =$
 1099 $(\eta_0(\rho), \dots, \eta_N(\rho))$ so that $\phi(\rho_n) = e_n$ and $\sum_n \eta_n(\rho) = 1$ for all ρ . For any post-decision level
 1100 $x^a \in [0, R_{\max}]$, we have $\phi(x^a) = \sum_n \eta_n(x^a) \phi(\rho_n)$ with $\eta_n(x^a) \geq 0$, so $\phi(x^a)$ lies in the conic
 1101 hull of the anchor features (in fact, in their convex hull). Clipping at the bounds 0 and R_{\max} simply
 1102 mixes with boundary anchors and preserves nonnegativity.

1103 **Histogram / indicator bases.** If ϕ is formed by nonoverlapping (or softly overlapping) nonnegative
 1104 basis functions that sum to at most one (e.g., bin indicators or triangular kernels), then $\phi(x^a)$ is a
 1105 nonnegative combination of the anchor features obtained by placing anchors at the bin centers or knot
 1106 points.

1107 **B-splines and ReLU tiles.** Nonnegative partition-of-unity spline bases (e.g., linear B-splines) and
 1108 grid-based ReLU ‘‘tiles’’ yield $\phi(x^a)$ with nonnegative entries and local support. Choosing anchors at
 1109 the knots/cell corners makes $\phi(x^a)$ a nonnegative combination of anchor feature vectors.

1110 To ensure Assumption 3: (i) include boundary anchors so that clipping/projection maps to anchors;
 1111 (ii) use nonnegative, locally supported basis functions that form (approximate) partitions of unity over
 1112 the post-decision domain; (iii) place anchors at the basis nodes (knots, cell corners, or representative
 1113 states) so that $\phi(\text{state})$ is a sparse nonnegative combination of anchor columns. If a signed feature
 1114 map is preferred (e.g., mean-centered features), a standard fix is a *nonnegative lifting* $\tilde{\phi} = [\phi_+; \phi_-]$
 1115 with $\phi_+ = \max\{\phi, 0\}$ and $\phi_- = \max\{-\phi, 0\}$; placing anchors on the lifted coordinates restores the
 1116 cone property.

1117 C.2.6 WHEN THE BOUND $\sup_{\pi, \xi, t} \|M_h^\pi(\xi)\|_2 \leq 1$ HOLDS 1118

1119 Recall under Assumption 2 or Assumption 4 that for each (h, π, ξ') one builds a mixing matrix
 1120

$$1121 M_h^\pi(\xi') \in \mathbb{R}^{(N+1) \times (N+1)},$$

1122 whose n -th row contains the interpolation weights $\beta_{nj}(\xi', \pi) \geq 0$ (usually two nonzeros) taking the
 1123 anchor ρ_n to the next post-decision storage r_{h+1}^a and then back onto the anchor grid. Thus each row
 1124 sums to 1 (row-stochastic; sub-stochastic at the capacity boundaries when clipping pins to ρ_0 or ρ_N).
 1125 We provide some sufficient conditions for $\|M_h^\pi(\xi')\|_2 \leq 1$ below.

1126 **Lipschitz-in-storage dynamics with hat basis.** If the continuous map $T(r) = \Pi(\alpha r + \beta)$ is 1-Lipschitz
 1127 (i.e., $|\alpha| \leq 1$) and functions of r are represented on a uniform grid with nodal PLC interpolation, then
 1128 the discrete composition operator interpolate $\circ T$ is nonexpansive on grid values under the Euclidean
 1129 norm. This operator is exactly $M_h^\pi(\xi')^\top$, hence $\|M_h^\pi(\xi')\|_2 \leq 1$. Intuitively, 1-Lipschitz maps do
 1130 not increase distances between storage levels; interpolation preserves (and slightly underestimates)
 1131 distances, so the induced linear map is nonexpansive.

1134 *Doubly (sub-)stochastic mixing.* If every $M_h^\pi(\xi')$ is row-stochastic and column-sub-stochastic (all
 1135 column sums ≤ 1), then
 1136

$$1137 \quad \|M_h^\pi(\xi')\|_2 \leq \sqrt{\|M_h^\pi(\xi')\|_1 \|M_h^\pi(\xi')\|_\infty} \leq \sqrt{1 \cdot 1} = 1.$$

1138

1139 Column-sub-stochasticity holds, for example, if the one-step map in storage is monotone and
 1140 nonexpansive: $r^a \mapsto \Pi(\alpha r^a + \beta)$ with $|\alpha| \leq 1$, and the basis is nodal hat (partition-of-unity) features
 1141 on a uniform grid. Each anchor’s “mass” spreads to at most two neighbors without duplication, and
 1142 clipping removes mass near the boundaries.

1143 *Decomposition into contractions.* If the mixing matrix can be expressed as a convex combination of
 1144 contractions,

$$1145 \quad M_h^\pi(\xi') = \sum_\ell \gamma_\ell T_\ell, \quad \gamma_\ell \geq 0, \sum_\ell \gamma_\ell = 1, \|T_\ell\|_2 \leq 1,$$

1146

1147 then by subadditivity and convexity of the operator norm, $\|M_h^\pi(\xi')\|_2 \leq 1$. Two useful instances
 1148 are: *Permutation/shift structure*: when the map is a grid shift or clipping, each T_ℓ is a permutation
 1149 (possibly composed with a boundary projector), hence $\|T_\ell\|_2 = 1$. *Row-weighted permutations*:
 1150 if $M = \sum_\ell D_\ell \Pi_\ell$ with Π_ℓ permutations and D_ℓ diagonal with entries in $[0, 1]$, then $\|M\|_2 \leq$
 1151 $\sum_\ell \|D_\ell\|_2 \leq \sum_\ell \max_i(D_\ell)_{ii}$. If the row-wise weights over ℓ sum to ≤ 1 , the bound is ≤ 1 .
 1152

1153 *Doubly-stochastic special case.* If columns also sum to 1 (e.g., pure permutations, or measure-
 1154 preserving monotone maps without clipping on a periodic grid), then M is doubly stochastic and
 1155 $\|M\|_2 \leq 1$ with equality only if M is a permutation.

1156 Furthermore, we provide some methods to check or enforce the assumption. Empirically, one can
 1157 draw a batch of $\xi' \sim Q(\cdot \mid \xi)$, build $M_h^\pi(\xi')$, and compute the largest singular value σ_{\max} , verifying
 1158 $\max \sigma_{\max} \leq 1$ (allowing numerical tolerance). Design-wise, one can ensure nonexpansiveness by
 1159 using uniform nodal hat features (partition of unity), storage dynamics with $|\alpha| \leq 1$, and capacity
 1160 clipping. If some scenarios have $|\alpha| > 1$ (expansive), increase grid resolution or add a smoothing step
 1161 (row-wise convex averaging) that preserves row sums, making M a contraction. For non-uniform
 1162 grids or unusual features, “whitening” each local two-anchor block (normalizing columns per cell)
 1163 enforces contraction while preserving row sums.

1164 Under storage-only anchors and nodal, nonnegative, partition-of-unity hat basis, and with standard
 1165 storage dynamics (affine + clipping) satisfying $|\alpha| \leq 1$, the transport matrices $M_h^\pi(\xi')$ are row-
 1166 stochastic and column-sub-stochastic. Hence $\sup_{\pi, \xi, h} \|M_h^\pi(\xi)\|_2 \leq 1$. This can be verified
 1167 numerically, and if needed enforced by smoothing or per-cell normalization without altering the PLC
 1168 interpolation semantics.

1169 **Connections to Nascimento & Powell (2013).** Under the modeling assumptions in Nascimento &
 1170 Powell (2013) the bound is justified when one implements the storage-only anchor/hat-basis scheme.
 1171 Nascimento & Powell (2013) works in post-decision form and shows that, for each information state,
 1172 the value function in the scalar storage is piecewise-linear concave with breakpoints. Each period’s
 1173 decision is obtained from a deterministic linear program with vector-valued control, and the algorithm
 1174 maintains concavity of slopes via projection. This is exactly the setting where one uses storage-only
 1175 anchors $\{\rho_n\}$ and nodal hat features. The storage dynamics between periods are affine plus clipping:
 1176 the model introduces exogenous changes in storage in post-decision form, so that the next storage is
 1177 an additive update (possibly with losses) followed by projection to capacity. This map is 1-Lipschitz
 1178 in the storage variable.

1179 With nodal, nonnegative, partition-of-unity hat functions on $\{\rho_n\}$, the push-forward and interpolation
 1180 step from an anchor ρ_n produces a row-stochastic mixing row (two nonzeros in one dimension).
 1181 Collecting these rows defines the matrix $M_h^\pi(\xi)$. Because the underlying continuous map is 1-
 1182 Lipschitz and interpolation is stable, the induced discrete operator on nodal values is nonexpansive in
 1183 the Euclidean norm, hence $\|M_h^\pi(\xi)\|_2 \leq 1$. At capacity boundaries, clipping only reduces distances,
 1184 so the bound continues to hold. This is consistent with the PLC/anchor structure and concavity
 1185 projection used in the paper. It should be noted that the paper does not phrase its analysis in terms of
 1186 an M matrix or a spectral-norm bound. Instead, it proceeds via a dynamic programming operator on
 1187 slope vectors with technical conditions ensuring monotonicity, continuity, and convergence. Thus the
 1188 spectral-norm assumption is an implied property of the standard discretization, rather than a stated
 1189 theorem.

In summary, for Nascimento & Powell (2013), with the standard storage law (additive exogenous changes with clipping) and the PLC/anchor representation, the discretization induces row-stochastic (and nonexpansive) mixing operators. Therefore it is reasonable and consistent to assume $\sup_{\pi, \xi, h} \|M_h^\pi(\xi)\|_2 \leq 1$, even though the paper establishes convergence via slope-operator monotonicity and continuity rather than an explicit spectral-norm bound.

C.2.7 WEAKENING AND RELAXATIONS

Adaptive anchors selection via coresets/Frank-Wolfe style procedures. The anchors can be viewed as a small, hand-picked coreset for the endogenous space. In principle, we can learn this coreset from data via coresets/Frank-Wolfe style procedures and then running LSVI-PE on the resulting anchors. Analyzing such a scheme requires a second layer of error control between the data-driven anchors and the optimal anchor set and is beyond the scope of the present work, but we now mention this as a promising direction in the Conclusion.

Approximate closure assumptions via inherent Bellman error. The realizable analysis (Theorems 2–3) uses Assumptions 2–3 (or 4) to guarantee exact closure of Bellman updates in the anchor span. However, our agnostic analysis (Theorems 4–5) only requires the basic Assumption 1 plus a finite inherent Bellman error. In other words, even if the post-decision values are only approximately representable by the anchor features and the cone/closure conditions only hold approximately, the regret bound still holds with an additional $O(K\varepsilon_{\text{BE}})$ bias term. This already provides a quantitative weakening: violations of Assumptions 2–3 are absorbed into ε_{BE} , rather than being ruled out outright.

C.3 ADDITIONAL DISCUSSIONS

m -Markovian exogenous process. Our framework extends to exogenous processes with finite memory. Specifically, we assume that the exogenous state follows a m -Markov model: at time h , the augmented state includes the endogenous component x_h together with the last m exogenous states,

$$s_h = (x_h, \xi_{h-m}, \dots, \xi_h).$$

The next exogenous state ξ_{h+1} is drawn from a conditional distribution that depends only on the most recent k exogenous states:

$$\xi_{h+1} \sim \mathbb{P}(\cdot \mid \xi_{h-m}, \dots, \xi_h).$$

This formulation strictly generalizes the i.i.d. and first-order Markov settings while retaining a compact representation that captures temporal correlations in the exogenous sequence.

D OMITTED DISCUSSION IN SECTION 4

Here we outline the application of PEL (and FTL) to the simpler tabular Exo-MDP settings.

D.1 FTL FOR TABULAR EXO-MDPs

As discussed in Section 4, one can extend the FTL principle to finite-horizon Exo-MDPs with finite state and action spaces. For any deterministic policy π , using the exogenous traces $\{\xi^1, \dots, \xi^{k-1}\}$ collected up to episode k , we can form the unbiased empirical value estimator:

$$\tilde{V}_1^{k, \pi}(s_1) := \frac{1}{k-1} \sum_{l=1}^{k-1} V_1^\pi(s_1, \xi_{>1}^l) = \frac{1}{k-1} \sum_{l=1}^{k-1} \sum_{h=1}^H r(x_h, \pi_h(s_h), \xi_h^l),$$

where the transitions take the form

$$s_{h+1} = (x_{h+1}, \xi_{h+1}^l), \quad x_{h+1} = f(x_h, a_h, \xi_{h+1}^l).$$

The FTL algorithm then selects the greedy policy in episode k with respect to these empirical value estimates:

$$\tilde{\pi}^k \in \arg \max_{\pi \in \Pi} \tilde{V}_1^{k, \pi}(s_1).$$

This construction *crucially* leverages the fact that the exogenous trace distribution ξ is independent of the agent’s actions. Hence, every exogenous trace can be reused to evaluate *all* candidate policies without bias, a property that enables policy-level FTL in Exo-MDPs and sharply contrasts with general MDPs where action-dependent transitions break this replay.

The following proposition is a restatement of known ERM/FTL-style guarantees in this setting. Note, however, that the computational cost of an unconstrained search over Π can be prohibitive.

Proposition 3. [FTL guarantee, Theorem 7 in Sinclair et al. (2023b)] For any $\delta \in (0, 1)$, with probability at least $1 - \delta$,

$$\text{SR}(\text{FTL}, K) \leq H \sqrt{\frac{2 \log(2|\Pi|/\delta)}{K}}.$$

In the tabular case this gives the stated dependence $|\Pi| \leq A^{H|\mathcal{X}||\Xi|}$.

Motivated by the proof of regret bound of FTL for Exo-MAB, we also provide the expected regret bound of FTL for Exo-MDP.

Proposition 4. The expected regret of FTL can be bounded as

$$\mathbb{E}[\text{SR}(\text{FTL}, K)] \leq \sqrt{\frac{H^2 \log |\Pi|}{K}}.$$

In the tabular case this gives the stated dependence $|\Pi| \leq A^{H|\mathcal{X}||\Xi|}$.

Thus, while the statistical guarantees for FTL are strong, the algorithm is computationally infeasible in practice due to the exponential size of the policy space. This motivates more efficient implementations of PEL that avoid enumerating Π . In particular, one can estimate the exogenous transition model directly and then apply dynamic programming to compute greedy policies—an approach we refer to as *Predict-Then-Optimize (PTO)* in Section 4.

D.2 PTO UNDER GENERAL m -MARKOVIAN CASE

For the general Markovian setting, PTO learns the transition model $\widehat{\mathbb{P}}(\xi_h | \xi_{h-1})$ to approximate the true distribution $\mathbb{P}(\xi_h | \xi_{h-1})$. PTO uses the model $\widehat{\mathbb{P}}(\xi_h | \xi_{h-1})$ to solve the Bellman equation. PTO uses the maximum likelihood estimator of transition model, which is the empirical distribution

$$\widehat{\mathbb{P}}(\xi_h | \xi_{h-1}) := \sum_{l=1}^{k-1} \mathbb{I}\{\xi_{h-1}^l = \xi_{h-1}, \xi_h^l = \xi_h\} / \sum_{l=1}^{k-1} \mathbb{I}\{\xi_{h-1}^l = \xi_{h-1}\}$$

to solve the Bellman equation

$$\begin{aligned} \widehat{Q}_h(s_h, a_h) &:= \mathbb{E}_{\xi_h | \xi_{h-1}} \left[r(x_h, a_h, \xi_h) + \widehat{V}_{h+1}(f(x_h, a_h, \xi_h), \xi_h) \mid \widehat{\mathbb{P}} \right] \\ &=: \widehat{\mathbb{E}}_{\xi_h | \xi_{h-1}} \left[r(x_h, a_h, \xi_h) + \widehat{V}_{h+1}(f(x_h, a_h, \xi_h), \xi_h) \right] \\ \widehat{V}_h(s_h) &:= \max_{a_h \in \mathcal{A}} \widehat{Q}_h(s_h, a_h) \\ \widehat{\pi}_h(s_h) &:= \arg \max_{a_h \in \mathcal{A}} \widehat{Q}_h(s_h, a_h), \end{aligned}$$

where $s_h = (x_h, \xi_{h-1})$. Note that the size of policy set $|\Pi|$ depends on the m

$$|\Pi| = \prod_{h=1}^H |\Pi_h| = \begin{cases} \prod_{h=1}^H A^{|\mathcal{X}|} = A^{H|\mathcal{X}|}, & m = 0, \\ \prod_{h=1}^H A^{|\mathcal{X}||\Xi|} = A^{H|\mathcal{X}||\Xi|}, & m = 1, \\ \prod_{h=1}^H A^{|\mathcal{X}||\Xi|^{h-1}} = A^{|\mathcal{X}|\sum_{h=1}^H |\Xi|^{h-1}} = \mathcal{O}(A^{|\mathcal{X}||\Xi|^{H-1}}), & m = H. \end{cases}$$

Proposition 5 (Theorem 6 in Sinclair et al. (2023b)). Suppose that

$$\sup_{h \in [T], \xi_{<h} \in \Xi^{[h-1]}} \left\| \widehat{\mathbb{P}}(\cdot | \xi_{<h}) - \mathbb{P}(\cdot | \xi_{<h}) \right\|_1 \leq \epsilon.$$

1296 Then we have that

$$1297 \text{SR}(\hat{\pi}, K) \leq H^2 \epsilon.$$

1298 In addition, if each ξ_h is independent from $\xi_{<h}$, then $\forall \delta \in (0, 1)$, with probability at least $1 - \delta$

$$1300 \text{SR}(\hat{\pi}, K) \leq H^2 \sqrt{\frac{2|\Xi| \log(2H/\delta)}{K}}.$$

1302 Therefore, the regret of PTO can be bounded as follows.

1304 **Corollary 3.** Fix $\delta \in (0, 1)$. with probability at least $1 - \delta$,

$$1306 \text{SR}(\text{FTL}, K) \leq \begin{cases} H \sqrt{\frac{2H|\mathcal{X}|\log(A/\delta)}{K}}, m = 0, \\ 1307 H \sqrt{\frac{2H|\mathcal{X}||\Xi|\log(A/\delta)}{K}}, m = 1, \\ 1308 H \sqrt{\frac{2H|\mathcal{X}||\Xi|^{H-1}\log(A/\delta)}{K}}, m = H. \end{cases}$$

1311 **Corollary 4.**

$$1312 \mathbb{E}[\text{SR}(\text{FTL}, K)] \leq \begin{cases} H \sqrt{\frac{H|\mathcal{X}|\log(A)}{K}}, m = 0, \\ 1313 H \sqrt{\frac{H|\mathcal{X}||\Xi|\log(A)}{K}}, m = 1, \\ 1314 H \sqrt{\frac{H|\mathcal{X}||\Xi|^{H-1}\log(A)}{K}}, m = H. \end{cases}$$

1317 *Proof of Proposition 5.* \hat{Q}_h and \hat{V}_h refer to the Q and V values for the optimal policy in \hat{M} where
1318 the exogenous input distribution is replaced by its estimate $\hat{\mathbb{P}}(\cdot | \xi_{h-1})$. Denote by \hat{V}_h^π as the value
1319 function for some policy π in the MDP \hat{M} . Then $\hat{V}_h^\pi = \hat{V}_h$ by construction.

$$1321 \text{SR}(\hat{\pi}, K) = V_1^*(s_1) - V_1^{\hat{\pi}}(s_1) \\ 1322 = V_1^*(s_1) - \hat{V}_1^{\pi^*}(s_1) + \hat{V}_1^{\pi^*}(s_1) - \hat{V}_1(s_1) + \hat{V}_1(s_1) - V_1^{\hat{\pi}}(s_1) \\ 1324 \leq 2 \sup_{\pi} |V_1^\pi(s_1) - \hat{V}_1^\pi(s_1)|.$$

1326 By the simulation lemma, it is bounded above by $\frac{H^2}{2} \max_{s,a,h} |P_h(s,a) - \hat{P}_h(s,a)|$. Since $P_h(\cdot | s, a)$
1327 is the pushforward measure of $\mathbb{P}(\cdot | \xi_{h-1})$ under mapping f

$$1329 P_h(s' \in \cdot | s, a) = P_h(f(x, a, \xi) \in \cdot | s, a) = \mathbb{P}(f^{-1}(s, a, \cdot) | \xi_{h-1}),$$

1330 we have (since f is function)

$$1332 \left\| P_h(s, a) - \hat{P}_h(s, a) \right\|_1 \leq \left\| \hat{\mathbb{P}}(\cdot | \xi_{h-1}) - \mathbb{P}(\cdot | \xi_{h-1}) \right\|_1$$

1334 and thus

$$1335 \max_{s,a,h} \left\| P_h(s, a) - \hat{P}_h(s, a) \right\|_1 \leq \max_{h, \xi_{h-1}} \left\| \hat{\mathbb{P}}(\cdot | \xi_{h-1}) - \mathbb{P}(\cdot | \xi_{h-1}) \right\|_1.$$

1336 Then the proof for the first part is finished

$$1338 \text{SR}(\hat{\pi}, K) \leq H^2 \max_{h, \xi_{h-1}} \left\| \hat{\mathbb{P}}(\cdot | \xi_{h-1}) - \mathbb{P}(\cdot | \xi_{h-1}) \right\|_1.$$

1340 Now suppose that $\xi \sim \mathbb{P}$ has each ξ_h independent from ξ_{h-1} and let $\hat{\mathbb{P}}$ be the empirical distribution.
1341 Using the ℓ_1 concentration bound shows that the event

$$1343 \mathcal{E} = \left\{ \forall h : \left\| \hat{\mathbb{P}}(\xi_h \in \cdot) - \mathbb{P}(\xi_h \in \cdot) \right\|_1 \leq \sqrt{\frac{2|\Xi| \log(H/\delta)}{K}} \right\}$$

1346 occurs with probability at least $1 - \delta$. Under \mathcal{E} we then have that:

$$1347 \max_{h \in [H], \xi_{h-1} \in \Xi^{[h-1]}} \left\| \hat{\mathbb{P}}(\cdot | \xi_{h-1}) - \mathbb{P}(\cdot | \xi_{h-1}) \right\|_1 \leq \sqrt{\frac{2|\Xi| \log(H/\delta)}{K}}.$$

1349 Taking this in the previous result shows the claim. \square

1350 *Remark 2.* The quadratic horizon multiplicative factor $\mathcal{O}(H^2)$ in regret is due to compounding errors
 1351 in the distribution shift. In the worst case, ϵ can scale as $\mathcal{O}(|\Xi|^T)$ if each ξ_h is correlated with ξ_{h-1} .
 1352 *Remark 3.* Proposition 5 is not valid for the m -Markovian case. A straightforward extension of the
 1353 proof for Exo-Bandit is not valid since

$$1354 \quad V^{*,\mathcal{M}} = \max_{\pi} V^{\pi,\mathcal{M}} \neq \max_{\pi} \mathbb{E}[V^{\pi,\widehat{\mathcal{M}}}] \leq \mathbb{E}[\max_{\pi} V^{\pi,\widehat{\mathcal{M}}}] = \mathbb{E}[V^{\widehat{\pi},\widehat{\mathcal{M}}}].$$

1355 The inequality is due to that the value function is nonlinear in P and $\widehat{P}_h \neq \widehat{P}_{t'}$ for $t \neq t'$. In particular,

$$1356 \quad \mathbb{E}[\widehat{V}_h] = \mathbb{E}[r_h + \widehat{P}_h \widehat{V}_{h+1}] = r_h + \mathbb{E}[\widehat{P}_h(r_{h+1} + \widehat{P}_{h+1} \widehat{V}_{t+2})] = r_h + P_h r_{h+1} + \mathbb{E}[\widehat{P}_h \widehat{P}_{h+1} \widehat{V}_{t+2}] \\ 1357 \quad \neq r_h + P_h r_{h+1} + P_h P_{h+1} V_{t+2}.$$

1360 **D.3 REGRET BOUNDS OF OPTIMISM-BASED METHODS FOR TABULAR EXO-MDPs**

1361 **D.3.1 REGRET BOUND OF UCB FOR EXO-MAB**

1362 **Proposition 6** (UCB for Exo-MAB). The expected cumulative regret of UCB in the full information
 1363 setting with A arms satisfies

$$1364 \quad \text{CR (UCB, } K) \leq \sqrt{2\sigma^2 \log(AK^2)(K-1)} + \mathcal{O}(1).$$

1365 *Proof.* With prob. at least $1 - \delta$, the event E holds

$$1366 \quad \forall a \in [A], \forall k \in [K], |\mu_i - \hat{\mu}_i(k)| \leq b_i(k) := \sqrt{2\sigma^2 \frac{\log(AK/\delta)}{k-1}}.$$

1367 Conditioned on event E , the simple regret can be bounded as

$$1368 \quad \text{SR (UCB, } k) = \mu^* - \mu_{a_k} \leq \bar{\mu}_1(k) - \mu_{a_k} \leq \bar{\mu}_{a_h}(k) - \mu_{a_k} \leq 2b_{a_h}(k) = 2\sqrt{2\sigma^2 \frac{\log(AK/\delta)}{k-1}}.$$

1369 The expected simple regret is bounded as

$$1370 \quad \text{SR (UCB, } k) = \mathbb{E}[\mu^* - \mu_{a_k}] = \mathbb{E}[\mu^* - \mu_{a_k} | E] \mathbb{P}(E) + \mathbb{E}[\mu^* - \mu_{a_k} | E^c] \mathbb{P}(E^c) \leq 2\sqrt{2\sigma^2 \frac{\log(AK/\delta)}{k-1}} + \delta.$$

1371 Therefore, the expected total regret

$$1372 \quad \text{CR (UCB, } K) \leq \sum_{t=2}^K 2\sqrt{2\sigma^2 \frac{\log(AK/\delta)}{k-1}} + \delta \leq \sqrt{2\sigma^2 \log(AK/\delta)(K-1)} + K\delta.$$

1373 Choosing $\delta = 1/K$ yields

$$1374 \quad \text{CR (UCB, } K) \leq \sqrt{2\sigma^2 \log(AK^2)(K-1)} + \mathcal{O}(1) \\ 1375 \quad \leq \mathcal{O}(\sigma \sqrt{K \log A}) + \mathcal{O}(\sigma \sqrt{K \log K}).$$

1376 \square

1377 **D.3.2 REGRET BOUND OF OPTIMISTIC PTO FOR TABULAR EXO-MDP**

1378 We consider PTO-Opt, an optimistic version of PTO, which replaces the exogenous transition model
 1379 with its optimistic version. In episode k , PTO-Opt performs

$$1380 \quad \bar{Q}_h^k(s_h, a_h) := r(x_h, a_h, \xi_h) + \mathbb{E}_{\xi_{h+1} | \xi_h} [\bar{V}_{h+1}^k(f(x_h, a_h, \xi_{h+1}), \xi_{h+1}); \bar{\mathbb{P}}^k] \\ 1381 \quad = r(x_h, a_h, \xi_h) + \max_{Q_h: \|Q_h - \hat{\mathbb{P}}_h^k(\xi)\|_1 \leq c_t(\xi)} \sum_{\xi'} Q_h(\xi') \bar{V}_{h+1}^k(f(x_h, a_h, \xi_{h+1}), \xi_{h+1}), \\ 1382 \quad \bar{\pi}_h^k(s_h) \in \arg \max_{a_h} \bar{Q}_h^k(s_h, a_h), \quad \bar{V}_h^k(s_h) := \bar{Q}_h^k(s_h, \bar{\pi}_h^k(s_h)).$$

1383 **Proposition 7** (High probability cumulative regret bound of PTO-Opt). Fix any $\delta \in (0, 1)$. With
 1384 probability at least $1 - \delta$,

$$1385 \quad \text{CR (PTO-Opt, } K) \leq \mathcal{O}(H^2 |\Xi| \sqrt{K \log(KH|\Xi|/\delta)}).$$

1386 Compared with Theorem 1, PTO-Opt has slightly worse regret bound. This verifies that PEL is
 1387 sufficient for tabular Exo-MDP with simple implementations.

1404 **E OMITTED DISCUSSION IN SECTION 5**

1405 **E.1 LSVI-PE WITH MISSPECIFICATION (APPROXIMATION) ERROR.**

1406 Here we consider the case where the function class is misspecified and the true value functions may
 1407 not lie exactly in the linear span. To capture this, we introduce the notion of post-decision Bellman
 1410 operators.

1411 Write $x' := g(x^a, \xi')$. For any $U_{h+1} : \mathcal{X} \times \Xi \rightarrow \mathbb{R}$,

$$1413 \quad (\mathcal{T}^\pi U_{h+1})(x^a, \xi) := \mathbb{E}_{\xi' \sim P_h(\cdot | \xi)} \left[r(x', \pi(x', \xi'), \xi') + U_{h+1}(\mathcal{T}_h^\pi(\xi')(x^a), \xi') \right],$$

$$1415 \quad (\mathcal{T} U_{h+1})(x^a, \xi) := \mathbb{E}_{\xi' \sim P_h(\cdot | \xi)} \left[\max_{a' \in \mathcal{A}} \{ r(x', a', \xi') + U_{h+1}(f^a(x', a'), \xi') \} \right].$$

1417 Let $\mathcal{F}_h := \{(x^a, \xi) \mapsto \phi(x^a)^\top w_h(\xi) : w_h(\xi) \in \mathbb{R}^d\}$ be the post-decision linear class at stage h .

1418 We then have the Bellman errors or approximation errors as follows:

1419 **Definition 3** (Inherent Bellman error). Define the (post-decision) inherent Bellman errors

$$1421 \quad \varepsilon_{\text{BE}}^\pi := \max_{h \in [H]} \sup_{\xi \in \Xi} \sup_{U_{h+1} \in \mathcal{F}_{h+1}} \inf_{W_h \in \mathcal{F}_h} \sup_{x^a} |(\mathcal{T}^\pi U_{h+1})(x^a, \xi) - W_h(x^a, \xi)|,$$

$$1424 \quad \varepsilon_{\text{BE}}^{\max} := \max_{h \in [H]} \sup_{\xi \in \Xi} \sup_{U_{h+1} \in \mathcal{F}_{h+1}} \inf_{W_h \in \mathcal{F}_h} \sup_{x^a} |(\mathcal{T} U_{h+1})(x^a, \xi) - W_h(x^a, \xi)|.$$

1426 We will use $\varepsilon_{\text{BE}} := \max\{\varepsilon_{\text{BE}}^\pi, \varepsilon_{\text{BE}}^{\max}\}$.

1428 **Theorem 5.** [Agnostic Regret] Assume Assumption 1 holds. Fix $\delta \in (0, 1)$. Then with probability
 1429 at least $1 - \delta$,

$$1430 \quad \text{Regret}(K) \leq \mathcal{O} \left(H \sqrt{K \iota} + |\Xi| H \left(H + \sqrt{\frac{N}{\lambda_0}} \right) \sqrt{K \iota} + \frac{H}{\sqrt{\lambda_0}} K \varepsilon_{\text{BE}} \right).$$

1433 Compared to the realizable case, the regret bound now includes an additional bias term, linear in K ,
 1434 that scales with the inherent Bellman error ε_{BE} . This term is unavoidable in general agnostic settings:
 1435 if $\varepsilon_{\text{BE}} > 0$ is fixed, even an oracle learner suffers an $O(K \varepsilon_{\text{BE}})$ cumulative bias (Zanette et al., 2020).

1437 **F PROOFS OF REGRET BOUNDS IN SECTION 4**

1439 **F.1 EXO-BANDITS**

1441 **Proposition 1.** Assume rewards are σ^2 -sub-Gaussian. Then the expected per-round simple re-
 1442 gret of FTL satisfies $\text{SR}(\text{FTL}, k) \leq \sqrt{\frac{2\sigma^2 \log A}{k-1}}$, and consequently the cumulative regret obeys
 1444 $\text{CR}(\text{FTL}, K) \leq 2\sigma \sqrt{(K-1) \log A}$.

1446 To show the result we start with the following lemma.

1447 **Lemma 1** (Maxima of sub-Gaussian random variables). Let X_1, \dots, X_n be independent σ^2 -sub-
 1448 Gaussian random variables. Then

$$1450 \quad \mathbb{E} \left[\max_{1 \leq i \leq n} X_i \right] \leq \sqrt{2\sigma^2 \log n}$$

1452 and, for every $t > 0$,

$$1454 \quad \mathbb{P} \left\{ \max_{1 \leq i \leq n} X_i \geq \sqrt{2\sigma^2(\log n + t)} \right\} \leq e^{-t},$$

1455 or equivalently

$$1457 \quad \mathbb{P} \left\{ \max_{1 \leq i \leq n} X_i \geq \sqrt{2\sigma^2 \log(n/\delta)} \right\} \leq \delta,$$

1458 *Proof.* The first part is quite standard: by Jensen's inequality, monotonicity of \exp , and σ^2 -
 1459 subgaussianity, we have, for every $\lambda > 0$,
 1460

$$1461 e^{\lambda \mathbb{E}[\max_{1 \leq i \leq n} X_i]} \leq \mathbb{E} e^{\lambda \max_{1 \leq i \leq n} X_i} = \max_{1 \leq i \leq n} \mathbb{E} e^{\lambda X_i} \leq \sum_{i=1}^n \mathbb{E} e^{\lambda X_i} \leq n e^{\frac{\sigma^2 \lambda^2}{2}}$$

1463 so, taking logarithms and reorganizing, we have

$$1464 \mathbb{E} \left[\max_{1 \leq i \leq n} X_i \right] \leq \frac{1}{\lambda} \ln n + \frac{\lambda \sigma^2}{2}.$$

1467 Choosing $\lambda := \sqrt{\frac{2 \ln n}{\sigma^2}}$ proves the first inequality. Turning to the second inequality, let $u :=$
 1468 $\sqrt{2\sigma^2(\log n + t)}$. We have

$$1470 \mathbb{P} \left\{ \max_{1 \leq i \leq n} X_i \geq u \right\} = \mathbb{P} \{ \exists i, X_i \geq u \} \leq \sum_{i=1}^n \mathbb{P} \{ X_i \geq u \} \leq n e^{-\frac{u^2}{2\sigma^2}} = e^{-t}$$

1473 the last equality recalling our setting of u . \square

1474 Now we provide the proof of Proposition 1.

1475 *Proof.* Observe that the empirical mean is unbiased for each arm at each round,

$$1476 \begin{aligned} \text{SR}(\text{FTL}, k) &= \mu^* - \mathbb{E}[\mu_{a_k}] = \max_a \mathbb{E}[\mu_a - \mu_{a_k}] = \max_a \mathbb{E}[\hat{\mu}_a(k) - \mu_{a_k}] \leq \mathbb{E}[\max_a \hat{\mu}_a(k) - \mu_{a_k}] \\ 1477 &= \mathbb{E}[\hat{\mu}_{a_k}(k) - \mu_{a_k}] \\ 1478 &\leq \mathbb{E}[\max_{a \in [A]} \hat{\mu}_a(k) - \mu_a] \\ 1479 &\leq \sqrt{2\sigma^2 \log A / (k-1)}, \end{aligned}$$

1480 where the last inequality is due to Lemma 1. Therefore, we have

$$1481 \text{CR}(\text{FTL}, K) = \sum_{k=1}^K \text{SR}(\text{FTL}, k) \leq \sum_{t=2}^K \sqrt{2\sigma^2 \log A / (k-1)} \leq 2\sigma \sqrt{(K-1) \log A}.$$

1482 \square

1483 F.2 TABULAR EXO-MDP

1484 **Proposition 3.** [FTL guarantee, Theorem 7 in Sinclair et al. (2023b)] For any $\delta \in (0, 1)$, with
 1485 probability at least $1 - \delta$,

$$1486 \text{SR}(\text{FTL}, K) \leq H \sqrt{\frac{2 \log(2|\Pi|/\delta)}{K}}.$$

1487 In the tabular case this gives the stated dependence $|\Pi| \leq A^{H|\mathcal{X}||\Xi|}$.

1488 *Proof.* Observe that $V_1^\pi(s_1, \xi^k)$ are iid r.v.s, each of which has mean $V_1^\pi(s_1)$. Using Hoeffding's
 1489 inequality and a union bound over all policies shows that the event

$$1490 \mathcal{E} = \left\{ \forall \pi \in \Pi : |V_1^\pi(s_1) - \mathbb{E}[V_1^\pi(s_1)]| \leq \sqrt{\frac{H^2 \log(2|\Pi|/\delta)}{2K}} \right\}$$

1491 occurs with probability at least $1 - \delta$. Under \mathcal{E} we then have

$$1492 \begin{aligned} \text{SR}(\text{FTL}, K) &= V_1^{\pi^*}(s_1) - V_1^{\hat{\pi}^k}(s_1) \\ 1493 &= V_1^{\pi^*}(s_1) - \mathbb{E}[V_1^{\pi^*}(s_1, \xi)] + \mathbb{E}[V_1^{\pi^*}(s_1, \xi)] - \mathbb{E}[V_1^{\hat{\pi}^k}(s_1, \xi)] \\ 1494 &\quad + \mathbb{E}[V_1^{\hat{\pi}^k}(s_1, \xi)] - V_1^{\hat{\pi}^k}(s_1) \\ 1495 &\leq 2 \sqrt{\frac{H^2 \log(2|\Pi|/\delta)}{2K}}. \end{aligned}$$

1496 \square

1512 **Proposition 4.** The expected regret of FTL can be bounded as
 1513

$$1514 \quad \mathbb{E}[\text{SR}(\text{FTL}, K)] \leq \sqrt{\frac{H^2 \log |\Pi|}{K}}.$$

1515 In the tabular case this gives the stated dependence $|\Pi| \leq A^{H|\mathcal{X}||\Xi|}$.
 1516

1517 *Proof.* It holds that
 1518

$$\begin{aligned} 1521 \quad \mathbb{E}[\text{SR}(\text{FTL}, K)] &= V_1^{\pi^*}(s_1) - \mathbb{E}[V_1^{\hat{\pi}^k}(s_1)] = \max_{\pi} \mathbb{E}[\mathbb{E}[V_1^{\pi}(s_1, \xi)]] - \mathbb{E}[V_1^{\hat{\pi}^k}(s_1)] \\ 1522 &\leq \mathbb{E}[\max_{\pi} \mathbb{E}[V_1^{\pi}(s_1, \xi)]] - \mathbb{E}[V_1^{\hat{\pi}^k}(s_1)] \\ 1523 &= \mathbb{E}[\tilde{V}_1^{\hat{\pi}^k}(s_1) - V_1^{\hat{\pi}^k}(s_1)] \\ 1524 &\leq \mathbb{E}[\max_{\pi} \tilde{V}_1^{\pi}(s_1) - V_1^{\pi}(s_1)] \\ 1525 &\leq \sqrt{\frac{H^2 \log |\Pi|}{K}}, \end{aligned}$$

1526 where the last inequality is due to Lemma 1. \square
 1527

1528 F.3 PROOF OF THEOREM 1

1529 **Lemma 2** (Data processing inequality, TV distance). Let μ, ν be two probability measures on a
 1530 discrete set X and $f : X \rightarrow Y$ be a mapping. Let $f_{\#, \mu}$ and $f_{\#, \nu}$ be the resulting push-forward
 1531 measures on the space Y . Then

$$1532 \quad \|f_{\#, \mu} - f_{\#, \nu}\|_1 \leq \|\mu - \nu\|_1.$$

1533 *Proof.*

$$\begin{aligned} 1534 \quad \|f_{\#, \mu} - f_{\#, \nu}\|_1 &= \sum_{y \in Y} |f_{\#, \mu}(y) - f_{\#, \nu}(y)| = \sum_{y \in Y} |\mu(f^{-1}(y)) - \nu(f^{-1}(y))| \\ 1535 &= \sum_{y \in Y} \left| \sum_{x \in f^{-1}(y)} \mu(x) - \sum_{x \in f^{-1}(y)} \nu(x) \right| \\ 1536 &\leq \sum_{y \in Y} \sum_{x \in f^{-1}(y)} |\mu(x) - \nu(x)| \leq \sum_{x \in X} |\mu(x) - \nu(x)| = \|\mu - \nu\|_1, \end{aligned}$$

1537 where the second inequality is due to the triangle inequality. \square
 1538

1539 F.3.1 PROOF USING EXPECTED SIMULATION LEMMA

1540 **Lemma 3** (Simulation lemma, expected version). Let $\mathcal{M} = (P, r)$ and $\mathcal{M}' = (P', r)$. Define

$$1541 \quad \epsilon_h(s, a) := \|P_h(s, a) - P'_h(s, a)\|_1 \leq \sqrt{\frac{2S \log}{C_h(s, a)}}.$$

1542 For any fixed policy π and $s_1 \sim \rho$,

$$1543 \quad |V^{\pi, \mathcal{M}} - V^{\pi, \mathcal{M}'}| \leq \mathbb{E} \left[\sum_{h=1}^{H-1} (H-h) \epsilon_h(s_h, a_h) | \pi, P, \rho \right].$$

1544 It also holds that for any s_1

$$1545 \quad |V^{\pi, \mathcal{M}}(s_1) - V^{\pi, \mathcal{M}'}(s_1)| \leq \mathbb{E} \left[\sum_{h=1}^{H-1} (H-h) \epsilon_h(s_h, a_h) | \pi, P, s_1 \right].$$

1566 *Proof.* For two different MDPs, their values are defined for the same initial distribution $\rho(s_1)$
 1567

$$\begin{aligned}
 |V^{\pi, \mathcal{M}} - V^{\pi, \mathcal{M}'}| &= |\mathbb{E}[V_1^{\pi, \mathcal{M}}(s_1)] - \mathbb{E}[V_1^{\pi, \mathcal{M}'}(s_1)]| \\
 &= |\mathbb{E}[r_1(s_1, \pi_1(s_1)) + [P_1 V_2^{\pi, \mathcal{M}}](s_1, \pi_1(s_1)) - r_1(s_1, \pi_1(s_1)) - [P'_1 V_2^{\pi, \mathcal{M}'}](s_1, \pi_1(s_1))]| \\
 &= |\rho[P_1(V_2^{\pi, \mathcal{M}} - V_2^{\pi, \mathcal{M}'})(s_1, \pi_1(s_1))] + \rho[(P_1 - P'_1)V_2^{\pi, \mathcal{M}'}](s_1, \pi_1(s_1))| \\
 &\leq |\mathbb{E}[V_2^{\pi, \mathcal{M}}(s_2) - V_2^{\pi, \mathcal{M}'}(s_2)|s_2 \sim \rho P_1^{\pi}]| + (H-1) \cdot \mathbb{E}[\epsilon_1(s_1, a_1)|s_1 \sim \rho, a_1 = \pi_1(s_1)] \\
 &= |V_2^{\pi, \mathcal{M}} - V_2^{\pi, \mathcal{M}'}| + (H-1) \cdot \mathbb{E}[\epsilon_1(s_1, a_1)|s_1 \sim \rho, a_1 = \pi_1(s_1)] \\
 &\leq |V_3^{\pi, \mathcal{M}} - V_3^{\pi, \mathcal{M}'}| + \mathbb{E}[(H-1)\epsilon_1(s_1, a_1) + (H-2)\epsilon_1(s_2, a_2)|\pi, P, \rho] \\
 &\dots \\
 &\leq \mathbb{E} \left[\sum_{h=1}^{H-1} (H-h)\epsilon_h(s_h, a_h) |\pi, P, \rho \right].
 \end{aligned}$$

□

1583 Note that the expectation is taken w.r.t.
 1584

$$s_1 \sim \rho_1, \dots, a_h = \pi_h(s_h), s_{h+1} \sim P_h(s_h, a_h), \dots.$$

1586 The policy π and transitions P, P' are considered fixed, which implies that $\epsilon_h(s, a)$ is NOT random
 1587 for fixed (s, a) .
 1588

1589 For $k \in [K], h \in [H]$, define the filtration as

$$\mathcal{F}_h^k := \sigma((s_h^m, a_h^m)_{m \in [k-1], h \in [H]}, (s_{h'}^k, a_{h'}^k)_{h' \in [h-1]}).$$

1592 The policy $\hat{\pi}^k$ is measurable w.r.t. \mathcal{F}_0^n , hence

$$\hat{\pi}^k \perp \xi^k | \mathcal{F}_k,$$

1595 but

$$\hat{\pi}^k \not\perp (s_h^k, a_h^k)_{h \in [H]} | \mathcal{F}_k.$$

1597 Observe that

$$\begin{aligned}
 V_1^*(s_1) - V_1^{\hat{\pi}^k}(s_1) &= V_1^*(s_1) - \hat{V}_1^{k, \pi^*}(s_1) + \hat{V}_1^{k, \pi^*}(s_1) - \hat{V}_1^k(s_1) + \hat{V}_1^k(s_1) - V_1^{\hat{\pi}^k}(s_1) \\
 &\leq |V_1^*(s_1) - \hat{V}_1^{k, \pi^*}(s_1)| + |V_1^{\hat{\pi}^k}(s_1) - \hat{V}_1^{k, \hat{\pi}^k}(s_1)|.
 \end{aligned}$$

1602 Define

$$\begin{aligned}
 \epsilon_h^k(\xi_{h-1}) &:= \left\| P_h(\xi_h \in \cdot | \xi_{h-1}) - \hat{P}_h^k(\xi_h \in \cdot | \xi_{h-1}) \right\|_1 \\
 C_h^k(\xi) &:= \sum_{m=1}^{k-1} \mathbb{I}\{\xi_h^k = \xi\},
 \end{aligned}$$

1609 where $C_h^k(\xi)$ is defined by \mathcal{F}_0^k .

1610 **Key observation** Since $s_{h+1} = (f(x_h, a_h, \xi_h), \xi_h)$ is a mapping of ξ_h given x_h and a_h , **for any**
 1611 **(deterministic) policy/action sequence** and any s_h , it follows from Lemma 2

$$\epsilon_h^k(s_h, a_h) := \left\| P_h(s_{h+1} \in \cdot | s_h, a_h) - \hat{P}_h^k(s_{h+1} \in \cdot | s_h, a_h) \right\|_1 \leq \epsilon_h^k(\xi_{h-1}) \leq \mathcal{O}\left(\sqrt{\frac{|\Xi|t}{C_h^k(\xi_{h-1})}}\right),$$

1616 which bounds the model estimation error by a *policy/action-independent* error term. This will lead to
 1617 tighter regret bound than directly bounding the model error

$$\epsilon_h^k(s_h, a_h) \leq \mathcal{O}\left(\sqrt{\frac{|S|t}{C_h^k(s_h, a_h)}}\right).$$

Furthermore, we will see that the use of Exo-state ξ_{h-1} overcomes the *misalignment* issue since the sequence ξ^{k-1} is always \mathcal{F}^k -measurable. Note that $C^k, \hat{P}^k, \hat{\pi}^k$ are all \mathcal{F}^k -measurable, then $\epsilon^k(\cdot)$ is also \mathcal{F}^k -measurable.

The failure of using state-action count. Denote by $(s_h^k, a_h^k)_{h \in [T]}$ and $(\tilde{s}_h^k, \tilde{a}_h^k)_{h \in [T]}$ the sequence generated by $(\hat{\pi}^k, P)$ and (π^*, P) at the n -th episode. In particular,

$$\tilde{s}_1^k = s_1^k = x_1^k, \tilde{a}_1^k = \pi_1^*(s_1^k), \tilde{s}_2^k = (f(\tilde{s}_1^k, \tilde{a}_1^k, \xi_1^k), \xi_1^k), \dots, \tilde{s}_{h+1}^k = (f(\tilde{s}_h^k, \tilde{a}_h^k, \xi_h^k), \xi_h^k), \dots$$

Note that $(\tilde{s}_h^k, \tilde{a}_h^k)_{h \in [H]}$ is fixed conditional on ξ^k , so its randomness only comes from ξ^k . We bound the **random** regret as

$$\begin{aligned} \sum_{k=1}^K V_1^* - V_1^{\hat{\pi}^k} &\leq \sum_{k=1}^K V_1^* - \hat{V}_1^{k, \pi^*} + \hat{V}_1^k - V_1^{\hat{\pi}^k} \leq \sum_{k=1}^K \left| V_1^* - \hat{V}_1^{k, \pi^*} \right| + \sum_{k=1}^K \left| V_1^{\hat{\pi}^k} - \hat{V}_1^k \right| \\ &\leq \sum_{h=1}^{H-1} (H-h) \sum_{k=1}^K \mathbb{E} [\epsilon_h^k(\tilde{s}_h^k, \tilde{a}_h^k) | \mathcal{F}_k] + \sum_{h=1}^{H-1} (H-h) \sum_{k=1}^K \mathbb{E} [\epsilon_h^k(s_h^k, a_h^k) | \mathcal{F}_k] \\ &\leq \sum_{h=1}^{H-1} (H-h) \mathbb{E} \left[\sum_{k=1}^K \sqrt{\frac{2S\iota}{C_h^k(\tilde{s}_h^k, \tilde{a}_h^k)}} | \mathcal{F}_k \right] + \sum_{h=1}^{H-1} (H-h) \mathbb{E} \left[\sqrt{\frac{2S\iota}{C_h^k(s_h^k, a_h^k)}} | \mathcal{F}_k \right], \end{aligned}$$

where the third inequality is due to Lemma 3 and the last inequality is due to Lemma 2. However, the key is that the visiting count

$$C_h^k(s, a) = \sum_{m=1}^{k-1} \mathbb{I}\{(s_h^m, a_h^m) = (s, a)\}$$

is defined by \mathcal{F}^k generated by $(\hat{\pi}, P)$. Although we can bound the second term via standard proof, we cannot obtain an upper bound on the first term. Specifically,

$$\begin{aligned} \sum_{k=1}^K \sqrt{\frac{2S\iota}{C_h^k(\tilde{s}_h^k, \tilde{a}_h^k)}} &= \sum_{k=1}^K \sum_{s,a} \mathbb{I}\{(\tilde{s}_h^k, \tilde{a}_h^k) = (s, a)\} \sqrt{\frac{2S\iota}{C_h^k(\tilde{s}_h^k, \tilde{a}_h^k)}} \\ &= \sum_{s,a} \sum_{k=1}^K \mathbb{I}\{(\tilde{s}_h^k, \tilde{a}_h^k) = (s, a)\} \sqrt{\frac{2S\iota}{C_h^k(s, a)}} \\ &\neq \sum_{s,a} \sum_{c=1}^{C_h^k(s,a)} \sqrt{\frac{2S\iota}{c}}. \end{aligned}$$

The last inequality is due to the fact that $C_h^k(s, a)$ does not increase by 1 if $(\tilde{s}_h^k, \tilde{a}_h^k) = (s, a)$ since C_h^k counts based on \mathcal{F}^k or (s_h^k, a_h^k) .

The solution: bounding via exogenous state count. Using Lemma 3 we can get

$$\begin{aligned} \sum_{k=1}^K V_1^* - V_1^{\hat{\pi}^k} &\leq \sum_{k=1}^K V_1^* - \hat{V}_1^{k, \pi^*} + \hat{V}_1^k - V_1^{\hat{\pi}^k} \leq \sum_{k=1}^K \left| \hat{V}_1^{k, \pi^*} - V_1^* \right| + \sum_{k=1}^K \left| \hat{V}_1^k - V_1^{\hat{\pi}^k} \right| \\ &\leq \sum_{h=1}^{H-1} (H-h) \sum_{k=1}^K \mathbb{E} [\epsilon_h^k(\tilde{s}_h^k, \tilde{a}_h^k) | \mathcal{F}_k] + \sum_{h=1}^{H-1} (H-h) \sum_{k=1}^K \mathbb{E} [\epsilon_h^k(s_h^k, a_h^k) | \mathcal{F}_k] \\ &\leq 2 \sum_{h=1}^{H-1} (H-h) \sum_{k=1}^K \mathbb{E} \left[\sqrt{\frac{2|\Xi| \log(KH/\delta)}{C_h^k(\xi_{h-1}^k)}} | \mathcal{F}_k \right], \end{aligned}$$

where the expectation in the second line is taken w.r.t. the $(\tilde{s}_h^k, \tilde{a}_h^k)_{h \in [H]} \sim P^{\pi^*}$ and $(s_h^k, a_h^k)_{h \in [H]} \sim P^{\hat{\pi}^k}$. Taking expectation on both sides, we can get

$$\mathbb{E} \left[\sum_{k=1}^K V_1^* - V_1^{\hat{\pi}^k} \right] \leq 2 \sum_{h=1}^{H-1} (H-h) \mathbb{E} \left[\sum_{k=1}^K \sqrt{\frac{2|\Xi| \log(KH/\delta)}{C_h^k(\xi_{h-1}^k)}} \right] \leq 4H^2 |\Xi| \sqrt{2N \log(KH/\delta)}.$$

1674
1675

F.3.2 PROOF VIA MDS SIMULATION LEMMA

1676 Lemma 4 (Simulation lemma, martingale difference). Let $\mathcal{M} = (P, r)$ and $\mathcal{M}' = (P', r)$. Fix an
1677 arbitrary policy π . Define

1678
1679
$$\epsilon_h := \|P_h(s_h, \pi_h(s_h)) - P'_h(s_h, \pi_h(s_h))\|_1 \leq \sqrt{\frac{2S \log}{C_h(s_h, \pi_h(s_h))}}$$

1680

1681
$$e_h := [P_h | V_{h+1}^{\pi, \mathcal{M}} - V_{h+1}^{\pi, \mathcal{M}'} |](s_h, \pi_h(s_h)) - |V_{h+1}^{\pi, \mathcal{M}} - V_{h+1}^{\pi, \mathcal{M}'}|(s_{h+1}),$$

1682

1683 where e_h is a martingale difference sequence w.r.t. the filtration $\mathcal{H}_h :=$
1684 $\sigma(s_1, \pi_1(s_1), \dots, s_{h-1}, \pi_{h-1}(s_{h-1}))$. Then

1685
1686
$$|V^{\pi, \mathcal{M}}(s_1) - V^{\pi, \mathcal{M}'}(s_1)| \leq \sum_{h=1}^{H-1} (e_h + (H-h)\epsilon_h).$$

1687

1688 Lemma 4 bounds a deterministic term by the sum of two random variables.
16891690 *Proof.*

1691
1692
$$|V_1^{\pi, \mathcal{M}}(s_1) - V_1^{\pi, \mathcal{M}'}(s_1)| = |r_1(s_1, \pi_1(s_1)) + [P_1 V_2^{\pi, \mathcal{M}'}](s_1, \pi_1(s_1)) - r_1(s_1, \pi_1(s_1)) - [P'_1 V_2^{\pi, \mathcal{M}'}](s_1, \pi_1(s_1))|$$

1693
$$= |[P_1(V_2^{\pi, \mathcal{M}} - V_2^{\pi, \mathcal{M}'})](s_1, \pi_1(s_1)) + [(P_1 - P'_1)V_2^{\pi, \mathcal{M}'}](s_1, \pi_1(s_1))|$$

1694
$$\leq [P_1 |V_2^{\pi, \mathcal{M}} - V_2^{\pi, \mathcal{M}'}|](s_1, \pi_1(s_1)) + |[(P_1 - P'_1)V_2^{\pi, \mathcal{M}'}](s_1, \pi_1(s_1))|$$

1695
$$= |V_2^{\pi, \mathcal{M}} - V_2^{\pi, \mathcal{M}'}|(s_2) + e_1 + |[(P_1 - P'_1)V_2^{\pi, \mathcal{M}'}](s_1, \pi_1(s_1))|$$

1696
$$\leq |V_2^{\pi, \mathcal{M}} - V_2^{\pi, \mathcal{M}'}|(s_2) + e_1 + \epsilon_1 \cdot (H-1)$$

1697
$$\leq |V_3^{\pi, \mathcal{M}} - V_3^{\pi, \mathcal{M}'}|(s_3) + e_2 + \epsilon_2 \cdot (H-2) + e_1 + \epsilon_1 \cdot (H-1)$$

1698
$$\leq \dots$$

1699
1700
$$\leq |V_h^{\pi, \mathcal{M}} - V_h^{\pi, \mathcal{M}'}|(s_h) + \sum_{h=1}^{H-1} (e_h + (H-h)\epsilon_h)$$

1701
1702
$$= \sum_{h=1}^{H-1} (e_h + (H-h)\epsilon_h).$$

1703
1704
1705
1706
1707

1708
1709
1710 \square

Define

1711
1712
$$\epsilon_h^k(s_h, a_h) := \|P_h(s_h, a_h) - \hat{P}_h^k(s_h, a_h)\|_1 \leq \sqrt{\frac{2S\iota}{C_h^k(s_h, a_h)}}$$

1713
1714
$$e_h^k(s_h, a_h | \pi) := [P_h | V_{h+1}^{\pi} - \hat{V}_{h+1}^{k, \pi} |](s_h, a_h) - |V_{h+1}^{\pi} - \hat{V}_{h+1}^{k, \pi}|(s_{h+1}),$$

1715

1716 where e_h^k is a martingale difference sequence that depends on π through $\hat{V}_{h+1}^{k, \pi}$. Recall that
1717 $(s_h^k, a_h^k)_{h \in [H]}$ and $(\tilde{s}_h^k, \tilde{a}_h^k)_{h \in [H]}$ are the sequence generated by $(\hat{\pi}^k, P)$ and (π^*, P) at the k -th
1718 episode, which satisfy $\tilde{s}_h^k = s_1^k = x_1^k$. Using Lemma 4 we can get

1719
1720
$$\sum_{k=1}^K V_1^* - V_1^{\hat{\pi}^k} \leq \sum_{k=1}^K \left| V_1^{\pi^*}(s_1) - \hat{V}_1^{n, \pi^*}(s_1) \right| + \left| V_1^{\hat{\pi}^k}(s_1) - \hat{V}_1^{n, \hat{\pi}^k}(s_1) \right|$$

1721
1722
$$\leq \sum_{h=1}^{H-1} \sum_{k=1}^K e_h^k(\tilde{s}_h^k, \tilde{a}_h^k | \pi^*) + (H-h)\epsilon_h^k(\tilde{s}_h^k, \tilde{a}_h^k) + \sum_{h=1}^{H-1} \sum_{k=1}^K e_h^k(s_h^k, a_h^k | \hat{\pi}^k) + (H-h)\epsilon_h^k(s_h^k, a_h^k)$$

1723
1724

1725 The key observation is to verify MDS by considering the essential filtration $\sigma((\xi^k)_n)$ instead of the
1726 full (standard) filtration $\sigma((s_h^k, a_h^k)_{k, h})$. Formally, we define the **exogenous filtration** $(s_1^k = x_1^k)$
1727

$$\mathcal{G}_h^k := \sigma((s_1^m, \xi^m)_{m \in [k-1]}, s_1^k, (\xi_{h'}^k)_{h' \in [h-1]}),$$

which is only generated by the exogenous process. This is different from the full filtration

$$\mathcal{F}_h^k := \sigma((s_h^m, a_h^m)_{m \in [k-1], h \in [H]}, (s_{h'}^k, a_{h'}^k)_{h' \in [h-1]}, s_h^k).$$

For any k and h , we can recover/simulate $(\tilde{s}_{h'}^k, \tilde{a}_{h'}^k)_{h' \leq t}$ from s_1^k, π^* and ξ_{h-1}^k as follows

$$\tilde{s}_{h'}^k = (\tilde{x}_{h'}^k, \xi_{h'-1}^k), \tilde{a}_{h'}^k = \pi_{h'}^*(\tilde{s}_{h'}^k), \tilde{x}_{h'+1}^k = f(\tilde{x}_{h'}^k, \tilde{a}_{h'}^k, \xi_{h'}^k),$$

which implies that $(\tilde{s}_{h'}^k, \tilde{a}_{h'}^k)_{h' \leq t}$ is measurable w.r.t. \mathcal{G}_h^k . Furthermore, \hat{P}_{Ξ}^k is measurable w.r.t. \mathcal{G}^k implies \hat{V}^{k, π^*} is measurable w.r.t. \mathcal{G}^k . Then

$$e_h^k(\tilde{s}_h^k, \tilde{a}_h^k | \pi^*) = [P_h | V_{h+1}^{\pi^*} - \hat{V}_{h+1}^{k, \pi^*} |](\tilde{s}_h^k, \tilde{a}_h^k) - |V_{h+1}^{\pi^*} - \hat{V}_{h+1}^{k, \pi^*}|(\tilde{s}_{h+1}^k)$$

is an MDS w.r.t. \mathcal{G}_h^k since

$$\begin{aligned} \mathbb{E}[e_h^k(\tilde{s}_h^k, \tilde{a}_h^k | \pi^*) | \mathcal{G}_h^k] &= \mathbb{E}\left[P_h | V_{h+1}^{\pi^*} - \hat{V}_{h+1}^{k, \pi^*} |](\tilde{s}_h^k, \tilde{a}_h^k) - |V_{h+1}^{\pi^*} - \hat{V}_{h+1}^{k, \pi^*}|(\tilde{s}_{h+1}^k) | \mathcal{G}_h^k\right] \\ &= [P_h | V_{h+1}^{\pi^*} - \hat{V}_{h+1}^{k, \pi^*} |](\tilde{s}_h^k, \tilde{a}_h^k) - [P_h | V_{h+1}^{\pi^*} - \hat{V}_{h+1}^{k, \pi^*} |](\tilde{s}_{h+1}^k) \\ &= 0, \end{aligned}$$

where the second equality is due to that the only non-measurable variable is \tilde{s}_{h+1}^k , and $e_h^k(\tilde{s}_h^k, \tilde{a}_h^k | \pi^*) \in \mathcal{G}_{h+1}^k$ since \tilde{s}_{h+1}^k is measurable w.r.t. \mathcal{G}_{h+1}^k .

Since $\hat{\pi}^k$ is measurable w.r.t. \mathcal{G}^k , $\hat{V}^{k, \hat{\pi}^k}$ and $(s_{h'}^k, a_{h'}^k)_{h' \leq t}$ are measurable w.r.t. \mathcal{G}_h^k . Then

$$\begin{aligned} \mathbb{E}[e_h^k(s_h^k, a_h^k | \hat{\pi}^k) | \mathcal{G}_h^k] &= \mathbb{E}\left[P_h | V_{h+1}^{\hat{\pi}^k} - \hat{V}_{h+1}^{k, \hat{\pi}^k} |](s_h^k, a_h^k) - |V_{h+1}^{\hat{\pi}^k} - \hat{V}_{h+1}^{k, \hat{\pi}^k}|(s_{h+1}^k) | \mathcal{G}_h^k\right] \\ &= [P_h | V_{h+1}^{\hat{\pi}^k} - \hat{V}_{h+1}^{k, \hat{\pi}^k} |](s_h^k, a_h^k) - [P_h | V_{h+1}^{\hat{\pi}^k} - \hat{V}_{h+1}^{k, \hat{\pi}^k} |](s_{h+1}^k) \\ &= 0, \end{aligned}$$

and $e_h^k(s_h^k, a_h^k | \hat{\pi}^k)$ is measurable w.r.t. \mathcal{G}_{h+1}^k . Thus $e_h^k(s_h^k, a_h^k | \hat{\pi}^k)$ is also an MDS w.r.t. \mathcal{G}_h^k . Using the Azuma-Hoeffding inequality, we obtain w.p. $1 - \delta'$

$$\sum_{h=1}^{H-1} \sum_{k=1}^K e_h^k(\tilde{s}_h^k, \tilde{a}_h^k | \pi^*) + e_h^k(s_h^k, a_h^k | \hat{\pi}^k) \leq \mathcal{O}(H\sqrt{KH \log 1/\delta'}).$$

We can bound the error terms as

$$\begin{aligned} \sum_{h=1}^{H-1} (H-h) \sum_{k=1}^K e_h^k(\tilde{s}_h^k, \tilde{a}_h^k) + e_h^k(s_h^k, a_h^k) &\leq 2 \sum_{h=1}^{H-1} (H-h) \sum_{k=1}^K \sqrt{\frac{2|\Xi| \log(KH/\delta)}{C_h^k(\xi_h^k)}} \\ &\leq 4H^2 |\Xi| \sqrt{2K \log(KH/\delta)}. \end{aligned}$$

Remark 4. We cannot obtain a bound on the expected regret that is independent of δ as the full information MAB setting since

$$V^{*, \mathcal{M}} = \max_{\pi} V^{\pi, \mathcal{M}} \neq \max_{\pi} \mathbb{E}[V^{\pi, \widehat{\mathcal{M}}}] \leq \mathbb{E}[\max_{\pi} V^{\pi, \widehat{\mathcal{M}}}] = \mathbb{E}[V^{\hat{\pi}, \widehat{\mathcal{M}}}]$$

Remark 5. We may obtain a tighter regret bound of $\mathcal{O}(H\sqrt{|\Xi|KH})$ by a finer analysis.

Remark 6. The simulation lemma MDS leads to a high prob. regret bound, while the simulation lemma expected version leads to a expected regret bound. They are the same order, but the latter one is weaker.

F.4 PROOFS OF IMPOSSIBILITY RESULTS

Definition 4 (Pure-Exploitation Greedy (PEG) after a finite warm-start). Fix an integer $L \geq 1$ (not growing with K). *Warm-start*: pull each arm exactly L times (in any order). *Greedy phase*: for all subsequent rounds $K > AL$, play

$$a_k \in \arg \max_{a \in [K]} \hat{\mu}_a(k),$$

where $\hat{\mu}_a(k)$ is the empirical mean of arm a over the learner's own past pulls of a . Ties are broken by any deterministic rule that is independent of future rewards.

1782 **Lemma 5** (Monotonicity barrier). Consider PEG. Suppose at the start of the greedy phase there exist
 1783 arms i, j with $\hat{\mu}_i(KL) = 0$ and $\hat{\mu}_j(KL) > 0$. Then PEG never pulls arm i again.
 1784

1785 *Proof.* At any time $t \geq KL$, the empirical mean of arm i remains exactly 0 unless i is pulled;
 1786 conversely, any arm with at least one observed success retains an empirical mean > 0 forever, because
 1787 the count of successes for that arm can never drop to zero. Since PEG selects an arm with maximal
 1788 empirical mean and $\hat{\mu}_j(k) \geq \hat{\mu}_j(KL) > 0 > \hat{\mu}_i(k)$ for all $t \geq KL$, arm i is never selected. \square
 1789

1790 **Theorem 6** (Linear regret for K -armed PEG with $L = 1$). Fix any $K \geq 2$ and any gap $\Delta \in (0, \frac{1}{4}]$.
 1791 Consider Bernoulli arms with means

$$1792 \quad \mu_1 = \frac{1}{2} + \Delta, \quad \mu_2 = \cdots = \mu_K = \frac{1}{2}.$$

1793 Run PEG with warm-start $L = 1$ (each arm pulled once) and then act greedily. For all $T \geq K$,

$$1795 \quad \mathbb{E}[\text{Regret}(T)] \geq \left(\frac{1}{2} - \Delta\right)\left(1 - 2^{-(K-1)}\right)\Delta(T - K) = \Omega(T).$$

1797 *Proof.* Let $X_{a,1} \in \{0, 1\}$ be the first Bernoulli sample from arm a . Consider the warm-start event
 1798

$$1799 \quad E := \{X_{1,1} = 0\} \cap \left\{ \exists b \in \{2, \dots, K\}: X_{b,1} = 1 \right\}.$$

1800 Independence gives
 1801

$$1802 \quad \mathbb{P}(E) = (1 - \mu_1)\left(1 - \prod_{b=2}^K (1 - \mu_b)\right) = \left(\frac{1}{2} - \Delta\right)\left(1 - \left(\frac{1}{2}\right)^{K-1}\right).$$

1805 On E , after the K -round warm-start we have $\hat{\mu}_1(K) = 0$ and (at least) one suboptimal arm b with
 1806 $\hat{\mu}_b(K) = 1$. By Lemma 5, PEG never pulls arm 1 again. Hence from round $K+1$ onward PEG plays
 1807 a suboptimal arm every round, incurring per-round regret $\mu_1 - \max_{a \neq 1} \mu_a = \Delta$. Therefore,

$$1808 \quad \text{Regret}(k) \geq \Delta(T - K) \quad \text{on } E,$$

1809 and taking expectations yields the stated lower bound. \square
 1810

1811 **Theorem 7** (Linear regret for any fixed warm-start L). Fix $K \geq 2$, any integer $L \geq 1$ that does not
 1812 grow with T , and any $\Delta \in (0, \frac{1}{4}]$. Consider the same Bernoulli instance as in Theorem 6. If PEG is
 1813 run with warm-start size L and then acts greedily, then for all $T \geq KL$,

$$1814 \quad \mathbb{E}[\text{Regret}(k)] \geq \underbrace{\left(\frac{1}{2} - \Delta\right)^L \left(1 - (1 - 2^{-L})^{K-1}\right)}_{\text{a positive constant independent of } T} \cdot \Delta(T - KL) = \Omega(k).$$

1818 *Proof.* Let $S_{a,L}$ be the number of successes observed from arm a during the L warm-start pulls of
 1819 that arm. Consider

$$1821 \quad E_L := \{S_{1,L} = 0\} \cap \left\{ \exists b \in \{2, \dots, K\}: S_{b,L} = L \right\}.$$

1822 By independence across arms during the warm-start,
 1823

$$1824 \quad \mathbb{P}(S_{1,L} = 0) = (1 - \mu_1)^L = \left(\frac{1}{2} - \Delta\right)^L, \quad \mathbb{P}(S_{b,L} = L) = \mu_b^L = \left(\frac{1}{2}\right)^L,$$

1825 and therefore

$$1826 \quad \mathbb{P}(E_L) = \left(\frac{1}{2} - \Delta\right)^L \left(1 - (1 - 2^{-L})^{K-1}\right).$$

1828 On E_L , after the KL -round warm-start we have $\hat{\mu}_1(KL) = 0$ and at least one suboptimal arm b
 1829 with $\hat{\mu}_b(KL) = 1$. By Lemma 5, PEG never returns to arm 1; consequently it plays a suboptimal
 1830 arm in every round $t > KL$, suffering per-round regret Δ . Taking expectations yields the claimed
 1831 bound. \square

1832 **Corollary 5** (Any finite exploration budget). Let an algorithm perform any deterministic, data-
 1833 independent exploration schedule of finite length $N < \infty$ (not growing with T), after which it
 1834 always selects an arm with maximal current empirical mean (deterministic tie-breaking independent
 1835 of future rewards). Then there exists a Bernoulli K -armed instance on which the algorithm has
 $\mathbb{E}[\text{Regret}(k)] = \Omega(k)$.

1836 *Proof.* Map the schedule to some $L_a \geq 1$ pulls per arm a during the exploration phase, with
 1837 $\sum_a L_a = N$. Choose means as in Theorem 6 and define the event that the optimal arm produces only
 1838 zeros in its L_1 pulls while at least one suboptimal arm produces only ones in its L_b pulls. This event
 1839 has strictly positive probability \prod -factor bounded away from 0 (independent of T). Conditioned
 1840 on this event, the post-exploration empirical means create a strict separation (optimal arm at 0, a
 1841 suboptimal arm at 1), and Lemma 5 applies verbatim to force perpetual suboptimal play thereafter,
 1842 yielding linear regret in T . \square

1843

1844 *Remark 7* (Beyond Bernoulli, bounded rewards). The same conclusion holds for any rewards
 1845 supported on $[0, 1]$ when there exists a gap $\Delta = \mu^* - \max_{a \neq a^*} \mu_a > 0$. By Hoeffding's inequality,
 1846 for any fixed L there are constants $p_1, p_2 > 0$ (depending on L and the arm means) such that with
 1847 probability at least p_1 the optimal arm's warm-start average is $\leq \mu^* - \frac{\Delta}{2}$ and with probability at least
 1848 p_2 some suboptimal arm's warm-start average is $\geq \mu^* - \frac{\Delta}{4}$. The intersection has constant probability
 1849 $p_1 p_2 > 0$, producing a strict empirical mean misranking after the warm-start and thus linear regret by
 1850 Lemma 5.

1851

1852 G PROOFS OF REGRET BOUNDS IN SECTION 5

1853

1854 G.1 PROOF OF THEOREM 2

1855

1856 Define $\delta_h^k(\pi) := (V_h^{k,\pi} - V_h^\pi)(s_h^k)$. We have

$$\begin{aligned} 1857 \delta_h^k(\pi) &= (V_h^{k,\pi} - V_h^\pi)(s_h^k) = (V_h^{k,\pi} - V_h^\pi)(x_h^k, \xi_{h-1}^k) \\ 1858 &= r(x_h^k, \pi, \xi_{h-1}^k) + V_h^{k,\pi,a}(f^a(x_h^k, \pi), \xi_{h-1}^k) - r(x_h^k, \pi, \xi_{h-1}^k) - V_h^{\pi,a}(f^a(x_h^k, \pi), \xi_{h-1}^k) \\ 1859 &= \phi(f^a(x_h^k, \pi))^\top (w_h^{k,\pi}(\xi_{h-1}^k) - w_h^\pi(\xi_{h-1}^k)) \\ 1860 &= \phi(x_h^{k,\pi})^\top (w_h^{k,\pi}(\xi_{h-1}^k) - w_h^\pi(\xi_{h-1}^k)) \\ 1861 &= \phi(x_h^{k,\pi})^\top \Sigma_h^{-1} \Phi_h(\mathbf{v}_h^{k,\pi}(\xi_{h-1}^k) - \mathbf{v}_h^\pi(\xi_{h-1}^k)), \end{aligned}$$

1864

1865 where

$$\begin{aligned} 1866 \mathbf{v}_h^{k,\pi}(\xi_{h-1}^k, n) &= \sum_{\xi_h^k} \hat{P}_h^k(\xi_h^k | \xi_{h-1}^k) \left[r(g(x_h^a(n), \xi_h^k), \pi, \xi_h^k) + \phi(f^a(g(x_h^a(n), \xi_h^k), \pi))^\top w_{h+1}^{k,\pi}(\xi_h^k) \right] \\ 1867 &= \sum_{\xi_h^k} \hat{P}_h^k(\xi_h^k | \xi_{h-1}^k) \left[r(x_{h+1}^k(n), \pi, \xi_h^k) + \phi(f^a(x_{h+1}^k(n), \pi))^\top w_{h+1}^{k,\pi}(\xi_h^k) \right] \\ 1868 \\ 1869 \mathbf{v}_h^\pi(\xi_{h-1}^k, n) &= \sum_{\xi_h^k} P_h(\xi_h^k | \xi_{h-1}^k) \left[r(g(x_h^a(n), \xi_h^k), \pi, \xi_h^k) + \phi(f^a(g(x_h^a(n), \xi_h^k), \pi))^\top w_{h+1}^\pi(\xi_h^k) \right] \\ 1870 &= \sum_{\xi_h^k} P_h(\xi_h^k | \xi_{h-1}^k) \left[r(x_{h+1}^k(n), \pi, \xi_h^k) + \phi(f^a(x_{h+1}^k(n), \pi))^\top w_{h+1}^\pi(\xi_h^k) \right]. \end{aligned}$$

1874

1875 Note that we denote $x_h^{k,\pi} := f^a(x_h^k, \pi(x_h^k, \xi_{h-1}^k))$ which implicitly depends on ξ_{h-1}^k and $x_{h+1}^k(n) :=$
 1876 $g(x_h^a(n), \xi_h^k)$ which implicitly depends on ξ_h^k . We have

$$\begin{aligned} 1877 \delta_h^k(\pi) &= \phi(x_h^{k,\pi})^\top \Sigma_h^{-1} \Phi_h(\mathbf{v}_h^{k,\pi}(\xi_{h-1}^k) - \mathbf{v}_h^\pi(\xi_{h-1}^k)) \\ 1878 &= \phi(x_h^{k,\pi})^\top \Sigma_h^{-1} \sum_k \phi(x_h^a(n)) \left[\sum_{\xi_h^k} (\hat{P}_h^k(\xi_h^k | \xi_{h-1}^k) - P_h(\xi_h^k | \xi_{h-1}^k)) r(x_{h+1}^k(n), \pi, \xi_h^k) \right] \\ 1879 \\ 1880 &\quad + \phi(x_h^{k,\pi})^\top \Sigma_h^{-1} \sum_k \phi(x_h^a(n)) \cdot \\ 1881 &\quad \left[\sum_{\xi_h^k} \hat{P}_h^k(\xi_h^k | \xi_{h-1}^k) \phi(f^a(x_{h+1}^k(n), \pi))^\top w_{h+1}^{k,\pi}(\xi_h^k) - P_h(\xi_h^k | \xi_{h-1}^k) \phi(f^a(x_{h+1}^k(n), \pi))^\top w_{h+1}^\pi(\xi_h^k) \right]. \end{aligned}$$

1890 Under Assumption 2, we have
1891
1892 $w_h^{k,\pi}(\xi_{h-1}^k) = \Sigma_h^{-1} \Phi_h \sum_{\xi_h^k} \hat{P}_h^k(\xi_h^k | \xi_{h-1}^k) \left[r(g(x_h^a(\cdot), \xi_h^k), \pi, \xi_h^k) + \phi(f^a(g(x_h^a(\cdot), \xi_h^k), \pi))^\top w_{h+1}^{k,\pi}(\xi_h^k) \right]$
1893
1894 $= \Sigma_h^{-1} \Phi_h [\hat{P}_h^k \mathbf{r}](\xi_{h-1}^k) + \Sigma_h^{-1} \sum_k \phi_h(k) \sum_{\xi_h^k} \hat{P}_h^k(\xi_h^k | \xi_{h-1}^k) (M_h^\pi(\xi_h^k) \phi_h(k))^\top w_{h+1}^{k,\pi}(\xi_h^k)$
1895
1896 $= \Sigma_h^{-1} \Phi_h [\hat{P}_h^k \mathbf{r}](\xi_{h-1}^k) + \Sigma_h^{-1} \sum_k \phi_h(k) \phi_h(k)^\top \sum_{\xi_h^k} \hat{P}_h^k(\xi_h^k | \xi_{h-1}^k) (M_h^\pi(\xi_h^k))^\top w_{h+1}^{k,\pi}(\xi_h^k)$
1897
1898 $= \Sigma_h^{-1} \Phi_h [\hat{P}_h^k \mathbf{r}](\xi_{h-1}^k) + \sum_{\xi_h^k} \hat{P}_h^k(\xi_h^k | \xi_{h-1}^k) (M_h^\pi(\xi_h^k))^\top w_{h+1}^{k,\pi}(\xi_h^k)$
1899
1900 $= \Sigma_h^{-1} \Phi_h [\hat{P}_h^k \mathbf{r}](\xi_{h-1}^k) + [\hat{P}_h^k((M_h^\pi)^\top w_{h+1}^{k,\pi})](\xi_{h-1}^k).$
1901
1902
1903

1904 Similarly, we can get

1905 $w_h^\pi(\xi_{h-1}^k) = \Sigma_h^{-1} \Phi_h [P_h \mathbf{r}](\xi_{h-1}^k) + [P_h((M_h^\pi)^\top w_{h+1}^\pi)](\xi_{h-1}^k).$
1906

1907 Thus

1908 $w_h^{k,\pi} - w_h^\pi = \Sigma_h^{-1} \Phi_h [\hat{P}_h^k - P_h](\xi_{h-1}^k) + [\hat{P}_h^k((M_h^\pi)^\top w_{h+1}^{k,\pi})](\xi_{h-1}^k) - [P_h((M_h^\pi)^\top w_{h+1}^\pi)](\xi_{h-1}^k)$
1909
1910 $= \Sigma_h^{-1} \Phi_h [\hat{P}_h^k - P_h](\xi_{h-1}^k) + [(\hat{P}_h^k - P_h)((M_h^\pi)^\top w_{h+1}^{k,\pi})](\xi_{h-1}^k) + [P_h((M_h^\pi)^\top (w_{h+1}^{k,\pi} - w_{h+1}^\pi))](\xi_{h-1}^k)$
1911
1912 $= \Sigma_h^{-1} \Phi_h [\hat{P}_h^k - P_h](\xi_{h-1}^k) + [(\hat{P}_h^k - P_h)((M_h^\pi)^\top w_{h+1}^{k,\pi})](\xi_{h-1}^k)$
1913
1914 $+ [P_h((M_h^\pi)^\top (w_{h+1}^{k,\pi} - w_{h+1}^\pi))](\xi_{h-1}^k) - (M_h^\pi(\xi_h^k))^\top (w_{h+1}^{k,\pi} - w_{h+1}^\pi)(\xi_h^k) + (M_h^\pi(\xi_h^k))^\top (w_{h+1}^{k,\pi} - w_{h+1}^\pi)(\xi_h^k)$
1915 $=: \epsilon_h^k(\pi) + e_h^k(\pi) + (M_h^\pi(\xi_h^k))^\top (w_{h+1}^{k,\pi} - w_{h+1}^\pi)(\xi_h^k),$
1916

1916 where we define

1917 $\epsilon_h^k(\pi) := [P_h((M_h^\pi)^\top (w_{h+1}^{k,\pi} - w_{h+1}^\pi))](\xi_{h-1}^k) - (M_h^\pi(\xi_h^k))^\top (w_{h+1}^{k,\pi} - w_{h+1}^\pi)(\xi_h^k),$
1918
1919 $e_h^k(\pi) := \Sigma_h^{-1} \Phi_h [\hat{P}_h^k - P_h](\xi_{h-1}^k) + [(\hat{P}_h^k - P_h)((M_h^\pi)^\top w_{h+1}^{k,\pi})](\xi_{h-1}^k).$
1920

1921 **Lemma 6.** Let $\{\phi_i\}_{i=1}^K \subset \mathbb{R}^d$, and define

1922 $A = \sum_{i=1}^K \phi_i \phi_i^\top \in \mathbb{R}^{d \times d},$
1923
1924
1925

1926 which is assumed to be full rank. For $\epsilon_i \in \mathbb{R}$ and $u \in \mathbb{R}^d$, set

1927 $\varepsilon = (\epsilon_1, \dots, \epsilon_K)^\top, \quad \Phi = [\phi_1 \cdots \phi_K] \in \mathbb{R}^{d \times K}.$
1928

1929 Then the following bound holds:

1930
$$\left| u^\top A^{-1} \sum_{i=1}^K \phi_i \epsilon_i \right| \leq \|u\|_{A^{-1}} \|\varepsilon\|_2,$$

1931
1932
1933

1934 where $\|u\|_{A^{-1}} = \sqrt{u^\top A^{-1} u}.$

1935 *Proof.* Observe that

1936
$$u^\top A^{-1} \sum_{i=1}^K \phi_i \epsilon_i = u^\top A^{-1} \Phi \varepsilon.$$

1937
1938
1939

1940 Let $A^{-1/2}$ denote the symmetric square root of A^{-1} , and define

1941 $B := A^{-1/2} \Phi \in \mathbb{R}^{d \times K}.$
1942

1943 Then

1944
$$u^\top A^{-1} \Phi \varepsilon = (A^{-1/2} u)^\top (A^{-1/2} \Phi) \varepsilon = (A^{-1/2} u)^\top B \varepsilon.$$

1944 Note that

$$1945 \quad BB^\top = A^{-1/2} \Phi \Phi^\top A^{-1/2} = A^{-1/2} A A^{-1/2} = I_d,$$

1946

1947 hence $\|B\|_2 = 1$. By the Cauchy–Schwarz inequality,

$$1948 \quad |(A^{-1/2}u)^\top B\varepsilon| \leq \|A^{-1/2}u\|_2 \|B\varepsilon\|_2 \leq \|A^{-1/2}u\|_2 \|\varepsilon\|_2.$$

1950

1951 Finally, $\|A^{-1/2}u\|_2 = \sqrt{u^\top A^{-1}u} = \|u\|_{A^{-1}}$, proving the claim. \square

1952

1953 We obtain the recursion for $d_h^k(\pi) := w_h^{k,\pi} - w_h^\pi$ as

$$\begin{aligned} 1955 \quad d_h^k(\pi) &= \epsilon_h^k(\pi) + e_h^k(\pi) + (M_h^\pi(\xi_h^k))^\top d_{h+1}^k \\ 1956 \quad &= \sum_{s=h}^H \left(\prod_{h'=h}^{s-1} M_{h'}^\pi(\xi_{h'}^k) \right)^\top (\epsilon_s^k(\pi) + e_s^k(\pi)) \\ 1957 \quad &=: \sum_{s=h}^H \tilde{\epsilon}_s^k(\pi) + \tilde{e}_s^k(\pi). \end{aligned}$$

1962

1963 Note that $e_h^k(\pi)$ is an vector-valued MDS w.r.t. \mathcal{G}_h^k since

$$1964 \quad \mathbb{E}[e_h^k(\pi) | \mathcal{G}_h^k] = \mathbb{E}\left[[P_h((M_h^\pi)^\top (w_{h+1}^{k,\pi} - w_{h+1}^\pi))] (\xi_{h-1}^k) - (M_h^\pi(\xi_h^k))^\top (w_{h+1}^{k,\pi} - w_{h+1}^\pi) (\xi_h^k) | \mathcal{G}_h^k \right] = \mathbf{0}.$$

1966

1967 Since $M_{h'}^\pi(\xi_{h'}^k)$ are \mathcal{G}_h^k -measurable for $h' \leq h-1$, we have

$$1968 \quad \mathbb{E}[\tilde{e}_h^k(\pi) | \mathcal{G}_h^k] = \mathbb{E}\left[\left(\prod_{h'=1}^{h-1} M_{h'}^\pi(\xi_{h'}^k) \right)^\top e_h^k | \mathcal{G}_h^k \right] = \left(\prod_{h'=1}^{h-1} M_{h'}^\pi(\xi_{h'}^k) \right)^\top \mathbb{E}[e_h^k | \mathcal{G}_h^k] = \mathbf{0}.$$

1971

1972 Thus $\tilde{e}_s^k(\pi)$ is also a vector-valued MDS w.r.t. \mathcal{G}_h^k .

1973

1974 Note that Φ is full rank, so $\phi(x^a)$ can be represented as $\phi(x^a) = \Phi\alpha$ for some $\alpha \in \mathbb{R}^K$. Under Assumption 3, we can prove the following lemma.

1975

1976 **Lemma 7.** For any (n, t, π, x^a, ξ) , it holds that $V_h^{k,\pi^k,a}(x^a, \xi) \geq V_h^{k,\pi,a}(x^a, \xi)$.

1977

1978 We have

$$\begin{aligned} 1979 \quad \text{Regret}(K) &= \sum_{k=1}^K \left(V_1^{\pi^*}(s_1^k) - V_1^{\hat{\pi}^k}(s_1^k) \right) \\ 1980 \quad &= \sum_{k=1}^K \left(V_1^{\pi^*} - V_1^{k,\pi^*} \right) (s_1^k) + \left(V_1^{k,\pi^*} - V_1^{k,\pi^k} \right) (s_1^k) + \left(V_1^{k,\pi^k} - V_1^{\pi^k} \right) (s_1^k) \\ 1981 \quad &\leq \sum_{k=1}^K \left(V_1^{\pi^*} - V_1^{k,\pi^*} \right) (s_1^k) + \left(V_1^{k,\pi^k} - V_1^{\pi^k} \right) (s_1^k) \\ 1982 \quad &= \sum_{k=1}^K -\phi(x_1^{k,a})^\top \delta_1^k(\pi^*) + \phi(x_1^{k,a})^\top \delta_1^k(\pi^k) \\ 1983 \quad &= \sum_{k=1}^K \sum_{h=1}^{H-1} -\phi(x_1^{k,a})^\top (\tilde{\epsilon}_h^k(\pi^*) + \tilde{e}_h^k(\pi^*)) + \phi(x_1^{k,a})^\top (\tilde{\epsilon}_h^k(\pi^k) + \tilde{e}_h^k(\pi^k)). \end{aligned}$$

1994

1995 Note that for any \mathcal{G}_h^k -measurable policy π , the sequence $\phi(x_1^{k,a})^\top \tilde{e}_h^k(\pi)$ is an MDS w.r.t. \mathcal{G}_h^k . Moreover,

1996

$$1997 \quad \left| \phi(x_1^{k,a})^\top \tilde{e}_h^k(\pi) \right| \leq 4\sqrt{d}.$$

1998
1999

Next, we bound

$$\begin{aligned}
\phi(x_1^{k,a})^\top \tilde{\epsilon}_h^k(\pi^k) &= \phi(x_1^{k,a})^\top \left(\prod_{h'=1}^{h-1} M_{h'}^\pi(\xi_{h'}^k) \right)^\top \epsilon_h^k \\
&= \left(\prod_{h'=1}^{h-1} M_{h'}^\pi(\xi_{h'}^k) \phi(x_1^{k,a}) \right)^\top \left(\Sigma_h^{-1} \Phi_h [(\hat{P}_h^k - P_h) \mathbf{r}] (\xi_{h-1}^k) + [(\hat{P}_h^k - P_h) ((M_h^\pi)^\top w_{h+1}^{k,\pi})] (\xi_{h-1}^k) \right) \\
&= \left(\prod_{h'=1}^{h-1} M_{h'}^\pi(\xi_{h'}^k) \phi(x_1^{k,a}) \right)^\top \Sigma_h^{-1} \Phi_h [(\hat{P}_h^k - P_h) \mathbf{r}] (\xi_{h-1}^k) \\
&\quad + \left(\prod_{h'=1}^{h-1} M_{h'}^\pi(\xi_{h'}^k) \phi(x_1^{k,a}) \right)^\top [(\hat{P}_h^k - P_h) ((M_h^\pi)^\top w_{h+1}^{k,\pi})] (\xi_{h-1}^k) \\
&= \left(\prod_{h'=1}^{h-1} M_{h'}^\pi(\xi_{h'}^k) \phi(x_1^{k,a}) \right)^\top \Sigma_h^{-1} \Phi_h [(\hat{P}_h^k - P_h) \mathbf{r}] (\xi_{h-1}^k) \\
&\quad + \left[(\hat{P}_h^k - P_h) \left(\prod_{h'=1}^h M_{h'}^\pi(\xi_{h'}^k) \phi(x_1^{k,a}) \right)^\top w_{h+1}^{k,\pi} \right] (\xi_{h-1}^k).
\end{aligned}$$

2000

We can bound the first term as

$$\begin{aligned}
\left(\prod_{h'=1}^{h-1} M_{h'}^\pi(\xi_{h'}^k) \phi(x_1^{k,a}) \right)^\top \Sigma_h^{-1} \Phi_h [(\hat{P}_h^k - P_h) \mathbf{r}] (\xi_{h-1}^k) &= (\tilde{M}_{h-1}^\pi \phi(x_1^{k,a}))^\top \Sigma_h^{-1} \Phi_h [(\hat{P}_h^k - P_h) \mathbf{r}] \\
&\leq \left\| \tilde{M}_{h-1}^\pi \phi(x_1^{k,a}) \right\|_{\Sigma_h^{-1}} \left\| (\hat{P}_h^k - P_h) \mathbf{r} \right\|_2 \\
&\leq \left\| \tilde{M}_{h-1}^\pi \phi(x_1^{k,a}) \right\|_{\Sigma_h^{-1}} \sqrt{N} \left\| (\hat{P}_h^k - P_h) (\xi_{h-1}^k) \right\|_1
\end{aligned}$$

2029

2030

The second term can be bounded as

$$\begin{aligned}
&\left[(\hat{P}_h^k - P_h) \left(\prod_{h'=1}^h M_{h'}^\pi(\xi_{h'}^k) \phi(x_1^{k,a}) \right)^\top w_{h+1}^{k,\pi} \right] (\xi_{h-1}^k) \\
&\leq \left\| (\hat{P}_h^k - P_h) (\xi_{h-1}^k) \right\|_1 \cdot \max_{\xi'} \left\| \left(\prod_{h'=1}^h M_{h'}^\pi(\xi_{h'}^k) \phi(x_1^{k,a}) \right)^\top w_{h+1}^{k,\pi}(\xi') \right\| \\
&\leq \left\| (\hat{P}_h^k - P_h) (\xi_{h-1}^k) \right\|_1 \left\| \prod_{h'=1}^h M_{h'}^\pi(\xi_{h'}^k) \phi(x_1^{k,a}) \right\| \left\| w_{h+1}^{k,\pi} \right\| \\
&\leq \left\| (\hat{P}_h^k - P_h) (\xi_{h-1}^k) \right\|_1 \left\| \prod_{h'=1}^h M_{h'}^\pi(\xi_{h'}^k) \right\| \left\| \phi(x_1^{k,a}) \right\| \left\| w_{h+1}^{k,\pi} \right\| \\
&\leq \left\| (\hat{P}_h^k - P_h) (\xi_{h-1}^k) \right\|_1 \left\| \prod_{h'=1}^h M_{h'}^\pi(\xi_{h'}^k) \right\| \sqrt{d} \\
&\leq \left\| (\hat{P}_h^k - P_h) (\xi_{h-1}^k) \right\|_1 \prod_{h'=1}^h \left\| M_{h'}^\pi(\xi_{h'}^k) \right\| \sqrt{d} \\
&\leq \sqrt{d} \left\| (\hat{P}_h^k - P_h) (\xi_{h-1}^k) \right\|_1,
\end{aligned}$$

2052 where the last inequality is due to the fact that $\sup_{\pi, \xi, h} \|M_h^\pi(\xi)\| \leq 1$. We can bound the regret as
 2053

$$\begin{aligned}
 2054 \quad \text{Regret}(K) &\leq \sum_{k=1}^K \sum_{h=1}^{H-1} -\phi(x_1^{k,a})^\top (\tilde{\epsilon}_h^k(\pi^*) + \tilde{e}_h^k(\pi^*)) + \phi(x_1^{k,a})^\top (\tilde{\epsilon}_h^k(\pi^k) + \tilde{e}_h^k(\pi^k)) \\
 2055 \quad &\leq \mathcal{O}(\sqrt{dKH \log 1/\delta'}) + 2 \sum_{k=1}^K \sum_{h=1}^{H-1} \left\| \tilde{M}_{h-1}^\pi \phi(x_1^{k,a}) \right\|_{\Sigma_h^{-1}} \sqrt{N} \left\| (\hat{P}_h^k - P_h)(\xi_{h-1}^k) \right\|_1 \\
 2056 \quad &\quad + \sqrt{d} \left\| (\hat{P}_h^k - P_h)(\xi_{h-1}^k) \right\|_1 \\
 2057 \quad &\leq \mathcal{O}(\sqrt{dKH \log 1/\delta'}) + 2 \sum_h (\sqrt{N/\lambda_0} + \sqrt{d}) \sum_k \sqrt{\frac{|\Xi| \iota}{C_h^k(\xi_{h-1}^k)}} \\
 2058 \quad &\leq \mathcal{O}(\sqrt{dKH \log 1/\delta'}) + 2 \sum_h (\sqrt{N/\lambda_0} + \sqrt{d}) |\Xi| \sqrt{K \iota} \\
 2059 \quad &\leq \mathcal{O}(\sqrt{N/\lambda_0} + \sqrt{d}) |\Xi| H \sqrt{K \iota}.
 \end{aligned}$$

2070 G.2 PROOF OF THEOREM 3

2071 Recall that

$$\begin{aligned}
 2072 \quad \delta_h^k(\pi) &= \phi(x_h^{k,\pi})^\top (w_h^{k,\pi}(\xi_{h-1}^k) - w_h^\pi(\xi_{h-1}^k)) \\
 2073 \quad &= \phi(x_h^{k,\pi})^\top d_h^k(\pi) = \phi(x_h^{k,\pi})^\top (\epsilon_h^k(\pi) + e_h^k(\pi) + (M_h^\pi(\xi_h^k))^\top d_{h+1}^k(\pi)) \\
 2074 \quad &= \phi(x_h^{k,\pi})^\top \left[\Sigma_h^{-1} \Phi_h[(\hat{P}_h^k - P_h)\mathbf{r}](\xi_{h-1}^k) + [(\hat{P}_h^k - P_h)((M_h^\pi)^\top w_{h+1}^{k,\pi})](\xi_{h-1}^k) \right] \\
 2075 \quad &\quad + \phi(x_h^{k,\pi})^\top \left[P_h((M_h^\pi)^\top (w_{h+1}^{k,\pi} - w_{h+1}^\pi))](\xi_{h-1}^k) - (M_h^\pi(\xi_h^k))^\top (w_{h+1}^{k,\pi} - w_{h+1}^\pi)(\xi_h^k) \right] \\
 2076 \quad &\quad + \phi(x_h^{k,\pi})^\top (M_h^\pi(\xi_h^k))^\top (w_{h+1}^{k,\pi} - w_{h+1}^\pi)(\xi_h^k) \\
 2077 \quad &= \phi(x_h^{k,\pi})^\top \Sigma_h^{-1} \Phi_h[(\hat{P}_h^k - P_h)\mathbf{r}](\xi_{h-1}^k) + \phi(x_h^{k,\pi})^\top \Sigma_h^{-1} \Phi_h[(\hat{P}_h^k - P_h)((M_h^\pi)^\top w_{h+1}^{k,\pi})](\xi_{h-1}^k) \\
 2078 \quad &\quad + [P_h(\phi(x_{h+1}^{k,\pi})^\top (w_{h+1}^{k,\pi} - w_{h+1}^\pi))](\xi_{h-1}^k) \\
 2079 \quad &\quad - \phi(x_{h+1}^{k,\pi})^\top (w_{h+1}^{k,\pi} - w_{h+1}^\pi)(\xi_h^k) + \phi(x_{h+1}^{k,\pi})^\top (w_{h+1}^{k,\pi} - w_{h+1}^\pi)(\xi_h^k) \\
 2080 \quad &=: \bar{e}_h^k(\pi) + \bar{e}_h^k(\pi) + \delta_{h+1}^k(\pi),
 \end{aligned}$$

2081 where we used $M_h^\pi(\xi_h^k)\phi(x_h^{k,\pi}) = \phi(x_{h+1}^{k,\pi})$ under Assumption 4. Note that $\bar{e}_h^k(\pi)$ is an MDS w.r.t.
 2082 \mathcal{G}_h^k since

$$2083 \quad \mathbb{E} [\bar{e}_h^k(\pi) | \mathcal{G}_h^k] = \mathbb{E} \left[[P_h(\phi(x_{h+1}^{k,\pi})^\top (w_{h+1}^{k,\pi} - w_{h+1}^\pi))](\xi_{h-1}^k) - \phi(x_{h+1}^{k,\pi})^\top (w_{h+1}^{k,\pi} - w_{h+1}^\pi)(\xi_h^k) | \mathcal{G}_h^k \right] = 0.$$

2084 In addition, the following holds almost surely

$$\begin{aligned}
 2085 \quad |\bar{e}_h^k(\pi)| &= \left| [P_h(\phi(x_{h+1}^{k,\pi})^\top (w_{h+1}^{k,\pi} - w_{h+1}^\pi))](\xi_{h-1}^k) - \phi(x_{h+1}^{k,\pi})^\top (w_{h+1}^{k,\pi} - w_{h+1}^\pi)(x_h^{k,\pi}, \xi_h^k) \right| \\
 2086 \quad &= \left| [P_h(V_{h+1}^{k,\pi,a} - V_{h+1}^{k,\pi,a})](\xi_{h-1}^k) - (V_{h+1}^{k,\pi,a} - V_{h+1}^{k,\pi,a})(x_{h+1}^{k,\pi}, \xi_h^k) \right| \\
 2087 \quad &\leq 2(H-1-h).
 \end{aligned}$$

2106 We can bound $\bar{e}_h^k(\pi)$ as
2107
2108
$$\begin{aligned} \bar{e}_h^k(\pi) &= \phi(x_h^{k,\pi})^\top \Sigma_h^{-1} \Phi_h[(\hat{P}_h^k - P_h)\mathbf{r}](\xi_{h-1}^k) + \phi(x_h^{k,\pi})^\top [(\hat{P}_h^k - P_h)((M_h^\pi)^\top w_{h+1}^{k,\pi})](\xi_{h-1}^k) \\ &= \phi(x_h^{k,\pi})^\top \Sigma_h^{-1} \Phi_h[(\hat{P}_h^k - P_h)\mathbf{r}](\xi_{h-1}^k) + [(\hat{P}_h^k - P_h)\phi(x_{h+1}^{k,\pi})^\top w_{h+1}^{k,\pi}](\xi_{h-1}^k) \\ &= \phi(x_h^{k,\pi})^\top \Sigma_h^{-1} \Phi_h[(\hat{P}_h^k - P_h)\mathbf{r}](\xi_{h-1}^k) + [(\hat{P}_h^k - P_h)V_{h+1}^{k,\pi,a}](x_h^{k,\pi}, \xi_{h-1}^k) \\ &\leq \left\| \phi(x_h^{k,\pi}) \right\|_{\Sigma_h^{-1}} \left\| [(\hat{P}_h^k - P_h)\mathbf{r}](\xi_{h-1}^k) \right\| + \left\| (\hat{P}_h^k - P_h)(\xi_{h-1}^k) \right\|_1 (H - h) \\ &\leq \left\| \phi(x_h^{k,\pi}) \right\|_{\Sigma_h^{-1}} \sqrt{N} \left\| (\hat{P}_h^k - P_h)(\xi_{h-1}^k) \right\|_1 + \left\| (\hat{P}_h^k - P_h)(\xi_{h-1}^k) \right\|_1 (H - h) \\ &= \left\| (\hat{P}_h^k - P_h)(\xi_{h-1}^k) \right\|_1 \left(\sqrt{N} \left\| \phi(x_h^{k,\pi}) \right\|_{\Sigma_h^{-1}} + H - h \right) \\ &\leq \sqrt{\frac{|\Xi| \iota}{C_h^k(\xi_{h-1}^k)}} \left(\sqrt{N} \left\| \phi(x_h^{k,\pi}) \right\|_{\Sigma_h^{-1}} + H - h \right) \end{aligned}$$

2121 Unrolling the recursion of $\delta_h^k(\pi)$, we have
2122

$$\delta_1^k(\pi) = \sum_{s=1}^{H-1} \bar{e}_s^k(\pi) + \bar{e}_s^k(\pi).$$

2125 **Lemma 8.** For any (n, t, π, x^a, ξ) , it holds that $V_h^{k,\pi^k,a}(x^a, \xi) \geq V_h^{k,\pi,a}(x^a, \xi)$.
2126

2127 *Proof.* The proof follows from induction. Observe that holds when $h = H - 1$. For any (x^a, ξ) ,
2128 using the definition of π^k , we have
2129

$$\begin{aligned} V_h^{k,\pi,a}(x^a, \xi) &= \phi(x^a)^\top w_h^{k,\pi}(\xi) \\ &= \phi(x^a)^\top \left(\Sigma_h^{-1} \Phi_h[\hat{P}_h^k \mathbf{r}](\xi) + [\hat{P}_h^k ((M_h^\pi)^\top w_{h+1}^{k,\pi})](\xi) \right) \\ &= \phi(x^a)^\top \Sigma_h^{-1} \Phi_h[\hat{P}_h^k \mathbf{r}](\xi) + [\hat{P}_h^k \phi(x_{h+1}^a)^\top w_{h+1}^{k,\pi}](\xi) \\ &= \phi(x^a)^\top \Sigma_h^{-1} \Phi_h[\hat{P}_h^k \mathbf{r}](\xi) + [\hat{P}_h^k V_{h+1}^{k,\pi,a}](x^a, \xi) \\ &\geq \phi(x^a)^\top \Sigma_h^{-1} \Phi_h[\hat{P}_h^k \mathbf{r}](\xi) + [\hat{P}_h^k V_{h+1}^{k,\pi',a}](x^a, \xi) \\ &= V_h^{k,\pi',a}(x^a, \xi). \end{aligned}$$

2139 \square

2140 Now we bound the regret
2141

$$\begin{aligned} \text{Regret}(K) &= \sum_{k=1}^K \left(V_1^{\pi^*}(s_1^k) - V_1^{\hat{\pi}^k}(s_1^k) \right) \\ &= \sum_{k=1}^K \left(V_1^{\pi^*} - V_1^{k,\pi^*} \right)(s_1^k) + \left(V_1^{k,\pi^*} - V_1^{k,\pi^k} \right)(s_1^k) + \left(V_1^{k,\pi^k} - V_1^{\pi^k} \right)(s_1^k) \\ &\leq \sum_{k=1}^K \left(V_1^{\pi^*} - V_1^{k,\pi^*} \right)(s_1^k) + \left(V_1^{k,\pi^k} - V_1^{\pi^k} \right)(s_1^k) \\ &= \sum_{k=1}^K -\delta_1^k(\pi^*) + \delta_1^k(\pi^k) \\ &= \sum_{k=1}^K \sum_{h=1}^{H-1} -(\bar{e}_s^k(\pi^*) + \bar{e}_s^k(\pi^*)) + \bar{e}_s^k(\pi^k) + \bar{e}_s^k(\pi^k) \\ &\leq \mathcal{O}(H \sqrt{KH \log 1/\delta'}) + 2 \sum_{h=1}^{H-1} \left(\sqrt{N} \left\| \phi(x_h^{k,\pi}) \right\|_{\Sigma_h^{-1}} + H - h \right) \sum_{k=1}^K \sqrt{\frac{2|\Xi| \log(KH/\delta)}{C_h^k(\xi_h^k)}} \\ &\leq \mathcal{O}(H \sqrt{KH \log 1/\delta'}) + 4(H^2 + H \sqrt{N/\lambda_0}) |\Xi| \sqrt{2K \log(KH/\delta)}. \end{aligned}$$

2160 G.3 PROOF OF THEOREM 5
2161

2162 We start with two simple geometric and statistical facts.

2163 **Lemma 9** (Anchor LS predictor stability). For any t, ξ , any anchor vectors $y, u \in \mathbb{R}^K$, and any x^a ,

2164
$$|\phi(x^a)^\top \Sigma_h^{-1} \Phi_h(y - u)| \leq \lambda_0^{-1/2} \|y - u\|_2.$$

2165 *Proof.* By Cauchy-Schwarz, $|\phi^\top A^{-1} \Phi(y - u)| \leq \|\phi\|_2 \|A^{-1} \Phi\| \|y - u\|_2$. Since $\|\phi\| \leq 1$ and
2166 $\|A^{-1} \Phi\| = \sigma_{\min}(\Phi)^{-1} = \lambda_0^{-1/2}$, the claim follows. \square 2167 **Lemma 10** (Row-wise empirical transition concentration). Fix t and ξ . Let $g : \Xi \rightarrow [0, H]$ and
2168 suppose $\widehat{P}^n(\cdot | \xi)$ is the empirical distribution from $m = n_h^k(\xi) \geq 1$ i.i.d. samples of ξ' drawn from
2169 $P(\cdot | \xi)$ (across episodes). Then for any $\delta \in (0, 1)$,

2170
$$\Pr\left(|(\widehat{P}^n - P)g| \leq H \sqrt{\frac{\log(2/\delta)}{2m}}\right) \geq 1 - \delta.$$

2171 *Proof.* $(\widehat{P}^n - P)g = \frac{1}{m} \sum_{i=1}^m Z_i - \mathbb{E}[Z_i]$ where $Z_i := g(\xi'_i) \in [0, H]$ with $\xi'_i \sim P(\cdot | \xi)$ i.i.d. Apply
2172 Hoeffding's inequality. \square 2173 The concentration will be lifted to uniform (over n, t, ξ) events via a union bound and the standard
2174 summation $\sum_{j=1}^M (m_j + 1)^{-1/2} \leq 2\sqrt{M}$.2175 *Proof.* We follow a the one-step decomposition as in the proof of Theorem 3, carefully adding the
2176 misspecification term.2177 Fix any reference policy π (we will take $\pi = \pi^*$ at the end). Let $s_h^k = (x_h^k, \xi_h^k)$ be the state visited in
2178 episode n by the coupling argument used in LSVI analyses (or simply the realized trajectory under
2179 the deployed policy at episode n). Denote the value error

2180
$$\delta_h^k(\pi) := (V_h^{k,\pi} - V_h^\pi)(s_h^k),$$

2181 where $V^{k,\pi}$ is the value when Bellman backups use \widehat{P}^n and parameters w^n , while V^π uses the true
2182 model and the ideal parameters w^π that linearly represent the values of π as well as possible (defined
2183 below).2184 Let $v_h^{k,\pi}(\xi) \in \mathbb{R}^N$ and $v_h^\pi(\xi) \in \mathbb{R}^N$ be the anchor target vectors under (empirical) greedy backup
2185 and (true) π -backup, respectively:

2186
$$[v_h^{k,\pi}(\xi)]_n = \sum_{\xi'} \widehat{P}^n(\xi' | \xi) \left[r(x_h(n), a_h^k(n, \xi), \xi') + \phi(f^a(x_h(n), a_h^k(n, \xi)))^\top w_{h+1}^n(\xi') \right],$$

2187
$$[v_h^\pi(\xi)]_n = \sum_{\xi'} P(\xi' | \xi) \left[r(x_h(n), \pi, \xi') + \phi(f^a(x_h(n), \pi))^\top w_{h+1}^\pi(\xi') \right].$$

2188 The LS predictor at $x_h^{a,k} := f^a(x_h^k, \Sigma_h^k)$ is $\phi(x_h^{a,n})^\top \Sigma_h^{-1} \Phi_h(\cdot)$. Hence

2189
$$\delta_h^k(\pi) = \phi(x_h^{a,n})^\top \Sigma_h^{-1} \Phi_h \left(v_h^{k,\pi}(\xi_{k-1}^n) - v_h^\pi(\xi_{k-1}^n) \right).$$

2190 Write, with $g_{h+1}^{k,\pi}(n, \xi') := r(\cdot) + \phi(\cdot)^\top w_{h+1}^k(\xi')$ and g_{h+1}^π defined analogously with w_{h+1}^π ,

2191
$$v_h^{k,\pi} - v_h^\pi = \underbrace{(\widehat{P}^n - P) g_{h+1}^{k,\pi}}_{\text{(A) transition error}} + \underbrace{P(g_{h+1}^{k,\pi} - g_{h+1}^\pi)}_{\text{(B) propagation}} + \underbrace{\rho_h^\pi}_{\text{(C) misspecification}},$$

2192 where $\rho_h^\pi := v_h^\pi - u_h^\pi$ and u_h^π is the anchor vector of

2193
$$W_h^\pi \in \arg \min_{W \in \mathcal{F}_h} \sup_{x^a} |(T^\pi V_{h+1}^\pi)(x^a, \xi_h^k) - W(x^a, \xi_h^k)|.$$

2194 By Definition 3, $\|\rho_h^\pi\|_\infty \leq \varepsilon_{\text{BE}}$.

2214 Apply Lemma 9 to equation G.3:

$$\begin{aligned} 2216 \quad |\delta_h^k(\pi)| &\leq \lambda_0^{-1/2} \left(\left\| (\widehat{P}^n - P) g_{h+1}^{k,\pi} \right\|_2 + \left\| P(g_{h+1}^{k,\pi} - g_{h+1}^\pi) \right\|_2 + \|\rho_h^\pi\|_2 \right) \\ 2217 \\ 2218 \quad &\leq \lambda_0^{-1/2} \left(\left\| (\widehat{P}^n - P) g_{h+1}^{k,\pi} \right\|_2 + \left\| g_{h+1}^{k,\pi} - g_{h+1}^\pi \right\|_2 + \sqrt{N} \varepsilon_{\text{BE}} \right), \end{aligned}$$

2219 since P is a contraction in ℓ_2 and rewards/values are in $[0, H]$ so $g \in [0, H]$ coordinate-wise.

2220 Fix t, ξ . Lemma 10 with a union bound over $k \leq K, t \leq H, \xi \in \Xi$ yields with probability $1 - \delta/2$ that

$$2223 \quad \left\| (\widehat{P}^n - P) g_{h+1}^{k,\pi} \right\|_2 \leq H \sqrt{|\Xi|} \sqrt{\frac{\log(2HK|\Xi|/\delta)}{2n_h^k(\xi)}}$$

2226 uniformly. Summing these martingale-like increments along the sample path and using $\sum_{j=1}^M (n_j + 1)^{-1/2} \leq 2\sqrt{M}$ gives the contribution

$$2228 \quad \tilde{C}_2 |\Xi| H \sqrt{K \log \frac{HK|\Xi|}{\delta}}$$

2230 per stage, which after accounting for the LS geometry (the $\Sigma_h^{-1} \Phi_h$ factor) and the greedy-vs-policy 2231 coupling yields

$$2233 \quad C_2 |\Xi| \left(H^2 + H \sqrt{\frac{N}{\lambda_0}} \right) \sqrt{K \log \frac{HK|\Xi|}{\delta}}.$$

2234 Here the H^2 and $H\sqrt{N/\lambda_0}$ arise from H -step propagation/telescoping and the LS projection norm 2235 as in standard LSVI analyses; constants are absorbed.

2237 The term $\left\| g_{h+1}^{k,\pi} - g_{h+1}^\pi \right\|_2$ is linear in $|V_{h+1}^{k,\pi} - V_{h+1}^\pi|$, hence in $|\delta_{h+1}^n(\pi)|$. Unfolding over $t = 1, \dots, H$ and using Freedman/Bernstein-type arguments for the resulting martingale differences (and rewards bounded by 1) gives

$$2241 \quad C_1 H \sqrt{K \log \frac{HK|\Xi|}{\delta}}.$$

2243 By Lemma 9 and $\|\rho_h^\pi\|_2 \leq \sqrt{N} \varepsilon_{\text{BE}}$,

$$2244 \quad |\phi(x_h^{a,n})^\top \Sigma_h^{-1} \Phi_h \rho_h^\pi| \leq \lambda_0^{-1/2} \sqrt{N} \varepsilon_{\text{BE}}.$$

2246 Summing over $t = 1, \dots, H$ gives $H\lambda_0^{-1/2} \sqrt{N} \varepsilon_{\text{BE}}$ per episode. The standard comparison of $\hat{\pi}_n$ 2247 with π^* doubles this constant but stays of the same order; summing over $n = 1, \dots, K$ yields

$$2249 \quad C_3 \frac{H}{\sqrt{\lambda_0}} K \varepsilon_{\text{BE}}.$$

2251 Combining (4)–(6) with a union bound over the high-probability events gives the claimed inequality 2252 with probability at least $1 - \delta$. \square

2254 H DETAILED NUMERICAL EXPERIMENTS

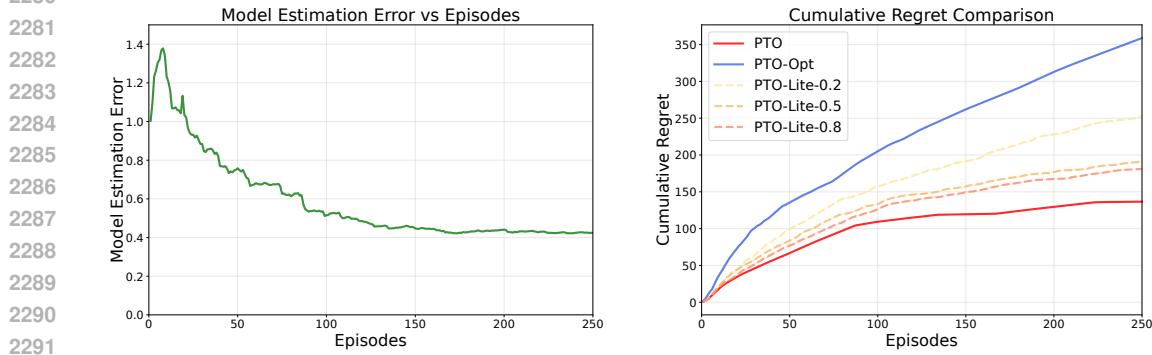
2256 H.1 TABULAR MDP

2258 We conduct numerical experiments using tabular Exo-MDPs, and display the model estimation error 2259 over episodes and the regret comparison of PTO, PTO-Opt and PTO-Lite in Figure 3. We provide 2260 the implementation details below.

- 2262 • **Model estimation.** PTO or LSVI-PE estimates the model $\widehat{P}_t(y' | y)$ from past episodes (counts 2263 per time-step) and solves backward DP using \widehat{P}_t .
- 2264 • **Optimistic model.** At each Bellman backup the PTO-Opt solves 2265 $\max_{Q: \|Q - \widehat{P}\|_1 \leq \text{bonus}} \sum_{y'} Q(y') V(y')$ by mass transfer to obtain an optimistic expectation.
- 2266 • **Policy evaluation.** All algorithms are evaluated by exact backward induction on the true P_y to 2267 obtain stage-1 value functions $V(\cdot, \cdot, 1)$.

2268 • **Regret and model error.** Per episode we measure instantaneous regret as $\sum_{x,y} (V_{x,y,1}^* - V_{x,y,1}^\pi)$
 2269 and report cumulative regret $\sum_{k \leq K}$ (averaged across runs). Model error is measured by the average
 2270 Frobenius norm $\frac{1}{T} \sum_t \|\hat{P}_t - P_y\|_F$.
 2271

2272 **Baseline methods.** We compare the PTO to PTO-Opt (Section D.3.2) that solves a constrained
 2273 ℓ_1 -subproblem for optimistic model with confidence radius bonus $= c\sqrt{2Y \log(KY/0.01)/N_{t,y}}$
 2274 (default $c = 0.3$). We also implement three PTO-Lite baselines with subsampling ratios of 0.2,
 2275 0.5, and 0.8 for comparison, serving as the natural intermediate points between PEL algorithms and
 2276 exploration-heavy methods. Instead of constructing the full empirical exogenous model from all
 2277 episodes, Lite subsamples the historical exogenous transitions at each stage. The resulting subsampled
 2278 dataset is used to compute a lightweight estimate, reducing computation while keeping the model
 2279 statistically representative.
 2280



2293 Figure 3: Comparison of PTO, PTO-Opt and PTO-Lite.
 2294
 2295

2296 H.2 STORAGE CONTROL

2297 We display the model estimation error over episodes and the regret comparison between LSVI-PE
 2298 and LSVI-Opt in Figure 4 across three Exo-MDPs with different horizon lengths. Across $H \in$
 2300 $\{6, 8, 10\}$, LSVI-PE consistently outperforms LSVI-Opt in cumulative regret.

2301 We also analyze three expanded Exo-MDPs with state/action spaces scaled and planning horizons
 2302 increased, and the results are presented in Figure 5. LSVI-Opt and three LSVI-Lite variants
 2303 are implemented as baselines. Across all these enlarged benchmarks, LSVI-PE maintains the best
 2304 overall performance, and Lite achieves performance close to LSVI-PE, validating that PEL remains
 2305 effective even under aggressive subsampling of exogenous traces.

2306 We provide the pseudo-code of LSVI-PE for storage control in Algorithm 2.
 2307

2308 **Baseline method.** LSVI-Opt differs from LSVI-PE in Line 12 of Algorithm 2. Specifically,
 2309 LSVI-Opt computes the optimistic target

$$2310 y_h^k(n) \leftarrow \sum_{\xi' \in \Xi} \tilde{P}_h^k(\xi' | \xi) \cdot \max_{a' \in [-a_{\max}, a_{\max}]} \left\{ r(g(\rho_n, \xi'), a', \xi') + \phi(f^a(g(\rho_n, \xi'), a'))^\top w_{h+1}^k(\xi') \right\},$$

2311 where \tilde{P}_h^k is the optimistic model obtained by solving the ℓ_1 constrained subproblem around \hat{P}_h^k with
 2312 confidence radius bonus $= c\sqrt{2Y \log(KY/0.01)/N_{t,y}}$ (default $c = 0.5$).
 2313

2314 **Detailed setup for Case I.** We numerically analyze a storage control problem with continuous
 2315 endogenous state space $\mathcal{X} = [0, C]$, discrete exogenous state space $\Xi = [Y]$, and continuous
 2316 action space $\mathcal{A} = [-a_{\max}, a_{\max}]$. \mathcal{X} is discretized by N anchors. The default parameters are
 2317 $C = 10$, $Y = 10$, $a_{\max} = 2$, $N = 10$, and $K = 100$ episodes. Three time horizon lengths
 2318 $H \in \{6, 8, 10\}$ are evaluated for comparison. The exogenous variable is the discrete power price with
 2319 the following transition rules applied: a 70 % probability exists of either remaining in the original
 2320 state or transitioning to an adjacent state, with the remaining 30 % assigned to uniform selection
 2321 among all feasible states.

Detailed setup for Case II. We analyze three expanded storage control problem cases, where both the state spaces and planning horizons are scaled by factors of 2x to 4x relative to the original settings. To observe the long-term performance and convergence characteristics of each algorithm, we increase the number of running episodes to 200. The subsample factors of the three Lite baselines are 0.2, 0.5, and 0.8, respectively. All other experimental configurations remain consistent with Case I.

Computational efficiency. The major computational overhead of Algorithm 2 is to solve the optimal action for a given state s_h^k at each time-step h

$$\hat{\pi}_h^k(x_h^k, \xi_h^k) = \arg \max_{a \in [-a_{\max}, a_{\max}]} \{ r(x_h^k, a, \xi_h^k) + \phi(f^a(x_h^k, a))^{\top} w_{h+1}^k(\xi_h^k) \}.$$

We emphasize this step is computationally efficient via anchor enumeration due to the LP structure of the subproblem.

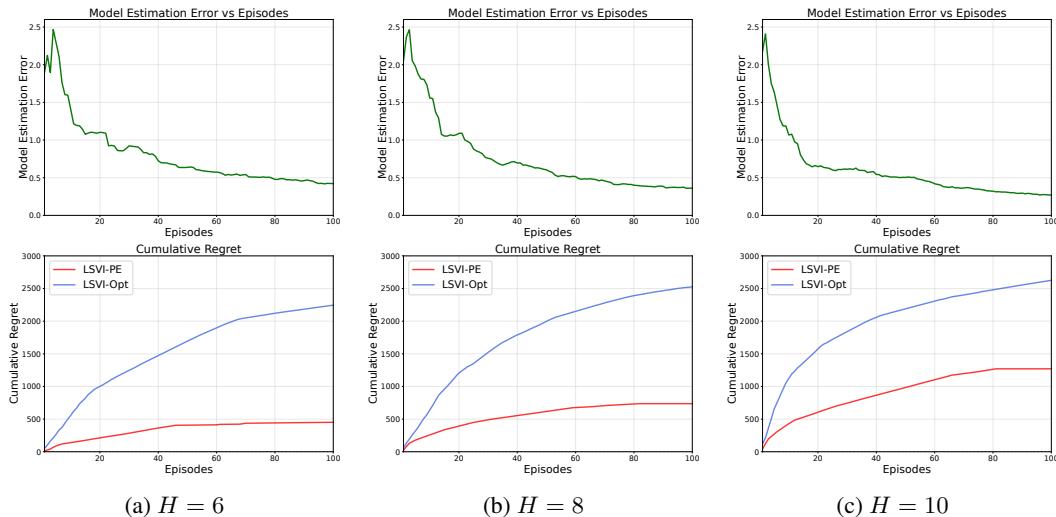


Figure 4: Comparison of LSVI-PE and LSVI-Opt across three different time horizon lengths in Case I.

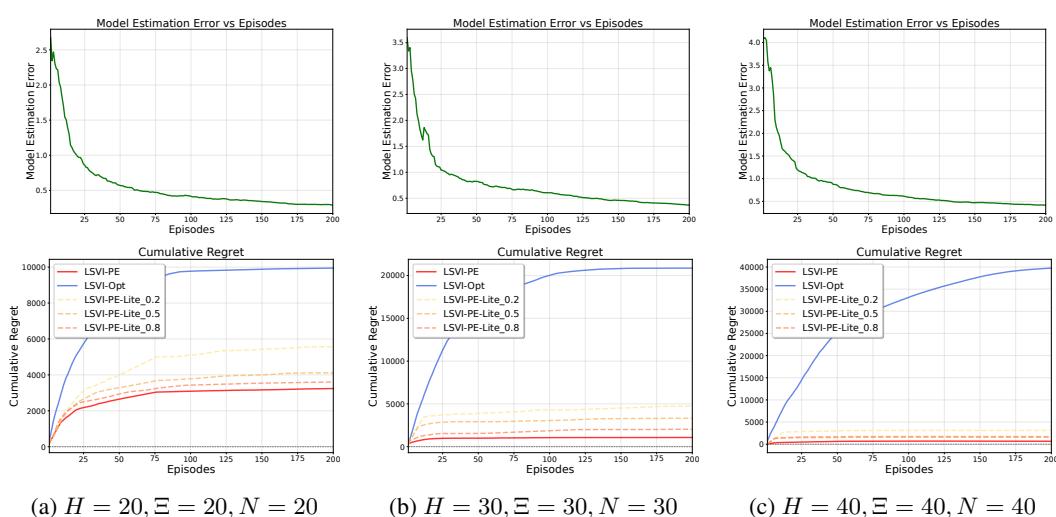


Figure 5: Comparison of LSVI-PE, LSVI-Opt and LSVI-PE-Lite under three different experimental scales in Case II.

2376
2377
2378
2379
2380
2381
2382
2383
2384

Algorithm 2 LSVI-PE for storage control

2385
2386 **Require:** Horizon H ; capacity C ; anchors $\rho_n = \frac{n-1}{N-1}C$, $n = 1 \dots N$; hat features $\phi : [0, C] \rightarrow \mathbb{R}^N$
2387 with $\phi(\rho_n) = e_n$
2388 **Require:** Action set $\mathcal{A} = [-a_{\max}, a_{\max}]$; efficiencies $\eta^+, \eta^- > 0$; leakage $\alpha \in (0, 1]$
2389 **Require:** Reward $r(s, a, \xi) = \xi a - \alpha_c |a| - \beta_h s$; post-decision $f^a(s, a) = \text{clip}(s + \eta^+ a^+ -$
2390 $\frac{1}{\eta^-} a^-, 0, C)$; pre-decision update $g(s^a, \xi') = \alpha s^a$
2391 **Require:** Price codebook $\Xi = \{\zeta_1, \dots, \zeta_R\}$; dataset of k price trajectories $\{\xi_h^\ell\}_{\ell=1, h=1}^{k, H}$ with $\xi_h^\ell \in \Xi$
2392
2393 1: **Update** $\hat{P}_h^k(\cdot | \xi)$: for each (h, ξ) ,
2394
2395
$$\hat{P}_h^k(\xi' | \xi) = \begin{cases} \frac{N_h^k(\xi, \xi')}{\sum_z N_h^k(\xi, z)}, & \sum_z N_h^k(\xi, z) > 0 \\ \frac{1}{R}, & \text{otherwise (unvisited row)} \end{cases}$$

2396
2397 where $N_h^k(\xi, \xi') = \sum_{\ell=1}^k \mathbf{1}\{\xi_h^\ell = \xi, \xi_{h+1}^\ell = \xi'\}$.
2398 2: **Backward Value Iteration:**
2399 3: **for** $h = H$ down to 1 **do**
2400 4: **for** each $\xi \in \Xi$ **do**
2401 5: // Design at post-decision anchors (identity under hat basis)
2402 6: $\Phi_h \leftarrow [\phi(\rho_1), \dots, \phi(\rho_n)]$; $a_h \leftarrow \Phi_h \Phi_h^\top$ // $\Phi_h = I_K$, $a_h = I_K$
2403 7: $b_h^k(\xi) \leftarrow \mathbf{0} \in \mathbb{R}^K$
2404 8: **for** $n = 1$ to N **do**
2405 9: **if** $h = H$ **then**
2406 10: $y_h^k(n) \leftarrow 0$
2407 11: **else**
2408 12: $y_h^k(n) \leftarrow \sum_{\xi' \in \Xi} \hat{P}_h^k(\xi' | \xi) \cdot \max_{a' \in [-a_{\max}, a_{\max}]} \{r(g(\rho_n, \xi'), a', \xi') +$
2409 $\phi(f^a(g(\rho_n, \xi'), a'))^\top w_{h+1}^k(\xi')\}$
2410 13: // Inner max is 1-D LP (piecewise linear); solve via breakpoint enumeration
2411 14: **end if**
2412 15: $b_h^k(\xi) \leftarrow b_h^k(\xi) + \phi(\rho_n) y_h^k(n)$ // writes $y_h^k(n)$ into entry k
2413 16: **end for**
2414 17: $w_h^k(\xi) \leftarrow \Sigma_h^{-1} b_h^k(\xi)$ // with $\Sigma_h = I_N$: $w_h^k(\xi) = [y_h^k(1), \dots, y_h^k(N)]^\top$
2415 18: **end for**
2416 19: **end for**
2417 20: **Output:**
2418 21: $\hat{V}_h^{k,a}(x^a, \xi) = \phi(x^a)^\top w_h^k(\xi)$, for all (s^a, ξ, h)
2419 22: **return** $\hat{V}_h^{k,a}$

2422
2423
2424
2425
2426
2427
2428
2429

2430 **I DECLARATION OF THE USE OF LARGE LANGUAGE MODELS**
2431

2432 We used large language models (LLMs) to assist in proofreading and improving the language,
2433 grammar, and clarity of this manuscript. The authors retain full responsibility for all intellectual
2434 content, results, and claims presented in this paper.

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483