
Optimal Transport for Offline Imitation Learning

Yicheng Luo
University College London

Zhengyao Jiang
University College London

Samuel Cohen
University College London

Edward Grefenstette
University College London

Marc Peter Deisenroth
University College London

Abstract

With the advent of large datasets, offline reinforcement learning is a promising
framework for learning good decision-making policies without the need to interact
with the real environment. However, offline RL requires the dataset to be reward-
annotated, which presents practical challenges when reward engineering is difficult
or when obtaining reward annotations is labor-intensive. In this paper, we introduce
Optimal Transport Reward labeling (OTR), an algorithm that can assign rewards
to offline trajectories, with a few high-quality demonstrations. OTR’s key idea is
to use optimal transport to compute an optimal alignment between an unlabeled
trajectory in the dataset and an expert demonstration to obtain a similarity measure
that can be interpreted as a reward, which can then be used by an offline RL
algorithm to learn the policy. OTR is easy to implement and computationally
efficient. On D4RL benchmarks, we show that OTR with a single demonstration
can consistently match the performance of offline RL with ground-truth rewards.

1 Introduction

Offline Reinforcement Learning (ORL) [17, 18] has made significant progress recently, enabling learn-
ing policies from logged experience without any interaction with the environment. ORL is relevant
when online data collection can be expensive or slow. ORL algorithms can learn an improved policy
that goes beyond the behavior policy that generated the data. However, ORL requires the existence of
a reward function for labeling the logged experience, making direct applications of ORL methods im-
practical for applications where rewards are hard to specify with hand-crafted rules or when generating
rewards for the dataset is potentially expensive. Therefore, enabling ORL to leverage unlabeled data
is an open question with significant practical value. Several works have attempted to address this chal-
lenge. For example, Zolna et al. [24] proposes ORIL which learns a reward function that can be used to
add reward labels to offline datasets, allowing unlabeled datasets to be used by offline RL algorithms.

Instead of having a reward function, providing expert demonstrations is more natural for practitioners
compared to specifying a reward function. In robotics, providing expert demonstrations is fairly
common, and in the absence of natural reward functions, ‘learning from demonstration’ has been
used for decades to find good policies for robotic systems; see, e.g., [2, 1, 4, 9]. One such framework
for learning policies from demonstrations is imitation learning (IL). Imitation Learning aims at
learning policies that imitate the behavior given expert demonstrations. Behavior Cloning (BC) [22]
is an IL approach that aims to recover the demonstrator’s behavior directly by setting up an offline
supervised learning problem. If demonstrations are of high quality and actions of the demonstrations
are recorded, BC can work very well as demonstrated by Pomerleau [22], but generalization to new
situations typically does not work well. Inverse Reinforcement Learning (IRL) [19] is another IL
approach that learns an intermediate reward function that aims to capture the demonstrator’s intent.
State-of-the-art IRL (e.g., GAIL [12], DAC [15], PWIL [8]) methods can learn competent policies

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2022

with a small number of expert demonstrations. However, these algorithms focus on the online IL
setting and are not applicable for learning from pure offline datasets.

In this paper, we introduce Optimal Transport Reward labeling (OTR), an algorithm that uses optimal
transport theory to automatically assign reward labels to ‘unlabeled’ trajectories in an offline dataset,
given one or more expert demonstrations. This reward-annotated dataset can then be used by offline
RL algorithms to find good policies that imitate demonstrated behavior. OTR uses optimal transport
to find optimal alignments between unlabeled trajectories in the dataset and expert demonstrations.
The similarity measure between a state in the unlabeled trajectory and that of an expert trajectory
is then treated as a reward label. These rewards can be used by any offline RL algorithm for learning
policies from a small number of expert demonstrations and a large unlabeled dataset. We show that
OTR consistently outperforms previous offline IL and reward learning approaches and can recover
the performance of offline RL methods with ground-truth rewards with only a single demonstration
on the D4RL [10] benchmark.

2 Offline Imitation Learning with Optimal Transport

Problem Statement We consider learning in an episodic, finite-horizon Markov Decision Process
(S,A, p, r, γ, p0, T) where S is the state space, A is the action space, p is the transition function, r is
the reward function, γ is the discount factor, p0 is the initial state distribution and T is the episode
horizon. A policy π is a function from state to a distribution over actions. The goal of reinforcement
learning is to find policies that maximize episodic return. Running a policy π in the MDP generates
a state-action episode/trajectory (s1, a1, s2, a2, . . . , sT) =: τ . We are interested in the problem of
imitation learning from offline datasets. In this case, we assume that we have access to a small dataset
of expert demonstrations De = {τ (n)e }Nn=1 generated by an expert policy πe and a large dataset
of unlabeled trajectories Du = {τ (m)

β }Mm=1 generated by an arbitrary behavior policy πβ . We are
interested in learning an offline policy π combining information from the expert demonstrations and
unlabeled experience, without any interaction with the environment.

Reward Labeling via Wasserstein Distance Optimal Transport (OT) [6, 21] is a principled
approach for comparing probability measures. The (squared) Wasserstein distance between two
discrete measures µx = 1

T

∑T
t=1 δxt

and µy = 1
T ′

∑T ′

t=1 δyt
is

W2(µx, µy) = min
µ∈M

T∑
t=1

T ′∑
t′=1

c(xt, yt′)µt,t′ , (1)

where M = {µ ∈ RT×T ′
: µ1 = 1

T 1, µ
T1 = 1

T ′1} is the set of coupling matrices, c is a cost
function, and δx refers to the Dirac measure for x. The optimal coupling µ∗ provides an alignment
between the samples in µx and µy. Unlike other divergence measures (e.g., KL-divergence), the
Wasserstein distance is a metric and it incorporates the geometry of the space. Let p̂e = 1

T ′

∑T ′

t=1 δset
and p̂π = 1

T

∑T
t=1 δsπt denote the empirical state distribution of an expert policy πe and behavior

policy π respectively. Then the (squared) Wasserstein distance

W2(p̂π, p̂e) = min
µ∈M

T∑
t=1

T ′∑
t′=1

c(sπt , s
e
t′)µt,t′ (2)

can be used to measure the distance between expert policy and behavior policy. Let µ∗ denote the
optimal coupling for the optimization problem above, then eq. (2) provides a reward signal

rot(s
π
t) = −

T ′∑
t′=1

c(sπt , s
e
t′)µ

∗
t,t′ , (3)

which can be used for learning policy π in an imitation learning setting.

Imitation Learning Using Reward Labels From Optimal Transport We leverage the reward
function from eq. (3) to annotate the unlabeled dataset with reward signals. Computing the optimal
alignment between the expert demonstration with trajectories in the unlabeled dataset allows us

2

st

p pe

Ct

C

*
t

*

rt

rot

Figure 1: Illustration of the computations performed by OTR. In this example, we consider an MDP
with a two-dimensional state-space (|S| = 2). We have two empirical state distributions from an
expert p̂e with samples {set′}T

′

t′=1 (◦) and policy p̂π with samples {sπt }Tt=1 (•) as denoted by points
in the leftmost figure. OTR assigns rewards rot (blue) to each sample in the policy’s empirical state
distribution as follows: (i) Compute the pairwise cost matrix C (purple) between expert trajectories
and trajectories generated by behavior policy; (ii) Solve for the optimal coupling matrix µ (green)
between p̂π and p̂e; (iii) Compute the reward for sπt as rot(s

π
t) = −CT

t µ
∗
t . Consider for example a

state sπt ∈ p̂π; the row Ct in the cost matrix corresponds to the costs between sπt and {set′}T
′

t′=1. µ∗
t

represents the optimal coupling between sπt and the expert samples. The optimal coupling moves most
of the probability mass to se3 and a small fraction of the mass to se4 (green lines in the leftmost figure).

to assign a reward for each step in the unlabeled trajectory. Figure 1 illustrates the computation
performed by OTR to annotate an unlabeled dataset with rewards using demonstrations from an
expert. The pseudo-code for our approach is given in algorithm 1. In practice, we solve the entropy-
regularized OT problem with Sinkhorn’s algorithm [6, 7] to find the optimal coupling. Once we have
computed the intrinsic rewards, we can use an offline RL algorithm that requires reward-annotated
offline datasets. Unlike prior works that compute rewards using online samples [8, 5], we compute
the rewards entirely offline, prior to running offline RL training, avoiding the need to modify any part
of the downstream offline RL pipeline. This means that OTR can be combined with any offline RL
algorithms, providing dense reward supervision required by the downstream algorithms.

Advantages Our approach enjoys several advantages. (1) our approach does not require training
separate reward models or discriminators, which may incur higher runtime overhead. By not having
to train a separate parametric model, we avoid hyper-parameter tuning on the discriminator network
architectures. (2) Unlike other approaches, such as GAIL or DemoDICE, our approach does not
require solving a minimax optimization problem, which can suffer from training instability [20]. (3)
Our approach is agnostic to the offline RL methods for learning the policy since OTR computes
reward signals independently of the offline RL algorithm.

3 Experiments
We demonstrate that OTR can be effectively combined with an offline RL algorithm to learn policies
from a large dataset of unlabeled episodes and a small number of high-quality demonstrations. Since
OTR is only a method for reward learning, it can be combined with any offline RL algorithm that
requires reward-annotated data for offline learning. In this paper, we combine OTR with the Implicit
Q-Learning (IQL) algorithm [16].

Baselines We compare OTR+IQL with the following baselines (1) IQL (oracle) [16]: the Implicit Q-
learning algorithm using the ground-truth rewards provided by the D4RL datasets, (2) DemoDICE [14]
an offline imitation learning algorithm based on distribution matching. (3) ORIL [24]: a reward
function learning algorithm based on using positive-unlabeled (PU) learning, (4) UDS [23]: a simple
baseline where the expert demonstrations have ground-truth rewards and the unlabeled dataset is
relabeled with the minimum rewards from the environment. We use IQL as the same offline RL
backbone (IQL) for both UDS and ORIL so that we can focus on comparing the performance
difference due to different approaches used in generating reward labels.

D4RL Locomotion We evaluate the performance of OTR+IQL on the D4RL locomotion bench-
mark [10]. For the expert demonstrations, we choose the best episode from the D4RL dataset based
on the episodic return. To obtain the unlabeled dataset, we discard the original reward information
in the dataset. Table 1 compares the performance between OTR+IQL with the other baselines with
only a single expert demonstration on the locomotion datasets in D4RL. Overall, OTR+IQL performs

3

best compared with the other baselines in terms of aggregate score over all of the datasets we used,
recovering the performance of IQL with real rewards provided by the dataset. While we found that
other baselines can perform well on some datasets, the performance is not consistent across the
entire dataset and can deteriorate significantly on some datasets. In contrast, OTR+IQL is the only
method that consistently performs well for all datasets of different compositions. We also find that
OTR is faster compared to algorithms that learn additional neural networks as discriminators (De-
moDICE [14]) or reward models (ORIL [24]) thanks to using a GPU-accelerated Optimal Transport
solver [7].

Dataset IQL (oracle) DemoDICE IQL+ORIL IQL+UDS OTR+IQL (ours)

halfcheetah-medium-v2 47.4 ± 0.2 42.5 ± 1.7 49.0 ± 0.2 42.4 ± 0.3 43.3 ± 0.2
hopper-medium-v2 66.2 ± 5.7 55.1 ± 3.3 47.0 ± 4.0 54.5 ± 3.0 78.7 ± 5.5
walker2d-medium-v2 78.3 ± 8.7 73.4 ± 2.6 61.9 ± 6.6 68.9 ± 6.2 79.4 ± 1.4
halfcheetah-medium-replay-v2 44.2 ± 1.2 38.1 ± 2.7 44.1 ± 0.6 37.9 ± 2.4 41.3 ± 0.6
hopper-medium-replay-v2 94.7 ± 8.6 39.0 ± 15.4 82.4 ± 1.7 49.3 ± 22.7 84.8 ± 2.6
walker2d-medium-replay-v2 73.8 ± 7.1 52.2 ± 13.1 76.3 ± 4.9 17.7 ± 9.6 66.0 ± 6.7
halfcheetah-medium-expert-v2 86.7 ± 5.3 85.8 ± 5.7 87.5 ± 3.9 63.0 ± 5.7 89.6 ± 3.0
hopper-medium-expert-v2 91.5 ± 14.3 92.3 ± 14.2 29.7 ± 22.2 53.9 ± 2.5 93.2 ± 20.6
walker2d-medium-expert-v2 109.6 ± 1.0 106.9 ± 1.9 110.6 ± 0.6 107.5 ± 1.7 109.3 ± 0.8

locomotion-v2-total 692.4 585.3 588.5 494.9 685.5

runtime 20m 100m* 30m 20m 22m
* The runtime is measured with the original PyTorch implementation.

Table 1: D4RL performance comparison between IQL with ground-truth rewards and OTR+IQL with
a single expert demonstration (K = 1). We report mean ± standard deviation per task and aggregate
performance and highlight near-optimal performance in bold and extreme negative outliers in red.
OTR+IQL is the only algorithm that performs consistently well across all domains.

Antmaze & Adroit We additionally evaluate OTR+IQL on the antmaze-v0 and adroit-v0
datasets following the same evaluation protocol. OTR+IQL again recovers the performance of IQL
with ground-truth rewards. This suggests that OTR can learn from datasets with diverse behavior and
human demonstrations even without ground-truth reward annotation. See appendix A.5 for additional
results.
Qualitative comparison of the reward predictions Figure 2a provides a qualitative comparison
of the reward predicted by OTR, ORIL, and UDS. OTR’s reward prediction more strongly correlates
with the ground-truth rewards from the environment. We also evaluate OTR’s reward prediction on
more diverse datasets, such as those in antmaze. Figure 2b shows the demonstrations we used in
antmaze-medium-play-v0 and the top unlabeled trajectories. OTR correctly assigns more rewards
to trajectories that are closer to the expert demonstrations.

100020003000
0

2500

5000

La
be

le
d

Re
tu

rn

OTR

100020003000
Environment Return

0

500

1000
ORIL

100020003000
0

1500

3000

UDS

(a) Ground-truth return vs labeled return. (b) Top trajectories selected by OTR.

Figure 2: Visualization of rewards predicted by OTR and baselines. (a) Qualitative differences
between the rewards predicted by OTR, ORIL and UDS on hopper-medium-v2. (b) Visualization
of top trajectories selected by OTR on antmaze-medium-play-v0. Left: Expert demonstrations.
Right: ranking of trajectories according to rewards per step computed by OTR. Trajectories with
lighter colors have higher rewards per step.

4 Conclusion

We introduced Optimal Transport Reward labeling (OTR), a method for adding reward labels to
an offline dataset, given a small number of expert demonstrations. We demonstrate that OTR is
computationally efficient and can recover the performance of offline RL with ground-truth rewards
given only a single episode of expert demonstration.

4

References
[1] Pieter Abbeel and Andrew Y. Ng. Apprenticeship Learning via Inverse Reinforcement Learning.

In International Conference on Machine Learning, 2004.

[2] Christopher G. Atkeson and Stefan Schaal. Robot Learning From Demonstration. In Interna-
tional Conference on Machine Learning, 1997.

[3] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: Composable Transformations of Python+NumPy Programs, 2018. URL
http://github.com/google/jax.

[4] Sylvain Calinon, Florent Guenter, and Aude Billard. On Learning, Representing, and Generaliz-
ing a Task in a Humanoid Robot. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), 2007.

[5] Samuel Cohen, Brandon Amos, Marc Peter Deisenroth, Mikael Henaff, Eugene Vinitsky, and
Denis Yarats. Imitation Learning from Pixel Observations for Continuous Control. 2021. URL
https://openreview.net/forum?id=JLbXkHkLCG6.

[6] Marco Cuturi. Sinkhorn Distances: Lightspeed Computation of Optimal Transport. In Advances
in Neural Information Processing Systems, 2013.

[7] Marco Cuturi, Laetitia Meng-Papaxanthos, Yingtao Tian, Charlotte Bunne, Geoff Davis, and
Olivier Teboul. Optimal Transport Tools (OTT): A JAX Toolbox for all things Wasserstein.
arXiv:2201.12324, 2022.

[8] Robert Dadashi, Leonard Hussenot, Matthieu Geist, and Olivier Pietquin. Primal Wasserstein
Imitation Learning. In International Conference on Learning Representations, 2022.

[9] Peter Englert, Alexandros Paraschos, Jan Peters, and Marc Peter Deisenroth. Model-based
Imitation Learning by Probabilistic Trajectory Matching. In IEEE International Conference on
Robotics and Automation, 2013.

[10] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: Datasets for
Deep Data-Driven Reinforcement Learning. arXiv:2004.07219, 2021.

[11] Scott Fujimoto and Shixiang Gu. A Minimalist Approach to Offline Reinforcement Learning.
In Advances in Neural Information Processing Systems, 2021.

[12] Jonathan Ho and Stefano Ermon. Generative Adversarial Imitation Learning. In Advances in
Neural Information Processing Systems, 2016.

[13] Matthew W. Hoffman, Bobak Shahriari, John Aslanides, Gabriel Barth-Maron, Nikola Momchev,
Danila Sinopalnikov, Piotr Stańczyk, Sabela Ramos, Anton Raichuk, Damien Vincent, Léonard
Hussenot, Robert Dadashi, Gabriel Dulac-Arnold, Manu Orsini, Alexis Jacq, Johan Ferret,
Nino Vieillard, Seyed Kamyar Seyed Ghasemipour, Sertan Girgin, Olivier Pietquin, Feryal
Behbahani, Tamara Norman, Abbas Abdolmaleki, Albin Cassirer, Fan Yang, Kate Baumli,
Sarah Henderson, Abe Friesen, Ruba Haroun, Alex Novikov, Sergio Gómez Colmenarejo,
Serkan Cabi, Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Andrew Cowie, Ziyu Wang,
Bilal Piot, and Nando de Freitas. Acme: A Research Framework for Distributed Reinforcement
Learning. arXiv:2006.00979, 2022.

[14] Geon-Hyeong Kim, Seokin Seo, Jongmin Lee, Wonseok Jeon, HyeongJoo Hwang, Hongseok
Yang, and Kee-Eung Kim. DemoDICE: Offline Imitation Learning with Supplementary Imper-
fect Demonstrations. In International Conference on Learning Representations, 2022.

[15] Ilya Kostrikov, Kumar Krishna Agrawal, Debidatta Dwibedi, Sergey Levine, and Jonathan
Tompson. Discriminator-Actor-Critic: Addressing Sample Inefficiency and Reward Bias in
Adversarial Imitation Learning. In International Conference on Learning Representations,
2022.

5

http://github.com/google/jax
https://openreview.net/forum?id=JLbXkHkLCG6

[16] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline Reinforcement Learning with Implicit
Q-Learning. In International Conference on Learning Representations, 2022.

[17] Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch Reinforcement Learning. In
Reinforcement Learning. Springer Berlin Heidelberg, 2012.

[18] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline Reinforcement Learning:
Tutorial, Review, and Perspectives on Open Problems. arXiv:2005.01643, 2020.

[19] Andrew Y. Ng and Stuart J. Russell. Algorithms for Inverse Reinforcement Learning. In
International Conference on Machine Learning, 2000.

[20] Manu Orsini, Anton Raichuk, Leonard Hussenot, Damien Vincent, Robert Dadashi, Sertan
Girgin, Matthieu Geist, Olivier Bachem, Olivier Pietquin, and Marcin Andrychowicz. What
Matters for Adversarial Imitation Learning? In Advances in Neural Information Processing
Systems, 2021.

[21] Gabriel Peyré and Marco Cuturi. Computational Optimal Transport. arXiv:1803.00567, 2020.

[22] Dean A. Pomerleau. ALVINN: An Autonomous Land Vehicle in a Neural Network. In Advances
in Neural Information Processing Systems, 1988.

[23] Tianhe Yu, Aviral Kumar, Yevgen Chebotar, Karol Hausman, Chelsea Finn, and Sergey Levine.
How to Leverage Unlabeled Data in Offline Reinforcement Learning. In International Confer-
ence on Machine Learning, 2022.

[24] Konrad Zolna, Alexander Novikov, Ksenia Konyushkova, Caglar Gulcehre, Ziyu Wang, Yusuf
Aytar, Misha Denil, Nando de Freitas, and Scott Reed. Offline Learning from Demonstrations
and Unlabeled Experience. arXiv:2011.13885, 2020.

6

A Appendix

A.1 Algorithm Description

The pseudo-code for OTR is presented in algorithm 1. OTR takes the unlabeled dataset Du and
expert demonstration De as input. For each unlabeled trajectory τ (m) ∈ Du, OTR solves the optimal
transport problem for each, obtaining the cost matrix C(m) and optimal alignment µ∗(m) (line 3).
OTR then computes the per-step reward label following eq. (3) (line 5). The reward-annotated
trajectories are then combined, forming a reward-labeled dataset Dlabel.

Algorithm 1: Pseudo-code for Optimal Transport Reward labeling (OTR)
Input: unlabeled dataset Du, expert dataset De

Output: labeled dataset Dlabel

1 Dlabel ← ∅
2 foreach τ (m) in Du do // Label each episode in the unlabeled dataset
3 C(m), µ∗(m) ← SolveOT(De, τ (m)) // Compute the optimal alignment with eq. (2)
4 for t = 1 to T do
5 rOT(s

(m)
t)← −

∑T ′

t′=1 C
(m)
t,t′ µ

∗(m)
t,t′ // Compute the per-step rewards with eq. (3)

6 end
7 Dlabel ← Dlabel ∪ (s

(m)
1 , a

(m)
1 , rOT

1 , . . . , s
(m)
T) // Append labeled episode

8 end
9 return Dlabel

A.2 Implementation

For OTR, we follow the recommendation by Cohen et al. [5] and use the cosine distance as the
cost function. When there are more than one episode of expert demonstration, we perform a top-K
aggregation strategy with K = 1, i.e., we compute the optimal transport with respect to each episode
independently and use the rewards from the expert trajectory that give the best episodic return. Similar
to [8, 5], we squash the rewards computed by line 5 with an exponential function s(r) = α exp(βr).
This has the advantage of ensuring that the rewards consumed by the offline RL algorithm have an
appropriate range since many offline RL algorithms can be sensitive to the scale of the reward values.
Please refer to appendix A.3 for additional experimental details and hyperparameters.

We implement OTR in JAX [3]. For computing the optimal coupling, we use OTT-JAX [7], a
library for optimal transport that includes a scalable and efficient implementation of the Sinkhorn
algorithm that can leverage accelerators, such as GPU or TPU, for speeding up computations. Our
IQL implementation is adapted from [16]1, and we set all hyperparameters to the ones recommended
in the original paper. All of our algorithms and baselines are implemented in Acme [13].

An efficient implementation of OTR is made easy by JAX, which includes useful functionality
that allows us to easily parallelize computations. Concretely, we JIT-compile the computation of
rewards for one episode and further leverage the vmap function to compute the optimal coupling
between an unlabeled episode with all of the expert episodes in parallel. Efficiently parallelizing
the computation of the optimal coupling requires that all the episodes share the same length. This
is necessary both for parallelizing the computation across multiple expert demonstrations as well
as for avoiding recompilation by XLA due to changes in the shape of the input arrays. To achieve
high throughput for datasets with varying episodic length, we pad all observations to the maximum
episode length allowed by the environment (which is 1000 for the OpenAI Gym environments) but set
the weights of the observations to zero. Padding the episodes this way does not change the solution
to the optimal coupling problem. Note that padding means that a 1M transition dataset may create
more than 1000 episodes of experience, in this case, the runtime for our OTR implementation may be
higher effectively due to having to process a larger number of padded episodes.

1https://github.com/ikostrikov/implicit_q_learning

7

https://github.com/ikostrikov/implicit_q_learning

As a result, it requires only about 1 minute to label a dataset with 1 million transitions (or 1000
episodes of length 1000)2. For larger-scale problems, OTR can be scaled up further by processing the
episodes in the dataset in parallel. Our implementation of OTR and re-implementation of baselines
are computationally efficient. Even so, the training time for IQL is about 20 minutes, so that OTR
adds a relatively small amount of overhead for reward annotation to an existing offline RL algorithm.

A.3 Hyperparameters

Table 2 lists the hyperparameters used by OTR and IQL on the locomotion datasets. For Antmaze
and Adroit, unless otherwise specified by table 3 or table 4, the hyperparameters follows from those
used in the locomotion datasets.

Hyperparameter Value

Discount 0.99

Network Architectures Hidden layers (256, 256)
Dropout none
Network initialization orthogonal

IQL Optimizer Adam
Policy learning rate 3e−4, cosine decay to 0
Critic learning rate 3e−4

Value learning rate 3e−4

Target network update rate 5e−3

Temperature 3.0
Expectile 0.7

OTR
Episode length T 1000
Cost function cosine
Squashing function s(r) = 5.0 · exp(5.0 · T · r/|A|)

Table 2: OTR Hyperparameters for D4RL Locomotion.

Hyperparameter Value

IQL Temperature 10.0
Expectile 0.9

OTR Squashing function s(r) = 5.0 · exp(T · r)
Table 3: OTR Hyperparameters for D4RL Antmaze.

Hyperparameter Value

Network Architectures Dropout 0.1

IQL Temperature 0.5
Expectile 0.7

Table 4: OTR Hyperparameters for D4RL Adroit.

The IQL hyperparameters are kept the same as those used in [16]. Note that IQL rescales the rewards
in the dataset so that the same set of hyperparameters can be used for datasets of different qualities.
Since OTR computes rewards offline, we also apply reward scaling as in IQL. For the locomotion
datasets, the rewards are rescaled by 1000

max_return−min_return while for antmaze we subtract 2 to the rewards
computed by OTR. The reward processing in antmaze is different from the one used by the original
IQL paper (which subtracts 1) since the rewards computed by OTR have a different range.

The squashing function used by OTR is based on the one used in [8]. The antmaze squashing differs
slightly from the one used in locomotion and adroit due to use of an earlier configuration. In practice,
this should have minimal effect on the performance.

2Runtime measured on halfcheetah-medium-v2 with an NVIDIA GeForce RTX 3080 GPU.

8

A.4 Effect of the Number of Demonstrations

locomotion-v2-total K = 1 K = 10

DemoDICE 585.3 589.3
IQL+ORIL 588.5 618.3
IQL+UDS 494.9 575.8
OTR+IQL 685.5 694.3
IQL (oracle) 692.4

Table 5: Aggregate performances of different reward labeling algorithms with different numbers of
expert demonstrations. OTR is the only algorithm that leads to an offline RL performance close to
using ground-truth rewards.

We investigate if the performance of the baselines can be improved by increasing the number
of expert demonstrations used. Table 5 compares the aggregate performance on the locomotion
datasets between OTR and the baselines when we increase the number of demonstrations from
K = 1 to K = 10. DemoDICE’s performance improves little with the additional amount of expert
demonstrates. While ORIL and UDS enjoy a relatively larger improvement, they are still unable
to match the performance of IQL (oracle) or OTR in terms of aggregate performance despite using
the same offline RL backbone. OTR’s performance is close to IQL (oracle) even when K = 1 and
matches the performance of IQL (oracle) with K = 10.

A.5 Additional Experimental Results on Adroit and Antmaze

We evaluate OTR on additional datasets from the antmaze and adroit domains with varying number of
expert demonstrations. The results are presented in table 6 and table 7. OTR consistently recovers the
performance of IQL with ground-truth rewards on these datasets, largely independent of the number
K of expert demonstrations provided.

K = 1 K = 10
Dataset IQL (oracle) OTR+IQL OTR+IQL

door-cloned-v0 1.60 0.01±0.01 0.01±0.01
door-human-v0 4.30 5.92±2.72 4.15±2.08
hammer-cloned-v0 2.10 0.88±0.30 1.31±0.70
hammer-human-v0 1.40 1.79±1.43 1.36±0.22
pen-cloned-v0 37.30 46.87±20.85 42.68±24.98
pen-human-v0 71.50 66.82±21.18 69.41±21.50
relocate-cloned-v0 -0.20 -0.24±0.03 -0.24±0.03
relocate-human-v0 0.10 0.11±0.10 0.10±0.07

adroit-v0-total 118.1 122.16 118.78
Table 6: OTR+IQL Results on Adroit.

Dataset IQL (oracle) OTR+IQL (K = 1) OTR+IQL (K = 10)

antmaze-large-diverse-v0 47.5±9.5 45.5±6.2 50.7±6.9
antmaze-large-play-v0 39.6±5.8 45.3±6.9 51.2±7.1
antmaze-medium-diverse-v0 70.0±10.9 70.4±4.8 70.5±6.9
antmaze-medium-play-v0 71.2±7.3 70.5±6.6 72.7±6.2
antmaze-umaze-diverse-v0 62.2±13.8 68.9±13.6 64.4±18.2
antmaze-umaze-v0 87.5±2.6 83.4±3.3 88.7±3.5

antmaze-v0-total 378.0 384.0 398.2
Table 7: OTR+IQL Results on Antmaze.

9

A.6 Combining OTR with Different Offline RL Algorithms

In the main experiments, we evaluated OTR by pairing it with the IQL algorithm. In this section, we in-
vestigate if OTR can recover the performance of a different offline RL algorithm (TD3-BC) [11] using
ground-truth rewards. We observe that (i) the performance from OTR+TD3-BC mostly matches those
using the ground-truth rewards; (ii) the performance is fairly robust to the choice of the number of ex-
pert trajectories (K = 1 and K = 10 many expert demonstrations provide comparable performance).
However, There are more variances on some datasets (e.g., halfcheetah-medium-expert-v2).
Nevertheless, the differences are smaller compared to the baselines and OTR+TD3-BC still performs
better than the baselines in terms of the aggregate performance.

Dataset TD3-BC (oracle) OTR (K=1) OTR (K=10)

halfcheetah-medium-expert-v2 93.5±2.0 74.8±20.1 71.6±23.1
halfcheetah-medium-replay-v2 44.4±0.8 39.4±1.3 38.9±1.5
halfcheetah-medium-v2 48.0±0.7 42.6±1.0 42.7±1.1
hopper-medium-expert-v2 100.2±20.0 103.2±13.9 98.9±19.7
hopper-medium-replay-v2 64.8±25.5 74.9±28.8 80.2±23.1
hopper-medium-v2 60.7±12.5 66.4±10.3 69.8±13.9
walker2d-medium-expert-v2 109.5±0.5 109.0±0.6 108.8±0.8
walker2d-medium-replay-v2 87.4±8.4 69.7±16.4 67.4±20.6
walker2d-medium-v2 83.7±5.3 76.9±5.4 78.0±2.6

locomotion-v2-total 692.3 656.9 656.4
Table 8: OTR+TD3-BC Results on MuJoCo.

A.7 Importance of Using the Optimal Transport Plan

In the main experiments, we compute the rewards based on the optimal coupling computed by the
Sinkhorn solver. The optimal transport plan is sparse and transports most of the probability masses
to only a few expert samples. In this section, we investigate what happens if we use a suboptimal
transport plan where each sample from the policy’s trajectory is transported equally to each sample
in the expert’s trajectory. In this case, the reward function essentially boils down to computing the
average costs with respect to all of the states in the expert’s trajectory.

Dataset OTR+IQL OTR+IQL (Uniform Plan)

halfcheetah-medium-v2 43.3±0.2 43.5±0.3
hopper-medium-v2 78.7±5.5 80.5±2.3
walker2d-medium-v2 79.4±1.4 77.6±1.5
halfcheetah-medium-replay-v2 41.3±0.6 41.6±0.8
hopper-medium-replay-v2 84.8±2.6 69.8±10.1
walker2d-medium-replay-v2 66.0±6.7 62.2±14.4
halfcheetah-medium-expert-v2 89.6±3.0 90.6±2.9
hopper-medium-expert-v2 93.2±20.6 89.2±14.0
walker2d-medium-expert-v2 109.3±0.8 106.0±5.9

Table 9: OTR with Uniform Transport Plan

Table 9 compares the performance of OTR+IQL using the optimal transport plan and uniform
transport plan. We find that for many datasets, using the suboptimal uniform transport plan is
sufficient for reaching good performance. This indicates that using a reward function based on the
similarity of states from the policy and the expert can be a simple and effective method for reward
labeling. However, note that the uniform transport plan can still underperform compared to using the
optimal transport plan (e.g., hopper-medium-replay-v2). This shows that the optimal transport
formulation enables better and more consistent performance.

10

	Introduction
	Offline Imitation Learning with Optimal Transport
	Experiments
	Conclusion
	Appendix
	Algorithm Description
	Implementation
	Hyperparameters
	Effect of the Number of Demonstrations
	Additional Experimental Results on Adroit and Antmaze
	Combining OTR with Different Offline RL Algorithms
	Importance of Using the Optimal Transport Plan

