
PromptExplainer: Explaining Language Models through Prompt-based
Learning

Anonymous ACL submission

Abstract

Pretrained language models have become001
workhorses for various natural language pro-002
cessing (NLP) tasks, sparking a growing de-003
mand for enhanced interpretability and trans-004
parency. However, prevailing explanation meth-005
ods, such as attention-based and gradient-based006
strategies, largely rely on linear approxima-007
tions, potentially causing inaccuracies such as008
accentuating irrelevant input tokens. To mit-009
igate the issue, we develop PromptExplainer,010
a novel method for explaining language mod-011
els through prompt-based learning. Prompt-012
Explainer aligns the explanation process with013
the masked language modeling (MLM) task of014
pretrained language models and leverages the015
prompt-based learning framework for explana-016
tion generation. It disentangles token represen-017
tations into the explainable embedding space018
using the MLM head and extracts discrimina-019
tive features with a verbalizer to generate class-020
dependent explanations. Extensive experiments021
demonstrate that PromptExplainer significantly022
outperforms state-of-the-art explanation meth-023
ods.024

1 Introduction025

Recently, pretrained language models (Devlin et al.,026

2019; Liu et al., 2019; OpenAI, 2022; Touvron027

et al., 2023) have achieved remarkable success028

across a wide range of NLP tasks, such as text clas-029

sification, question answering and machine trans-030

lation. However, the inherent complexity of these031

models, often characterized by billions of parame-032

ters (Narayanan et al., 2021) and high nonlineari-033

ties, makes these models notably opaque and their034

predictions elusive to users (Ali et al., 2022). Ex-035

plaining language models is receiving significant036

attention due to the growing demand for facilitat-037

ing accountability, transparency, trustworthiness,038

bias detection and ethical considerations (Boluk-039

basi et al., 2016; Gonen and Goldberg, 2019; Ali040

et al., 2022).041
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Figure 1: Demonstration of conventional explanation
methods and our proposed PromptExplainer. Conven-
tional methods generally apply the linear operation to at-
tentions and/or gradients to generate explanations, while
PromtExplainer utilizes MLM head to disentangle token
representations to explain language models.

Explanation methods generally gain insights into 042

the decision-making process of language models 043

by assessing the significance of each of the in- 044

put tokens in relation to specific class labels or 045

tokens. Various explainability methods, such as 046

attention-based (Bahdanau et al., 2015; Abnar and 047

Zuidema, 2020) and gradient-based (Wallace et al., 048

2019; Atanasova et al., 2020; Chefer et al., 2021; 049

Ali et al., 2022) approaches, have been developed. 050

These methods generally employ linear approx- 051

imation as shown in Figure 1a. For example, 052

the attention-based method, attention rollout (Ab- 053

nar and Zuidema, 2020), presumes that attention 054

weights for input tokens are linearly combined or 055

propagated across layers to simulate the behavior 056

of transformers. Gradient-based methods (Wallace 057
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et al., 2019; Atanasova et al., 2020; Chefer et al.,058

2021; Ali et al., 2022), on the other hand, explain059

models by approximating the model’s nonlinearity060

through local linear approximations near specific061

input tokens, leveraging Taylor’s expansion theo-062

rem. Nevertheless, the error resulted from linear063

approximation may be non-negligible when the064

language model possesses a substantial scale and065

the task involves considerable complexity. The ap-066

proximation error can be propagated and magnified067

across layers. As we will show in this paper, linear068

approximation may lead to accentuating irrelevant069

tokens. To avoid using linear approximation, we070

may have to seek solutions from a different per-071

spective, instead of using the conventional gradient072

or attention-based methods.073

Typically, language models undergo pretraining074

through the masked language modeling (MLM)075

task (Devlin et al., 2019; Liu et al., 2019; OpenAI,076

2022; Touvron et al., 2023). In this process, the077

MLM head adeptly captures the complex dependen-078

cies among token representations to predict missing079

words. Aligning NLP tasks with the MLM task and080

utilizing powerful pretrained components, such as081

the MLM head, have demonstrated effectiveness082

in the paradigm of prompt-based learning (Ding083

et al., 2021; Schick and Schütze, 2021; Cui et al.,084

2022; Hu et al., 2022). Inspired by these studies,085

we propose to align the interpretation process with086

the MLM task to yield more accurate explanations087

in this paper.088

To this end, we propose a novel explanation ap-089

proach called PromptExplainer: Explaining Lan-090

guage Models through Prompt-based Learning, as091

illustrated in Figure 1b. This approach adopts092

prompt-based learning to synchronize the expla-093

nation process with the MLM task and capitalize094

on corresponding components to produce explana-095

tions. The PromptExplainer leverages the MLM096

head to disentangle the token representations into097

the explainable embedding space whose dimension-098

ality equals the vocabulary size, with each dimen-099

sion corresponding to a specific token. Addition-100

ally, it employs the verbalizer to extract discrimi-101

native features relevant to class labels to generate102

class-dependent explanations.103

The proposed PromptExplainer offers several ad-104

vantages. Firstly, it aligns the explaining process105

with the pertaining objectives of language mod-106

els and eliminates the need for linearity assump-107

tions. Secondly, it requires only a few lines of108

code for implementation and can be seamlessly in-109

tegrated into existing prompt-based models without 110

any additional parameters. To the best of our knowl- 111

edge, we are the first to propose the utilization of 112

prompt-based learning to interpret language mod- 113

els. Extensive experiments (in §4) demonstrate that 114

PromptExplainer surpasses state-of-the-art (SOTA) 115

explanation methods by a substantial margin. 116

2 Related Work 117

Existing approaches to explaining language mod- 118

els can be classified into attention-based, gradient- 119

based, and perturbation-based methods. The 120

generated explanations fall into either the class- 121

dependent category (specific to each class label) 122

or the class-agnostic (only based on the input and 123

model) category. 124

In attention-based methods, utilizing vanilla 125

attention weights in attention modules to inter- 126

pret model decisions (Bahdanau et al., 2015) is a 127

straightforward approach. However, this method’s 128

reliability and effectiveness diminish when applied 129

to Transformer architectures (Wiegreffe and Pinter, 130

2019), commonly used in language models (De- 131

vlin et al., 2019; Liu et al., 2019; OpenAI, 2022; 132

Touvron et al., 2023). To capture Transformers’ 133

intricate nonlinearities, attention rollout (Abnar 134

and Zuidema, 2020) linearly combines attention 135

weights across layers. Additionally, attention flow 136

(Abnar and Zuidema, 2020) views attention propa- 137

gation as a max-flow problem in the pairwise atten- 138

tion graph. Typically, attention-based explanations 139

are considered to be class-agnostic. 140

Gradient-based methods employ backpropaga- 141

tion gradients to determine the significance of each 142

token. The integrated gradient (Wallace et al., 143

2019) and input gradients (Atanasova et al., 2020) 144

have been proven effective in various models and 145

domains. Another approach, termed as generic at- 146

tention explainability (GAE) (Chefer et al., 2021), 147

integrates attention gradients along with gradients 148

from other network components. 149

It is worth noting that layer-wise relevance prop- 150

agation (LRP) (Bach et al., 2015) has also been 151

used to measure the relative significance of each 152

token (Voita et al., 2019; Chefer et al., 2021). Ali 153

et al. (2022) discovers that LRP could encounter 154

difficulties in identifying the input feature contri- 155

butions in Transformers due to the intricate Atten- 156

tionHeads and LayerNorm. To address the prob- 157

lem, they modify the current propagation rule to 158

adhere to the conservation rule, which mandates 159
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that scores assigned to input variables and forming160

the explanation must sum up to the network’s out-161

put. LRP-XAI is the SOTA in delivering the most162

effective class-dependent explanations.163

A few perturbation-based methods have been164

proposed, which utilize the input reductions (Feng165

et al., 2018; Prabhakaran et al., 2019) to deter-166

mine the most relevant parts of the input by ob-167

serving changes in model confidence or Shapley168

values (Lundberg and Lee, 2017). Contrastive ex-169

planations (Lipton, 1990; Jacovi et al., 2021; Yin170

and Neubig, 2022), which focus on identifying the171

causal factors influencing a model’s output choice172

between two alternatives, have emerged in the last173

two years. It is a different task so we do not com-174

pare the contrastive methods to our proposed ap-175

proach.176

3 Method177

3.1 Overview178

Task formulation Interpreting language mod-179

els involves evaluating token saliency for class-180

dependent or class-agnostic explanations and high-181

lighting each token’s importance for a specific182

class label or the overall decision process. Our183

method belongs to the first type that generates184

class-dependent explanations. Formally, denote185

X = (x1, x2, ..., xn) as an input sequence of186

length n, and C = (c1, c2, ..., cp) as the class la-187

bels in the dataset. Our objective is to generate188

an explanation Ei = (e1, e2, ..., en) that signifies189

the importance of each token in classifying X into190

class ci.191

Framework We directly integrate our proposed192

method within the prompt-based learning frame-193

work to explain language models under the clas-194

sification task. As illustrated in Figure 2, prompt-195

based learning formulates the text classification196

task into a masked language modeling problem by197

enveloping the input sequence X with a template to198

form a cloze question. The language model (LM)199

encoder is then used to derive all tokens’ repre-200

sentations H ∈ Rn×d, where d is the dimension.201

We then utilize the MLM head to project H as the202

distribution over the vocabulary in the embedding203

space. Finally, a verbalizer V is employed to asso-204

ciate certain tokens in the vocabulary with the label205

space, resulting in predictions and explanations for206

each class.207

3.2 Motivation: MLM head and verbalizer as 208

interpreter expert 209

In this section, we first demonstrate that the MLM 210

head can project all input token representations as 211

a distribution over the vocabulary in the embedding 212

space. Subsequently, we elucidate why these dis- 213

tributions have the potential to replace traditional 214

attentions or gradients as a new medium for ex- 215

plaining model decisions. 216

Conventional methodologies allow only the 217

<mask> token to be processed by the MLM head 218

to elucidate sophisticated contextual information 219

and then make predictions. While adept at unrav- 220

eling complex and agnostic representations, the 221

practicality of utilizing this MLM head to decode 222

unmasked token representations remains an unan- 223

swered query. To answer this question, we give 224

a comprehensive analysis and empirical results in 225

Appendix A, with key findings summarized below. 226

1. The MLM head exhibits consistent decod- 227

ing properties for both masked and un- 228

masked token representations. 229

2. The MLM head can project all input 230

tokens—both <mask> and unmasked to- 231

kens—into distributions over the vocabu- 232

lary in the embedding space, yielding in- 233

terpretable results that align with model pre- 234

dictions. Specifically, within this space, each 235

dimension corresponds to a unique token in 236

the vocabulary, and the values therein repre- 237

sent the predictive probabilities of all possible 238

tokens at a given position. 239

3. In the context of MLM, the projected distri- 240

butions can be understood as representations 241

based on the current token and its surrounding 242

contextual information. These distributions 243

reflect the predictive likelihood of all tokens 244

within the vocabulary. Consequently, these 245

distributions can be interpreted as the to- 246

ken’s contributions to the prediction pro- 247

cess. 248

In addition to the MLM head, the verbalizer is 249

utilized as another indispensable component for 250

generating language model interpretations. Vari- 251

ous verbalizer types, including manual (Schick and 252

Schütze, 2021), soft (Hambardzumyan et al., 2021), 253

prototypical (Cui et al., 2022), and knowledgeable 254

(KPT) (Hu et al., 2022) verbalizers, help pinpoint 255
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Figure 2: Overview of the classification operation, architecture, PromptExplainer (explanation operation), and
an explanation example. The token representations obtained from the language model are disentangled into
the explainable embedding space through the MLM head. Subsequently, the verbalizer is employed to extract
discriminative features that exhibit a strong correlation with the classification results, enabling the generation of
explanations. The given example demonstrates this process, where ti and ci denote the i-th disentangled feature and
discriminative feature, respectively. A deeper red color indicates a higher explanatory weight.

effective label words to align model outputs with fi-256

nal predictions in prompt-based learning. Thus, the257

verbalizer is also integral in identifying discrim-258

inative vocabulary tokens that ultimately impact259

model decision-making, aiding in the generation of260

explanations.261

In light of preceding observations and analysis,262

we articulate two phases of our PromptExplainer:263

first, utilizing the MLM head to disentangle token264

representations, and second, employing the ver-265

balizer to extract discriminative features, thereby266

enabling explanation generation.267

3.3 Feature disentanglement268

From a feature engineering perspective, the MLM269

head is pre-trained to project token representations270

as the token distributions over the vocabulary that271

exhibits similar characteristics to disentangled fea-272

tures. Firstly, the projected features (i.e., distribu-273

tions) can be viewed as individual factors, each274

of which represents a unique token within the vo-275

cabulary. Secondly, the features possess semantic276

interpretability, as each feature signifies the corre-277

lation with a predefined token in the vocabulary.278

Therefore, these projected features can be regarded279

as disentangled features in an explainable latent280

space. Formally, the MLM head Mh projects to-281

kens representations H into the disentangled space282

by 283

HV = Mh(H) ∈ Rn×V (1) 284

where V is the vocabulary size. 285

Two phenomena can be observed in the token dis- 286

tributions over the vocabulary HV of the unmasked 287

tokens. Firstly, the token with the highest proba- 288

bility is the token itself, which is equivalent to an 289

exam with known answers. This observation also 290

demonstrates that the disentangled features can re- 291

tain their own information. Secondly, the predicted 292

distribution is not a one-hot distribution; rather, it 293

allows for the presence of certain possibilities for 294

other tokens as well. These probabilities, based on 295

the current token, represent the occurrence of other 296

tokens and can thus be viewed as contributions 297

of the current token to the occurrence of other 298

tokens. Hence, the disentangled features function 299

as correlations among tokens, influencing the clas- 300

sification outcomes and facilitating the generation 301

of informative explanations. 302

3.4 Discriminative feature extraction 303

In prompt-based text classifiers, a verbalizer is com- 304

monly utilized to establish connections between 305

classes and label words. Similarly, the verbalizer V 306

is also applied to extract discriminative features in 307

HV . At this stage, the selected features in <mask> 308
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form the model’s final predictions, acting as dis-309

criminative features that guide its decision-making.310

Accordingly, we choose these features from all the311

tokens to generate explanations. Formally, the dis-312

criminative features HD for all the tokens can be313

obtained by using the verbalizer V:314

HD = V(HV ) ∈ Rn×p (2)315

where p indicates the number of classes and only316

the features in V that potentially impact the classi-317

fication are extracted. These extracted logits depict318

the correlation of each token with the class labels.319

3.5 Explanation generation320

To determine the contribution of each token to class321

labels, we begin by applying softmax normalization322

to derive the correlation between each token and323

the class labels:324

HS = Softmax(HD) (3)325

Subsequently, the explanations for class ci can be326

acquired by extracting the correlation of each token327

with the target class using Equation 4.328

Ei = HS [:, ci] (4)329

3.6 Implementation330

Recently, prompt-based learning has become preva-331

lent in executing NLP tasks. Our PromptExplainer,332

adaptable to most prompt-based learning frame-333

works, leverages the original pretrained LM head334

as the MLM head. Given the variance of verbaliz-335

ers across different prompt-based text classifiers,336

we directly employ the identical verbalizers from337

the classifiers to interpret their predictions. Con-338

sequently, our PromptExplainer can be seamlessly339

integrated into existing prompt-based frameworks340

with only a few lines of code implementing Equa-341

tions 1 to 4. Detailed instructions and code are342

available in the supplementary materials.343

4 Experiments344

Following previous research (Schnake et al., 2022;345

Ali et al., 2022), we evaluate the PromptExplainer’s346

effectiveness based on qualitative and quantita-347

tive explanation faithfulness experiments. Four348

text classification datasets, diverse templates and349

verbalizers are utilized in the experiments. We350

adopt RoBERTa-large (Liu et al., 2019) as our351

primary model, owing to its widespread use in352

prompt-based learning and superior performance353

Dataset # Class Test Size Template
AG’s News 4 7600 A <mask> news: x
DBPedia 14 70000 [ Topic : <mask>] x

Yahoo 10 60000 A <mask> question: x
IMDB 2 25000 It was <mask>. x

Table 1: The statistics and templates of each dataset. x
indicates the input text.

in text classification (Ding et al., 2021; Schick and 354

Schütze, 2021; Cui et al., 2022; Hu et al., 2022). 355

We also provide experimental results on BERT (De- 356

vlin et al., 2019) in Appendix B to verify PromptEx- 357

plainer’s performance on various language models. 358

4.1 Verbalizer 359

In our main experiments, which involve both quan- 360

titative and qualitative evaluations, we use current 361

SOTA verbalizer KPT (Hu et al., 2022), which in- 362

tegrates label words from external resources. The 363

model parameters precisely adhere to the recom- 364

mendations in KPT. We report the results using 365

the tuned language model in the 5-shot setting 1. 366

For detailed model parameters, please refer to (Hu 367

et al., 2022). 368

4.2 Datasets and templates 369

We conduct experiments to assess various ex- 370

planation methods on three topic classification 371

datasets: AG’s News (Zhang et al., 2015), DBPedia 372

(Lehmann et al., 2015), Yahoo (Zhang et al., 2015); 373

and one sentiment classification dataset: IMDB 374

(Maas et al., 2011). We adopt commonly used 375

templates in previous studies to perform prompt 376

addition. Detailed information on the datasets and 377

templates is shown in Table 1. 378

4.3 Baselines 379

We compare our proposed PromptExplainer 380

with SOTA explanation methods, including both 381

gradient-based and attention-based approaches. 382

We average the attention to <mask> across dif- 383

ferent heads in the last layer (A-Last) (Hollenstein 384

and Beinborn, 2021) and also consider the attention 385

Rollout(Abnar and Zuidema, 2020), which high- 386

lights the layerwise structure of deep Transformer 387

models beyond raw attention head analysis. 388

1Prompt-based classifiers are extensively utilized in low-
data regimes, such as few-shot settings. With a mere 5%
difference in classification accuracy between 1-shot and 20-
shot as illustrated in KPT, we only report explanation results
for 5-shot trained models for each dataset. The results and
patterns are similar for other shots, such as 10-shot and 20-
shot. We run experiments using 24GB NVIDIA A5000.
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We further evaluate Gradient × Input (GI), as389

employed in (Denil et al., 2014; Shrikumar et al.,390

2017; Atanasova et al., 2020). Another competi-391

tive baseline, Generic Attention Explainability392

(GAE) (Chefer et al., 2021), integrates attention393

gradients with gradients from other network seg-394

ments. LRP-XAI (Ali et al., 2022), designed to395

ensure that LRP-based methods adhere to the con-396

servation axiom by altering propagation in layer397

normalization and attention heads, is the current398

SOTA.399

4.4 Quantitative evaluation400

Method A
G

’s
N

ew
s

D
B

Pe
di

a

Ya
ho

o

IM
D

B

A-Last 71.5 78.0 42.0 84.9
Rollout 63.0 65.8 35.1 77.1

GI 69.3 70.7 37.6 78.1
GAE 72.6 79.9 43.7 86.0

LRP-XAI 71.2 78.6 43.3 87.6
PromptExplainer 76.5 82.6 46.0 87.8

Table 2: Activation probability (%). A higher probabil-
ity is better and indicates that adding the most relevant
nodes strongly activates the correct model prediction.

Method A
G

’s
N

ew
s

D
B

Pe
di

a

Ya
ho

o

IM
D

B

A-Last 0.265 0.308 0.536 0.167
Rollout 0.415 0.468 0.684 0.192

GI 0.274 0.298 0.553 0.251
GAE 0.260 0.277 0.509 0.152

LRP-XAI 0.253 0.290 0.542 0.181
PromptExplainer 0.231 0.242 0.500 0.143

Table 3: Pruning MSE. A lower MSE is better and
indicates that removing less relevant nodes has little
effect on the model prediction.

Following previous research (Schnake et al.,401

2022; Ali et al., 2022), we validate various explana-402

tion techniques using an input perturbation strategy,403

prioritizing the most or least significant input to-404

kens. Our evaluation of explanatory faithfulness405

encompasses two tasks, each correspondingly eval-406

uated using specific metrics: activation probability407

and pruning mean squared error (MSE):408

• Activation Task: All input tokens are initially409

removed. Tokens are then progressively added410

Figure 3: Evaluation of explanations using input pertur-
bations on AG’s News

(10% interval), ordered from most to least rel- 411

evant. The ground-truth class’s output proba- 412

bility, namely the activation probability, is 413

observed. A higher activation score means a 414

more accurate explanation. 415

• Pruning Task: All the input tokens are re- 416

tained initially. Tokens are then successively 417

removed (10% interval) in order from least to 418

most relevant. The pruning mean squared 419

error (MSE) between the predictions of the 420

unpruned model and the pruned outputs is cal- 421

culated. A lower MSE value means a more 422

faithful explanation. 423

Note, in the activation task, we begin with a 424

sentence comprised solely of <unk> tokens. Con- 425

versely, in the pruning task, we progressively sub- 426

stitute tokens with <unk> tokens. These evalua- 427

tion settings align with those used in prior studies 428

(Schnake et al., 2022; Ali et al., 2022). To ensure 429

a fair comparison, we employ the official codes of 430

the baselines and subsequently generate explana- 431

tions using the attentions and/or gradients from the 432

same trained prompt-based model. 433

Table 2 and Table 3 present the average results 434

on various datasets for the activation and pruning 435

tasks, respectively. It can be observed that our 436

proposed PromptExplainer substantially surpasses 437

other baselines by a significant margin. The un- 438

derperformance of Rollout and GI indicates the 439

ineffectiveness of its presumed linear attention 440

and weight propagation across the 24 layers in 441

RoBERTa. 442

Figure 3 illustrates the activation and pruning 443

curves for the AG’s News dataset. From the ac- 444

tivation curve, it is evident that the performance 445

of PromptExplainer, LRP-XAI, and GAE starts to 446
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<s> [ Topic : <mask> ] Ivan Parker. Ivan Parker is an American Southern Gospel singer. </s>

<s> [ Topic : <mask> ] Ivan Parker. Ivan Parker is an American Southern Gospel singer. </s>

<s> [ Topic : <mask> ] Ivan Parker. Ivan Parker is an American Southern Gospel singer. </s>

<s> [ Topic : <mask> ] Ivan Parker. Ivan Parker is an American Southern Gospel singer. </s>

<s> [ Topic : <mask> ] Ivan Parker. Ivan Parker is an American Southern Gospel singer. </s>

<s> [ Topic : <mask> ] Ivan Parker. Ivan Parker is an American Southern Gospel singer. </s>

A-Last

Rollout

GI

GAE

LRP-XAI

PromptExplainer

Figure 4: Visualization of the attribution scores assigned
to each word in a sentence from the Yahoo dataset with
the label “artist”. The intensity of the red color deepens
as the explanatory weight increases, highlighting the
significance of each word.

decline after a specific point. This is because most447

of the discriminative tokens are included at that448

point. As additional tokens are added, they may449

be misleading and introduce noise to the model,450

thereby inducing a performance drop. The inflec-451

tion point’s occurrence substantiates the explana-452

tion’s faithfulness. Regarding the pruning curve,453

PromptExplainer consistently achieves the lowest454

MSE in most cases, further corroborating its ef-455

fectiveness. The improvement brought by Promp-456

tExplainer can be attributed to the effective align-457

ment with the MLM objective and utilization of458

the robust MLM head, which allows for a deeper459

understanding of the language model’s behavior.460

4.5 Qualitative evaluation461

In this subsection, we will qualitatively examine462

the explanations generated by different methods.463

Figure 4 illustrates the extracted explanations using464

various methods. In the provided sentence, two key-465

words are directly linked to the class label “artist”.466

The first keyword is the name of the singer, “Ivan467

Parker”, whom the RoBERTa-large model recog-468

nizes as an artist. Several methods, including A-469

Last, Rollout, LRP-XAI, and PromptExplainer, are470

capable of identifying this information. Regarding471

the second keyword, “singer”, which demonstrates472

the highest correlation with the “artist” label, only473

our proposed PromptExplainer is able to recog-474

nize it. It is also important to mention that most475

baseline methods often prioritize the inserted tem-476

plate, overlooking the practical meaning conveyed477

by the sentence. We provide additional examples478

in Appendix C to verify the PromptExplainer’s su-479

periority in capturing, identifying, and recognizing480

essential keywords for accurate classification and481

analysis purposes.482

4.6 Effects of prompt templates and 483

verbalizers 484

To verify the applicability of PromptExplainer to 485

other prompt-based learning frameworks, we con- 486

duct supplementary experiments. The variations 487

among different prompt-based models mainly lie in 488

their templates and verbalizers. Therefore, we ex- 489

amine the performance of PromptExplainer across 490

different templates and verbalizers to validate its 491

generalization capability. 492

4.6.1 Different template results 493

Template ID Template
1 A <mask> news: x
2 x This topic is about <MASK>.
3 [ Category : <MASK> ] x
4 [ Topic : <MASK> ] x

Table 4: Different templates for AG’s News. x indicates
the input text.

We carry out experiments on AG’s News using 494

various templates presented in Table 4 to assess 495

the generated explanations by PromptExplainer. It 496

is important to mention that all templates yield 497

comparable classification accuracy, ensuring a fair 498

comparison. The activation and pruning results are 499

displayed in Table 5. Every template contains dis- 500

tinct words. Template 2 differs in its position com- 501

pared to the other templates. Activation probability 502

and MSE show slight variations among templates. 503

These results demonstrate PromptExplainer’s ro- 504

bustness, indicating its successful application to 505

diverse prompt-based learning frameworks with 506

varying templates. 507

Template ID 1 2 3 4
Activation probability 76.5 75.8 76.6 76.2

Pruning MSE 0.231 0.241 0.224 0.235

Table 5: Experimental results of different templates on
AG’s News.

4.6.2 Different verbalizer results 508

In our previous experiments, we mainly use the 509

KPT verbalizer. This study evaluates PromptEx- 510

plainer against other advanced verbalizers to gauge 511

its effectiveness: (1) manual verbalizer (Ding et al., 512

2021) that relies on manually chosen label words 513

for each class. The number of label words is set to 514

1, 10, and 30; (2) prototypical verbalizer (Cui et al., 515

2022), which constructs verbalizers automatically 516

by learning class prototypes from training data. 517
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Table 6 and Table 7 display the results obtained518

with different verbalizers. PromptExplainer demon-519

strates its effectiveness and wide applicability by520

achieving the best results in most cases. When em-521

ploying a manual verbalizer with a single word per522

class, PromptExplainer ranks second. However, by523

augmenting the number of label words (e.g., 10 or524

30 per class), PromptExplainer emerges as the top525

performer. The performance of PromptExplainer526

improves as the number of label words per class527

increases. This phenomenon can be attributed to528

the fact that disentangled features may contain not529

only token-label correlation but also other factors,530

such as position and syntactic information. By ex-531

panding the label words for each class, the diversity532

of word part-of-speech (POS) is enhanced, thereby533

reducing biases that arise from syntactic and posi-534

tional factors.535
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M
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M
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l-1

0

M
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l-3

0

Pr
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ot
yp
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al

K
PT

A-Last 68.9 73.4 61.7 66.9 71.5
Rollout 60.5 62.4 54.1 60.3 63.0

GI 65.3 70.0 58.7 64.4 69.3
GAE 69.4 74.5 62.5 67.1 72.6

LRP-XAI 70.7 73.5 62.3 69.1 71.2
PromptExplainer 69.6 76.2 64.8 70.7 76.5

Table 6: Activation probability (%) using various ver-
balizers.

Verbalizer M
an

ua
l-1

M
an

ua
l-1

0

M
an

ua
l-3

0

Pr
ot

ot
yp

ic
al

K
PT

A-Last 0.447 0.289 0.361 0.482 0.265
Rollout 0.623 0.482 0.490 0.614 0.415

GI 0.468 0.340 0.384 0.510 0.274
GAE 0.439 0.298 0.348 0.476 0.260

LRP-XAI 0.445 0.314 0.368 0.478 0.253
PromptExplainer 0.442 0.278 0.345 0.438 0.231

Table 7: Pruning MSE using various verbalizers.

4.7 Other analysis536

Significance of this study: While large language537

models (LLMs) have recently garnered signifi-538

cant attention, conventional LMs like BERT and539

RoBERTa remain indispensable for classification540

tasks. This is primarily due to two key reasons.541

Firstly, LLMs typically demand substantial com- 542

puting resources or incur high API costs, resulting 543

in slower response times compared to traditional 544

LMs. Secondly, certain open-sourced LLMs still 545

underperform RoBERTa in classification tasks. For 546

instance, in a 1-shot text classification task on AG’s 547

News, BLOOM-176B (Scao et al., 2022), LLaMA- 548

33B (Touvron et al., 2023), and LLaMA-65B (Tou- 549

vron et al., 2023) achieved accuracies of 79.6%, 550

76.4%, and 76.8%, respectively (Ma et al., 2023), 551

whereas RoBERTa, as reported in 2022 (Hu et al., 552

2022), achieved 83.7%. These figures underscore 553

the significance of conventional language models, 554

emphasizing the need to understand these models 555

further and thus the importance of our proposed 556

PromptExplainer. 557

Extension to LLMs: Our proposed PromptEx- 558

plainer primarily leverages the concept of using 559

MLM head to interpret token representations in 560

the vocabulary space. However, it cannot be di- 561

rectly used to interpret autoregressive LLMs. This 562

limitation arises from the fact that traditional LMs 563

are based on masked language modeling, while au- 564

toregressive LLMs rely on next-word prediction. 565

Consequently, the representations projected by the 566

MLM head in RoBERTa reflect the probability of 567

the current token based on bidirectional contextual 568

information, whereas LLMs’ LM head representa- 569

tions signify the probability of the next token based 570

on all preceding tokens. This disparity hinders the 571

direct application of PromptExplainer to LLMs. 572

Nevertheless, the concept of using the LM head to 573

interpret LLMs holds promise and is a potential av- 574

enue for future research, which we leave as future 575

work. 576

5 Conclusion 577

In this paper, we present PromptExplainer, a 578

method for explaining language models through 579

prompt-based learning. Our approach aligns the 580

interpreting process with the MLM objective and 581

leverages the MLM head to disentangle token rep- 582

resentations, creating an explainable feature space. 583

We then utilize the verbalizer to extract discrimi- 584

native features to generate explanations. Extensive 585

experiments demonstrate the superior performance 586

of PromptExplainer. In future work, we intend to 587

extend the core concept of PromptExplainer, which 588

involves leveraging the LM head to provide ex- 589

planations for model decisions, to LLMs such as 590

GTPX (OpenAI, 2022). 591
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6 Limitations592

There are several limitations in our work. Firstly,593

the disentangled features encompass not only the594

correlation with label words but also other informa-595

tion, such as positional and syntactic information,596

which could impact the token-label correlation,597

therefore affecting the explanation faithfulness, as598

discussed in §4.6.2. How to effectively distill the599

explanatory information from these disentangled600

features poses an important question. Additionally,601

as discussed in §4.7, when adapting the PromptEx-602

plainer concept for autoregressive LLMs, certain603

modifications are necessary due to differences in604

their pretraining objectives.605

Ethics Statement606

This work introduces PromptExplainer, a method607

designed to explain language models using prompt-608

based learning. It requires only a few lines of609

code for implementation and can be seamlessly610

integrated into existing prompt-based models. All611

experiments conducted in this study utilize publicly612

available datasets and codes. To facilitate future613

reproduction without unnecessary energy consump-614

tion, we will make our codes openly accessible.615
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A Analysis: How Can MLM Head839

Deocde Token Representations?840

In this section, we explore if the MLM head can de-841

code unmasked token representations and analyze842

the characteristics of these decoded representations,843

providing the theoretical groundwork for our pro-844

posed PromptExplainer.845

Homogeneity of <mask> token and unmasked846

tokens. All input tokens, including the <mask>847

token and unmasked tokens, are encoded within848

the same latent space and processed by identical849

attention blocks within the language model. Conse-850

quently, in the feature space, the encoded <mask>851

representation and all other unmasked tokens co-852

exist within the same space, demonstrating homo-853

geneity.854

While residing in the same latent space, the855

meaningfulness of employing the MLM head to856

decode unmasked representations raises questions.857

To address this, we visualize results to gain insights858

into the decoding impact of the MLM head on un-859

masked token representations.860

We first wrap the input sentence “I really en-861

joy this movie”with a template “It was <mask>”,862

which is widely used in prompt-based learning.863

Subsequently, we feed this constructed sentence864

into RoBERTa-large to observe how its represen- 865

tations evolve across the various layers. Specifi- 866

cally, we input all token representations, including 867

both the <mask> token and unmasked tokens, into 868

the MLM head for projection into the embedding 869

space. The resulting distribution over the vocab- 870

ulary signifies the likelihood of filling in the re- 871

spective positions. We then identify the token with 872

the maximum probability at each position. These 873

results are visually depicted in Figure 5a. 874

Firstly, it is noteworthy that all token represen- 875

tations can be effectively decoded into meaning- 876

ful predictions by the MLM head. For instance, 877

the representation of “movie”can be projected as 878

“comic”and “film”in intermediate layers. Concern- 879

ing the <mask> token, it is amenable to projec- 880

tion as “superb”and “fun”in the intermediate layers 881

through the MLM head. 882

Secondly, the predictive probability for un- 883

masked tokens in the final layer is consistently 884

accurate, meaning that the tokens with the high- 885

est probability consistently correspond to the in- 886

put tokens themselves. This discovery underscores 887

the fact that each token’s representation inherently 888

contains self-information and can be successfully 889

comprehended by the MLM head. 890

Thirdly, we proceed to visualize the ranking of 891

the ultimately-predicted (target) token by the MLM 892

head at each layer, as illustrated in Figure 5b. It 893

becomes evident that the ranking of the target to- 894

ken progressively ascends through the layers as the 895

MLM decoding process advances. This progres- 896

sion follows an approximately monotonic pattern. 897

Expanding on this, the projected distribution for 898

each token shares the same dimensionality as the 899

vocabulary size. Each dimension corresponds to 900

a unique token in the vocabulary, with its value 901

representing the probability of occurrence. This 902

underscores the interpretability of the embedding 903

space. 904

In line with the MLM objective, the distribution 905

at a specific position can be primarily attributed 906

to the inclusion of the input token at that position. 907

Consequently, this distribution can be leveraged 908

to assess the individual contribution of each input 909

token to the overall predictive likelihood across the 910

entire vocabulary. 911

Drawing from the preceding analysis, we can 912

succinctly summarize our key findings as follows: 913

1. The MLM head exhibits consistent decod- 914

ing properties for both masked and un- 915
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(a) Visualization of MLM-decoded token with the maximum probability at each layer.

(b) Visualization of the ranking of the target token at each layer.

Figure 5: Visualization of using the MLM head to decode all input tokens at each layer.

masked token representations.916

2. The MLM head can project all input917

tokens—both <mask> and unmasked to-918

kens—into distributions over the vocabu-919

lary in the embedding space, yielding in-920

terpretable results that align with model pre-921

dictions. Specifically, within this space, each922

dimension corresponds to a unique token in923

the vocabulary, and the values therein repre-924

sent the predictive probabilities of all possible925

tokens at a given position.926

3. In the context of MLM, the projected distri-927

butions can be understood as representations928

based on the current token and its surrounding929

contextual information. These distributions930

reflect the predictive likelihood of all tokens931

within the vocabulary. Consequently, these932

distributions can be interpreted as the to-933

ken’s contributions to the prediction pro-934

cess.935

B Experiments on BERT-large936

Table 8 and Table 9 present the results on various937

datasets for the activation and pruning tasks on938

BERT, respectively. It can be observed that our pro-939

posed PromptExplainer substantially outperfroms940

other baselines by a significant margin on BERT.941

Method A
G

’s
N

ew
s

D
B

Pe
di

a

Ya
ho

o

IM
D

B

A-Last 59.7 75.5 36.4 67.6
Rollout 50.0 66.2 28.2 64.1

GI 51.8 61.6 28.0 59.9
GAE 63.4 76.1 37.2 72.4

LRP-XAI 58.3 73.4 32.0 68.6
PromptExplainer 65.1 79.2 38.6 74.4

Table 8: Activation probability (%) on BERT. A higher
probability is better and indicates that adding the most
relevant nodes strongly activates the correct model pre-
diction.

C Additional Qualitative Results 942

The keywords associated with the class “company” 943

in Figure 6a are “Kooga”, “clothing company ”, 944

and “established”. Among the methods used, only 945

LRP-XAI and PromptExplainer accurately iden- 946

tify all three keywords. Moving on to the second 947

example presented in Figure 6b, the terms “Inc” 948

and “company” are directly associated with its la- 949

bel “company”. In this case, only GI and Prompt- 950

Explainer successfully grasp these two keywords. 951

Regarding the third example in Figure 6c, where 952

the key phrase “photographer and author” plays a 953

crucial role in classifying the sentence as “artist”, 954

PromptExplainer is the sole method that notices 955

and comprehends the significance of the entire 956
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Method A
G

’s
N

ew
s

D
B

Pe
di

a

Ya
ho

o

IM
D

B

A-Last 0.343 0.260 0.573 0.250
Rollout 0.512 0.502 0.684 0.247

GI 0.418 0.386 0.638 0.289
GAE 0.291 0.268 0.561 0.210

LRP-XAI 0.347 0.278 0.592 0.239
PromptExplainer 0.274 0.247 0.534 0.186

Table 9: Pruning MSE on BERT. A lower MSE is better
and indicates that removing less relevant nodes has little
effect on the model prediction.

phrase. Lastly, considering the final example il-957

lustrated in Figure 6d, the keywords “member” and958

“Ohio House of Representatives” allow for the clas-959

sification of this example as “politics”. Remark-960

ably, only LRP-XAI and PromptExplainer exhibit961

the capability to recognize these two keywords. In962

summary, these four examples collectively serve as963

compelling evidence of the remarkable effective-964

ness of our proposed PromptExplainer.965
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GAE

LRP-XAI

PromptExplainer

(a) Visualization of the attribution scores assigned to each word in a sentence tagged with “company”.

<s> [ Topic : <mask> ] Agami Systems. Agami Systems Inc. was a network storage company headquartered in Sunnyvale California. </s>A-Last

Rollout

GI

GAE

LRP-XAI

PromptExplainer
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(b) Visualization of the attribution scores assigned to each word in a sentence tagged with “company”.

<s> [ Topic : <mask> ] Gary Bernstein. Gary Bernstein is an American photographer and author. </s>A-Last

Rollout

GI

GAE

LRP-XAI

PromptExplainer

<s> [ Topic : <mask> ] Gary Bernstein. Gary Bernstein is an American photographer and author. </s>
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<s> [ Topic : <mask> ] Gary Bernstein. Gary Bernstein is an American photographer and author. </s>

(c) Visualization of the attribution scores assigned to each word in a sentence tagged with “artist”.

<s> [ Topic : <mask> ] June Kreuzer. June Kreuzer is a former member of the Ohio House of Representatives. </s>A-Last

Rollout

GI

GAE

LRP-XAI

PromptExplainer

<s> [ Topic : <mask> ] June Kreuzer. June Kreuzer is a former member of the Ohio House of Representatives. </s>
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(d) Visualization of the attribution scores assigned to each word in a sentence tagged with “politics”.

Figure 6: Examples for qualitative results.
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