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ABSTRACT

The purpose of domain generalization is to develop models that exhibit a higher
degree of generality, meaning they perform better when evaluated on data coming
from previously unseen distributions. Models obtained via traditional methods
often cannot distinguish between label-specific and domain-related features in
the latent space. To confront this difficulty, we propose formulating a novel data
generation process using a latent variable model and postulating a partition of the
latent space into content and style parts while allowing for statistical dependency to
exist between them. In this model, the distribution of content factors associated with
observations belonging to the same class depends on only the label corresponding to
that class. In contrast, the distribution of style factors has an additional dependency
on the domain variable. We derive constraints that suffice to recover the collection
of content factors block-wise and the collection of style factors component-wise
while guaranteeing the isolation of content factors. This allows us to produce a
stable predictor solely relying on the latent content factors. Building upon these
theoretical insights, we propose a practical and efficient algorithm for determining
the latent variables under the variational auto-encoder framework. Our simulations
with dependent latent variables produce results consistent with our theory, and
real-world experiments show that our method outperforms the competitors.

1 INTRODUCTION

Traditional machine learning models achieve outstanding prediction performance by relying on the
independently and identically distributed (iid) assumption, i.e., the training and testing data follow
the same distribution (Vapnik, 1991). However, due to the possibility of distribution shifts between
the training and the testing data, models trained under the iid assumption may not perform well in
real-world situations. Alongside this, collecting data from some specific usage scenarios can be
cost-prohibitive and, in some cases, infeasible, resulting in a significant obstacle to using these models
in crucial applications where the underlying data distribution is uncertain (Wang et al., 2022). The
purpose of domain generalization (DG) is to address this challenge (Blanchard et al., 2011), namely
by producing a model which performs well on unseen but related data from distributions located
in new environments (domains). With such a model, it is possible to achieve stable predictions in
various applications (Jumper et al., 2021).

A prevalent strategy to DG involves the use of a shared predictor, with the objective of learning
domain invariant (content) representations from observations across domains as input (Li et al.,
2018c; Zhou et al., 2022; Ding et al., 2022). Traditionally, these representations are learned within
a latent feature space and aligned across domains (Ganin et al., 2016; Li et al., 2018b). However,
these methods fail to guarantee that domain-specific (style) spurious features can be effectively
removed (Ding et al., 2022). As a result, the generalizability of the predictor is constrained (Muandet
et al., 2013). Recent research has aimed to address this issue by utilizing causal structure to model
the data generation process. Causal features of the label are leveraged for stable predictions based on
invariant causal mechanisms (Schölkopf et al., 2012; Zhang et al., 2013; Magliacane et al., 2018).
However, these methods (Peters et al., 2016; Bühlmann, 2020; Mitrovic et al., 2021) directly link
the output label to a subset of observed covariates instead of latent features, which would be less
suitable for applications involving sensory-level data due to conceptual limitations (Chalupka et al.,
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2015; Atzmon et al., 2020). To circumvent this limitation, Sun et al. (2021) introduces a latent causal
model named LaCIM to enable learning causal features within the latent space and establish sufficient
conditions for their identifiability. However, the assumption of an informative label distribution
of LaCIM (Sun et al., 2021, Theorem B.5) is often infeasible in practical applications, and the
model cannot allow interdependence between non-causal features and the label. To remedy these
shortcomings, we propose developing a novel data generation model (§ 3.1) that mitigates the need
for stringent assumptions regarding label distribution.

In our model, we incorporate a novel two-level latent space comprising high-level and middle-level
spaces namely, with each space being partitioned into content and style parts. We adopt a general
assumption that the content ẑc and style ẑs in the high-level space follow a simple distribution, such
as the multivariate normal distribution (Kingma & Welling, 2014; Higgins et al., 2017; Chen et al.,
2018). Unfortunately, in the absence of additional assumptions, it is impossible to identify these latent
variables from the observed data (Hyvärinen & Pajunen, 1999; Locatello et al., 2019). To remedy
this situation, we further introduce a middle-level latent space inheriting the same partition structure
as the high-level one. In the middle-level space, the content factors zc are derived from ẑc through
label-specific functions, resulting in a domain-invariant distribution of zc. The style factors zs are
generated from ẑs via label-domain-specific, component-wise monotonic functions. Subsequently,
the concatenated latent factors [zc,zs] produce observations via an invertible and smooth mixing
function, which is shared across all domains. As per our model, distributional shifts of observations
across domains arise from the variations of zs.

The key to achieving DG based on our model is recovering the distribution of content factors
and isolating them from style factors. For this purpose, we assume that the prior of the style
factors zs belongs to a general exponential family, conditioned on the specific label and domain,
following (Khemakhem et al., 2020a). Additionally, we introduce a domain variability assumption
to enforce sufficient changes in style factors across domains. With these assumptions, we can
theoretically recover the content factors and isolate them from the style factors (Theorem 1 in § 4.3),
building on the identifiability results of recent literature on nonlinear independent component analysis
(ICA) (Khemakhem et al., 2020a;b) and content isolation (Von Kügelgen et al., 2021; Kong et al.,
2022). Based on our theoretical discoveries, we utilize a variational auto-encoder (VAE) framework
as outlined in (Khemakhem et al., 2020a) to recover the content factors and train a stable prediction
model, which solely takes zc as input (§ 5). We then demonstrate empirically that our method
outperforms various advanced approaches on both synthetic and real-world data (§ 6).

Contributions. To summarize our main contributions:

• A novel identifiable latent variable model: We introduce a novel model that incorporates a
two-level latent space (§ 3.1) to effectively depict data generation process and distributional shifts
across different domains. By establishing sufficient conditions for identifying the distribution of
latent factors (§ 4.3), we demonstrate the feasibility of achieving DG under this model (Prop. 1).

• A practical learning approach: We design a VAE-based learning algorithm to recover latent
variables and ensure the isolation of content factors from style factors. Specifically, we train an
invariant predictor on the content factors, which is applicable to all domains (§ 5).

• Experiments: We conduct experiments using synthetic and real-world datasets, including
Colored MNIST (Arjovsky et al., 2019), PACS, and Office-Home to demonstrate the practical
effectiveness of our theoretical approach to the disentanglement of latent variables and the isolation
of content factors, and to give empirical support for the generality of our method (§ 6).

2 PROBLEM FORMULATION

Formal setup. Denote the input observation space as X and a specific feature vector as x ∈ X .
Similarly, let Y denote the output label space and y ∈ Y represent a label vector. We denote Di as a
sample comprising ni iid realizations of the pair (x,y) following the distribution P (i)xy on X ×Y . We
define Dtr as the collection of all these samples, i.e. Dtr = {D1,D2,⋯,DNtr}, Etr = {1,2,⋯,Ntr} as
the domain index set, and e ∈ Etr as the domain variable. Then, let PTxy be the distribution of the test
set along with its corresponding test sample DT = {(x(j),y(j))}nTj=1, which are nT iid realizations
from PTxy and the labels y(j) are unobserved. In the context of domain generalization, we have access
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to all data in Dtr, yet lack any information regarding the sample DT or distribution PTxy specific to
the testing domain.

Average Risk. Given a classification loss function ℓ ∶ R × Y → R+, the objective of domain
generalization is to produce an estimate ϕ ∶ X → R, which can generalize well to DT drawn from the
testing distribution PTxy rather than fit the observations Dtr used for training. Formally, the learning
objective is to minimize the average generalization errorR of the learned estimate ϕ over the unseen
data DT of size nT (Blanchard et al., 2011; Muandet et al., 2013):

R(ϕ) ∶= EDT ∼(PTxy)⊗nT [
1

nT

nT

∑
i=1
ℓ(ϕ(x(i)),y(i))] (1)

3 THE DATA GENERATION MODEL

To achieve DG defined by Eq. 1 in § 2, we start by introducing a novel data generation model as
shown in Figure 1. This model builds upon the foundations laid by LaCIM (Sun et al., 2021) and
iMSDA (Kong et al., 2022), partitioning the latent space into content and style components.

3.1 MODEL DEFINITION
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Figure 1: The data generation
model. The gray-shaded nodes indi-
cate that the variables are observable,
and the blank nodes represent the la-
tent variables during training. The
dotted line with double arrows only
implies the variables are allowed to
be (conditionally) dependent. In this
example, we have both nc and ns set
to three.

High-Level Latent Space: We define our data generation
model by starting from specifying the variables in the high-
level latent space, denoted as ẑ ∈ Z ⊂ Rnc+ns . Also, we
assume that each variable is mutually independent. This space
consists of two parts: the content part ẑc ∈ Zc ⊂ Rnc and
the style part ẑs ∈ Zs ⊂ Rns . Conceptually, we assume that
these variables contain basic components that can lead to the
generation of any observation x. In other words, we assume
an implicit mapping function Z → X exists.

Justification. Dividing the latent space into two components
and assuming variable independence are quite common in
DG (Ganin et al., 2016; Sun et al., 2021; Lu et al., 2021; Kong
et al., 2022; Taeb et al., 2022). For instance, in image gener-
ation, ẑc can capture the basic object concepts/components,
while ẑs can encode the style/context information. However,
without additional assumptions, the latent variable ẑ is not
identifiable from the observations x (Hyvärinen & Pajunen,
1999; Locatello et al., 2019), making it challenging to further
isolate the content factors from the style factors. To address
this issue, we propose introducing a middle-level latent space
that enhances the level of detail in generating observations,
thereby achieving model identifiability.

Middle-Level Latent Space: We introduce a middle-level latent space and its variables, referred
to as z ∈ Z ⊂ Rnc+ns , which lives in the same space and retains the same division as the high-level
latent space, with content factors zc ∈ Zc ⊂ Rnc and style factors zs ∈ Zs ⊂ Rns . In detail, zc is
derived from ẑc using non-linear functions denoted as f∗y(⋅). Here, the choice of f∗ depends on the
value of y rather than taking it as an input. Similarly, zs can be obtained through the application of
component-wise monotonic functions f#y,e(⋅) on ẑs, which depends on (i) the values of the label y,
(ii) the domain variable e, (iii) and the index of each variable i. Our model goes beyond the previous
assumptions (Sun et al., 2021) to a more general case by introducing dependence between the label
and content factors and between the label and style factors (context information).

Common Generation Principle: The observation x is generated using a mixing function g ∶ Z → X
applied on the middle-level latent space z ∶= [zc,zs], which can be written as follows:

x = g(z). (2)

The mixing function g is shared across all domains. To better understand this, let us examine the
process of generating digits in the Colored MNIST dataset (Sun et al., 2021). The variations in the
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joint distribution across domains of this dataset primarily stem from changes in the color style factor,
which aligns with our model. For detailed explanation, refer to Example 1 in Appendix B.

3.2 PROBABILISTIC FORMULATION

Density Transformation. Formally, from Figure 1, we have the transformation between ẑ and z as

ẑc ∼ P (ẑc); zc = f∗y(ẑc); p(zc∣y) =
p(ẑc)

∣det(J(f∗y))∣
, (3)

ẑs ∼ P (ẑs); zs = f#y,e(ẑs); p(zs∣y, e) =
p(ẑs)

∣det(J(f#y,e))∣
, (4)

where J(⋅) represents the Jacobian matrix of the function and det(⋅) calculates the matrix determinant.

Probabilistic Formulation: The probabilistic generative model can be easily formulated according
to the model depicted in Figure 1 by

pθ(x,z∣y, e) = pg(x∣z)pθc,θs(z∣y, e), (5)
where θc and θs control the distributions of p(zc) and p(zs) respectively and θ = (g,θc,θs), living
in the space Θ, represents the parameters set of the model. (Notice that we ignore the high-level
latent variable ẑ in Eq. 5 as the transformation between ẑ and z is deterministic.) And we also define:

pg(x∣z) = pϵ(x − g(z)). (6)
Here, we assume an additive noise model x = g(z) + ϵ, where ϵ is an independent noise variable with
the pdf pϵ(ϵ), following the definition in (Khemakhem et al., 2020a). Then, we can easily obtain the
following conclusions based on the data generation model in Figure 1.

Remark 1 In our model, (a) x á y, e∣z, meaning that observations are independent of the label
and the domain variable given all latent factors z; (b) zc á e, meaning that p(zc∣y) keeps invariant
across all domains.

From Remark 1, we then can have the following proposition.

Proposition 1 Assume that we observe data sampled from a generative model defined according
to Eqs. (3,4,5,6). Domain generalization can be achieved if a method can (1) recover the content
factors zc from the given observation x and ensure its isolation from the style factors zs; (2) learn an
optimal invariant estimate ϕ ∶ Zc → R only depending on zc.

4 MODEL IDENTIFIABILITY

Based on the data generation model in Figure 1 and its probabilistic formulation presented in
Eqs. (3,4,5,6), this section presents sufficient conditions for achieving the theoretical results on latent
variable identifiability, which mainly include the recovery of zc and its isolation from zs.

4.1 ASSUMPTIONS ON THE PRIOR

When the data generation model meets Eqs. (3,4,5,6), the core idea to achieve the identifiability of
the latent variables is enforcing their informative distribution. Therefore, in our model, the prior on
the latent variable p(zs∣y, e) is assumed to follow a general exponential family given by an arbitrary
function λzs and sufficient statistics set Tzs concatenating the sufficient statistics of all variables in
zs. No assumptions are made regarding the prior distribution of zc. Therefore, for simplicity, we
use T and λ to represent Tzs and λzs throughout this paper. Then, the resulting probability density
function is represented as

pT,λ(zs∣y, e) =
ns

∏
i=1

Qi(zsi)
Γi(y, e)

exp
⎡⎢⎢⎢⎣

k

∑
j=1

Tij(zsi)λij(y, e)
⎤⎥⎥⎥⎦
, (7)

where Q = [Qi] is the base measure, Γ = [Γi] is the conditional normalizing constant, and Ti =
(Ti,1,⋯, Ti,k) are the sufficient statistics of zsi , and λi(y, e) = (λi,1(y, e),⋯, λi,k(y, e)) are the
corresponding parameters depending on the values of y and e. As asserted in (Khemakhem et al.,
2020a), exponential families possess universal approximation capabilities that enable the derivation
of univariate conditional distributions of the latent sources, making this assumption nonrestrictive.
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4.2 IDENTIFIABILITY DEFINITION

By making the conditional exponential family assumption for zs, we then introduce the block and the
linear identifiability for latent factors zc and zs, respectively.

Definition 1 [Block identifiability.] The content factors zc are block-wise identifiable if the recovered
z′c contains all and only information about zc. That is to say, there exists an invertible function
hc ∶ Rnc → Rnc , that z′c = hc(zc).

Definition 2 [Linear identifiability.] Let ∼L be the equivalence relations on {g,θs ∶= (T,λ)}
defined as:

g,θs ∼L g′,θ′s ⇐⇒ ∃ A,b ∣ T(g−1(x)−ns∶) = AT′(g′−1(x)−ns∶) + b, (8)

where A ∈ Rkns×kns is an invertible matrix and b ∈ Rkns is a vector. The subscript −ns ∶ means
extracting the last ns terms of a vector.

Justification. Block identifiability, focusing on recovering variable blocks rather than each individual
factor, is a well-studied topic in independent subspace analysis (Theis, 2006; Von Kügelgen et al.,
2021). Linear identifiability (Hyvarinen & Morioka, 2016; Khemakhem et al., 2020a;b) states that
latent factors’ sufficient statistics can be identified up to an affine and component-wise transformation.
Furthermore, under mild conditions from linear ICA (Hyvarinen & Morioka, 2016), the linear
transformation in Definition 2 can be removed. As stated in Proposition 1, we aim to recover the zc
given observations in new domains. While it is not necessary to disentangle each individual factor
but to ensure that all information in zc is effectively recovered and contains no information from zs.

4.3 IDENTIFIABILITY RESULTS

Theorem 1 Assume we observe data sampled from the data generation model aligns with Eqs. (5,6,7),
with parameters (g,T,λ), and the following assumptions hold:

i. [Smooth and positive density] The set {x ∈ X ∣ψϵ(x) = 0} has measure zero where ψϵ is the
characteristic function of the density pϵ. The probability density function of latent variables is
smooth and positive, i.e., p(z∣y, e) is smooth and p(z∣y, e) > 0 for all z ∈ Z , y ∈ Y , and e ∈ Etr.

ii. [Diffeomorphism] Function g in Eq. 6 is D2-diffeomorphism, i.e., it is injective, and all second-
order cross-derivatives of the function and the inverse exist.

iii. [Linear independence] The sufficient statistics in T are all twice differentiable and (Tij)1≤j≤k
are linearly independent on any subset of X of measure greater than zero. Furthermore, they all
satisfy dim(Ti) ≥ 2,∀i; or dim(Ti) = 1 and Ti is non-monotonic ∀i.

iv. [Sufficient variability] There exist ny distinct y and each y(i) locates in ny(i) distinct domains

fromDtr. There are∑ny

i=1 ny(i) distinct points (y(i), e(j)i ) for i ∈ {1,⋯, ny}, and j ∈ {1,⋯, nyi}
for each i to have ∑ny

i=1 nyi ≥ ny + kns, and ∀yi, nyi ≥ 2. Assume that the matrix

L = (λ(y(1), e(2)1 ) −λ(y(1), e
(1)
1 ),⋯,λ(y(1), e

(n
y(1))

1 ) −λ(y(1), e(1)1 ),⋯,

λ(y(ny), e(2)ny ) −λ(y
(ny), e(1)ny ),⋯,λ(y

(ny), e
(n

y(ny))
ny ) −λ(y(ny), e(1)ny )) (9)

of size kns × kns is invertible.

v. [Domain variability] For any set Az ⊆ Z with the following two properties: (1) Az has nonzero
probability measure, i.e., P[{z ∈ Az}∣{e = e′}] for any e′ ∈ Etr. (2) A cannot be expressed as
Bzc ×Zs for any set Bzc ⊂ Zs. ∃e1, e2 ∈ Etr, such that ∫z∈Az

P (z∣e1)dz ≠ ∫z∈Az
P (z∣e2)dz.

Then, in the limit of infinite data, we can achieve the block identifiability of the content factors zc and
the linear identifiability of the style factors zs.

Justification. The first three assumptions are trivial and easy to satisfy (Khemakhem et al., 2020b)
(More detailed explanations are shown in the Appendix). Linear independence, coupled with the
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Sufficient variability, constrains the space of sufficient statistics for zs, allowing for sufficient com-
plexity of the latent sources distributions. Then, by aligning the marginal distribution of observations
in each domain, it is possible to implicitly align the sufficient statistics of the style factors, further
enabling the recovery of sufficient statistics under the invertible matrix assumption (Khemakhem
et al., 2020a). Our assumption of sufficient variability is more practical as we do not restrict the label
distribution to be informative like LaCIM (Sun et al., 2021) does. Moreover, it is relatively easier
to satisfy our assumption compared to iMSDA (Kong et al., 2022) as the constraint of having an
invertible matrix depends on both the label and domain variables in our case, whereas iMSDA only
relies on the domain variable. The inclusion of domain variability assumption, introduced in (Kong
et al., 2022), ensures significant variation in the distribution of zs across domains, facilitating the
isolation and recovery of content factors. The proof sketch, based on the contradiction of (iv) in
Theorem 1, is presented in the Appendix. By showing that z′c depends only on zc and not zs, the
proof ensures that invariance is not violated in any non-zero measure region the style subspace.

5 PROPOSED METHOD
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Figure 2: The learning and infer-
ence procedure. We take the en-
coder qψ of a VAE to estimate the
posterior of the latent factors, which
is further used to (1) recover the
high-level variable; (2) reconstruct
the observations; (3) predict the la-
bel with the content factors. The
solid line means the learning proce-
dure and the dashed line denotes the
inference procedure in new domains.

In this section, we discuss how to turn the theoretical insights
from § 4 into a practical algorithm, which can be used to
achieve DG. As discussed in Proposition 1, the key is to block-
wise identify the content factors zc and train a stable predictor
ϕ over the space of Zc. To achieve this, we then explain how
to use a VAE framework (Kingma & Welling, 2014), in which
the decoder neural network corresponds to the mixing function
g, to estimate each latent component in the data generation
model. The overall structure is illustrated in Figure 2.

We consider estimating the latent variables by reformulating
the objective function of VAE to fit each conditional marginal
distribution p(x∣y, e). In vanilla VAE, a variational approxi-
mator qψ(z∣x) is learned to approximate the intractable true
posterior pθ(z∣x) by maximizing the Evidence Lower Bound
(ELBO). By utilizing Remark 1, our model similarly maxi-
mizes the conditional likelihood, formulated as

EDtr[logpθ(x∣y, e)] ≥ LELBO(θ, ψ)

∶= EDtr [Eqψ(z∣x)[logpθ(x∣z) + log
pθ(z∣y, e)
qψ(z∣x)

]] .
(10)

Concerning the posterior, we assume a multi-normal distribu-
tion as suggested in (Khemakhem et al., 2020a; Kong et al., 2022) and take Multilayer perceptron
(MLP) to estimate the mean and covariance matrix. The decoder of VAE, also parameterized by an
MLP, maps the re-parameterized latent codes to the observed space as follows.

z ∼ qψ(z∣x) ∶= N(µψ(x),Σψ(x)), x = g(z). (11)

The first term of Eq. 10 maximizes the reconstruction performance, measured by the probability of x
on P (x). In contrast, the second term tries to minimize the distance between the posterior and the
prior of z. From Eqs. (3,4), we have p(zc∣y) = p(ẑc)

∣det(J(f∗y))∣
and p(zs∣y, e) =

p(ẑsi)
∣det(J(f#

(y,e)))∣
for each

zsi , which means that we can transform the probability density of z to p(ẑ). To achieve this, we
estimate each function in f∗y and f#(y,e) by a distinct flow-based architecture (Durkan et al., 2019),

which ensures that the inverse f∗y
−1 and f#(y,e)

−1
can be easily calculated. Then, we have

ẑc = f∗y
−1(zc), ẑs = f#(y,e)

−1
(zs), (12)

Then, we can compute the posterior qψ(ẑs∣x), qψ(ẑc∣x) by performing Eq. 11 and Eq. 12. We
assume both the prior p(ẑc) and p(ẑs) as standard normal distributions denoted as N(0nc ,Inc)
N(0ns ,Ins), respectively. Overall, we reformulate the negative ELBO, re-named as VAE loss, by

LVAE = EDtr [Ez∼qψ logp(x∣z) + β ⋅KL(qψ,f∗yf#

(y,e)
(ẑ∣x) ∣∣ p(ẑ))] . (13)
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The value of β, which is a hyper-parameter, is used in the computation of KL divergence between the
posterior and prior of ẑ. This computation is made tractable by utilizing the flow model. In this case,
we utilize the posterior of ẑ instead of z to avoid making any assumptions about the prior of zc.

To estimate the invariant predictor ϕ, we also employ an MLP that takes the content factors z̃c as
input and predicts the corresponding label y. The Cross-entropy loss Lcls is used for this purpose.
Overall, the learning objective of our model would be

Loverall = Lcls + α ⋅ LVAE, (14)

where α is a hyper-parameter that controls the balance between the loss terms.

6 EXPERIMENTS

Using synthesized data, we first verify the block identifiability of the content factors and the linear
identifiability of style factors. Following (Sun et al., 2021), we also test our proposed method on
a synthetic dataset named Colored MNIST (C-MNIST). Then, we evaluate the performance of our
method on real-world datasets, including PACS and Office-Home, to demonstrate its ability to
generalize to new domains with distributional shifts. Appendix E provides more details.
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Figure 3: Identify the latent variables, including the content and style
variables. The ground-truth distributions of the content and style variables
are depicted in (a) and (e), respectively. Different colors mean different
classes for the content variables. For the style variables, the different colors
mean the different combinations of (y, e).
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Figure 4: Identifiability
results of the content vari-
ables among three meth-
ods on the synthetic data.

6.1 SYNTHETIC DATA

Data Generation. We generate the synthetic data following the data generation procedure outlined in
Figure 1 with latent variable sizes set to nc = ns = 2. The style variable, from a general exponential
family, is modulated by adjusting the mean and variance of a multi-normal distribution. We follow the
same TCL data generation process in (Khemakhem et al., 2020a). That is zs ∼ N(µ(y,e), σ2

(y,e)I),
wherein we obtain µ(y,e) ∼ Uniform(−3,3) and σ2

(y,e) ∼ Uniform(0.1,3) for each combination
of (y, e). For simplicity, we generate zc similarly, with mean and variance depending on the variation
of y. The mixing function g is implemented using a 2-layer MLP with Leaky-ReLU activation,
similar to (Hyvarinen & Morioka, 2016; Khemakhem et al., 2020a).

Evaluation metrics. We introduce two evaluation measures: the coefficient of determination (R2) and
the Mean Correlation Coefficient (MCC). MCC assesses the quality of component-wise identifiability
of zs by matching each learned component with the corresponding source component through cost
optimization under permutation. To evaluate the block-wise identifiability of zc, we use kernel
ridge regression to predict the true zc and zs from the estimated zc and obtain the R2 coefficient of
determination. A higher value for both measures indicates better recovery of the latent variables. We
repeat each experiment over 5 random seeds.
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Figure 5: The recovery of
style factors w.r.t varying do-
main size and sample size.

Results. In Figure 3, we set the total number of classes as ny = 2,
the total number of domains as m = 5, and generate 2000 observa-
tions for each class. We visualize the distribution of the true latent
variables and the recovered ones. Note that block-identifiability and
linear identifiability do not guarantee perfect identification of the la-
tent variables but rather the ability to identify them within certain
block-wise or component-wise non-linear transformations. As shown
in Figure 3, our method can recover the ground-truth latent factors up
to trivial indeterminacies (rotation and sign flip). LaCIM (Sun et al.,
2021) is unable to distinguish between different classes of content
factors since the violation of the informative label distribution. On
the other hand, the (supervised) sVAE approach attempts to extract
distinct information among different classes, but these features may
not remain consistent across various domains. Additionally, as shown in Figure 4, and Figure 5,
the recovery quality (R2, MCC) of zc and zs improve as the number of domains or observations
increases, supporting our hypothesis that a sufficient combination of (y, e) is needed to identify the
style factors and further enhance the recovery and isolation of the content factors.

Failure cases. Our method’s identifiability is mainly influenced by the sample size and sufficient
variability, as per Theorem 1. When we set the domain size as m = 2 to intentionally violate the
sufficient variability assumption, we observed R2 values of 0.65 for the recovered content factors
and 0.58 for the MCC of the recovered style factors. Similarly, when we reduced the sample size
of each class to only 50, the R2 values of the recovered content factors and MCC of the recovered
style factors were 0.56 and 0.44 respectively. These experiments highlight the critical role that our
assumptions play in the successful recovery and separation of the latent variables.

6.2 COLORED MNIST

Table 1: Test accuracy (%) on Col-
ored MNIST.

Algorithm ACC Params
ERM (Vapnik, 1991) 91.9 ± 0.9 1.12M
DANN (Ganin et al., 2016) 84.8 ± 0.7 1.1M
MMD-AAE (Li et al., 2018b) 92.5 ± 0.8 1.23M
DIVA (Ilse et al., 2020) 86.1 ± 1.0 1.69M
IRM (Arjovsky et al., 2019) 92.9 ± 1.2 1.12M
sVAE (Sun et al., 2021) 93.6 ± 0.9 0.92M
LaCIM (Sun et al., 2021) 96.6 ± 0.3 0.92M

Ours 97.2 ± 0.3 0.73M

Data Generation. We construct the Colored MNIST dataset
based on MNIST by relabeling digits 0 − 4 as y = 0 and 5 − 9
as y = 1 and then color a certain percentage of images with
y = 0 as green and the rest as red, and repeat this process for
images with y = 1. In the training datasets, we set m = 2, and
set pe1 = 0.95 and pe1 = 0.99 for the two domains respectively.
For the testing domain, we set pe = 0.1. This dataset aligns with
our data generation model, where label and domain influence
the style variable (colorization of digits), and the label only
controls the class.

Baselines and Results. We evaluate our method against several state-of-the-art methods such as
ERM (Vapnik, 1991), domain-adversarial neural network (DANN) (Ganin et al., 2016), Maximum
Mean Discrepancy with Auto-Encoder (MMD-AAE) (Li et al., 2018b), Domain invariant Variational
Autoencoders (DIVA) (Ilse et al., 2020), Invariant Risk Minimization (IRM) (Arjovsky et al., 2019),
Supervised VAE (sVAE) and Latent Causal Invariance Models (LaCIM) (Sun et al., 2021). The
results of these baseline methods are taken from (Sun et al., 2021). As shown in Table 1, our method,
which has fewer parameters, achieves superior results compared to all other baselines, indicating that
our model and data match well.

6.3 REAL-WORLD DATA

Datasets, Baselines, and Setup. We conduct experiments on two image classification datasets,
PACS and Office-Home. These datasets consist of multiple domains with distinct styles and many
classes. To ensure fair comparisons, we utilize the popular model selection method, training-domain
validation set, where one domain is designated as the test domain, and data from all other domains
are used for training the model. To ensure consistency, we use the ResNet50 (He et al., 2016) model,
pretrained on ImageNet, as the backbone model for all methods, fine-tuning it for different tasks.

Results. The results of all methods on the PACS and Office-Home datasets are presented in Table 2
and Table 3. Additional results can be found in Table 4. Empirically, our method demonstrates

8



Under review as a conference paper at ICLR 2024

Table 2: Test accuracy(std) (%) on PACS.

Algorithm A C P S Avg.
ERM (Vapnik, 1991) 84.7(0.4) 80.8(0.6) 97.2(0.3) 79.3(1.0) 85.5
IRM (Arjovsky et al., 2019) 84.8(1.3) 76.4(1.1) 96.7(0.6) 76.1(1.0) 83.5
MMD (Li et al., 2018b) 86.1(1.4) 79.4(0.9) 96.6(0.2) 76.5(0.5) 84.6
DANN (Ganin et al., 2016) 86.4(0.8) 77.4(0.8) 97.3(0.4) 73.5(2.3) 83.6
CORAL (Sun et al., 2016) 88.3(0.2) 80.0(0.5) 97.5(0.3) 78.8(1.3) 86.2
SagNet (Nam et al., 2021) 87.4(1.0) 80.7(0.6) 97.1(0.1) 80.0(0.4) 86.3
RSC (Huang et al., 2020) 85.4(0.8) 79.7(1.8) 97.6(0.3) 78.2(1.2) 85.2
EQRM (Eastwood et al., 2022) 86.5(0.4) 82.1(0.7) 96.6(0.2) 80.8(0.2) 86.5
CB (Wang et al., 2023) 87.8(0.8) 81.0(0.1) 97.1(0.4) 81.1(0.8) 86.7
MADG (Dayal et al., 2023) 87.8(0.5) 82.2(0.6) 97.7(0.3) 78.3(0.4) 86.5

Ours 88.7(0.3) 80.6(0.8) 97.7(0.4) 82.6(0.4) 87.4

Table 3: Test accuracy(std) (%) on OfficeHome.

Algorithm A C P R Avg.
ERM (Vapnik, 1991) 61.3(0.7) 52.4(0.3) 75.8(0.1) 76.6(0.3) 66.5
IRM (Arjovsky et al., 2019) 58.9(2.3) 52.2(1.6) 72.1(0.1) 74.0(0.3) 64.3
MMD (Li et al., 2018b) 60.4(0.2) 53.3(0.3) 74.3(0.1) 77.4(0.6) 66.3
DANN (Ganin et al., 2016) 59.9(1.3) 53.0(0.3) 73.6(0.7) 76.9(0.5) 65.9
CORAL (Sun et al., 2016) 65.3(0.4) 54.4(0.5) 76.5(0.1) 78.4(0.5) 68.7
SagNet (Nam et al., 2021) 63.4(0.2) 54.8(0.4) 75.8(0.4) 78.3(0.3) 68.1
RSC (Huang et al., 2020) 60.7(1.4) 51.4(0.3) 74.8(1.1) 75.1(1.3) 65.5
EQRM (Eastwood et al., 2022) 60.5(0.1) 56.0(0.2) 76.1(0.4) 77.4(0.3) 67.5
CB (Wang et al., 2023) 65.6 (0.6) 56.5(0.6) 77.6(0.3) 78.8(0.7) 69.6
MADG (Dayal et al., 2023) 67.6(0.2) 54.1(0.6) 78.4(0.3) 80.3(0.5) 70.1
Ours 64.8 (0.7) 56.1(0.3) 78.4(0.6) 79.8(0.3) 69.8

the highest average performance compared to all other baseline methods. Comparisons with more
baselines are included in the Appendix D.
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of our method to hyper-
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the changing style dimen-
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Parameter Sensitivity. Figure 6 illus-
trates the sensitivity of our method to hyper-
parameters α and β. Specifically, we vary
α over the range 1e − 5,1e − 4,1e − 3,1e − 3
and β over the range 0.1,0.5,1,5. It can be ob-
served that our method achieves competitive
performance robustly across a wide range of
hyper-parameter values. Figure 7 presents re-
sults on various style dimensions. The perfor-
mance of the model is seen to degrade at large
and small values, aligning with the proposed
sufficient variability assumption and minimal
change assumption outlined in previous work (Kong et al., 2022; Xie et al., 2023).

7 RELATED WORKS

There are three mainstreams in recent DG research, including (1) data augmentation (Yue et al.,
2019) to increase the training dataset size artificially; (2) invariant feature disentanglement or
extraction (Arjovsky et al., 2019) to learn features invariant across domains; and (3) Advanced learning
strategies such as meta-learning (Li et al., 2018a), ensemble learning (Zhou et al., 2021), and self-
supervised learning (Bucci et al., 2021). Our method is a part of the domain generalization techniques
that strive to find a model with invariant features across domains. To this end, DICA (Muandet
et al., 2013) first proposed to learn an invariant transformation of the data across domains, effectively
generalizing it to new domains in theory and practice. Subsequently, other methods have been
proposed, such as maximum mean discrepancy (Li et al., 2018b) and adversarial learning (Li
et al., 2018c). Invariant Risk Minimization (Arjovsky et al., 2019) is based on invariant causal
prediction (Peters et al., 2016) and aims to learn an optimal classifier that remains invariant across all
domains in the representation space. More related work can be seen in Appendix A.

8 DISCUSSION

Limitations: Our model has two potential limitations. Firstly, we only allow dependence between the
content and style factors through the label effect, which may not be sufficient to capture all relevant
dependence in real-world scenarios. Secondly, the model’s identifiability is dependent on the number
of environments and the label and also the infinite observation assumptions, which could limit its
practical applicability if the number of style factors is quite large.

Conclusion: This paper presents a novel approach for DG by first introducing a novel data generation
model, where the latent space is partitioned into invariant content and variant style components
across domains. The proposed method uses a VAE framework to estimate the latent factors and can
extract the invariant content components for more stable prediction effectively. Theoretical results
and numerical simulations demonstrate the effectiveness of the proposed approach, which is further
supported by experimental results on real-world datasets, showing its potential for developing models
that exhibit a higher degree of generality.
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A MORE RELATED WORKS

A.1 FEATURE DISENTANGLEMENT.

DIVA (Ilse et al., 2020) separates the feature space into the domain, category, and other features
and then disentangles them using a VAE framework. Subsequent studies, such as (Nam et al., 2021;
Zhang et al., 2022), have attempted to separate semantic and stylistic features in the latent space
using a generative model. However, these methods still lack theoretical guarantees to recover the
semantic features. In the context of self-supervised learning, Von Kügelgen et al. (2021) studied the
identification of the unchanging, shared portion of latent variables, known as the identifiability of
the content part, in a block-wise manner. Later, Kong et al. (2022) extended this work for domain
adaptation by partially identifying latent variables based on the property of minimal changes in causal
mechanisms. LaCIM (Sun et al., 2021) assumes that content variables can only be identified from
the label distribution, which is relatively strong, to achieve latent variable separation. iCaRL (Lu
et al., 2021) assumes the invariance of the underlying causal diagram for prediction while allowing
the content variables to change across environments.

A.2 NONLINEAR ICA.

Nonlinear ICA is a technique used to uncover independent latent variables from data generated
through nonlinear transformations of underlying independent variables. However, the general prob-
lem is ill-posed and cannot be uniquely solved without additional assumptions (Hyvärinen & Pajunen,
1999). Recent research has employed various methods to overcome this, such as utilizing additional
observable variables such as time index (Hyvarinen & Morioka, 2016; 2017), auxiliary label (Hy-
varinen et al., 2019; Khemakhem et al., 2020a;b), and multi-view information (Gresele et al., 2020).
Additionally, some studies have restricted the mixing function to identify latent sources (Zheng et al.,
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2022). The finite-sample identifiability of the nonlinear ICA model has been analyzed in (Lyu & Fu,
2022), and the unknown intrinsic problem dimension has been studied in (Sorrenson et al., 2020).

A.3 CAUSALITY IN DG.

Peters et al. (2016) employs causality knowledge to model the distribution shifts across different
domains through interventions. Including most of the following works (Arjovsky et al., 2019;
Magliacane et al., 2018; Bühlmann, 2020), they assume a shared structural causal model (SCM)
underlying all domains, where each domain corresponds to a specific intervention over some variables.
Achieving domain generalization (DG) relies on the assumption that the causal mechanism of the
label remains unchanged while allowing interventions on other observed variables. Both Sun et al.
(2021) and Lu et al. (2021) expand this concept of invariant features to the latent space, which aligns
well with sensory-level data like images and audio.

B COLORED MNIST UNDER OUR MODEL

𝐳! 𝐳"! 𝐳""

𝐱	

𝐲	

𝒆𝟏	

Color plate

Figure 8: Data generation example of the first
group for the Colored MNIST dataset.

𝐳! 𝐳"! 𝐳""

𝐱	

𝐲	

𝒆𝟐	

Color plate

Figure 9: Data generation example of the sec-
ond group for the Colored MNIST dataset.

Example 1 Consider two groups constructing the overall dataset, wherein the two sub-datasets
(domains) are denoted as De1 and De2 , respectively. People write down each corresponding digit x
according to the instruction (label) y, which means the content factor zc (shape) of the digits x only
depends on y. Moreover, different people have different writing styles zs1 , such as the inclination
and the boldness of the digit, and tend to use different colors of pens, denoted as zs2 , when writing
different digits (means different y). Therefore, zs2 would only be influenced by e while zs1 could
be affected by both e and y. Then, given the shape zc, writing style zs1 and color zs2 factors, the
corresponding observation x can be obtained.

We visualize the data generation process introduced in Example B in Figure 8 and Figure 9. Then,
we show some observations sampled from the two different training sets and the test set in Figure 10,
Figure 11 and Figure 12. Different from the modeling method proposed in (Sun et al., 2021; Kong
et al., 2022), we propose an anti-causal prediction (Schölkopf et al., 2012) modeling to depict the
data generation process.

C PROOF OF THE IDENTIFIABILITY.

In this section, we mainly give the detailed proof of the Theorem 1.

15



Under review as a conference paper at ICLR 2024

0 20

0

10

20

Label: 1

0 20

0

10

20

Label: 0

0 20

0

10

20

Label: 0

0 20

0

10

20

Label: 0

0 20

0

10

20

Label: 1

0 20

0

10

20

Label: 0

0 20

0

10

20

Label: 0

0 20

0

10

20

Label: 0

0 20

0

10

20

Label: 0

0 20

0

10

20

Label: 0

0 20

0

10

20

Label: 0

0 20

0

10

20

Label: 1

0 20

0

10

20

Label: 0

0 20

0

10

20

Label: 1

0 20

0

10

20

Label: 0

0 20

0

10

20

Label: 1

0 20

0

10

20

Label: 0

0 20

0

10

20

Label: 1

0 20

0

10

20

Label: 1

0 20

0

10

20

Label: 1

0 20

0

10

20

Label: 0

0 20

0

10

20

Label: 0

0 20

0

10

20

Label: 1

0 20

0

10

20

Label: 0

0 20

0

10

20

Label: 0

0 20

0

10

20

Label: 0

0 20

0

10

20

Label: 0

0 20

0

10

20

Label: 0

0 20

0

10

20

Label: 0

0 20

0

10

20

Label: 1

0 20

0

10

20

Label: 0

0 20

0

10

20

Label: 1

0 20

0

10

20

Label: 1

0 20

0

10

20

Label: 1

0 20

0

10

20

Label: 0

0 20

0

10

20

Label: 1

0 20

0

10

20

Label: 1

0 20

0

10

20

Label: 0

0 20

0

10

20

Label: 1

0 20

0

10

20

Label: 1

0 20

0

10

20

Label: 0

0 20

0

10

20

Label: 1

0 20

0

10

20

Label: 1

0 20

0

10

20

Label: 1

0 20

0

10

20

Label: 0

0 20

0

10

20

Label: 1

0 20

0

10

20

Label: 1

0 20

0

10

20

Label: 1

0 20

0

10

20

Label: 1

0 20

0

10

20

Label: 0

Figure 10: Some observations sampled from the
first training domain.
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Figure 11: Some observations sampled from the
second training domain.
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Figure 12: Some observations sampled from the testing domain.

C.1 PRELIMINARIES

Recall that we assume the distribution of zs has a density of the form

pT,λ(zs∣y, e) =
ns

∏
i=1

Qi(zsi)
Γi(y, e)

exp
⎡⎢⎢⎢⎣

k

∑
j=1

Tij(zsi)λij(y, e)
⎤⎥⎥⎥⎦
,

Furthermore, we suppose that the probability density function of the style factors zs given the label
and domain variable, p(zs∣y, e) belongs to the strongly exponential families defined as follows

Definition 3 (Strongly exponential) (Khemakhem et al., 2020a, Definition 4) We say that an expo-
nential family distribution is strongly exponential if for any subset X of R the following is true:

(∃θ ∈ Rk ∣ ∀x ∈ X , ⟨T(x),θ ⟩ = const) Ô⇒ (Λ(X) = 0 or θ = 0) (15)

where Λ is the Lebesgue measure.

Also, note that if part of the zs are modulated by the auxiliary variable (y, e), then we can re-write
the density form as

p(zs∣y, e) =
ns

∏
i=1

Qi(zsi)
Γi(y, e)

exp
⎡⎢⎢⎢⎢⎣

n∗s
∑
i=1

k

∑
j=1

Tij(zsi)λij(y, e)
⎤⎥⎥⎥⎥⎦
. (16)

Actually, the term exp [∑nsi=n∗s ∑
k
j=1 Tij(zsi)λij(y, e)] can be absorbed into the first term. That is to

say, this expression is useful for dimension reduction. While in the following, we still use ns instead
of n∗s for simplicity. Moreover, we rely on the following Lemmas from (Khemakhem et al., 2020a;b),
which we list below for the completeness of our proof.

Lemma 1 Consider an exponential family distribution with k ≥ 2 components. Then the components
of the sufficient statistic T are linearly independent.
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Lemma 2 Consider a strongly exponential family distribution such that its sufficient statistic T is
differentiable almost surely. Then T ′i ≠ 0 almost everywhere on R for all 1 ≤ i ≤ k.

Lemma 3 Consider a strongly exponential distribution of size k ≥ 2 with sufficient statistic T(x) =
(T1(x), . . . , Tk(x)). Further, assume that T is differentiable almost everywhere. Then there exist k
distinct values x1 to xk such that (T′(x1), . . . ,T′(xk)) are linearly independent in Rk.

Lemma 4 Consider a strongly exponential distribution of size k ≥ 2 with sufficient statistic T.
Further assume that T is twice differentiable almost everywhere. Then

dim (span ((T ′i (x), T ′′i (x))
T
,1 ≤ i ≤ k)) ≥ 2 (17)

almost everywhere on R.

Lemma 5 Consider n strongly exponential distributions of size k ≥ 2 with respective sufficient
statistics Tj = (Tj,1, . . . Tj,k), 1 ≤ j ≤ n. Further consider that the sufficient statistics are twice
differentiable. Define the vectors e(j,i) ∈ R2n, such that e(j,i) = (0, . . . ,0, T ′j,i, T ′′j,i,0, . . . ,0), where
the non-zero entries are at indices (2j,2j + 1). Let x ∶= (x1, . . . , xn) ∈ Rn. Then the matrix
e(x) ∶= (e(1,1)(x1), . . . ,e(1,k)(x1), . . .e(n,1)(xn), . . . ,e(n,k)(xn)) of size (2n × nk) has rank 2n
almost everywhere on Rn.

C.2 PROOF OF THE LINEAR IDENTIFIABILITY OF THE STYLE PART.

We first provide proof of the linear identifiability of the style variable zs since separating and
recovering zc relies on this result. The following three steps complete the proof.

[Step 1.] We follow the same way as in (Khemakhem et al., 2020a) to define vol(A) =
√
detATA,

and when A is invertible, volA = ∣detA∣. The matrix volume can be used in the change of variable
formula to replace the absolute determinant of the Jacobian. This is most useful when the Jacobian is
a rectangular matrix (ns + nc < d). Suppose we have two sets of parameters (g, θc, θs ∶= (T,λ)) and
(g̃, θ̃c, θ̃s ∶= (T̃, λ̃)) such that pg,θc,θs(x∣y, e) = pg̃,θ̃c,θ̃s(x∣y, e) for all pairs (x,y, e) ∈ X × Y × Etr.
Then we have

∫
Z
pθc,θs(z∣y, e)pg(x∣z)dz = ∫Z pθ̃c,θ̃s(z∣y, e)pg̃(x∣z)dz (18)

Ô⇒ ∫
Z
pθc,θs(z∣y, e)pϵ(x − g(z))dz = ∫Z pθ̃c,θ̃s(z∣y, e)pϵ(x − g̃(z))dz (19)

Ô⇒ ∫
X
pθc,θs(g−1(x̄)∣y, e)volJg−1(x̄)pϵ(x − x̄)dx̄ = ∫X pθ̃c,θ̃s(g̃

−1(x̄)∣y, e)volJg̃−1(x̄)pϵ(x − x̄)dx̄
(20)

Ô⇒ ∫
Rd
p̃θc,θs,g,y,e(x̄)pϵ(x − x̄)dx̄ = ∫Rd p̃θ̃c,θ̃s,g̃,y,e(x̄)pϵ(x − x̄)dx̄ (21)

Ô⇒ (p̃θc,θs,g,y,e ∗ pϵ)(x) = (p̃θ̃c,θ̃s,g̃,y,e ∗ pϵ)(x) (22)

Ô⇒ F [p̃θc,θs,g,y,e](ω)ξϵ(ω) = F [p̃θ̃c,θ̃s,g̃,y,e](ω)ξϵ(ω) (23)

Ô⇒ F [p̃θc,θs,g,y,e](ω) = F [p̃θ̃c,θ̃s,g̃,y,e](ω) (24)

Ô⇒ p̃θc,θs,g,y,e(x) = p̃θ̃c,θ̃s,g̃,y,e(x) (25)

where:

• in Eq. equation 20, J denotes the Jacobian, and we made the change of variable x̄ = g(z) on
the left-hand side, and x̄ = g̃(z) on the right-hand side.

• in Eq. equation 21, we introduced

p̃θc,θs,g,y,e(x) = pθc,θs(g−1(x)∣y, e)volJg−1(x)1X (x) (26)

on the left-hand side and similarly on the right-hand side.

• in Eq. equation 22, we used ∗ for the convolution operator.
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• in Eq. equation 23, we used F [.] to designate the Fourier transform, and where ξϵ = F [pϵ]
(by definition of the characteristic function).

• in Eq. equation 24, we dropped ξϵ(ω) from both sides as it is non-zero almost everywhere
(by assumption i).

Then, we have

pθc,θs(g−1∣y, e)vol(Jg−1(x)) = pθ̃c,θ̃s(g̃
−1∣y, e)vol(Jg̃−1(x)) (27)

[Step 2.] In Eq. 27, we take the logarithm on both sizes and replace pθc,θs by the formulation in Eq. 7
to have

log volJg−1(x)+ log pθc(zc∣y)+
ns

∑
i=1
(logQi(gi(x))− log Γi(y, e)+

k

∑
j=1

Tij(g−1i (x))λij(y, e)) =

log volJg̃−1(x) + log pθ̃c(zc∣y) +
ns

∑
i=1
(log Q̃i(g̃i(x)) − log Γ̃i(y, e) +

k

∑
j=1

T̃ij(g̃−1i (x))λ̃ij(y, e)),

(28)

where Tij(g−1(x)) only concerns the sufficient statistics of zs and similar for T̃ij(g̃−1(x)). Let

(y(1), e(1)),⋯, (y(1), e(ny(1))),⋯, (y(ny), e(1)),⋯, (y(ny), e
(n

y(ny))) be the distinct points in the
sufficient variability assumption (iv). Then for each give y(i), we subtract the first equation for
(y(i), e(1)) from the remaining ny(i) − 1 equations to get

∀l ∈ {2,⋯, ny(1)}

⟨T(g−1(x)),λ(y(1), e(l)) −λ(y(1), e(1))⟩ + log Γ(y(1), e(1))
Γ(y(1), e(l)) =

⟨T̃(g̃−1(x)), λ̃(y(1), e(l)) − λ̃(y(1), e(1))⟩ + log Γ̃(y(1), e(1))
Γ̃(y(1), e(l))

⋮
∀l ∈ {2,⋯, ny(i)}

⟨T(g−1(x)),λ(y(i), e(l)) −λ(y(i), e(1))⟩ + log Γ(y(i), e(1))
Γ(y(i), e(l)) =

⟨T̃(g̃−1(x)), λ̃(y(i), e(l)) − λ̃(y(i), e(1))⟩ + log Γ̃(y(i), e(1))
Γ̃(y(i), e(l))

⋮
∀l ∈ {2,⋯, ny(ny)}

⟨T(g−1(x)),λ(y(ny), e(l)) −λ(y(ny), e(1))⟩ + log Γ(y(ny), e(1))
Γ(y(ny), e(l))

=

⟨T̃(g̃−1(x)), λ̃(y(ny), e(l)) − λ̃(y(ny), e(1))⟩ + log Γ̃(y(ny), e(1))
Γ̃(y(ny), e(l))

Then, we concatenate all these equations together. Let A bet the matrix defined in assump-
tion iv, and Ã similarly defined for λ̃ (Ã is not necessarily invertible). Define b(y(i),e(j)) =
log Γ̃(y(i),e(1))Γ(y(i),e(l))

Γ̃(y(i),e(1))Γ(y(i),e(1)) and b the vector of all b(y(i),e(j)) for i = 1,⋯, ny and j = 1,⋯, ny(i)

for each i. Then we get:
ATT(g−1(x)) = ÃT T̃(g̃−1(x)) + b (29)

It is easy to get A is of size (∑ny

i=1 ny(i) − ny) × ns . We multiply both sides of equation 29 by the
transpose of the inverse of AT from the left to find:

T(g−1(x)) = BT̃(g̃−1(x)) + c
T(z) = BT̃(g̃−1(x)) + c

(30)
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where B = A−T Ã and c = A−Tb.

[Step 3.] Then, to complete the proof, we need to prove that B is invertible by taking the gradient of
Eq. (30) w.r.t. z. And the Jacobian JT of T is a matrix of size kns × d, where d is the dimension
of x. The column is independent as each Ti is a function of zsi , and thus the non-zero entries
of each column are in different rows. That is to say, JT has rank d. This is not enough to prove
that B is invertible. For that, we consider the functions Ti for which k > 1: for each of these
functions, using Lemma 3, there exists points z(1)si , . . . , z

(k)
si such that (T′i(z

(1)
si ), . . . ,T′i(z

(k)
si )) are

independent. Collate these point into k vectors z(j) ∶= (z(j)1 , . . . z
(j)
d ). We plug these vectors into

equation equation 30 after differentiating it, and collate the nsk equations in vector form:

M = BM̃ (31)

where M ∶= (. . . ,JT(z(j)), . . . ) and M̃ ∶= (. . . ,Jg̃−1○g(z(j)), . . . ). Now the matrix M is of size
k × nsk, and it has exactly k independent columns by definition of the points z(j). This means that
M is of rank nsk, which implies that rank(B) ≥ nsk. Since B is a nsk × nsk matrix, we conclude
that B is invertible.

For the case that k = 1, this directly means that B is invertible as B is of size ns ×ns. Hence, and the
invertibility of B mean that (g̃, T̃, λ̃) ∼ (g,T,λ). However, notice that the identifiability of g cannot
be obtained as T(g−1(x)) only concerns the last ns components of g−1(x). ◻

C.3 PROOF OF THE BLOCK IDENTIFIABILITY OF THE CONTENT PART.

We start our proof from the matched marginal distribution to develop the relation between zc and ẑc.

p(x∣y, e) = p(x̃∣y, e) ⇔ p(ζ(z)∣y, e) = p(ζ̃(z̃)∣y, e) ⇔ p(z∣y, e)∣Jζ−1 ∣ = p(ζ−1 ○ ζ̃(z̃)∣y, e)∣Jζ−1 ∣,
(32)

where ζ̃−1 denotes the estimated invertible generating function and h ∶= ζ−1 ○ ζ̃ is the transformation
between the true latent variable and the estimated one. Then the Jacobian of h can be represented as

Jh = [
A ∶= ∂zc

∂z̃c
B ∶= ∂zc

∂z̃s

C ∶= ∂zs
∂z̃c

D ∶= ∂zs
∂z̃s

] , (33)

From the above conclusion that zs can be component-wise recovered means that C is a zero matrix
and D must be of full rank. To prove that zc can be block-wise identifiable, we recommend readers
to refer to the proof in (Kong et al., 2022).

We also define a smooth and injective function h̄ ∶= ζ̃−1 ○ ζ . Until step 3, it has been proved that h̄c(⋅)
does not depend on the style factors zs, where h̄c(⋅) means extract the first nc variables from h̄(⋅).
Then, we define a Jacobian matrix as

Jh̄ = [
A ∶= ∂ẑc

∂zc
B ∶= ∂ẑc

∂zs

C ∶= ∂ẑs
∂zc

D ∶= ∂ẑs
∂zs

] , (34)

Then, from the above proof, we know that zc does not depend on zs. It follows that B = 0. we can
see an inverse mapping between zs and ẑs. That is to say, we have C = 0. Therefore, there exists an
invertible function h̄′c between the estimated and true content factors such that z̃c = h̄′c(zc), which
means that zc can be block-wise identifiable by ζ̂−1.

D MORE RESULTS

Due to the page limit, we provide more results reported on DomainBed in this section to show the
effectiveness of our proposed method.

E IMPLEMENTATION DETAILS

E.1 SIMULATION DATA.

In the simulation, our VAE framework’s encoder and decoder are 6-layer MLPs with a hidden
dimension of 32 and Leaky-ReLU activation functions with α = 0.2. The codes are from Beta-
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Table 4: Comparisons to more baselines.

Algorithm PACS OfficeHome
GroupDRO (Sagawa et al., 2019) 84.4 ± 0.8 66.0 ± 0.7
Mixup (Yan et al., 2020) 84.6 ± 0.6 68.1 ± 0.3
MLDG (Li et al., 2018a) 84.9 ± 1.0 66.8 ± 0.6
CDANN (Li et al., 2018c) 82.6 ± 0.9 65.8 ± 1.3
MTL (Blanchard et al., 2011) 84.6 ± 0.5 66.4 ± 0.5
ARM (Zhang et al., 2021) 85.1 ± 0.4 64.8 ± 0.3
VREx 84.9 ± 0.6 66.4 ± 0.6
Fish 85.5 ± 0.3 68.6 ± 0.4
Fishr 85.5 ± 0.4 67.8 ± 0.1
AND-mask 84.4 ± 0.9 65.6 ± 0.4
SAND-mask 84.6 ± 0.9 65.8 ± 0.4
self-Reg 85.6 ± 0.4 67.9 ± 0.7
CausIRL(CORAL) 85.8 ± 0.1 68.6 ± 0.3
CausIRL(MMD) 84.0 ± 0.8 65.7 ± 0.6

Ours 87.4 ± 0.4 69.8 ± 0.5

VAE (Higgins et al., 2017)1. For the flow architecture used for the recovery of the factor style zs, we
follow a similar fashion in (Kong et al., 2022). The component-wise flow implementation is based on
the spline flows (Durkan et al., 2019) with monotonic linear rational splines to modulate the change
components2. We use 8 bins for each linear spline and set the bound to be 5. For the flow architecture
used to recover the content factors, it is unnecessary to take a component-wise structure. Therefore,
we take a masked autoregressive flow. We use Adam to train our VAE framework and flow models
for 50 epochs. The β parameter of the KL divergence loss is set to 0.1. The learning rate is 0.002,
and the weight decay parameter is 1e−4. To determine the mean correlation coefficient (MCC), we
first find the correlation coefficient between every pair of source and latent components. We then
solve a linear sum assignment problem to match each latent component with the source component
that correlates best with it, correcting any permutations in the latent space. A high MCC indicates
successful identification of the true parameters and recovery of the true sources, excluding point-wise
transformations. For the R2, identifying the transformation function is regarded as a regression
problem using Gaussian kernel ridge regression. The Gaussian kernel is universal, making this a
nonparametric regression technique that can approximate any nonlinear function well with enough
data.

E.2 COLORED MNIST.

For a fair comparison with LaCIM and supervised VAE (Sun et al., 2021), we first take an encoder
part to map the image into a latent space. The encoder consists of four blocks in total, wherein each
block is the sequential Convolutional Layer (CL), Batch Normalization (BN), a ReLU structure,
and max-pooling with stride 2. For all layers, the corresponding numbers of hidden layers are
32 − 64 − 128 − 256. Then, we take a Fully-Connected Layer (FCL)-BN-ReLU-FCL structure to
approximate the posterior p(µ(z)∣x) and p(Σ(z)∣x). The decoder consists of three modules named
(1) upsampling with stride 2; (2) four blocks of Transpose-Convolution, BN, and ReLU; (3) CL-BN-
ReLU-Sigmoid followed by cropping step in order to make the image with the same size as the input
dimension. And the predictor is implemented as the structure of FCL-BN-ReLU-FC-BN-ReLU-FC.
More details can be seen in the official Github Repository 3. For the flow part, we also take the same
structure as those used in the simulation and keep all the parameters the same.

For the inference procedure, we also follow the same style presented in LaCIM (Sun et al., 2021)
and iCaRL (Lu et al., 2021), which fixes the learned generator p(x∣z) and optimize the likelihood of
p(x∣zc,zs) over Zc ×Zs to infer the best combination

maxzc,zs logp(x∣zc,zs) + λc∣∣zc∣∣ + λs∣∣zs∣∣, (35)

where λc and λs are hyperparameters set to control the scale of the learned latent factors. For
optimization, we first sample some candidates from N(0, I) and select the optimal one in terms

1https://github.com/1Konny/Beta-VAE
2https://github.com/bayesiains/nsf
3https://github.com/wubotong/LaCIM
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of Eq. (35). Notice that this method is totally different from previous works that directly obtain
the encoded embedding of the input. However, this method does not need to leverage the new
coming data to train the parameters of the neural nets. Therefore, it is still can be seen as a domain
generalization method instead of a domain adaptation method. A more detailed discussion can be
seen in the discussion phase of iCaRL 4.

E.3 PACS, OFFICE-HOME.

As illustrated in the main text, we take ResNet50 pretrained on ImageNet (He et al., 2016) as the
backbone network and get the network output as the representation of each image. As noted in (Kong
et al., 2022), it is quite hard to train VAE on high-resolution images directly; we also take the
extracted features as the input of our VAE. The encoder of our VAE is taken as 2-layer FCL, and
an FCL-BN-ReLU-FCL structure as the decoder. For the classifier, we directly take an FCL. For
recovering the high-level latent feature ẑc and ẑs, we take flow architectures to achieve these. For the
style features, the deep sigmoidal Flow model, which is extended to a component-wise version (Kong
et al., 2022), is used to learn the transformation between the high-level and middle-level latent
variables (More details can be found in the official codes of iMSDA5.). For the content factors, we
just take a masked-based flow to learn the transformation.

For the hyperparameter search, the search space of the learning rates is set to [0.01,0.05,0.1]. For
the search space of α, we set it to [1e − 5,1e − 4,1e − 3,1e − 2]. And the search space of β is set as
[0.1,0.5,1,5]. After the validation, we simply fixed α = 1e − 5, lr = 1e − 2, and β = 0.1 across all
our experiments. For each experiment, we run three different seeds to get the average result and the
standard variance. Moreover, we use the common trick that applying different learning rates to the
new trainable modules and the backbone network. In detail, we fix the learning rate of the backbone
network as 0.1 times the regular learning rate.

F DISCUSSIONS ON OUR METHOD

In this section, we provided more detailed discussions of assumptions made in this paper and the
limitations of our method.

F.1 DISCUSSIONS ON ASSUMPTIONS.

The exponential family prior and domain variability assumptions.

In the context of the domain generalization (DG) problem considered in our paper, identifying and
isolating content factors from style factors within the latent space emerges as a key method, which
contributes to the learning of a robust predictor capable of safely generalizing data from previously
unseen distributions.

However, the pursuit of model identifiability, particularly with latent variables, poses a formidable
and ongoing challenge. Traditional VAE approaches often hinge on the mild assumption that the
data distribution of latent variables adheres to a normal distribution, making the problem unsolv-
able (Hyvärinen & Pajunen, 1999). In contrast, nonlinear ICA methods introduce a different paradigm
by constraining the prior latent variables to the exponential family, where sufficient statistics are
controlled by auxiliary information, such as time index or domain index. This is a trade-off between
the model assumptions and model identifiability.

In alignment with the Nonlinear ICA techniques (Khemakhem et al., 2020a;b), our model also adopts a
similar prior assumption on latent variables to ensure identifiability and leverage the label information
and domain details to control the sufficient statistics of the prior distribution. Nevertheless, it is
important to note that in scenarios with a large number of latent variables, our model may encounter
challenges in providing a robust guarantee for identifying these variables. Moreover, if the style
factors are not affected by the label of observations, our method may also fail to identify the latent
variables.

Infinite observations assumptions.
4https://openreview.net/forum?id=-e4EXDWXnSn&noteId=i–Pn6lIA4D
5https://proceedings.mlr.press/v162/kong22a.html
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Small sample sizes pose a huge challenge and prevent the Nonlinear ICA methods from achieving
model identifiability without further assumptions. Conversely, our theoretical framework assumes
infinite data and posits a universal function approximator, both of which may be unattainable in
practical learning scenarios. In such real-world settings, the analysis of estimation errors becomes
crucial, yielding an upper bound that is contingent on the complexity and smoothness of the demixing
function, along with the sample size.

In practical terms, it is intuitive that learning a more intricate demixing necessitates a larger volume
of data. Simultaneously, the lack of smoothness in the demixing function exacerbates the complexity
of the estimation process (Hyvärinen et al., 2023). However, to our knowledge, there is only one
paper (Lyu & Fu, 2022) that delves into the finite sample convergence of Nonlinear ICA methods.
Notably, their focus remains confined to contrast-based learning methods—a facet that poses a
non-trivial challenge when extending the findings to our methodology.

F.2 DISCUSSIONS ON OUR MODEL.

Connection with HVAE.

Our approach aligns with a two-level HVAE framework but introduces additional constraints, distin-
guishing it from the traditional HVAE.

Similarities between the two methods include: (1) Latent space structure: Both the two-level HVAE
and our method incorporate two layers of latent space, following a similar data generation structure:
from the high level to the middle level, and then to the observations. (2) Learning procedures:
The learning procedures of both methods exhibit similarities, involving reconstruction terms for
observations and a prior matching term aimed at minimizing the distributions of high-level latent
variables. (3) Distribution Assumptions on high-level latent variables: Both methods share the
assumption of an independent normal distribution for high-level latent variables.

However, notable differences exist (1) Objective of tasks: Our method addresses the domain gener-
alization problem, with the primary goal of isolating content factors from style factors in the latent
space of observations, utilizing content factors for label prediction. In contrast, HVAE focuses more
on learning data generation models to generate new observations. (2) Data generation process: We
specify a specific data generation process from the high-level space to the middle-level space, where
the mapping functions of content factors are influenced by the label while the mapping functions of
style factors are affected by both the domain index and label. (3) Distribution assumption on the style
variables in the middle level: We introduce an assumption regarding the data distributions of style
latent variables in the middle level, a key for identifying these factors and facilitating the isolation of
content factors.

How does our method outperform previous methods?

Indeed, many previous DG methods assume that labels and non-causal features are independent.
Then, these methods try to separate the causal features (label-related) and use them for prediction.
However, a significant drawback of these methods emerges: they may include some specific (causal)
features whose distributions may change across domains yet are still related to labels, which will lead
to instability when applied to unseen domains.

To deal with this case, we propose a novel approach incorporating a two-level latent space to ac-
curately capture the generation of unstable features. Our theoretical framework establishes the
identifiability of these latent features. Notably, our model surpasses prior methods by accommo-
dating the interdependence between content and style factors, thereby relaxing the independence
assumptions.

22


	Introduction
	Problem Formulation
	The Data Generation Model
	Model Definition
	Probabilistic Formulation

	Model Identifiability
	Assumptions on The Prior
	Identifiability Definition
	Identifiability Results

	Proposed Method
	Experiments
	Synthetic Data
	Colored MNIST
	Real-world Data

	Related works
	Discussion
	 Appendix
	More related works
	Feature Disentanglement.
	Nonlinear ICA.
	Causality in DG.

	Colored MNIST under our model
	Proof of the Identifiability.
	Preliminaries
	Proof of the Linear Identifiability of the style part.
	Proof of the Block Identifiability of the content part.

	More results
	Implementation Details
	Simulation Data.
	Colored MNIST.
	PACS, Office-Home.

	Discussions on our method
	Discussions on assumptions.
	Discussions on our model.



