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ABSTRACT

Simulation-based inference (SBI) methods typically require fully observed data to
infer parameters of models with intractable likelihood functions. However, datasets
often contain missing values due to incomplete observations, data corruptions
(common in astrophysics), or instrument limitations (e.g., in high-energy physics
applications). In such scenarios, missing data must be imputed before applying
any SBI method. This work formalizes the problem of missing data in SBI and
demonstrates that naive imputation methods can introduce bias into the SBI poste-
rior. We introduce a novel method that addresses this issue by jointly learning the
imputation model and the inference network within a neural posterior estimation
(NPE) framework. Extensive empirical results on SBI benchmarks show that our
approach provides robust inference outcomes compared to baselines, for varying
levels of missing data, while being amortized.

1 INTRODUCTION

Mechanistic models for studying complex physical or biological phenomena have become indispens-
able tools in research fields as diverse as genetics (Riesselman et al., 2018), epidemiology (Kypraios
et al., 2017), gravitational wave astronomy (Dax et al., 2021), and radio propagation (Bharti et al.,
2022a). However, fitting such models to observational data can be challenging due to the intractabil-
ity of their likelihood functions, which renders standard Bayesian inference methods inapplicable.
Simulation-based inference (SBI) methods (Cranmer et al., 2020) tackle this issue by relying on
forward simulations from the model instead of evaluating the likelihood. These simulations are then
either used to train a conditional density estimator (Papamakarios and Murray, 2016; Lueckmann
et al., 2017b; Greenberg et al., 2019; Papamakarios et al., 2019; Radev et al., 2020), or to measure dis-
tance with the observed data (Sisson, 2018; Briol et al., 2019; Pesonen et al., 2023) to approximately
estimate the posterior distribution of the parameters of interest.

SBI methods implicitly assume that the observed data distribution is a member of the family of
distributions induced by the model, or in other words, that the model is well-specified. However, this
assumption is often violated in practice, as models of complicated real-world phenomena tend to
be misspecified when the model is not an accurate representation of the phenomenon under study.
Even if the model is well-specified, the data collection mechanism can induce missing data due to,
for instance, incomplete observations (Luken et al., 2021), instrument limitations (Kasak et al., 2024),
or unfavorable experimental conditions, thus hindering the application of SBI methods. Although
the former problem of model misspecification has been studied in a number of works (Frazier et al.,
2020; Dellaporta et al., 2022; Fujisawa et al., 2021; Bharti et al., 2022b; Ward et al., 2022; Schmitt
et al., 2023; Gloeckler et al., 2023; Huang et al., 2023; Gao et al., 2023; Kelly et al., 2024), the latter
problem of missing data in SBI has received relatively less attention. A notable exception is the
work of Wang et al. (2024), which attempts to handle missing data by augmenting and imputing
constant values (e.g., zero or sample mean) and training NPE with a binary mask indicator, but
this approach can lead to biased estimates, reduced variability, and distorted relationships between
variables (Graham et al., 2007). This is exemplified in Figure 1 where we investigate the impact of
missing data on neural posterior estimation (NPE, Papamakarios and Murray (2016))—a popular SBI
method—on a population genetics model. We observe that simply imputing the missing values with
zeros or the sample mean leads to heavily biased posterior estimates. Other SBI works that address
missing data include Lueckmann et al. (2017a) and Gloeckler et al. (2024).
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(c) Shifting statistics

Figure 1: Effect of SBI under constant imputation of missing data. NPE posterior for the two-
parameter Ricker model (Wood, 2010) under (a) zero and (b) sample mean imputation with ε% of
values missing in the data. The NPE posteriors become biased and drift away from the true parameter
value as ε increases. (c) The corresponding learned statistics for fully observed and imputed datasets.
Observe that the statistics for imputed datasets shift away from the fully observed statistic value,
thereby leading to a shift in the corresponding NPE posterior away from the true parameter value.

Outside of SBI, the problem of missing data has been extensively studied, with Rubin (1976)
categorizing it into three types: missing completely at random (MCAR), missing at random (MAR),
and missing not at random (MNAR). Recent advances in machine learning have led to the development
of novel methods for addressing this problem using generative adversarial networks (GANs) (Luo
et al., 2018; Yoon et al., 2018; Li et al., 2019; Yoon and Sull, 2020), variational autoencoders (VAEs)
(Nazabal et al., 2020; Collier et al., 2020; Mattei and Frellsen, 2019; Ipsen et al., 2020; Ghalebikesabi
et al., 2021b), Gaussian processes (Casale et al., 2018; Fortuin et al., 2020; Ramchandran et al.,
2021; Ong et al., 2024), and optimal transport (Muzellec et al., 2020; Zhao et al., 2023; Vo et al.,
2024). These methods offer new perspectives on the problem of missing data imputation, but their
application has been primarily limited to predicting missing values. Notably, they have not been
developed for inference over missing values, which remains a significant challenge for SBI.

Contributions. In this paper, we introduce a novel SBI method that is robust to the shift in the
posterior distribution in the presence of missing values in the data. Our method, named RISE (short
for “Robust Inference under imputed SimulatEd data”), jointly performs imputation and inference
by combining NPE with latent neural processes (Foong et al., 2020). Doing so allows us to learn an
amortized model unlike other robust SBI methods in the literature, and to handle missing data under
different assumptions (Little and Rubin, 2019). We summarize our main contributions below:

• We motivate the problem of missing data in SBI, demonstrating how it can induce bias in
posterior estimation.

• We propose RISE, an amortized method, that jointly learns an imputation and inference
model to perform inference in the presence of missing data.

• RISE outperforms competing baselines in inference and imputation tasks across varying
levels of missingness, demonstrating robust performance in the presence of missing data.

2 PRELIMINARIES

Consider a simulator-based model p(· | θ) that takes in a parameter vector θ ∈ Θ ⊆ Rp and maps
it to a point x = [x1, . . . , xd]

⊤ in some data space X ⊆ Rd. We assume that p(· | θ) is intractable,
meaning that its associated likelihood function is unavailable and cannot be evaluated point-wise.
However, generating independent and identically distributed (iid) realisations x ∼ p(· | θ) for a given
θ is straightforward. Given dataset x collected via real-world experiments from some true data-
generating process, and a prior distribution on the parameters p(θ), we are interested in approximating
the posterior distribution p(θ |x) ∝ p(x | θ)p(θ). This can be achieved, for instance, using the popular
neural posterior estimation (NPE) framework, which we next introduce.
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Neural posterior estimation. NPE (Papamakarios and Murray, 2016) involves training conditional
density estimators, such as normalizing flows (Papamakarios et al., 2021), to learn a mapping from
each data x to the posterior distribution p(θ |x). Assuming that the true posterior is a member of the
family of distributions defined by the normalizing flow qϕ(θ |x) with learnable parameters ϕ, then qϕ
is trained by minimizing the empirical loss function

ℓNPE(ϕ) = −
1

n

n∑
i=1

log qϕ(θi |xi) ≈ −Eθ∼p(θ)[Ex∼p(x | θ)[log qϕ(θ |x)]], (1)

using the dataset {(θi,xi)}ni=1 simulated from the joint distribution p(θ,x) = p(x | θ)p(θ). In case
that the data space X is high-dimensional, a summary function η : X → S is used to map x onto a
low-dimensional space S. Assuming the summary function is parameterized by a neural network
with ψ, the joint NPE loss over both ϕ and ψ becomes ℓNPE(ϕ, ψ) = − 1

n

∑n
i=1 log qϕ(θi | ηψ(xi)).

Once both qϕ and ηψ are trained, the NPE posterior qϕ̂(θ | ηψ̂(x̃)) for a given real data x̃ is obtained
by a simple forward pass of x̃ through the trained networks, making NPEs amortized. We now briefly
introduce some background on the missing data problem, which is the focus of this work.

Missing data background. In the context of missing data, each data sample is composed of
an observed part xobs and a missing (or unobserved) part xmis such that x = (xobs,xmis). The
missingness pattern for each x is described by a binary mask variable s ∈ {0, 1}d, where si = 1 if
the element xi is observed and si = 0 if xi is missing, i = {1, . . . , d}. The joint distribution of x
and s can be factorized as p(x, s) = p(s |x)p(x). Assumptions on what the conditional distribution
of the mask (or the missingness mechanism) depends on gives rise to three different cases (Little
and Rubin, 2019): (i) missing-completely-at-random (MCAR), where p(s |x) = p(s); (ii) missing-
at-random (MAR), where p(s |x) = p(s |xobs); and (iii) missing-not-at-random (MNAR), where
p(s |x) = p(s |xobs,xmis). While the missingness mechanism can be ignored in both MCAR and
MAR cases when learning p(xobs, s), that is not true for MNAR, where the missingness mechanism
depends on xmis (Ipsen et al., 2020). We wish to handle all the three cases when performing SBI.

3 METHOD

We begin by analysing the problem that missing data creates for SBI in Section 3.1. We then present
RISE—our method for handling missing data in SBI. Section 3.2 outlines our learning objective, and
Section 3.3 describes how we parameterize the imputation model in RISE using neural processes.

3.1 MISSING DATA PROBLEM IN SBI

We assume that the simulator can faithfully replicate the true data-generating process (i.e., the
simulator is well-specified), however, the data collection mechanism induces missing values in the
data x. As a result, x contains both observed and missing values1, represented as x = (xobs,xmis).
For instance, x = (0.1 1.2 N/A 0.9) exemplifies a scenario where a specific observation xi includes
missing values denoted by "N/A". Naturally, SBI methods cannot operate on missing values, and so
imputing xmis is necessary before applying any SBI method on them. However, if the missing values
are not imputed “correctly”, then the corresponding SBI posterior becomes biased, as observed in
Figure 1 for the constant imputation case. We now describe this problem mathematically.
Definition 1 (SBI posterior under true imputation). Let ptrue(xmis |xobs) be the true predictive
distribution of the missing values given the observed data. Then, the SBI posterior can be written as

pSBI(θ |xobs) =

∫
pSBI(θ |xobs,xmis)︸ ︷︷ ︸

Inference

ptrue(xmis |xobs)︸ ︷︷ ︸
Imputation

dxmis. (2)

Instead of constant imputation, we now have a distribution over the missing values given xobs,
and the problem of SBI under missing data is formulated as an expectation of the SBI poste-
rior pSBI(θ |xobs,xmis) with respect to ptrue(xmis |xobs), analogous to traditional (likelihood-based)

1Note that during training the xobs,mis are partitions of simulated data, while during inference we only
observe y from real world.
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Bayesian inference methods (Schafer and Schenker, 2000; Zhou and Reiter, 2010). Therefore, esti-
mating the above expectation requires access to ptrue(xmis |xobs) (Raghunathan et al., 2001; Gelman
et al., 1995), which is infeasible in most practical cases.

Definition 2 (SBI posterior under estimated imputation). Let p̂(xmis |xobs) denote an estimate of the
true imputation model ptrue(xmis |xobs). Then, the corresponding SBI posterior can be written as

p̂SBI(θ |xobs) =

∫
pSBI(θ |xobs,xmis)p̂(xmis |xobs)dxmis. (3)

Proposition 1. If p̂(xmis |xobs) is misaligned with ptrue(xmis |xobs), then the estimated SBI posterior
p̂SBI(θ |xobs) will be biased, i.e.,

∣∣Eθ∼pSBI(· |xobs)[θ |xobs]− Eθ∼p̂SBI(· |xobs)[θ |xobs]
∣∣ ̸= 0.

The proof, which follows straightforwardly using Definition 1 and Definition 2, is given in Appendix
A.2.1 for completeness. Proposition 1 says that the bias in the SBI posterior directly comes from the
discrepancy between the true imputation model ptrue(xmis |xobs) and the estimated one p̂(xmis |xobs).
This applies irrespective of the inference method used, and therefore, rather unsurprisingly, the key to
reducing this bias is to learn the imputation model as accurately as possible. The rest of this section
presents our method, named RISE, which combines the imputation task with SBI to reduce this bias.

3.2 ROBUST SBI UNDER MISSING DATA

Let ptrue(θ |xobs,xmis) be the true posterior given both the observed data and the missing values, i.e.,
given x = (xobs,xmis). Our objective is to estimate the true posterior given only xobs. That is, we
seek to approximate

ptrue(θ |xobs) ≜
∫
ptrue(θ |xobs,xmis)ptrue(xmis | xobs)dxmis =

∫
ptrue(θ,xmis |xobs)dxmis .

We therefore introduce a family of distributions rψ(θ,xmis | xobs) parameterized by ψ, and propose
to solve the following optimization problem.

argmin
ψ

Exobs∼ptrue KL

ptrue(θ,xmis | xobs) || rψ(θ,xmis | xobs)︸ ︷︷ ︸
(joint imputation and inference)

 . (4)

Solving this problem requires access to ptrue(xmis | xobs), which in most real-world scenarios, we do
not have. Since samples for xmis are required during training, we need to resort to methods such as
variational approximation and expectation maximization (EM). Here, we adopt a variational approach,
treating xmis as latent variables in a probabilistic imputation setting. Specifically, the imputation
network needs to estimate these latents for the inference network to map them to the output space.
Both networks are tightly coupled since the distribution induced by the imputation network shapes
the input of the inference network.

Mathematically, assuming access to only data samples (xobs, θ) ∼ ptrue, we proceed to solving

argmin
ψ

Exobs∼ptrue KL[ptrue(θ | xobs) || rψ(θ | xobs)] . (5)

Our next proposition computes a variational lower bound for this objective, which we can maximize
efficiently using an encoder-decoder architecture resembling variational autoencoders (VAEs).

Proposition 2 (Training objective). The objective in Equation (5) admits a variational lower bound,
resulting in the following optimization problem.

ϕ̂, φ̂ = argmin
ϕ,φ

−E(xobs,θ)∼ptrueExmis∼p(xmis|xobs)

log p̂φ(xmis | xobs)︸ ︷︷ ︸
(imputation)

+ log qϕ(θ | xobs,xmis)︸ ︷︷ ︸
(inference)

 (6)

= argmin
ϕ,φ

ℓRISE (ϕ, φ),

where ℓRISE (ϕ, φ) denotes the loss function for RISE.

4
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Therefore, we can approximate the true imputation model ptrue(xmis |xobs) using a parametric neural
network p̂φ, parameterized by its vector of weights and biases φ, and the SBI posterior given the full
dataset pSBI(θ |xmis,xobs) using the conditional density qϕ as in NPE.

The proof of Proposition 2 is outlined in Appendix A.2.2. Note that ℓRISE is a general loss which
reduces to ℓNPE when there is no missing data, i.e., x = xobs. In case a summary network ηκ is
required before passing the data to qϕ, the joint loss function for RISE simply becomes

ℓRISE (ϕ, φ, κ) = −E(xobs,θ)∼ptrue,xmis∼p(xmis |xobs) [log qϕ(θ | ηκ(xobs,xmis)) + log p̂φ(xmis |xobs)] .

The expectation in Equation (6) is taken with respect to the joint distribution of the simulator and
the prior (as is standard for SBI methods), and the variational imputation distribution p(xmis |xobs).
Note that for simulations in our controlled experiments, we do not need to resort to the variational
distribution p(xmis |xobs), and can instead generate samples from ptrue(xmis |xobs) directly by first
sampling x using the simulator, and then partitioning it into xobs and xmis based on the missingness
assumption (i.e. creating the mask s under MCAR or MAR or MNAR assumption) such that ε%
portion of the data is missing. The xmis values are then used as true labels when comparing against
the output of the imputation model p̂φ during training. This allows us to amortize over instances
of real data. In Section 3.3, we discuss how RISE can be used to amortize over the proportion of
missing values ε in the data.

Using a latent variable representation (Kingma, 2013) for the imputation model, we factorize
p̂φ(xmis |xobs), similar to the work by Mattei and Frellsen (2019), as,

p̂φ(xmis |xobs) =

∫
p̂α(xmis | z̃,xobs)p̂β(z̃ |xobs)dz̃.

Here, z̃ = (z, s) represents both the latent variable z and the masking variable s. The conditional
distribution of the latent p̂β(z̃ |xobs) may depend on both the observed and the missing data depending
on the different missingness assumptions (Little and Rubin, 2019):

• MCAR: p̂β(z̃ |xobs) = pβ1(z |xobs)pβ2(s)

• MAR: p̂β(z̃ |xobs) = pβ1(z |xobs)pβ2(s |xobs)

• MNAR: p̂β(z̃ |xobs) = pβ1(z |xobs)
∫
pβ2(s |x)p(xmis |xobs)dxmis

Note that for the MCAR and MAR cases, we only need the latent z in order to impute xmis (Mattei
and Frellsen, 2019), in which case z̃ = z. However, in the MNAR case, z̃ = (z, s) as we will
explicitly need to account for the missingness mechanism (Ipsen et al., 2020). Hereafter, we continue
to denote the latent variable with z̃ for a general formulation encompassing all the three cases. The
pseudocode for training RISE is outlined in Algorithm 1.

3.3 LEARNING THE IMPUTATION MODEL USING NEURAL PROCESS

We utilise Neural Processes (NPs) (Garnelo et al., 2018) for parameterizing the imputation model
p̂φ(xmis |xobs). NPs represent a family of neural network-based meta-learning models that combine
the flexibility of deep learning with well-calibrated uncertainty estimates and a tractable training
objective. These models learn a distribution over predictors given their target positions or locations,
akin to a stochastic process. We refer the interested reader to Appendix A.3 for a detailed background.
We employ neural processes to model the predictive density over missing values at their specific
locations. Let cmis = (cmis,1, . . . , cmis,k) and cobs = (cobs,1, . . . , cobs,d−k) denote the location of xmis
and xobs, respectively, where k denotes the number of missing values (or the dimensionality of xmis).
Furthermore, let C = {xobs, cobs} be the observed context set. Then, following latent neural processes
(Foong et al., 2020), we can write p̂φ as

p̂φ(xmis | cmis, C) =

∫
p̂α

(
xmis | cmis, z̃

)
p̂β(z̃ |C)dz̃ =

∫ k∏
i=1

p̂α
(
xmis,i | cmis,i, z̃

)
p̂β(z̃ |C)dz̃, (7)

where φ = (α, β) are the trainable parameters of the imputation model.
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xobs cobs

C

z̃β

cmisxmisα

MNAR

N

Figure 2: Plate diagram

Here we have assumed conditional independence of each xmis,i given cmis,i
and z̃, which allows for the joint distribution to factorize into a product of
its marginals. Note that this factorization directly inherits the consistency
properties from neural processes, as established by Garnelo et al. (2018);
Dubois et al. (2020), ensuring a consistent distribution representation.
Figure 2 showcases the associated plate diagram. To specify the model,
we parameterize:

• Encoder p̂β(z̃ |C), which provides a distribution over the latent
variables z̃ having observed the context set C. The encoder is
parameterized to be permutation invariant to correctly treat C as
a set, as required by NPs.

• Decoder p̂α(xmis,i | cmis,i, z̃), which provides predictive distribu-
tions conditioned on z̃ and the missing locations cmis. In practice,
it is parameterized as a Gaussian distribution, where the decoder predicts the mean and
variance, denoted by α.

Note that the Gaussian assumption in the decoder does not limit the expressivity of the method.
In principle, it results in an infinite mixture of Gaussians (Rasmussen, 1999) in the predictive
likelihood (Equation (7)), capable of representing any predictive density. While this likelihood
is no longer analytically tractable, we can optimize it directly using the log-marginal predictive
likelihood. Following (Foong et al., 2020), we estimate p̂φ(xmis | cmis, C) using Monte Carlo samples
z̃1, . . . , z̃m ∼ p̂β(z̃ |C) as

log p̂φ(xmis | cmis, C) ≈ log

 1

m

m∑
j=1

k∏
i=1

p̂α
(
xmis,i | cmis,i, z̃j

) . (8)

This can be directly used with standard optimizers (Kingma, 2014) to learn the model parameters.

Algorithm 1 RISE

Require: Simulator p(· | θ), prior p(θ), iterations
niter, missingness degree ε

1: Initialize parameters ϕ, φ of RISE
2: for k = 1, . . . , niter do
3: Sample (x, θ) ∼ p(· | θ)p(θ)
4: Create mask s wrt ε and MCAR/MNAR
5: Compute ℓRISE as per Equation (6)
6: ϕ, φ←− optim(ℓRISE ;ϕ, φ)
7: end for

As NPs are meta-learning models, we can utilize
them to amortize over the proportion of missing
values ε. Doing so is beneficial in cases where
inference is required on multiple datasets with
varying proportions of missing values, so as to
avoid re-training for each ε. Assuming p(ε) to
be the distribution of the missingness proportion,
we can consider each sample from p(ε) to be
one task when training RISE. Specifically, this
can be done by first intitializing the parameters
of RISE, and then repeating the following: (i)
Sample ε ∼ p(ε), and (ii) Perform Steps 2-7
from Algorithm 1. We name this variant of our
method as RISE-Meta. For each sample from the imputation model, we obtain a posterior distribution
via the inference network, thus resulting in an ensemble of posterior distributions across all samples.
In Section 5.3, we test the ability of RISE-Meta to generalize to unknown levels of missing values in
the data.

4 RELATED WORK

Missing data in SBI. Wang et al. (2024) attempt to handle missing data via data augmentation to
missing values (e.g., zero or mean) and subsequently training NPE with a binary mask indicator, but
this approach can lead to biased posterior estimates, as we saw in Figure 1 and Section 3.1. Wang
et al. (2023; 2022) propose imputing missing values by sampling from a kernel density estimate
(KDE) of the training data or using a nearest-neighbor search, and training the NPE model using
augmented simulations. However, these approaches neglect the missingness mechanisms, which
can distort the relationships between variables (Graham et al., 2007) and are neither scalable to
higher dimensions. Lueckmann et al. (2017a) learn an imputation model agnostic of the missingness
mechanism. More recently, Gloeckler et al. (2024) have proposed a transformer-based architecture for

6
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SBI that can potentially handle conditioning on data with missing values. This method can perform
arbitrary conditioning and evaluation, i.e. for a given x = [xobs,xmis], it first estimates the imputation
distribution, i.e. p(xmis |xobs), and then estimates the posterior distribution p(θ |xobs,xmis). However,
it does not model the mechanism underlying the missing data and is thus not equipped to handle the
MAR and MNAR settings. In contrast, RISE incorporates the missingness mechanism during its
training and is therefore able to estimate the full posterior distribution, accounting for all variables.

Deep imputation methods. There is a growing body of work on imputing missing data using deep
generative models. These include using GANs for missing data under MCAR assumption (Yoon et al.,
2018; Li et al., 2019), and VAEs under MAR assumption (Mattei and Frellsen, 2019; Nazabal et al.,
2020). Deep generative models have also been studied under MNAR assumption (Ghalebikesabi
et al., 2021a; Gong et al., 2021; Ipsen et al., 2020; Ma and Zhang, 2021). We contribute to this line of
work by using latent NPs to handle missing data under all the three missingness assumptions.

5 EXPERIMENTS

In this section, we assess the significance of RISE by empirically evaluating the following key claims.
The first objective is to demonstrate that RISE yields posteriors that are robust to missing values in the
data compared to NPE with constant or single imputation (see Section 5.1 and Section 5.2). Secondly,
we aim to test the generalization capability of RISE-Meta in cases where the proportion of missing
values in the data is not known a priori (Section 5.3). Thirdly, as learning the imputation model
correctly is central to RISE’s performance, we aim to validate that using neural processes-based
imputation model used in RISE yields state-of-the-art results on imputing real-world datasets. Finally,
we want to show that learning the inference and imputation model jointly, as is done in RISE, performs
better than learning them separately. Experiments related to these objectives are in Section 5.4.

This section is organized as follows. We first provide results on SBI benchmarks in Sections 5.1, 5.2
and 5.3. In Section 5.4, we perform ablation studies to evaluate the imputation performance of RISE
on real-world bio-activity datasets.

Performance metrics. We evaluate the accuracy of the posterior using two metrics: the maximum
mean discrepancy (MMD) (Gretton et al., 2012) and the root mean squared error (RMSE). The
MMD is computed between the posterior samples obtained under missing data (either using RISE or
the baseline methods) and samples from a reference NPE posterior under no missing data. We use
a radial basis function kernel for computing the MMD, and set its lengthscale using the median
heuristic (Gretton et al., 2012) on the reference posterior samples. The RMSE is computed as
(1/N

∑N
i=1(θi − θtrue)

2)1/2 where {θi}Ni=1 are posterior samples, and θtrue is the true parameter.

Baselines. We compare RISE’s performance against baselines derived from NPE (Greenberg et al.,
2019) such as NPE with zero imputation (NPE-Zero) and NPE with sample mean imputation (NPE-
Mean). We also include a baseline where NPE is combined with a standard feed-forward neural
network (NN) for imputation, termed NPE-NN (Lueckmann et al., 2017a). Note that in NPE-NN,
the neural network and NPE are trained jointly, similar to RISE. However, unlike RISE, NPE-NN
performs single imputation.

Implementation. RISE is implemented in PyTorch (Paszke et al., 2019) and utilizes the same
training configuration as the competing baselines, see Appendix A.4.4 for details. We take ε =
{10%, 25%, 60%} to test performance from low to high missingness scenarios. We adopt the masking
approach as described in Mattei and Frellsen (2019) and Ipsen et al. (2020) for MCAR and MNAR,
respectively. Specifically, for MCAR we randomly mask ε% of the data, and for MNAR we use ε
to compute a masking probability, which is then used to mask data according to their values. This
self-censoring approach is described in Appendix A.4.3, and leads to a missingness proportion less
than (or equal to) ε. We used a simulation budget of n = 1000 for all the SBI experiments, and take
1000 samples from the posterior distributions to compute the MMD. The performance is evaluated
over 10 random runs. For more details, see Appendix A.4.
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Figure 3: MMD values for RISE and baselines under MCAR (top) and MNAR (bottom) assumption
with varying proportions of missing values in the data denoted by ε. RISE achieves the best perfor-
mance, followed by NPE-NN, in estimating the posterior. Note that for MNAR case, the proportion
of missing values is on average less than ε due to the self-censoring approach (Appendix A.4.3).

5.1 PERFORMANCE ON SBI BENCHMARKS

We evaluate the performance of RISE in the presence of missing data using four common benchmark
models from the SBI literature. These are (i) Ricker model: a two parameter simulator from population
genetics (Wood, 2010); (ii) Ornstein-Uhlenbeck process (OUP): a two parameter stochastic differential
equation model (Chen et al., 2021); (iii) Generalized Linear Model (GLM): a 10 parameter model
with Bernoulli observations; and (iv) Gaussian Linear Uniform (GLU): a 10-dimensional Gaussian
model with the mean vector as the parameter and a fixed covariance. The models are described in
Appendix A.4.1 and the prior distributions we used are reported in Appendix A.4.2.

The results are shown in Figure 3 for MMD and Table 4 (in Appendix A.5) for RMSE at different
levels of missingness ε for both MCAR and MNAR cases. We observe that RISE achieves the lowest
values of MMD across all the models and types of missingness, thus outperforming the baselines
in estimating the posterior distributions. As ε increases, the gap between RISE and the baselines
increase, indicating that RISE is able to better handle high missingness levels in the data. As a sanity
check, we also investigate the imputation capability of RISE in Figure 6, which shows that it achieves
more accurate imputation results, which then naturally translates to robust posterior estimation.

5.2 HODGKIN-HUXLEY MODEL

We now apply RISE on a real-world computational neuroscience simulator (Hodgkin and Huxley,
1952), namely the Hodgkin-Huxley model, which is a popular example in the SBI literature (Lueck-
mann et al., 2017b; Gao et al., 2023; Gloeckler et al., 2023). The aim is to infer the posterior over
two parameters given the data of dimension 1200, see Appendix A.4.1 for the model description.

We set uniform priors and perform inference under different values of ε and missingness assumption,
similar to Section 5.1. Figure 4 shows that RISE’s posteriors are robust to increasing proportion of
missing values as they stay around the true parameter value. In contrast, NPE-Zero and NPE-Mean
yield posteriors that are heavily biased even under low levels of missing values.

5.3 GENERALIZING ACROSS UNKNOWN LEVELS OF MISSINGNESS

Next, we test the generalization capability of our method to unknown levels of miss-
ing values. We perform meta-learning over different proportions of missing values ε

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

True NPE-Zero NPE-Mean RISE

Figure 4: Posterior estimates for the Hodgkin-Huxley model under MCAR (top row) and MNAR
(bottom row) with varying proportions of missing values in the data (denoted by ε). The posteriors
obtained from RISE stay close to the true parameter (denoted by the black lines) for all values of ε,
while those from the baseline methods move further away as ε increases.

in the dataset (termed RISE-Meta). For training RISE-Meta, we take the distribu-
tion of p(ε) to be an equiprobable discrete distribution on the set {10%, 25%, 60%}.

Figure 5: Meta-learning over the missingness level.

We also train NPE-NN with a missingness
degree of 60% as a baseline. We evaluate
all the methods over 100 samples of vary-
ing missingness proportion ε ∼ U([0, 1]).
Figure 5 shows the MMD and the RMSE
results alongside comparisons with other
baselines on the GLM and GLU tasks. We
observe that RISE-Meta achieves the low-
est MMD and RMSE values for both the
tasks, thus demonstrating its ability to bet-
ter generalize to unknown levels of missing
values in the data.

5.4 ABLATION STUDIES

Imputation performance on real-world datasets. We now look at how the neural process-based
imputation model in RISE performs on imputing real-world datasets. The task is to predict and impute
bioactivity data on adrenergic receptor assays (Whitehead et al., 2019) and kinase assays (Martin
et al., 2017) from the field of drug discovery. Here, the test data consists of outliers, unlike the training
data, which makes imputing these datasets a challenging task that assesses RISE’s generalization
capabilities. We compare RISE’s imputation method to other methods from this field such as QSAR
(Cherkasov et al., 2014), Conduilt (Whitehead et al., 2019), and Collective Matrix Factorization
(CMF) (Singh and Gordon, 2008). We also include a standard deep neural network (DNN) and a
vanilla neural process as baselines. Table 9 (left) reports the coefficient of determination R2 (Wright,

9
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Table 1: Ablation studies. (left) R2 scores (↑) on the bioactivity datasets. (right) RMSE (↓) across
different proportions of missingness (ε) for comparing the effect of joint versus separate learning.

Method Adrenergic Kinase

QSAR (N/A) -0.19 ± 0.01
CMF 0.59 ± 0.02 -0.11 ± 0.01
DNN 0.60 ± 0.05 0.11 ± 0.01
NP 0.61 ± 0.03 0.17 ± 0.04
Conduilt 0.62 ± 0.04 0.22 ± 0.03
CNP 0.65 ± 0.04 0.24 ± 0.02

RISE 0.67 ± 0.03 0.26 ± 0.03

Missigness (ϵ) Method GLM GLU

10%
NPE-RF-Sep 0.69 ±0.03 0.44 ±0.02
RISE-Sep 0.67 ±0.03 0.43 ±0.02
RISE 0.65 ±0.04 0.41±0.01

25%
NPE-RF-Sep 1.02 ±0.05 0.48 ±0.02
RISE-Sep 0.99 ±0.03 0.45 ±0.02
RISE 0.93 ±0.06 0.43 ±0.02

60%
NPE-RF-Sep 1.34 ±0.10 0.64 ±0.02
RISE-Sep 1.31 ±0.03 0.58 ±0.03
RISE 1.27 ±0.01 0.56 ±0.03

1921) between the true and the predicted assays. We observe that RISE achieves state-of-the-art
results in these tasks, demonstrating the efficacy of the neural processes-based imputation model.

Joint vs separate learning. Finally, our last experiment involves investigating the impact of training
the imputation and the inference model in RISE jointly (as we proposed) versus separately (termed
RISE-Sep). We also include another baseline termed NPE-RF-Sep where a random forest (RF) model
is first used for imputation, followed by NPE. Table 10 (right) reports the RMSE values on GLM
and GLU tasks for different missingness proportion ε. We observe that training the imputation and
inference networks jointly yields improvement in the performance over training them separately.

6 CONCLUSION AND LIMITATIONS

We analyzed the problem of performing SBI under missing data, and showed that inaccurately
imputing the missing values leads to bias in the resulting posterior distributions. We then proposed
RISE: a method that aims to reduce this bias under different notions of missingness mechanism.
RISE combines the inference network of NPE with an imputation model based on neural processes to
achieve robustness to missing data whilst being amortized. Additionally, RISE can be trained in a
meta-learning manner over the proportion of missing values in the data, thus allowing for amortization
across datasets with varying levels missingness. While RISE offers substantial advantages, there
are limitations to address. RISE inherits the issues of NPE and may yield posteriors that are not
well-calibrated, as found by Hermans et al. (2022). Moreover, the normality assumption in neural
processes may have limited expressivity when learning a complex imputation distribution.

REPRODUCIBILITY STATEMENT

Appendix A.4 provides extensive detail about the dataset used, the method’s parameterization, and
training details. We have utilized open source datasets and libraries for implementation and evaluation
of our method.
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A APPENDIX

In Appendix A.2, we present the proofs for Proposition 1 and Proposition 2. Appendix A.3 contains
the background on neural processes, and Appendix A.4 presents the implementation details for the
experiments of Section 5. Finally, Appendix A.5 contains some additional experimental results.

A.1 DISCUSSION

Handling multiple observations. Although so far we have focused on the single observation
case where we have one data vector x for each θ, RISE can straightforwardly be extended to the
multiple observations case where we obtain x(1:m) = (x1, . . . ,xm) for each θ. Then, x(1:m) =

(x
(1:m)
obs ,x

(1:m)
mis ), and the objective for RISE becomes

argmin
ϕ,φ,κ

−E
(x

(1:m)
obs ,θ)∼ptrue

E
x
(1:m)
mis ∼

∏m
i=1 p(x

(i)
mis |x

(i)
obs )

 1

m

m∑
i=1

log p̂φ(x
(i)
mis | x

(i)
obs)︸ ︷︷ ︸

(imputation)

+ log qϕ(θ | ηκ(x1:m
obs ,x1:m

mis ))︸ ︷︷ ︸
(inference)

 .

Note that here we have to summarize the data using the network ηκ before passing the data into the
inference network, as NPE is unable to handle multiple observations, unless we use recent extensions
based on score estimation (Geffner et al., 2023; Linhart et al., 2024).

Handling model misspecification. We conjecture that replacing the inference network in RISE
from the usual NPE to its robust variant such as the method of Ward et al. (2022) or Huang et al.
(2023) would help in addressing model misspecification issues. It would be an interesting avenue for
future research to see how to train these robust NPE methods jointly with the imputation network of
RISE, and how effective such an approach is. One way is to assume a certain error model over the
observed data x and corrupt the data x̃ via adding a Gaussian noise, and infer the correct θ via the
inference network. This can be described also via the objective as

argminϕ,φ − E(xobs,θ)∼p(xobs,θ),x̃obs∼N (xobs,σ
2),x̃mis∼ptrue(x̃mis|x̃obs,θ)

[log p̂φ(x̃mis | x̃obs) + log qϕ(θ | x̃obs, x̃mis)] .

(9)

Moreover, this can also be readily extended to incorporate prior miss-specification via similar way as,

argminϕ,φ − E(xobs,θ)∼p(xobs,θ),θ̃∼N (θ,σ2),x̃mis∼ptrue(x̃mis|x̃obs,θ̃)
[log p̂φ(x̃mis | x̃obs) + log qϕ(θ | x̃obs, x̃mis)] .

(10)

A.2 PROOFS

A.2.1 PROOF FOR PROPOSITION 1

Proof. Using Equation (2) and Equation (3), the bias in the estimated posterior can be written as∣∣Eθ∼pSBI(θ |xobs)[θ |xobs]− Eθ∼p̂SBI(θ |xobs)[θ |xobs]
∣∣

=

∫
θpSBI(θ |xobs)dθ −

∫
θp̂SBI(θ |xobs)dθ

=

∫
θ [pSBI(θ |xobs)− p̂SBI(θ |xobs)] dθ

=

∫
θ

[∫
pSBI(θ |xobs,xmis)ptrue(xmis |xobs)dxmis −

∫
pSBI(θ |xobs,xmis)p̂(xmis |xobs)dxmis

]
dθ

=

∫
pSBI(θ |xobs,xmis)θ

∫
[ptrue(xmis |xobs)− p̂(xmis |xobs)] dxmisdθ

= Eθ∼pSBI(· |xobs,xmis)

[
θ

∫
[ptrue(xmis |xobs)− p̂(xmis |xobs)] dxmis

]
The bias is therefore zero only when p̂(xmis |xobs) is aligned with ptrue(xmis |xobs), which completes
the proof.
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A.2.2 PROOF FOR PROPOSITION 2

Proof. Recall our optimization problem from Equation (5):

argmin
ψ

Exobs∼ptrue KL[ptrue(θ | xobs) || rψ(θ | xobs)] .

Expanding the KL term, we note that the above is equivalent to

argmin
ψ

Exobs∼ptrueEθ∼ptrue(θ|xobs) log

(
ptrue(θ | xobs)

rψ(θ | xobs)

)
.

Since ptrue(θ | xobs) does not depend on ψ, we immediately note that the problem is equivalent to

argminψ Exobs∼ptrue Eptrue(θ|xobs)[− log rψ(θ | xobs)]

= argmax
ψ

E(xobs,θ)∼ptrue [log rψ(θ | xobs)] .

We now obtain a lower bound for E(xobs,θ)∼ptrue [log rψ(θ | xobs)]. Formally, we have

E(xobs,θ)∼ptrue [log rψ(θ | xobs)] = E(xobs,θ)∼ptrue log

∫
rψ(θ,xmis | xobs)dxmis

= E(xobs,θ)∼ptrue log

∫
p(xmis | xobs)rψ(θ,xmis | xobs)

p(xmis | xobs)
dxmis

≥ E(xobs,θ)∼ptrueExmis∼p(xmis|xobs)

[
log

rψ(θ,xmis | xobs)

p(xmis | xobs)

]
= E(xobs,θ)∼ptrueExmis∼p(xmis|xobs)

[
log

rψ(xmis | xobs)rψ(θ | xobs,xmis)

p(xmis | xobs)

]
,

where we invoked the Jensen’s inequality to swap the log and the conditional expectation. Splitting pa-
rameters ψ into imputation parameters φ and inference parameters ϕ, and denoting the corresponding
imputation and inference networks by p̂φ and qϕ respectively, we immediately get

E(xobs,θ)∼ptrue [log rϕ,φ(θ | xobs)] ≥ E(xobs,θ)∼ptrueExmis∼p(xmis|xobs)

[
log

p̂φ(xmis | xobs)qϕ(θ | xobs,xmis)

p(xmis | xobs)

]
.

Thus, we obtain the following variational objective:

argmaxϕ,φE(xobs,θ)∼ptrueExmis∼p(xmis|xobs)

[
log

p̂φ(xmis | xobs)qϕ(θ | xobs,xmis)

p(xmis | xobs)

]
= argmaxϕ,φE(xobs,θ)∼ptrue

(
Exmis∼p(xmis|xobs) [log p̂φ(xmis | xobs) + log qϕ(θ | xobs,xmis)] + H(p(xmis | xobs)

)
= argmaxϕ,φE(xobs,θ)∼ptrueExmis∼p(xmis|xobs)

log p̂φ(xmis | xobs)︸ ︷︷ ︸
imputation

+ log qϕ(θ | xobs,xmis)︸ ︷︷ ︸
inference

 ,

since the entropy term H(p(xmis | xobs) does not depend on the optimization variables ϕ and φ.

A.3 NEURAL PROCESS

Neural Process (Garnelo et al., 2018; Foong et al., 2020) models the predictive distribution over
target locations xt by, (i) constructing a learnable mapping fγ from the context set (xc,yc) to a latent
representation r as,

r = fγ(xc,yc) (11)
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and then (ii) utilizing the representation r to approximate the predictive distribution, given the target
locations xt, via a learnable decoder gω as,

p(yt | xt, r) = gω(r,xt) (12)

where xc,xt ∈ X ⊆ Rdx are the input vectors (often locations or positions) and yc,yt ∈ Y ⊆ Rdy
be the output vectors, with dx, dy ≥ 1 their dimensionality. In practice, the predictive distribution is
often assumed to be gaussain as,

p(yt | xt, r) =
M∏
m=1

p(yt,m | xt,m, r) =
M∏
m=1

N (yt,m | µω,m, σ2
ω,m) (13)

where µω,m, σω,m = gω(r,xt,m). For a fixed context (xc,yc), using Kolmogorov’s extension
theorem (Oksendal, 2013) the collection of these finite dimensional distributions defines a stochastic
process if these are consistent under (i) permutations of any entries of (xt,yt) and (ii) marginalisations
of any entries of yt.

A.4 IMPLEMENTATION DETAILS

This section is arranged as follows:

• Appendix A.4.1: Description of SBI benchmarking simulators
• Appendix A.4.2: Prior distributions used for the SBI experiments
• Appendix A.4.3: Procedure for creating the missingness mask under MCAR and MNAR
• Appendix A.4.4: Details of the neural network settings

A.4.1 MODEL DESCRIPTIONS

Ricker model simulates the temporal evolution of population size in ecological systems. In this
model, the population size Nt at time t evolves as Nt+1 = Nt exp(θ1) exp(Nt + et), t = 1, . . . , T .
The parameter exp(θ1) represents the growth rate, while et denotes independent and identically
distributed Gaussian noise terms with zero mean and variance σ2

e . The initial population size is
set to N0 = 1. Observations xt are modeled as Poisson random variables with rate parameter
θ2Nt, such that xt ∼ Poiss(θ2Nt). For our simulations, we fixed σ2

e = 0.09 and focused on
estimating the parameter vector θ = [θ1, θ2]

⊤. The prior distribution is set as a uniform distribution
U([2, 8]× [0, 20]). We simulated the process for T = 100 time steps to generate sufficient data for
inference, and considered a simulation budget of 1000 to create the dataset.

Ornstein-Uhlenbeck process (OUP) is a stochastic differential equation model widely used in
financial mathematics and evolutionary biology. The OU process xt is defined as,

xt+1 = xt +∆xt, t = 1, . . . , T (14)
∆xt = θ1[exp(θ2)− xt]∆t+ 0.5w (15)

where T = 25, ∆t = 0.2, x0 = 10 and w ∼ N (0,∆t).

Generalized Linear Model (GLM). A 10 parameter Generalized Linear Model (GLM) with
Bernoulli observations.

Gaussian Linear Uniform (GLU). A 10 dimensional Gaussian model, in which the parameter θ is
the mean, and the covariance is fixed, with a uniform prior. We refer to Lueckmann et al. (2021);
Tejero-Cantero et al. (2020) for further details on these SBI tasks.

Hodgkin Huxley Model. Hodgkin Huxley Model is a real-world computational neuroscience
simulator. It describes the intricate dynamics of the generation and propagation of action potentials
along neuronal membranes with the capture of the time course of membrane voltage by modeling the
behavior of ion channels, particularly sodium and potassium, as well as leak currents. It consists of
two parameters: θ1 ≡ ḡNa, and θ2 ≡ ḡK, which describe the density of Na and K specifically. The
dynamics are parameterized as a set of differential equations,

Cm
dV

dt
= g1(E − V ) + θ1m

3h(ENa − V ) + θ2n
4h(EK − V ) + ḡMp(EM − V ) + Iinj + ση(t)

dq

dt
=
q∞(V )− q
τq(V )

, q ∈ {m,h, n, p}
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Here, V represents the membrane potential,Cm the membrane capacitance, g1 is the leak conductance,
E1 is the membrane reverse potential, θ1, θ2 are the densities of Na and K channel, ḡM is the density
for M channel, ENa,K,M are the reversal potential and ση(t) is the intrinsic neural noise. The right
hand side of the voltage dynamics is composed of a leak current, a voltage-dependent Na+, a delayed
rectifier K+, a slow voltage-dependent K+ current responsible for spike-frequency adaptation, and
an injected current Iinj. Channel gating variables q have dynamics fully characterized by the neuron
membrane potential V , given the respective steady-state q∞(V ) and time constant τq(V ). For more
details, see Pospischil et al. (2008).

A.4.2 PRIOR DISTRIBUTIONS

We utilize the following prior distributions for our experiment tasks:

• Ricker: Uniform distribution U([2, 8]× [0, 20])

• OUP: Uniform prior U([0, 2]× [−2, 2])

• Hodgkin-Huxley: Uniform distribution U([10−4,−0.5]× [15.0, 100.0])

• GLU: Uniform distribution U([−1, 1]10)

• GLM: A multivariate normal N (0, (F⊤F)−1) computed as follows,

Fi,i−2 = 1,Fi,i−1 = −2,Fi,i = 1 +

√
i− 1

9
,Fi,j = 0 otherwise, 1 ≤ i, j ≤ 9 (16)

A.4.3 CREATING THE MISSINGNESS MASK

MCAR. We followed random masking approach to simulate the MCAR scenario. For a given
missingness degree ε, we randomly mask out ε% of the data sample.

MNAR. We employed the self-masking or self-censoring approach as outlined by Ipsen et al.
(2020). For a given data sample x ∈ Rd, and following Sinelnikov et al. (2024); Ong et al. (2024),
the probability of a particular data-point to be missing depends on its value. Specifically, we sample
the mask si for ith value for data sample as,

si ∼ Bern(pi), pi = ε · xi
maxd(x)

(17)

where 0 ≤ i ≤ d, maxd(x) represents the maximum value in the data sample and pi is the masking
probability for data-point xi which is computed using the proportion of missing values ε.

A.4.4 NETWORK PARAMETRIZATION

Summary Networks. For the Ricker and Huxley model, the summary network is composed of
1D convolutional layers, whereas for the OUP, it is a combination of bidirectional long short-term
memory (LSTM) recurrent modules and 1D convolutional layers. The dimension of the statistic
space is set to four for both the models. We do not use summary networks for GLM and GLU.

Imputation Model. The parameters for the neural process-based imputation model used in RISE
are given in Table 2 and Table 3.
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Table 2: Default hyperparameters for imputation model p̂φ for Ricker, OUP and Huxley model.

Module Hyperparameter Meaning Value

Encoder

CNN blocks Number of CNN layers 1
Hidden dimension Number of output channels of each CNN layer 64

Kernel size Kernel size of each convolution layer 9
Stride Stride of each convolution layer 1

Padding Padding size of each convolution layer 4

Latent

CNN blocks Number of CNN layers 2
Hidden dimension Number of output channels of each CNN layer 32

Kernel size Kernel size of each convolution layer 3
Stride Stride of each convolution layer 1

Padding Padding size of each convolution layer 1

Decoder

CNN blocks Number of CNN layers [6,1]
Hidden dimension Number of output channels of each CNN layer [32,2]

Kernel size Kernel size of each convolution layer 5
Stride Stride of each convolution layer 1

Padding Padding size of each convolution layer 2

Table 3: Default hyperparameters for imputation model p̂φ for GLM and GLU.

Module Hyperparameter Meaning Value

Encoder MLP blocks Number of MLP layers [1,1]
Hidden dimension Number of output channels of each MLP layer [32,64]

Latent MLP blocks Number of MLP layers 2
Hidden dimension Number of output channels of each MLP layer 32

Decoder MLP blocks Number of MLP layers [6,1]
Hidden dimension Number of output channels of each MLP layer [32,10]

Inference model. Our inference model implementations are based on publicly available code from
the sbi library https://github.com/mackelab/sbi. We use the NPE-C model (Greenberg
et al., 2019) with Masked Autoregressive Flow (MAF) (Papamakarios et al., 2017) as the backbone
inference network, and adopt the default configuration with 20 hidden units and 5 transforms for
MAF. Throughout our experiments, we maintained a consistent batch size of 50 and a fixed learning
rate of 5× 10−4.

A.5 ADDITIONAL RESULTS

In Table 4, we report the RMSE values for the experiment on SBI benchmark simulators presented in
Section 5.1. Similar to the MMD results of Figure 3, we observe that RISE yields lowest RNSE for
almost all the cases, especially for Ricker and OUP where RISE beats the baselines comprehensively.

Figure 6 shows how accurate our proposed method in imputing the values of missing data simulated
from the SBI benchmark models compared to the baselines. The performance is measured in terms
of RMSE of the imputed values. Our method (denoted in red) performs the best in imputing the
missing values, which eventually helps in accurate estimation of the posterior distribution, as we saw
in Figure 3 and Table 4.

B ADDITIONAL RESULTS

B.1 COMPARISON WITH (WANG ET AL., 2024)

We have performed a study to compare to the methods in Wang et al. (2024), by using data augmenta-
tion with constant values and a binary mask indicator while training the NPE on GLU and GLM data
sets at various levels of missingness. The table 5 presents the results, and we observe RISE performs
better in across all the metrics even at higher level of missingness.
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Table 4: RMSE between predicted posterior samples and SBI posterior.

Missigness (ϵ) Method Ricker OUP GLM GLU
MCAR MNAR MCAR MNAR MCAR MNAR MCAR MNAR

10%
NPE-Zero 1.17 ±0.04 1.74 ±0.05 2.95 ±0.06 0.64 ±0.03 0.78 ±0.03 0.75 ±0.04 0.44 ±0.02 0.44 ±0.03
NPE-Mean 0.74 ±0.05 1.83 ±0.04 0.99 ±0.05 0.54 ±0.06 0.75±0.04 0.75 ±0.04 0.43 ±0.02 0.44 ±0.04
NPE-NN 0.47 ±0.05 0.96 ±0.07 0.69 ±0.04 0.45 ±0.04 0.70 ±0.10 0.72 ±0.03 0.42 ±0.04 0.43 ±0.03
RISE 0.25 ±0.06 0.33 ±0.03 0.39 ±0.01 0.39 ±0.03 0.65 ±0.04 0.59 ±0.03 0.41±0.01 0.41 ±0.02

25%
NPE-Zero 1.68 ±0.04 1.65 ±0.04 2.97 ±0.08 1.14 ±0.05 1.07 ±0.04 0.77 ±0.06 0.48 ±0.03 0.47 ±0.01
NPE-Mean 1.74 ±0.04 1.64 ±0.07 0.97 ±0.01 0.84 ±0.03 1.15 ±0.03 0.77 ±0.02 0.47 ±0.05 0.47 ±0.02
NPE-NN 1.41 ±0.05 1.38 ±0.03 0.77 ±0.03 0.77 ±0.04 1.12 ±0.08 0.71 ±0.07 0.47 ±0.04 0.40 ±0.02
RISE 0.91 ±0.06 1.06 ±0.03 0.62 ±0.09 0.57 ±0.07 0.93 ±0.06 0.69 ±0.04 0.43 ±0.02 0.33 ±0.04

60%
NPE-Zero 3.05 ±0.05 1.71 ±0.07 2.99 ±0.07 1.94 ±0.05 1.46 ±0.03 1.53 ±0.10 0.52 ±0.03 0.50 ±0.02
NPE-Mean 1.89 ±0.04 1.85 ±0.08 1.01 ±0.01 1.74 ±0.06 1.43 ±0.04 1.76 ±0.08 0.54 ±0.01 0.50 ±0.02
NPE-NN 1.82 ±0.10 1.75 ±0.10 0.65 ±0.07 0.94 ±0.05 1.41 ±0.05 1.63 ±0.04 0.58 ±0.03 0.47 ±0.08
RISE 1.38 ±0.06 1.60 ±0.09 0.51 ±0.06 0.67 ±0.03 1.27 ±0.01 1.38 ±0.04 0.56 ±0.03 0.43 ±0.05
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Figure 6: Imputation RMSE for MCAR (top) and MNAR (bottom) over various synthetic datasets.
Here GL refers to a 10 dimension Gaussian linear model, see Lueckmann et al. (2021) for details.

Table 5: Comparisons with Wang et al. (2024).

Missingness Method GLU GLM

RMSE C2ST MMD RMSE C2ST MMD

10%
Wang et al. (2024) 0.47 0.87 0.28 0.61 0.86 0.24
RISE 0.41 0.83 0.18 0.65 0.80 0.12

25%
Wang et al. (2024) 0.45 0.92 0.31 0.86 0.94 0.35
RISE 0.43 0.89 0.26 0.93 0.91 0.27

60%
Wang et al. (2024) 0.65 0.97 0.35 1.53 0.99 0.45
RISE 0.56 0.93 0.33 1.27 0.97 0.50

B.2 COMPARISON WITH SIMFORMER

We have performed a study to benchmark against Simformer over MCAR and MNAR missingness
mechanism. To ensure a fair comparison, we utilized the same dataset i.e Generalized Linear Model
(GLM) and gaussian linear uniform (GLU) used by Simformer and the training configurations. The
results (in terms of MMD and nominal log posterior probability (NLPP)) for both the MCAR and
the MNAR case are shown in the table 6 and table 7 on MMD and predicted nominal log posterior
probability of the nominal parameters (NLPP). For the MCAR case, both RISE and Simformer
perform similarly, with RISE yielding slightly better results. The difference in performance is more
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stark in the MNAR case, as expected, since Simformer does not explicitly model the missingness
mechanism.

Table 6: Comparison with Simformer. (MCAR)

Missingness Method GLU GLM

NLPP MMD NLPP MMD

10%
Simformer -2.45 ± 0.12 0.20 ± 0.01 -6.47 ± 0.16 0.17 ± 0.02
RISE -2.31 ± 0.10 0.18 ± 0.01 -6.32 ± 0.15 0.12 ± 0.02

25%
Simformer -3.65 ± 0.17 0.27 ± 0.02 -7.37 ± 0.13 0.31 ± 0.03
RISE -3.71 ± 0.11 0.26 ± 0.01 -7.22 ± 0.17 0.27 ± 0.01

60%
Simformer -6.62 ± 0.27 0.39 ± 0.03 -8.93 ± 0.18 0.52 ± 0.03
RISE -6.21 ± 0.11 0.33 ± 0.02 -8.71 ± 0.14 0.50 ± 0.01

Table 7: Comparison with Simformer. (MNAR)

Missingness Method GLU GLM

NLPP MMD NLPP MMD

10%
Simformer -2.15 ± 0.10 0.18 ± 0.01 -6.17 ± 0.18 0.16 ± 0.02
RISE -1.90 ± 0.09 0.16 ± 0.01 -5.82 ± 0.11 0.13 ± 0.02

25%
Simformer -3.12 ± 0.12 0.25 ± 0.02 -6.57 ± 0.14 0.25 ± 0.03
RISE -3.26 ± 0.10 0.22 ± 0.01 -6.12 ± 0.15 0.17 ± 0.01

60%
Simformer -6.02 ± 0.12 0.32 ± 0.03 -7.56 ± 0.15 0.50 ± 0.03
RISE -5.80 ± 0.13 0.27 ± 0.04 -7.11 ± 0.17 0.47 ± 0.03

B.3 C2ST SCORES AND NOMINAL PROBABILITY SCORES.

We have performed a study to evaluate the C2ST scores and predicted nominal log posterior probability
of the nominal parameters (NLPP) our method. The table 8 shows the C2ST scores (lower the better)
and predicted nominal log posterior probability of the nominal parameters (NLPP, higher the better)
for different methods over various benchmark tasks. We observe that RISE outperforms the competing
baselines across all the datasets and over all metrics.

Table 8: C2ST Scores (↓) and Nominal Probability (↑) .

Missingness Method GLU GLM Ricker OUP

C2ST NLPP C2ST NLPP C2ST NLPP C2ST NLPP

10%

NPE-Zero 0.89 -2.77 ± 0.13 0.87 -6.92 ± 0.14 0.95 -5.15 ± 0.12 0.90 -2.61 ± 0.16
NPE-Mean 0.88 -2.67 ± 0.16 0.85 -6.83 ± 0.14 0.95 -5.10 ± 0.21 0.90 -2.51 ± 0.11
NPE-NN 0.87 -2.51 ± 0.11 0.84 -6.57± 0.13 0.94 -4.90 ± 0.16 0.89 -2.25 ± 0.18
RISE 0.83 -2.31 ± 0.10 0.80 -6.32 ± 0.15 0.90 -4.20 ± 0.09 0.87 -2.09 ± 0.11

25%

NPE-Zero 0.88 -4.11 ± 0.17 0.97 -8.05 ± 0.20 0.96 -5.10 ± 0.16 0.92 -2.97 ± 0.13
NPE-Mean 0.90 -3.99 ± 0.21 0.94 -7.92 ± 0.14 0.96 -5.05 ± 0.11 0.92 -2.84 ± 0.15
NPE-NN 0.91 -3.92 ± 0.11 0.93 -7.72 ± 0.16 0.95 -4.94± 0.17 0.90 -2.74 ± 0.18
RISE 0.89 -3.71 ± 0.11 0.91 -7.22 ± 0.17 0.92 -4.64 ± 0.15 0.89 -2.43 ± 0.15

60%

NPE-Zero 0.97 -6.98 ± 0.18 1.00 -9.63 ± 0.14 0.97 -5.17 ± 0.15 0.96 -3.07 ±0.12
NPE-Mean 0.98 -6.76 ± 0.09 0.99 -9.27 ± 0.14 0.97 -5.10 ± 0.18 0.95 -2.97 ± 0.12
NPE-NN 0.96 -6.37 ± 0.12 0.99 -9.02 ± 0.17 0.96 -4.97 ± 0.17 0.95 -2.87 ± 0.19
RISE 0.93 -6.21 ± 0.11 0.97 -8.71 ± 0.14 0.94 -4.72 ± 0.17 0.93 -2.52 ± 0.11

B.4 META LEARNING OVER MISSINGNESS

We have also evaluated the performance of our method in generalizing across various levels of
missingness as described in section 5.3 over Ricker and OUP dataset. The table 9 displays the result
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Figure 7: Expected coverage of RISE and NPE-NN for HH (top) and GLU (bottom) task over various
level of missingness. The estimator becomes more conservative with increase in missingness due to
the lack of information to estimate posterior and imputation distribution.

and we observe that our method is able to handle and generalize over unknown levels of missingness
in the data.

Table 9: Ablation on flow architectures (left) and meta learning the missingness (right).

Method C2ST RMSE MMD
RISE-MAF 0.80 0.65 0.12
RISE-NSF 0.80 0.67 0.11

Method Ricker OUP
RMSE MMD RMSE MMD

NPE-Zero 3.98 0.95 3.10 0.57
NPE-Mean 2.31 0.67 1.73 0.53
NPE-NN 1.97 0.51 1.32 0.50
RISE-Meta 1.52 0.42 0.89 0.45

B.5 RUNTIME COMPARISONS

We have performed an ablation study to evaluate the computational complexity of our method in
comparison to standard NPE. The table 10 describes the time (in seconds) per epoch to train different
models on a single V100 GPU. We observe that there is a minimal increasing in runtime due to the
addition of the imputation model. The training time remains the same with respect to missingness
levels over a certain data dimensionality.

Table 10: Runtime comparisons (left) and Simulation budget comparisons (right).

Method GLM GLU
NPE 0.12 0.10
RISE 0.18 0.16

Budget GLU GLM

C2ST MMD C2ST MMD

1000 0.83 0.18 0.80 0.12
10000 0.78 0.15 0.75 0.10
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Figure 8: The learned statistics for fully observed and imputed datasets. RISE is able to reduce the
shift in the summary statistic. The blue color corresponds to 10% missingness and green for 20%
missingness.

(a) Ricker (b) OUP

Figure 9: Visualization of posterior estimated by RISE for Ricker and OUP for 1k and 10k simulation
budget under 25% missingness level. We observe that posterior estimate becomes better with increase
in simulation budget.

B.6 PERFORMANCE AS FUNCTION OF SIMULATION BUDGET

We have conducted a study to quantify the performance as a function of the simulation budget on
GLU and GLM dataset. The table 10 shows C2ST and MMD among various simulation budgets for
RISE, for 10% missingness level. As the budget increases, the performance improves.

B.7 EXPECTED COVERAGE PLOT FOR HODGKIN-HUXLEY

We compute the expected coverage (Hermans et al., 2022) of our method on various confidence
levels. Figure 7 shows the expected coverage for the HH task at various levels of missingness. We
observe that RISE is able to produce conservative posterior approximations and is better calibrated as
compared to NPE-NN.

B.8 ADDITIONAL VISUALIZATIONS

B.9 ABLATION ON FLOW ARCHITECTURE

We have performed an ablation study to evaluate the performance comparison among different flow
architectures. We utilize NSF (Durkan et al., 2019) and MAF as competing architectures for flow
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and evaluate it on GLM dataset with 10% missigness level. The table 9 showcases the result and we
observe that both NSF and MAF give similar results.
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