
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TACKLING DATA CORRUPTION IN OFFLINE REIN-
FORCEMENT LEARNING VIA SEQUENCE MODELING

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning policy from offline datasets through offline reinforcement learning (RL)
holds promise for scaling data-driven decision-making while avoiding unsafe and
costly online interactions. However, real-world data collected from sensors or hu-
mans often contains noise and errors, posing a significant challenge for existing
offline RL methods, particularly when the real-world data is limited. Our study
reveals that prior research focusing on adapting predominant offline RL methods
based on temporal difference learning still falls short under data corruption when
the dataset is limited. In contrast, we discover that vanilla sequence modeling
methods, such as Decision Transformer, exhibit robustness against data corrup-
tion, even without specialized modifications. To unlock the full potential of se-
quence modeling, we propose Robust Decision Transformer (RDT) by incorpo-
rating three simple yet effective robust techniques: embedding dropout to improve
the model’s robustness against erroneous inputs, Gaussian weighted learning to
mitigate the effects of corrupted labels, and iterative data correction to eliminate
corrupted data from the source. Extensive experiments on MuJoCo, Kitchen, and
Adroit tasks demonstrate RDT’s superior performance under various data corrup-
tion scenarios compared to prior methods. Furthermore, RDT exhibits remarkable
robustness in a more challenging setting that combines training-time data corrup-
tion with test-time observation perturbations. These results highlight the poten-
tial of sequence modeling for learning from noisy or corrupted offline datasets,
thereby promoting the reliable application of offline RL in real-world scenarios.

1 INTRODUCTION

Offline reinforcement learning (RL) aims to derive near-optimal policies from fully offline datasets
(Levine et al., 2020; Kumar et al., 2020; Fujimoto et al., 2019; Wang et al., 2018), thereby reducing
the need for costly and potentially unsafe online interactions with the environment. However, offline
RL encounters a significant challenge known as distribution shift (Levine et al., 2020), which can
lead to performance degradation. To address this challenge, several offline RL algorithms impose
policy constraints (Wang et al., 2018; Fujimoto et al., 2019; Fujimoto & Gu, 2021; Kostrikov et al.,
2021; Park et al., 2024) or maintain pessimistic values for out-of-distribution (OOD) actions (Kumar
et al., 2020; An et al., 2021; Bai et al., 2022; Yang et al., 2022a; Ghasemipour et al., 2022), ensuring
that the learned policy aligns closely with the training distribution. Although the majority of tradi-
tional offline RL methods rely on temporal difference learning, an alternative promising paradigm
for offline RL emerges in the form of sequence modeling (Chen et al., 2021; Janner et al., 2021; Shi
et al., 2023; Wu et al., 2024). Unlike traditional RL methods, Decision Transformer (DT) (Chen
et al., 2021), a representative sequence modeling method, treats offline RL as a supervised learn-
ing task, predicting actions directly from sequences of reward-to-gos, states, and actions. Prior work
(Bhargava et al., 2023) suggests that DT excels at handling tasks with sparse rewards and suboptimal
quality data, showcasing the potential of sequence modeling for real-world applications.

When deploying offline RL in practical settings, dealing with noisy or corrupted data resulting from
data collection or malicious attacks is inevitable (Zhang et al., 2020; 2021; Liang et al., 2024; Yang
et al., 2024a). Consequently, robust policy learning from such data is essential for the successful de-
ployment of offline RL. A series of prior works (Zhang et al., 2022; Ye et al., 2024b; Wu et al., 2022;
Chen et al., 2024; Ye et al., 2024a) focus on the theoretical properties and certification of offline RL

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

under data corruption. Notably, Ye et al. (2024b) propose an uncertainty-weighted offline RL al-
gorithm with Q ensembles to address reward and dynamics corruption, while Yang et al. (2024b)
enhance the robustness of Implicit Q-Learning (IQL) (Kostrikov et al., 2021) against corruptions on
all elements using Huber loss and quantile Q estimators. These advancements have primarily con-
centrated on temporal difference learning, dedicating significant effort to learning robust Q functions
from corrupted data. This approach brings up an intriguing question: by bypassing the Q function,
can sequence modeling methods effectively handle data corruption in offline RL?

In this study, we conduct a comparative analysis between prior robust offline RL methods and DT
(without any robust modifications) under various data corruption settings. Surprisingly, we find that
traditional methods relying on temporal difference learning struggle in settings with limited data and
significantly underperform compared to DT. Additionally, DT demonstrates superior performance
over previous methods in scenarios involving state attacks. These findings highlight the promising
potential of sequence modeling for addressing data corruption challenges in offline RL. To further
unlock the capabilities of sequence modeling methods under data corruption, inspired by successes
in the supervised learning domain (Song et al., 2022; Chang et al., 2017; Reed et al., 2014; Gal &
Ghahramani, 2016), we propose Robust Decision Transformer (RDT). RDT aims to boost the ro-
bustness of DT in three aspects: model structure, loss function, and data refinement. To achieve this,
RDT incorporates three simple yet highly effective techniques to mitigate the impact of corrupted
data: embedding dropout, Gaussian weighted learning, and iterative data correction. These simple
modifications are designed to address the fundamental limitations of the standard DT and unlock the
potential of sequence modeling for data corruption.

To comprehensively study RDT’s robustness under data corruption with limited data, we constructed
a variety of small datasets from MuJoCo, Kitchen, and Adroit, creating a challenging benchmark
for current robust offline RL methods. Through our experiments, we demonstrate that RDT outper-
forms conventional temporal difference learning and sequence modeling approaches under both ran-
dom and adversarial data corruption scenarios, achieving a substantial 28% improvement in overall
performance over DT. Furthermore, we show that after learning from corrupted data, RDT exhibits
remarkable robustness against testing-time observation perturbations, indicating its potential to ad-
dress both training-time and test-time attacks simultaneously. Our study emphasizes the significance
of robust sequence modeling and offers valuable insights for the trustworthy deployment of offline
RL in real-world applications.

2 PRELIMINARIES

RL and Offline RL. RL is generally formulated as a Markov Decision Process (MDP) de-
fined by a tuple (S,A, P, r, γ). This tuple comprises a state space S, an action space A,
a transition function P , a reward function r, and a discount factor γ ∈ [0, 1]. The ob-
jective of RL is to learn a policy π(a|s) that maximizes the expected cumulative return:
maxπ Es0∼ρ0,at∼π(·|st),st+1∼P (·|st,at)

[∑T−1
t=0 γtr(st, at)

]
, where ρ0 denotes the distribution of

initial states and T is the trajectory length. In offline RL, the objective is to optimize the RL objec-
tive with a previously collected dataset D = {(s(i)t , a

(i)
t , r

(i)
t , s

(i)
t+1)

T−1
t=0 }N−1

i=0 , which contains a total
of N trajectories. The agent cannot directly interact with the environment during the offline phase.

Decision Transformer (DT). DT models decision-making from offline datasets as a sequence
modeling problem. The i-th trajectory τ (i) of length T in dataset D is reorganized into a sequence
of return-to-go R

(i)
t , state s

(i)
t , action a

(i)
t :

τ (i) =
(
R

(i)
0 , s

(i)
0 , a

(i)
0 , . . . , R

(i)
T−1, s

(i)
T−1, a

(i)
T−1

)
. (1)

Here, the return-to-go R
(i)
t is defined as the sum of rewards from the current step to the end of

the trajectory: R(i)
t =

∑T
t′=t r

(i)
t′ . DT employs three linear projection layers to project the return-

to-gos, states, and actions to the embedding dimension, with an additional learned embedding for
each timestep added to each token. A GPT model is adopted by DT to autoregressively predict the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

actions a(i)t with input sequences of length K:

LDT (θ) = Eτ(i)∼D

[
1

K

K−1∑
t=0

∥πθ(τ
(i)
t−K+1:t−1, R

(i)
t , s

(i)
t)− a

(i)
t ∥22

]
, (2)

where τ
(i)
t−K+1:t−1 indicates the segment of τ (i) from timestep t−K + 1 to t− 1.

Data Corruption in Offline RL. In prior works (Ye et al., 2024b; Yang et al., 2024b), the data is
stored in transitions, and data corruption is performed on individual elements (state, action, reward,
next-state) of each transition. This approach does not align well with trajectory-based sequence
modeling methods like DT. In this paper, we consider a unified trajectory-based storage, where
corrupting a next-state in a transition corresponds to corrupting a state in the subsequent transition,
while corruption for rewards and actions is consistent with prior works. To elaborate, an original
trajectory is denoted as τ (i)origin =

(
s
(i)
0 , a

(i)
0 , r

(i)
0 , . . . , s

(i)
T−1, a

(i)
T−1, r

(i)
T−1

)
, which can be reorganized

into the sequence data of DT in Eq. 1 or split into T − 1 transitions
(
s
(i)
t , a

(i)
t , r

(i)
t , s

(i)
t+1

)T−2

t=0
for

MDP-based methods. Note that here are only three independent elements (i.e., states, actions, and
rewards) under the trajectory-based storage formulation.

Data corruption injects random or adversarial noise into the original states, actions, and rewards.
Random corruption adds random noise to the affected elements in the datasets, resulting in a
corrupted trajectory denoted as τ

(i)
corrupt =

(
ŝ
(i)
0 , â

(i)
0 , r̂

(i)
0 , . . . , ŝ

(i)
T−1, â

(i)
T−1, r̂

(i)
T−1

)
. For instance,

ŝ
(i)
0 = s

(i)
0 + λ · std(s), λ ∼ Uniform[−ϵ, ϵ]ds (ds is the dimensions of state, and ϵ is the corruption

scale) and std(s) is the ds-dimensional standard deviation of all states in the offline dataset. In
contrast, adversarial corruption uses Projected Gradient Descent attack (Madry et al., 2017) with
pretrained value functions. Specifically, we introduce learnable noise to the states or actions and
then optimize this noise by minimizing the pretrained value functions through gradient descent.
More details about data corruption are provided in Appendix C.1.

3 SEQUENCE MODELING FOR OFFLINE RL WITH DATA CORRUPTION

We aim to answer the question of whether sequence modeling methods can effectively handle data
corruption in offline RL in Section 3.1. To achieve this, we compare DT with prior offline RL
methods in the context of data corruption. Based on the insights gained from the motivating example,
we then propose enhancements for improving the robustness of DT in Section 3.2.

100% Dataset 10% Dataset
0

20

40

60

N
or

m
al

iz
ed

S
co

re

No Attack

100% Dataset 10% Dataset
0

20

40

60

State Attack

100% Dataset 10% Dataset
0

20

40

60

Action Attack

100% Dataset 10% Dataset
0

20

40

60

Reward Attack

BC RBC CQL UWMSG RIQL DT

Figure 1: Average normalized scores of offline RL algorithms under random data corruption across
three MuJoCo tasks (halfcheetah, walker2d, and hopper) using “medium-replay-v2” datasets. Many
offline RL algorithms experience substantial performance declines when subjected to data corrup-
tion. In contrast, DT demonstrated remarkable robustness, particularly in the 10% data regime.

3.1 MOTIVATING EXAMPLE

As illustrated in Figure 1, we compare DT with various offline RL algorithms under data corruption.
We apply random corruption introduced in Section 2 on states, actions, and rewards. Specifically,
we perturb 30% of the transitions in the dataset and introduce random noise at a scale of 1.0 standard
deviation. In addition to the conventional full dataset setting employed in previous studies (Ye et al.,
2024b; Yang et al., 2024b), we also explore a scenario with a reduced dataset, comprising only 10%

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Robust	Decision	Transformer

+pos +pos +pos +pos +pos +pos +pos +pos +pos

𝑎"!"# 𝑎"! 𝑎"!$#

𝑅$!"# 𝑠̂!"# 𝑎'!"# 𝑅$! 𝑠̂! 𝑎'! 𝑅$!$# 𝑠̂!$# 𝑎'!$#

.

Emb	Dropout

Pos	Emb

Iterative Data	
Correction

𝐿!"#

𝑅$!"# 𝑠̂!"# 𝑎'!"# 𝑅$! 𝑠̂! 𝑎'! 𝑅$!$# 𝑠̂!$# 𝑎'!$#

…

𝑎'!"# 𝑎'! 𝑎'!$#

… …
Offline	Dataset

𝑟̅!"# 𝑟̅! 𝑟̅!$#

𝑟̂!"# 𝑟̂! 𝑟̂!$#

Figure 2: Framework of Robust Decision Transformer (RDT). RDT enhances the robustness of
DT against data corruption by incorporating three components on top of DT: embedding dropout,
Gaussian weighted learning, and iterative data correction.

of the original trajectories. Our results reveal that most offline RL methods are highly vulnerable
to data corruption, particularly in more challenging, limited data settings. In contrast, DT exhibits
remarkable robustness to data corruption, especially in scenarios involving state corruption and lim-
ited dataset conditions. This resilience can be attributed to DT’s formulation based on sequence
modeling and its supervised training paradigm. We will delve deeper into the critical components
affecting DT’s robustness in Appendix D.1.

Overall, the results demonstrate DT can outperform prior imitation-based and temporal difference
based methods without any robustness enhancement. This observation raises an interesting question:

How can we further unleash the potential of sequence modeling in addressing data corruption
with limited dataset in offline RL?

3.2 ROBUST DECISION TRANSFORMER

To improve the robustness of DT against various data corruptions, we draw inspiration from suc-
cesses in the supervised learning domain (Song et al., 2022; Chang et al., 2017; Reed et al., 2014;
Gal & Ghahramani, 2016) to introduce the Robust Decision Transformer (RDT). RDT enhances DT
across three key aspects: model structure, loss function, and data refinement. This is achieved
through the incorporation of three simple yet effective components: embedding dropout (Section
3.2.1), Gaussian weighted learning (Section 3.2.2), and iterative data correction (Section 3.2.3).
These simple modifications are designed to tackle the fundamental limitations of the standard DT
and help unlock the potential of sequence modeling for data corruption. The overall framework is
illustrated in Figure 2. Notably, RDT predicts both actions and rewards (instead of reward-to-gos).
Given the typically high dimensionality of states, we avoid predicting states to mitigate potential
negative impacts as discussed in Appendix D.14. Additionally, rewards provide more direct super-
vision for the policy compared to reward-to-gos, which also depend on future actions.

3.2.1 EMBEDDING DROPOUT

In the context of data corruption, corrupted states, actions, and rewards can introduce shifted inputs
or erroneous features to the model. This can lead to a performance drop if the model overfits these
harmful features. Therefore, developing a robust representation is crucial to enhance the model’s
resilience against data corruption.

Several studies (Carroll et al., 2022; Hu et al., 2023) utilize element-wise masking to learn robust
representations by randomly masking state, return-to-go, or action elements in a trajectory, lever-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
pi

so
de

R
ew

ar
d

×103 walker2d-medium-replay-v2

DT

DT w. raw state dropout 0.1

DT w. state embedding dropout 0.1

DeFog

(a)

0 20 40 60 80 100

Epoch

0

1

2

3

4

L
os

s

walker2d-medium-replay-v2

DT - Loss on Corrupted Data

DT - Loss on Clean Data

DT w. GWL - Loss on Corrupted Data

DT w. GWL - Loss on Clean Data

(b)

0 20 40 60 80 100

Epoch

0.00

0.10

0.20

0.30

0.40

0.50

0.60

M
S

E

MSE between Corrected and Orginal Data

walker2d-medium-replay-v2

kitchen-complete-v0

relocate-expert-v0

(c)

Figure 3: (a) Comparing dropout methods under state attack: Embedding dropout outperforms
directly dropping the entire state (DeFog) or dropping dimensions on the raw state. (b) Gaussian
weighted learning under action attack: Gaussian weighted learning (DT w. GWL) alleviates
overfitting to the corrupted data and slightly minimizes the loss on clean data. (c) Iterative data
correction (DT w. IDC) under action attack: The MSE between corrected and oracle data grad-
ually decreases to near zero.

aging the redundancy in the trajectory’s information. However, we discovered that corrupted
trajectories contain less redundant information. Discarding raw elements directly can lead to
notable information loss, ultimately resulting in decreased performance (see Figure 3(a)). To
address this, we propose randomly dropping dimensions in the feature space rather than masking
raw elements. Specifically, we employ embedding dropout, which encourages the model to learn
more robust embedding representations while preventing overfitting (Merity et al., 2017).

To clarify, we define three hidden embeddings after the linear projection layer as hRt
, hst , and hat

,
formulated as:

hRt
= ϕR(Rt) + ϕt(t), hst = ϕs(st) + ϕt(t), hat

= ϕa(at) + ϕt(t). (3)

Here, ϕR, ϕs, and ϕa denote linear projection layers on different elements, while ϕt(t) represents
the time-step embedding. Subsequently, we apply randomized dimension dropping on these feature
embeddings, resulting in the corresponding masked feature embeddings as follows:

h̃Rt
= M(p)⊙ hRt

, h̃st = M(p)⊙ hst , h̃at
= M(p)⊙ hat

. (4)

The function M(·) takes a probability p ∈ [0, 1] as input and outputs a binary mask with the same
shape as embeddings to determine the dimension inclusion. We apply the same drop probabilities p
within a moderate range (0.1, 0.3) for different element embeddings.

3.2.2 GAUSSIAN WEIGHTED LEARNING

In addition to mitigating the negative impact of erroneous inputs, it is also essential to address the
influence of corrupted labels. In DT, actions serve as the most crucial supervised signals, acting as
the labels. Therefore, erroneous actions can directly influence the model through backpropagation.
In RDT, we predict both actions and rewards, with rewards helping to reduce overfitting to corrupted
action labels. To further diminish the impact of corrupt data, we focus on minimizing the influence
of unconfident action and reward labels that could misguide policy learning.

To identify uncertain labels, we adopt a simple but effective method: we use the value of the sample-
wise loss to adjust the weight for the DT loss. The underlying insight is that a corrupted label
would typically lead to a larger loss (see Figure 3(b)). To softly reduce the effect of potentially
corrupted labels, we use the Gaussian weight, i.e., a weight that decays exponentially in accordance
with the sample’s loss. This is mathematically formulated as:

w(i)
at

= e−βa·δ2at ,w(i)
rt = e−βr·δ2rt , where δat = no grad(∥πθ(τ̂

(i)
t−K+1:t−1, R̂

(i)
t , ŝ

(i)
t)− â

(i)
t ∥2),

δrt = no grad(∥πθ(τ̂
(i)
t−K+1:t−1, R̂

(i)
t , ŝ

(i)
t , â

(i)
t)− r̂

(i)
t ∥2).

(5)
In Eq.5, δat

and δrt represent prediction errors at step t with detached gradients. The variables βa ≥
0, βr ≥ 0 act as the temperature coefficients, providing flexibility to control the “blurring” effect of
the Gaussian weights. Different tasks exhibit preferences for different temperature coefficients, as
demonstrated in Appendix D.3. With a larger value, more samples would be down-weighted. The

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

loss function of RDT is expressed as follows:

LRDT (θ) = Eτ̂(i)∼D

[
1

K

K−1∑
t=0

[
w(i)

at
∥πθ(τ̂

(i)
t−K+1:t−1, R̂

(i)
t , ŝ

(i)
t)− â

(i)
t ∥22

+ w(i)
rt ∥πθ(τ̂

(i)
t−K+1:t−1, R̂

(i)
t , ŝ

(i)
t , â

(i)
t)− r̂

(i)
t ∥22

]]
.

(6)

Gaussian weighted learning enables us to mitigate the detrimental effects of corrupted labels, thereby
enhancing the algorithm’s robustness.

3.2.3 ITERATIVE DATA CORRECTION

While the first two techniques have significantly reduced the impact of corrupted data, these erro-
neous data can still affect the policy as they remain in the datasets. We propose iteratively correcting
corrupted data in the dataset using the model’s predictions to bring the data closer to their true val-
ues in the next iteration. This method can further minimize the detrimental effects of corruption
and can be implemented to correct reward-to-go, state, and action elements. In RDT, it is straight-
forward to correct the actions and rewards in the dataset and recalculate the reward-to-gos using
corrected rewards. Therefore, our implementation focuses on correcting actions and reward-to-gos
in the datasets, leaving better data correction methods for states for future work.

Initially, we store the distribution information of prediction error δ in Eq.5 throughout the learning
phase to preserve the mean µδ and variance σ2

δ of actions and rewards, updating them with every
batch of samples. The hypothesis is that the prediction error δ between predicted and clean labels
should exhibit consistency after sufficient training. Therefore, if erroneous label actions are encoun-
tered, δ will deviate from the mean µδ , behaving like outliers. This deviation essentially enables us
to detect and correct the corrupted data using the information of δ.

Taking actions as an example, to detect corrupted actions, we calculate the z-score, denoted by
z(i) = δ(i)−µδ

σδ
, for each sampled action â(i). If the condition z(i) > ζ ·σδ is met for any given action

â(i), we infer that the action â(i) has been corrupted. We then permanently replace â(i) in the dataset
with the predicted action. This helps eliminate corrupted actions from the dataset (see Figure 3(c)).
Correcting rewards follows a similar process, with the additional step of recalculating the reward-
to-gos. The hyperparameter ζ determines the detection thresholds: a smaller ζ will classify more
samples as corrupted data, while a larger ζ results in fewer modifications to the dataset. Empirically,
we can achieve performance improvement by setting ζ to approximately 5. More implementation
details of RDT can be found in Appendix C.3.

4 EXPERIMENTS

In this section, we conduct a comprehensive empirical evaluation of RDT, focusing on the following
key questions: 1) How does RDT perform under different data corruption scenarios? 2) Is RDT
robust to observation perturbations during the testing phase? 3) What is the contribution of each
component of RDT to its overall performance? 4) How do baselines compare to RDT when equipped
with a transformer backbone?

4.1 EXPERIMENTAL SETUPS

We evaluate RDT using various offline RL benchmarks, such as MuJoCo, KitChen, and Adroit
(Fu et al., 2020). Two types of data corruption during the training phase are simulated: random and
adversarial corruption, attacking states, actions, and rewards. Specifically, the corruption rate is set
to 0.3, and the corruption scale is ϵ = 1.0 for the main results , similar to previous work (Yang et al.,
2024b). Data corruption is introduced in Section 2, and more details can be found in Appendix C.1.
We find that the data corruption problem can be exacerbated when the data is limited. To simulate
such a scenario, we down-sample on both MuJoCo and Adroit tasks, referred to as MuJoCo (10%)
and Adroit (1%), Specifically, we randomly select 10% (and 1%) of the trajectories from MuJoCo
(and Adroit) tasks and conduct data corruption on the sampled data. We do not down-sample the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Detailed comparative results under random data corruption.

Attack Task BC RBC DeFog CQL UWMSG RIQL DT RDT

State

halfcheetah (10%) 1.9±0.2 1.7±0.5 6.7±0.5 9.7±0.8 3.9±0.5 4.4±0.9 6.3±0.4 8.3±1.5
hopper (10%) 16.4±3.7 13.0±2.3 23.1±5.5 2.2±1.5 16.3±7.4 15.5±5.4 36.1±7.6 40.8±3.5
walker2d (10%) 7.5±0.9 10.3±1.4 9.0±3.3 1.2±1.8 -0.4±0.2 9.2±4.4 18.0±2.5 20.3±2.8
kitchen-complete 15.9±5.2 21.1±3.1 37.1±13.4 12.9±4.3 0.0±0.0 37.5±6.4 37.0±6.2 52.8±1.8
kitchen-partial 17.1±2.6 20.2±2.8 9.8±6.6 0.0±0.0 0.0±0.0 25.9±3.4 31.0±8.1 36.8±5.8
kitchen-mixed 17.4±4.9 29.2±5.6 10.6±5.0 0.0±0.0 0.0±0.0 21.6±3.7 31.8±3.4 41.8±4.3
door (1%) 75.7±11.7 73.3±9.2 101.3±1.5 -0.3±0.0 -0.2±0.2 39.0±16.4 94.6±4.2 102.8±2.4
hammer (1%) 90.5±7.8 90.6±3.5 93.0±15.8 0.2±0.0 -0.0±0.1 70.0±12.6 97.8±12.3 113.8±1.6
relocate (1%) 7.2±4.5 12.2±6.8 14.7±3.7 -0.2±0.0 -0.3±0.0 5.2±5.0 61.6±5.6 65.0±6.2
Average 27.2 30.2 33.9 2.8 2.2 25.4 46.0 53.6

Action

halfcheetah (10%) 0.8±0.3 0.7±0.1 10.3±1.8 19.8±5.1 8.0±0.6 2.3±0.6 3.6±0.3 20.4±1.7
hopper (10%) 18.3±2.4 17.7±2.3 32.8±3.9 1.8±0.0 33.0±4.3 26.3±2.8 32.1±6.0 37.6±5.7
walker2d (10%) 5.1±1.4 6.1±3.5 13.9±9.6 3.1±2.4 6.4±0.5 9.8±1.9 22.2±4.0 30.4±2.5
kitchen-complete 3.5±2.0 4.6±1.2 23.0±14.5 12.6±4.2 0.0±0.0 20.1±6.1 12.6±5.2 44.0±3.7
kitchen-partial 29.9±3.0 34.0±3.5 5.9±2.5 5.4±6.3 0.0±0.0 33.4±5.6 26.2±0.8 40.8±3.7
kitchen-mixed 34.9±3.8 39.5±4.5 17.0±7.7 0.0±0.0 0.0±0.0 41.0±10.4 30.4±2.2 44.4±3.7
door (1%) 45.0±15.4 61.4±9.1 100.7±3.1 -0.3±0.1 -0.2±0.1 29.6±29.1 84.3±5.5 103.3±1.0
hammer (1%) 76.4±15.2 67.8±6.9 99.7±17.8 0.2±0.0 0.1±0.1 68.7±29.4 72.0±5.8 116.3±0.8
relocate (1%) 26.0±10.4 44.3±7.4 44.9±2.6 -0.2±0.1 -0.3±0.0 20.4±9.6 63.2±4.4 69.9±9.7
Average 26.6 30.7 38.7 4.7 5.2 28.0 38.5 56.3

Reward

halfcheetah (10%) 2.4±0.2 2.9±0.3 14.3±3.6 30.4±1.9 2.2±0.7 6.1±1.2 9.3±0.9 21.7±4.0
hopper (10%) 19.7±2.8 19.3±2.3 22.8±4.2 1.8±0.0 18.2±2.8 40.2±2.6 36.0±7.4 42.8±3.4
walker2d (10%) 9.7±1.5 8.3±3.8 14.2±2.1 1.2±0.7 7.9±0.8 9.6±2.5 27.4±3.4 30.1±4.5
kitchen-complete 36.0±11.5 38.2±8.4 43.2±5.7 1.4±2.4 0.0±0.0 52.8±6.8 43.9±4.3 65.6±4.4
kitchen-partial 34.1±1.4 39.1±3.2 7.9±6.4 0.0±0.0 0.0±0.0 36.4±2.2 47.1±6.9 51.4±2.0
kitchen-mixed 38.9±1.4 47.1±1.9 14.9±7.2 0.0±0.0 0.0±0.0 49.8±4.3 42.8±1.9 47.8±4.3
door (1%) 76.0±5.9 75.0±3.2 102.3±2.7 -0.3±0.0 -0.2±0.0 56.1±9.5 99.0±2.3 103.7±0.8
hammer (1%) 97.1±8.3 99.0±5.1 101.8±10.2 0.2±0.0 0.4±0.4 52.2±22.7 80.7±11.2 123.8±2.2
relocate (1%) 36.1±8.6 32.2±6.7 53.1±3.1 -0.3±0.1 -0.3±0.0 9.1±5.3 71.8±7.7 84.9±1.6
Average 38.9 40.1 41.6 3.8 3.1 34.7 50.9 63.5

Average over all tasks 31.1 33.7 38.1 3.8 3.5 29.3 45.1 57.8

Kitchen dataset because it already has a limited dataset size. All considered tasks have a similar
dataset size of about 2× 104 transitions.

We compare RDT with several SOTA offline RL algorithms and corruption-robust methods, namely
BC, RBC (Sasaki & Yamashina, 2020), DeFog (Hu et al., 2023), CQL (Kumar et al., 2020),
UWMSG (Ye et al., 2024b), RIQL (Yang et al., 2024b), and DT (Chen et al., 2021). BC and RBC
employ behaviour cloning loss within an MLP-based model for policy learning, while DeFog and
DT utilize a Transformer architecture. We implement RBC with our Gaussian-weighted learning as
an instance of (Sasaki & Yamashina, 2020). In Appendix D.1, we investigate the robustness of DT
across various critical parameters. Drawing from these findings on DT’s robustness, we establish a
default implementation of DT, DeFog, RDT with a sequence length of 20 and a block number of 3.
To ensure the validity of the findings, each experiment is repeated using 4 different random seeds,
and we also report the standard variance over these random seeds.

4.2 EVALUATION UNDER VARIOUS DATA CORRUPTION

Results under Random Corruption. To address the first question, we first evaluate the RDT and
baselines under the random data corruption scenario. The mean of normalized scores across differ-
ent seeds is calculated as the evaluation criterion for each task. As shown in Table 1, RDT demon-
strates superior performance in handling data corruption, achieving the highest score in 24 out of
27 settings. Notably, across all tasks, RDT consistently outperforms DT, with a significant overall
improvement of 28.2%, underscoring its effectiveness in reducing DT’s sensitivity to data corrup-
tion. Moreover, RBC slightly outperforms BC, further highlighting the effectiveness of the Gaussian
weighted learning approach. However, prior offline RL methods, such as RIQL and UWMSG, fail
to yield satisfactory results and even underperform BC, indicating temporal difference methods’
weakness in the limited data domain. We further evaluate RDT under varying corruption scales and
ratios in Appendix D.4, where RDT demonstrates superior robustness compared to other baselines.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Results under adversarial data corruption. Each score is averaged across the task group.

Attack Task BC RBC DeFog CQL UWMSG RIQL DT RDT

State

MuJoCo (10%) 9.9 9.4 12.9 4.2 9.0 11.0 21.9 23.6
KitChen 23.4 28.9 20.0 2.2 0.0 40.4 37.9 49.1
Adroit (1%) 60.2 53.6 75.6 -0.1 -0.1 44.5 85.3 95.4
Average 31.2 30.6 36.2 2.1 2.9 32.0 48.4 56.0

Action

MuJoCo (10%) 4.2 4.3 10.3 7.3 16.9 7.1 13.4 21.6
KitChen 6.2 11.5 3.9 0.9 0.0 8.0 5.4 34.0
Adroit (1%) 8.4 20.7 51.8 -0.1 -0.1 42.4 47.4 80.3
Average 6.3 12.2 22.0 2.7 5.6 19.2 22.1 45.3

Reward

MuJoCo (10%) 10.6 10.2 11.5 11.8 15.2 18.3 25.2 31.9
KitChen 36.3 41.5 20.3 1.1 9.7 45.9 48.1 56.0
Adroit (1%) 69.7 68.7 80.8 -0.1 0.0 53.6 90.9 96.5
Average 38.9 40.1 37.6 4.3 -0.1 39.2 54.7 61.5

Average over all tasks 25.5 27.7 31.9 3.0 4.4 30.1 41.7 54.3

Results under Adversarial Corruption. We further extend the analysis to examine the robustness
of the RDT under an adversarial data corruption scenario. As illustrated in Table 2, we calculate the
mean score across the task group. RDT consistently demonstrates robust performance, achieving the
highest average scores under various attacked elements. Notably, RDT improves the average score
by 105% compared to DT in the adversarial action corruption scenario. Intriguingly, temporal-
difference methods like CQL and UWMSG perform significantly worse than both BC and sequence
modeling methods such as DT and DeFog, underscoring the potential of sequence modeling ap-
proaches. Detailed results for each task are provided in Appendix D for comprehensive analysis.

Results under Mixed Corruption. To present a more challenging scenario for assessing the ro-
bustness of RDT, we conduct experiments under mixed data corruption settings. In this setting, all
three elements (states, actions, and rewards) are corrupted at a rate of 0.3 and a scale of 1.0. As
shown in Figure 4, RDT consistently outperforms other baselines across all tasks, highlighting its
superior stability even when faced with simultaneous and diverse data corruptions. Notably, in the
challenging Kitchen and Adroit tasks with mixed adversarial settings, RDT surpasses DT and RIQL
by an impressive margin of approximately 100%.

MuJoCo(10%) Kitchen Adroit(1%)
0

20

40

60

80

N
or

m
al

iz
ed

S
co

re

(a) Mixed Random Acttack
MuJoCo(10%) Kitchen Adroit(1%)

0

20

40

60

80

(b) Mixed Adversarial Attack

BC UWMSG RIQL DT RDT

Figure 4: Results under (a) mixed random corruption and (b) mixed adversarial corruption.

4.3 EVALUATION UNDER OBSERVATION PERTURBATION DURING THE TESTING PHASE

We investigate the robustness of RDT when deployed in perturbed environments after being trained
on corrupted data, a challenging setting that includes both training-time and testing-time attacks.
To address this, we evaluate RDT under two types of observation perturbations during the testing
phase: Random and Action Diff, following prior works (Yang et al., 2022a; Zhang et al., 2020).
Among these, Action Diff involves sampling multiple random noises to maximize the impact on the
difference in policy output. The perturbation scale is used to control the extent of influence on the
observation. Details of observation perturbations are provided in Appendix C.2.

The comparison results are presented in Figure 14, where all algorithms are trained on the offline
dataset with mixed random corruption and evaluated under observation perturbation. These results

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.0 0.1 0.3 0.5

Perturbation Scale

0

10

20

30

40

N
or

m
al

iz
ed

S
co

re

KitChen

0.0 0.1 0.3 0.5

Perturbation Scale

0

20

40

60

80

Adroit(1%)

RORL RIQL DT RDT

(a) Random observation perturbation.

0.0 0.1 0.3 0.5

Perturbation Scale

0

10

20

30

40

N
or

m
al

iz
ed

S
co

re

KitChen

0.0 0.1 0.3 0.5

Perturbation Scale

0

20

40

60

80

Adroit(1%)

RORL RIQL DT RDT

(b) Action Diff observation perturbation.

Figure 5: Performance under various observation perturbation scales during the testing phase. All
the algorithms are trained under mixed random corruption during the training phase.

demonstrate the superior robustness of RDT under the two types of observation perturbations, main-
taining stability even at a high perturbation scale of 0.5. Notably, RORL (Yang et al., 2022a), a SOTA
offline RL method designed to tackle testing-time observation perturbation, fails on these tasks due
to data corruption. Additionally, DT and RIQL experience significant performance drops as the per-
turbation scale increases. Additional results comparing algorithms trained on offline datasets with
corrupted states, actions, or rewards can be found in Appendix D.8.

4.4 ABLATION STUDY

We conduct comprehensive ablation studies to analyze the impact of each component on RDT’s ro-
bustness. For evaluation, we use the “walker2d-medium-replay”, “kitchen-compete”, and “relocate-
expert” datasets. Specifically, we compare several variants of RDT: (1) DT(RP), which incorporates
reward prediction in addition to the original DT; (2) DT(RP) w. ED, which adds embedding dropout
to DT(RP); (3) DT(RP) w. GWL, which applies Gaussian weighted learning on top of DT(RP); and
(4) DT(RP) w. IDC, which integrates only the iterative data correction method.

We evaluate the performance of these variants under different data corruption scenarios, as depicted
in Figure 6. In summary, all variants demonstrate improvements over DT(RP), proving the effec-
tiveness of the individual components. Notably, Gaussian weighted learning appears to provide the
most significant contribution, particularly under reward attack. However, it is important to note
that none of these tailored models outperform RDT, indicating that the integration of all proposed
techniques is crucial for achieving optimal robustness. Additionally, while reward prediction could
potentially lead to performance drops under reward attacks, it brings obvious improvements under
action and state attacks for specific tasks. More ablation results on reward prediction are provided
in Appendix D.2.

walker2d kitchen-complete relocate
0

20

40

60

N
or

m
al

iz
ed

S
co

re

State Attack

walker2d kitchen-complete relocate
0

20

40

60

80

Action Attack

walker2d kitchen-complete relocate
0

20

40

60

80

Reward Attack

DT DT(RP) DT(RP) w. ED DT(RP) w. GWL DT(RP) w. IDC RDT

Figure 6: Ablation study on the impact of different proposed components of RDT.

4.5 IMPACT OF TRANSFORMER BACKBONE ON BASELINES

To study the impact of the transformer backbone on baselines, we adapted temporal difference learn-
ing baselines such as UWMSG and RIQL by incorporating the same transformer backbone used in
DT and RDT. Specifically, we modified UWMSG and RIQL by equipping their policy networks with
the transformer backbone while keeping the value networks unchanged. These modified algorithms
are referred to as UWMSG w. TB and RIQL w. TB.

As shown in Figure 7, while the transformer backbone does not improve UWMSG, it significantly
enhances RIQL’s overall performance, particularly in the challenging Adroit task. The ineffective-
ness of the sequence model on UWMSG is likely due to the inherent difficulties of Q-value learning.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

walker2d kitchen-complete relocate
0

20

40

60

80

N
or

m
al

iz
ed

S
co

re

State Attack

walker2d kitchen-complete relocate
0

20

40

60

80

Action Attack

walker2d kitchen-complete relocate
0

20

40

60

80

Reward Attack

UWMSG UWMSG w. TB RIQL RIQL w. TB DT RDT

Figure 7: Ablation study on the impact of transformer backbone on baselines.

These comparative results suggest that merely adopting a transformer structure does not directly en-
able these baselines to outperform RDT; in some cases, it may even decrease performance.

5 RELATED WORK

Robust Offline RL. Several works have focused on testing-time robustness against environment
shifts (Shi & Chi, 2022; Yang et al., 2022a; Panaganti et al., 2022; YANG & Xu, 2024). Regarding
training-time robustness, Li et al. (2023) explores various types of reward attacks in offline RL and
finds that certain biases can inadvertently enhance the robustness of offline RL methods to reward
corruption. From a theoretical perspective, Zhang et al. (2022) propose a robust offline RL algo-
rithm utilizing robust supervised learning oracles. Ye et al. (2024b) employ uncertainty weighting to
address reward and dynamics corruption, providing theoretical guarantees. Ackermann et al. (2024)
investigates a similar setting, focusing on trajectory-level non-stationarity in both rewards and dy-
namics. The most relevant research by Yang et al. (2024b) employs the Huber loss to handle heavy-
tailedness and utilizes quantile estimators to balance penalization for corrupted data. Mandal et al.
(2024); Liang et al. (2024) enhance the resilience of offline algorithms within the RLHF framework.
It is important to note that these studies primarily focus on enhancing temporal difference methods,
with no emphasis on leveraging sequence modeling techniques to tackle data corruption.

Transformers for RL. Recent research has redefined offline RL decision-making as a sequence
modeling problem using Transformer architectures (Chen et al., 2021; Janner et al., 2021). Unlike
traditional RL methods, these studies treat RL as a supervised learning task at a trajectory level.
A seminal work, Decision Transformer (DT) (Chen et al., 2021), uses trajectory sequences to pre-
dict subsequent actions. Trajectory Transformer (Janner et al., 2021) discretizes input sequences
into tokens and employs beam search to predict the next action. These efforts have led to subse-
quent advancements. For instance, Prompt DT (Xu et al., 2022) integrates demonstrations for better
generalization, while Xie et al. (2023) introduces pre-training with future trajectory information.
Q-learning DT (Yamagata et al., 2023) refines the return-to-go using Q-values, while the Agentic
Transformer (Liu & Abbeel, 2023) employs hindsight to relabel target returns. Additionally, several
other works (Hu et al., 2024; Zhuang et al., 2024) utilize learned value functions to improve policy
optimization. LaMo (Shi et al., 2023) leverages pre-trained language models for offline RL, and De-
Fog (Hu et al., 2022) addresses robustness in specific frame-dropping scenarios. Our work deviates
from these approaches by focusing on improving robustness against data corruption in offline RL.

6 CONCLUSION

In this study, we investigate the robustness of offline RL algorithms under various data corruption
scenarios, with a specific focus on sequence modeling methods. Our empirical evidence suggests
that current offline RL algorithms based on temporal difference learning are significantly suscepti-
ble to data corruption, especially in scenarios with limited data. To address this issue, we introduce
the Robust Decision Transformer (RDT), a novel robust offline RL algorithm developed from the
perspective of sequence modeling. Our comprehensive experiments highlight RDT’s excellent ro-
bustness against various types of data corruption. Furthermore, we demonstrate RDT’s superiority in
handling both training-time and testing-time attacks. We hope that our findings will inspire further
research into using sequence modeling methods to address data corruption challenges in increasingly
complex and realistic scenarios.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Ethics Statement: This research was conducted in compliance with all applicable ethical guide-
lines and institutional regulations. Since the study did not involve human participants, animals, or
sensitive data, no specific ethical approvals were required. All data used in this research were ob-
tained from publicly available sources, ensuring full transparency and reproducibility of the results.

Reproducibility Statement: We have taken several measures to ensure the reproducibility
of our results. All datasets used in our experiments are publicly available and can be ac-
cessed through https://github.com/Farama-Foundation/D4RL. The implementa-
tion of all baselines and RDT is based on the codebase available at https://github.com/
tinkoff-ai/CORL. Detailed instructions for setting up the environment and running the ex-
periments are provided in Appendix C. Our implementation code is available at https://
anonymous.4open.science/r/RobustDecisionTransformer-755B. We encour-
age researchers to refer to Appendix C for more detailed information.

11

https://github.com/Farama-Foundation/D4RL
https://github.com/tinkoff-ai/CORL
https://github.com/tinkoff-ai/CORL
https://anonymous.4open.science/r/RobustDecisionTransformer-755B
https://anonymous.4open.science/r/RobustDecisionTransformer-755B

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

REFERENCES

Johannes Ackermann, Takayuki Osa, and Masashi Sugiyama. Offline reinforcement learning from
datasets with structured non-stationarity. arXiv preprint arXiv:2405.14114, 2024.

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline re-
inforcement learning with diversified q-ensemble. Advances in neural information processing
systems, 34:7436–7447, 2021.

Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhihong Deng, Animesh Garg, Peng Liu, and Zhaoran
Wang. Pessimistic bootstrapping for uncertainty-driven offline reinforcement learning. arXiv
preprint arXiv:2202.11566, 2022.

Prajjwal Bhargava, Rohan Chitnis, Alborz Geramifard, Shagun Sodhani, and Amy Zhang. Se-
quence modeling is a robust contender for offline reinforcement learning. arXiv preprint
arXiv:2305.14550, 2023.

Micah Carroll, Orr Paradise, Jessy Lin, Raluca Georgescu, Mingfei Sun, David Bignell, Stephanie
Milani, Katja Hofmann, Matthew Hausknecht, Anca Dragan, et al. Uni [mask]: Unified inference
in sequential decision problems. Advances in neural information processing systems, 35:35365–
35378, 2022.

Haw-Shiuan Chang, Erik Learned-Miller, and Andrew McCallum. Active bias: Training more
accurate neural networks by emphasizing high variance samples. Advances in Neural Information
Processing Systems, 30, 2017.

Yevgen Chebotar, Quan Vuong, Alex Irpan, Karol Hausman, Fei Xia, Yao Lu, Aviral Kumar, Tianhe
Yu, Alexander Herzog, Karl Pertsch, et al. Q-transformer: Scalable offline reinforcement learning
via autoregressive q-functions. arXiv preprint arXiv:2309.10150, 2023.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Yiding Chen, Xuezhou Zhang, Qiaomin Xie, and Xiaojin Zhu. Exact policy recovery in offline rl
with both heavy-tailed rewards and data corruption. 2024.

Scott Emmons, Benjamin Eysenbach, Ilya Kostrikov, and Sergey Levine. Rvs: What is essential for
offline rl via supervised learning? arXiv preprint arXiv:2112.10751, 2021.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pp. 2052–2062. PMLR, 2019.

Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of dropout in recurrent
neural networks. Advances in neural information processing systems, 29, 2016.

Kamyar Ghasemipour, Shixiang Shane Gu, and Ofir Nachum. Why so pessimistic? estimating
uncertainties for offline rl through ensembles, and why their independence matters. Advances in
Neural Information Processing Systems, 35:18267–18281, 2022.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
Idql: Implicit q-learning as an actor-critic method with diffusion policies. arXiv preprint
arXiv:2304.10573, 2023.

Kaizhe Hu, Ray Chen Zheng, Yang Gao, and Huazhe Xu. Decision transformer under random frame
dropping. In The Eleventh International Conference on Learning Representations, 2022.

Kaizhe Hu, Ray Chen Zheng, Yang Gao, and Huazhe Xu. Decision transformer under random frame
dropping. arXiv preprint arXiv:2303.03391, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Shengchao Hu, Ziqing Fan, Chaoqin Huang, Li Shen, Ya Zhang, Yanfeng Wang, and Dacheng
Tao. Q-value regularized transformer for offline reinforcement learning. arXiv preprint
arXiv:2405.17098, 2024.

Longyang Huang, Botao Dong, Wei Xie, and Weidong Zhang. Offline reinforcement learning with
behavior value regularization. IEEE Transactions on Cybernetics, 2024.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34:1273–1286, 2021.

Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In International Conference on Machine Learning, pp. 9902–9915.
PMLR, 2022.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. arXiv preprint arXiv:2110.06169, 2021.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191,
2020.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Anqi Li, Dipendra Misra, Andrey Kolobov, and Ching-An Cheng. Survival instinct in offline rein-
forcement learning. arXiv preprint arXiv:2306.03286, 2023.

Lanqing Li, Rui Yang, and Dijun Luo. Focal: Efficient fully-offline meta-reinforcement learning via
distance metric learning and behavior regularization. arXiv preprint arXiv:2010.01112, 2020.

Xize Liang, Chao Chen, Shuang Qiu, Jie Wang, Yue Wu, Zhihang Fu, Zhihao Shi, Feng Wu,
and Jieping Ye. Ropo: Robust preference optimization for large language models, 2024. URL
https://arxiv.org/abs/2404.04102.

Hao Liu and Pieter Abbeel. Emergent agentic transformer from chain of hindsight experience. In
International Conference on Machine Learning, pp. 21362–21374. PMLR, 2023.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Debmalya Mandal, Andi Nika, Parameswaran Kamalaruban, Adish Singla, and Goran Radanović.
Corruption robust offline reinforcement learning with human feedback. arXiv preprint
arXiv:2402.06734, 2024.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing lstm lan-
guage models. arXiv preprint arXiv:1708.02182, 2017.

Alexander Nikulin, Vladislav Kurenkov, Denis Tarasov, and Sergey Kolesnikov. Anti-exploration
by random network distillation. arXiv preprint arXiv:2301.13616, 2023.

Kishan Panaganti, Zaiyan Xu, Dileep Kalathil, and Mohammad Ghavamzadeh. Robust reinforce-
ment learning using offline data. Advances in neural information processing systems, 35:32211–
32224, 2022.

Seohong Park, Dibya Ghosh, Benjamin Eysenbach, and Sergey Levine. Hiql: Offline goal-
conditioned rl with latent states as actions. Advances in Neural Information Processing Systems,
36, 2024.

Rong-Jun Qin, Xingyuan Zhang, Songyi Gao, Xiong-Hui Chen, Zewen Li, Weinan Zhang, and Yang
Yu. Neorl: A near real-world benchmark for offline reinforcement learning. Advances in Neural
Information Processing Systems, 35:24753–24765, 2022.

13

https://arxiv.org/abs/2404.04102

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Scott Reed, Honglak Lee, Dragomir Anguelov, Christian Szegedy, Dumitru Erhan, and Andrew
Rabinovich. Training deep neural networks on noisy labels with bootstrapping. arXiv preprint
arXiv:1412.6596, 2014.

Fumihiro Sasaki and Ryota Yamashina. Behavioral cloning from noisy demonstrations. In Interna-
tional Conference on Learning Representations, 2020.

Laixi Shi and Yuejie Chi. Distributionally robust model-based offline reinforcement learning with
near-optimal sample complexity. arXiv preprint arXiv:2208.05767, 2022.

Ruizhe Shi, Yuyao Liu, Yanjie Ze, Simon Shaolei Du, and Huazhe Xu. Unleashing the power
of pre-trained language models for offline reinforcement learning. In The Twelfth International
Conference on Learning Representations, 2023.

Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin, and Jae-Gil Lee. Learning from noisy
labels with deep neural networks: A survey. IEEE Transactions on Neural Networks and Learning
Systems, 2022.

Hao Sun, Lei Han, Rui Yang, Xiaoteng Ma, Jian Guo, and Bolei Zhou. Exploit reward shifting
in value-based deep-rl: Optimistic curiosity-based exploration and conservative exploitation via
linear reward shaping. Advances in Neural Information Processing Systems, 35:37719–37734,
2022.

Hao Sun, Alihan Hüyük, Daniel Jarrett, and Mihaela van der Schaar. Accountability in offline
reinforcement learning: Explaining decisions with a corpus of examples. Advances in Neural
Information Processing Systems, 36, 2024.

Quan Vuong, Aviral Kumar, Sergey Levine, and Yevgen Chebotar. Dasco: Dual-generator ad-
versarial support constrained offline reinforcement learning. Advances in Neural Information
Processing Systems, 35:38937–38949, 2022.

Mianchu Wang, Rui Yang, Xi Chen, and Meng Fang. Goplan: Goal-conditioned offline reinforce-
ment learning by planning with learned models. arXiv preprint arXiv:2310.20025, 2023.

Qing Wang, Jiechao Xiong, Lei Han, Han Liu, Tong Zhang, et al. Exponentially weighted imitation
learning for batched historical data. Advances in Neural Information Processing Systems, 31,
2018.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. arXiv preprint arXiv:2208.06193, 2022.

Fan Wu, Linyi Li, Chejian Xu, Huan Zhang, Bhavya Kailkhura, Krishnaram Kenthapadi, Ding Zhao,
and Bo Li. Copa: Certifying robust policies for offline reinforcement learning against poisoning
attacks. In International Conference on Learning Representations, 2022.

Yueh-Hua Wu, Xiaolong Wang, and Masashi Hamaya. Elastic decision transformer. Advances in
Neural Information Processing Systems, 36, 2024.

Zhihui Xie, Zichuan Lin, Deheng Ye, Qiang Fu, Yang Wei, and Shuai Li. Future-conditioned unsu-
pervised pretraining for decision transformer. In International Conference on Machine Learning,
pp. 38187–38203. PMLR, 2023.

Haoran Xu, Li Jiang, Jianxiong Li, Zhuoran Yang, Zhaoran Wang, Victor Wai Kin Chan, and Xi-
anyuan Zhan. Offline rl with no ood actions: In-sample learning via implicit value regularization.
arXiv preprint arXiv:2303.15810, 2023.

Mengdi Xu, Yikang Shen, Shun Zhang, Yuchen Lu, Ding Zhao, Joshua Tenenbaum, and Chuang
Gan. Prompting decision transformer for few-shot policy generalization. In international confer-
ence on machine learning, pp. 24631–24645. PMLR, 2022.

Taku Yamagata, Ahmed Khalil, and Raul Santos-Rodriguez. Q-learning decision transformer:
Leveraging dynamic programming for conditional sequence modelling in offline rl. In Inter-
national Conference on Machine Learning, pp. 38989–39007. PMLR, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Rui Yang, Chenjia Bai, Xiaoteng Ma, Zhaoran Wang, Chongjie Zhang, and Lei Han. Rorl: Ro-
bust offline reinforcement learning via conservative smoothing. Advances in Neural Information
Processing Systems, 35:23851–23866, 2022a.

Rui Yang, Yiming Lu, Wenzhe Li, Hao Sun, Meng Fang, Yali Du, Xiu Li, Lei Han, and Chongjie
Zhang. Rethinking goal-conditioned supervised learning and its connection to offline rl. In Inter-
national Conference on Learning Representations, 2022b.

Rui Yang, Lin Yong, Xiaoteng Ma, Hao Hu, Chongjie Zhang, and Tong Zhang. What is essential
for unseen goal generalization of offline goal-conditioned rl? In International Conference on
Machine Learning, pp. 39543–39571. PMLR, 2023.

Rui Yang, Ruomeng Ding, Yong Lin, Huan Zhang, and Tong Zhang. Regularizing hidden states
enables learning generalizable reward model for llms. arXiv preprint arXiv:2406.10216, 2024a.

Rui Yang, Han Zhong, Jiawei Xu, Amy Zhang, Chongjie Zhang, Lei Han, and Tong Zhang. Towards
robust offline reinforcement learning under diverse data corruption. In The Twelfth International
Conference on Learning Representations, 2024b.

Zhihe YANG and Yunjian Xu. DMBP: Diffusion model-based predictor for robust offline rein-
forcement learning against state observation perturbations. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
ZULjcYLWKe.

Chenlu Ye, Jiafan He, Quanquan Gu, and Tong Zhang. Towards robust model-based reinforcement
learning against adversarial corruption. arXiv preprint arXiv:2402.08991, 2024a.

Chenlu Ye, Rui Yang, Quanquan Gu, and Tong Zhang. Corruption-robust offline reinforcement
learning with general function approximation. Advances in Neural Information Processing Sys-
tems, 36, 2024b.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information
Processing Systems, 33:14129–14142, 2020.

Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Mingyan Liu, Duane Boning, and Cho-Jui Hsieh.
Robust deep reinforcement learning against adversarial perturbations on state observations. Ad-
vances in Neural Information Processing Systems, 33:21024–21037, 2020.

Huan Zhang, Hongge Chen, Duane Boning, and Cho-Jui Hsieh. Robust reinforcement learning on
state observations with learned optimal adversary. arXiv preprint arXiv:2101.08452, 2021.

Xuezhou Zhang, Yiding Chen, Xiaojin Zhu, and Wen Sun. Corruption-robust offline reinforcement
learning. In International Conference on Artificial Intelligence and Statistics, pp. 5757–5773.
PMLR, 2022.

Zifeng Zhuang, Dengyun Peng, Ziqi Zhang, Donglin Wang, et al. Reinformer: Max-return sequence
modeling for offline rl. arXiv preprint arXiv:2405.08740, 2024.

15

https://openreview.net/forum?id=ZULjcYLWKe
https://openreview.net/forum?id=ZULjcYLWKe

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

CONTENTS

1 Introduction 1

2 Preliminaries 2

3 Sequence Modeling for Offline RL with Data Corruption 3

3.1 Motivating Example . 3

3.2 Robust Decision Transformer . 4

3.2.1 Embedding Dropout . 4

3.2.2 Gaussian Weighted Learning . 5

3.2.3 Iterative Data Correction . 6

4 Experiments 6

4.1 Experimental Setups . 6

4.2 Evaluation under Various Data Corruption . 7

4.3 Evaluation under Observation Perturbation during the Testing Phase 8

4.4 Ablation Study . 9

4.5 Impact of Transformer Backbone on Baselines . 9

5 Related Work 10

6 Conclusion 10

A Algorithm Pseudocode 18

B Additional Related Works 18

C Implementation Details 18

C.1 Data Corruption Details during Training Phase . 18

C.2 Observation Perturbation Details during the Testing Phase 19

C.3 Implementation Details of RDT . 19

D Additional Experiments 20

D.1 Impact of Decision Transformer’s Hyperparameters . 20

D.2 Ablation Study on Reward Prediction . 21

D.3 Ablation Study on Hyperparameters of RDT . 21

D.4 Varying Corruption Rates and Scales . 22

D.5 Training Time . 22

D.6 Detailed Results for the Experiments on Adversarial Attack 23

D.7 Comparison Results on MuJoCo Tasks with Full Dataset . 24

D.8 Additional Results under Observation Perturbation during Testing Phase 25

D.9 Additional Ablation Study on Three Robust Techniques . 26

D.10 Evaluation under Various Dataset Scales . 26

D.11 Performance under MuJoCo Dataset with Different Quality Levels 27

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

D.12 Performance under NeoRL Dataset . 27

D.13 Additional Evaluation on Iterative Data Correction . 28

D.14 Discussion on State Prediction and Correction . 28

D.15 Motivating Example under Different Data Corruption . 29

E Limitation and Discussion 29

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A ALGORITHM PSEUDOCODE

To provide an overview and better understanding, we detail the implementation of the Robust Deci-
sion Transformer (RDT) in Algorithm 1.

Algorithm 1 Robust Decision Transformer (RDT)

Require: Offline dataset D, sequence model πθ, initialed mean µδ and variance σ2
δ .

1: for training step= 1, 2, . . . , T do
2: Extract batch τt:t+K−1 from the offline dataset D.
3: Update sequence model πθ based on Eq. 6.
4: Compute prediction errors δat

and δrt in batch data.
5: Update corresponding mean µδ and variance σ2

δ .
6: end for
7: if correction phase begins then
8: Evaluate the z-score to identify the corrupted action â

(i)
t and reward r̂

(i)
t .

9: Substitute actions and rewards with the predicted actions and rewards in dataset D.
10: end if

B ADDITIONAL RELATED WORKS

Offline RL. Maintaining proximity between the policy and data distribution is essential in offline
RL, as distributional shifts can lead to erroneous estimations (Levine et al., 2020). To counter this,
offline RL algorithms are primarily divided into two categories. The first category focuses on policy
constraints on the learned policy (Wang et al., 2018; Fujimoto et al., 2019; Li et al., 2020; Fujimoto
& Gu, 2021; Kostrikov et al., 2021; Emmons et al., 2021; Yang et al., 2022b; 2023; Sun et al.,
2024; Xu et al., 2023; Park et al., 2024). The other category learns pessimistic value functions
to penalize OOD actions (Kumar et al., 2020; Yu et al., 2020; An et al., 2021; Bai et al., 2022;
Yang et al., 2022a; Ghasemipour et al., 2022; Sun et al., 2022; Nikulin et al., 2023; Huang et al.,
2024). To enhance the potential of offline RL in handling more complex tasks, recent research
has integrated advanced techniques like GAN (Vuong et al., 2022; Wang et al., 2023), transformers
(Chen et al., 2021; Chebotar et al., 2023; Yamagata et al., 2023) and diffusion models (Janner et al.,
2022; Hansen-Estruch et al., 2023; Wang et al., 2022).

C IMPLEMENTATION DETAILS

C.1 DATA CORRUPTION DETAILS DURING TRAINING PHASE

Our study utilizes both random and adversarial corruption across three elements: states, actions,
and rewards. We consider a range of tasks including MuJoCo, Kitchen, and Adroit. Particularly,
we utilize the “medium-replay-v2” datasets in the MuJoCo tasks with sampling ratios of 10%, the
“expert-v0” datasets in the Adroit tasks with a sampling ratio of 1%, and we employ full datasets
for the tasks in the Kitchen due to their already limited data size. These datasets (Fu et al., 2020) are
collected either during the training process of an SAC agent or from expert demonstrations, thereby
providing highly diverse and representative tasks of the real world. To control the overall level of
corruption within the datasets, we introduce two parameters c and ϵ following previous work (Ye
et al., 2024b; Yang et al., 2024b). The parameter c signifies the rate of corrupted data within a
dataset, whilst ϵ represents the scale of corruption observed across each dimension. We outline
three types of random data corruption and present a comprehensive overview of a mixed corruption
approach as follows. Note that in our setting, only three independent elements (i.e., states, actions,
and rewards) are considered under the trajectory-based storage approach.

• Random state attack: We randomly sample c · N · T states from all trajectories, where
N refer to the number of trajectories and T represents the number of steps in a trajectory.
We then modify the selected state to ŝ = s + λ · std(s), λ ∼ Uniform[−ϵ, ϵ]ds . Here, ds
represents the dimension of states, and “std(s)” is the ds-dimensional standard deviation of

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

all states in the offline dataset. The noise is scaled according to the standard deviation of
each dimension and is independently added to each respective dimension.

• Random action attack: We randomly select c · N · T actions from all given trajectories,
and modify the action to â = a+λ · std(a), λ ∼ Uniform[−ϵ, ϵ]da , where da represents the
dimension of actions and “std(a)” is the da-dimensional standard deviation of all actions
in the offline dataset.

• Random reward attack: We randomly sample c ·N ·T rewards from all given trajectories,
and modify the reward to r̂ ∼ Uniform[−30 · ϵ, 30 · ϵ]. We multiply by 30 because we
have noticed that offline RL algorithms tend to be resilient to small-scale random reward
corruption (also observed in Li et al. (2023)), but would fail when faced with large-scale
random reward corruption.

In addition, three types of adversarial data corruption are detailed as follows:

• Adversarial state attack: We first pretrain IQL agents with a Q function Qp and policy
function πp on clean datasets. Then, we randomly sample c ·N ·T states, and modify them
to ŝ = minŝ∈Bd(s,ϵ) Qp(ŝ, a). Here, Bd(s, ϵ) = {ŝ||ŝ − s| ≤ ϵ · std(s)} regularizes the
maximum difference for each state dimension. The optimization is implemented through
Projected Gradient Descent similar to prior works (Madry et al., 2017; Zhang et al., 2020;
Yang et al., 2024b). Specifically, We first initialize a learnable vector z ∈ [−ϵ, ϵ]ds , and
then conduct a 100-step gradient descent with a step size of 0.01 for ŝ = s+ z · std(s), and
clip each dimension of z within the range [−ϵ, ϵ] after each update.

• Adversarial action attack: We use the pretrained IQL agent with a Q function Qp and
a policy function πp. Then, we randomly sample c · N · T actions, and modify them to
â = minâ∈Bd(a,ϵ) Qp(s, â). Here, Bd(a, ϵ) = {â||â − a| ≤ ϵ · std(a)} regularizes the
maximum difference for each action dimension. The optimization is implemented through
Projected Gradient Descent, as discussed above.

• Adversarial reward attack: We randomly sample c ·N · T rewards, and directly modify
them to: r̂ = −ϵ× r.

C.2 OBSERVATION PERTURBATION DETAILS DURING THE TESTING PHASE

We evaluate RDT and other baselines under two types of observation perturbations during the testing
phase: Random and Action Diff perturbations, as described in prior works (Yang et al., 2022a;
Zhang et al., 2020). Generally, offline RL algorithms are sensitive to observation perturbations,
often resulting in a significant performance drop. The detailed implementations are as follows:

• Random: We sample perturbed states within an l∞ ball of norm ϵ centering at the original
state. Specifically, we create the perturbation set Bd(s, ϵ) = {ŝ : d(s, ŝ) ≤ ϵ} for state s,
where d(·) is the l∞ norm, and sample one perturbed state to return to the agent.

• Action Diff: This is an adversarial attack based on a pretrained IQL deterministic policy
µ(s). We first sample 50 perturbed states within an l∞ ball of norm ϵ and then find the one
that maximizes the difference in actions: maxŝ∈Bd(s,ϵ) ||µ(s)− µ(ŝ)||2.

The parameter ϵ controls the scale of observation perturbations. We consider {0.0, 0.1, 0.3, 0.5} for
ϵ in our experiments. In this setup, we first train offline RL algorithms under various data corruption
settings, and then evaluate their performance in environments with observation perturbations.

C.3 IMPLEMENTATION DETAILS OF RDT

We implement RDT and other baselines using the existing code base1. Specifically. we build the
network with 3 Transformer blocks, incorporating one MLP embedding layer for each key element:
state, action, and return-to-go. We update the neural network using the AdamW optimizer, with a
learning rate set at 1 × 10−4 and a weight decay of 1 × 10−4. The batch size is set to 64, with a
sequence length of 20, to ensure effective and efficient training. To maintain stability during train-
ing, we adopt the state normalization as in Yang et al. (2024b). During the training phase, we train

1https://github.com/tinkoff-ai/CORL

19

https://github.com/tinkoff-ai/CORL

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

DeFog, DT and RDT for 100 epochs and other baselines with 1000 epochs. Each epoch is charac-
terized by 1000 gradient steps. For evaluative purposes, we rollout each agent in environment across
10 trajectories, each with a maximum length of 1000, and we average the returns from these rollouts
for comparison. We ensure the consistency and reliability of our reported results by averaging them
over 4 unique random seeds. All experiments are conducted on P40 GPUs.

As for the hyperparameters of RDT, we configure the values for the embedding dropout probability
as p, Gaussian Weighted coefficient βa and βr, and iterative data correction threshold ζ through the
sweeping mechanism. We start the iterative data correction at the 50th epoch for all tasks. We use
iterative action correction exclusively for action corruption and iterative reward correction exclu-
sively for reward corruption; therefore, only a single ζ value is shown in Table 3. It’s noteworthy
that we do not conduct a hyperparameter search for individual datasets; instead, we select
hyperparameters that apply to the entire task group. As such, RDT doesn’t require extensive
hyperparameter tuning as previous methods. The exact hyperparameters used for the random corrup-
tion experiment are detailed in Table 3. We employ almost same hyperparameters for the adversarial
corruption experiment, further attesting to the robustness and stability of RDT.

Table 3: Hyperparameters used for RDT under the random corruption.

Tasks Attack Element p (βa, βr) ζ

MuJoCo (10%)
state 0.2 (1.0, 1.0) −
action 0.2 (1.0, 1.0) 6.0
reward 0.2 (1.0, 1.0) 6.0

Kitchen
state 0.1 (30.0, 30.0) −
action 0.1 (30.0, 30.0) 5.0
reward 0.1 (30.0, 30.0) 6.0

Adroit (1%)
state 0.1 (0.1, 0.0) −
action 0.1 (10.0, 0.0) 6.0
reward 0.1 (0.1, 0.1) 6.0

D ADDITIONAL EXPERIMENTS

To provide a comprehensive understanding of our work, we conduct several additional analyses.
First, we investigate the key hyperparameters that influence the robustness of DT. Next, we discuss
the impact of reward prediction on DT. Following this, we demonstrate how these hyperparameters
affect RDT and assess the robustness of RDT under various scales of data corruption. We then
compare the training time between RDT and baseline models. Finally, we present detailed results of
RDT under both training-time corruption and testing-time perturbation.

D.1 IMPACT OF DECISION TRANSFORMER’S HYPERPARAMETERS

We aim to understand the robustness characteristic of sequence modeling. The key feature of the DT
is its utilization of sequence modeling, with the incorporation of the Transformer model. Therefore,
we identify two crucial factors that may influence the performance of DT in the context of sequence
modeling: the model structure and the input data.

We explore the influence of the model’s structure by modifying the number of Transformer blocks
in DT. As depicted in Figure 8(a), the performance on both MuJoCo and Kitchen tasks consistently
improves with increased number of blocks. Therefore, the enhancement can be partially attributed
to the increased capabilities of the larger model.

We also examine the impact of the inputs for the sequence model. There are two primary differences
between the input of DT and that of conventional BC. DT predicts actions based on historical data
and return-to-go elements, whereas BC relies solely on the current states. To assess the influence
of these factors, we independently evaluate the impact of the length of history and return-to-go
elements. The results in Figure 8(b) and (c) reflect that Kitchen tasks favour longer historical input
and are less reliant on return-to-go elements. Conversely, MuJoCo tasks demonstrated a different
trend. This discrepancy could be due to the sparse reward structure of Kitchen tasks, where return-
to-go elements do not provide sufficient information, leading the agent to rely more heavily on

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

1 2 3
Number of Blocks

10

20

30

40

50

No
rm

al
ize

d
Sc

or
e State Attack

1 2 3
Number of Blocks

10

20

30

40

50 Reward Attack

MuJoCo (10%) Kitchen

(a)

1 2 3 5 10 20
Sequence Length

10

20

30

40

50

No
rm

al
ize

d
Sc

or
e State Attack

1 2 3 5 10 20
Sequence Length

10

20

30

40

50 Reward Attack

MuJoCo (10%) Kitchen

(b)

MuJoCo (10%) Kitchen
0

10

20

30

40

50

No
rm

al
ize

d
Sc

or
e

State Attack

BC DT w/o. Return DT

(c)

Figure 8: Ablation study on the robustness of DT. (a) Analyzing the influence of Transformer block
number while keeping sequence length with 20. (b) The effect of sequence length while maintaining
3 Transformer blocks. (c) Investigation on how the return-to-go impacts DT. We create the variant
DT w/o. Return, which excludes the use of return-to-go as inputs.

historical data for policy learning. In contrast, MuJoCo tasks, with their denser reward structures,
rely more on return-to-go elements for optimal policy learning.

In summary, the robustness of DT can be attributed to the model capacity, history length, and return-
to-go conditioning. Based on these findings on the robustness of DT, we adopt a sequence length
of 20 and a block number of 3 as the default implementation for all sequence modeling methods,
including DT, DeFog, and RDT.

D.2 ABLATION STUDY ON REWARD PREDICTION

The nature of the sequence model allows us to predict not only actions but also other elements, such
as state and return-to-go. Previous studies have shown that predicting these additional elements does
not significantly enhance performance Chen et al. (2021). However, we find that predicting rewards
can provide advantages in the context of data corruption. We introduce DT(RP), a variant of the
original DT, which predicts rewards in addition to actions. As illustrated in Figure 9, predicting
rewards indeed improves performance under random state and action corruption conditions. How-
ever, DT(RP) performs poorly under reward corruption due to the degraded quality of reward labels.
This issue can be mitigated via embedding dropout, Gaussian weighted learning, and iterative data
correction in RDT.

MuJoCo(10%) Kitchen Adroit(1%)
0

20

40

60

80

N
or

m
al

iz
ed

S
co

re

State Attack

MuJoCo(10%) Kitchen Adroit(1%)
0

20

40

60

80

Action Attack

MuJoCo(10%) Kitchen Adroit(1%)
0

20

40

60

80

Reward Attack

DT DT(RP)

Figure 9: Ablation study on the impact of reward prediction.

D.3 ABLATION STUDY ON HYPERPARAMETERS OF RDT

We conduct experiments to investigate the impact on hyperparameters of RDT under scenarios of
random action corruption.

In the study of the embedding dropout technique, depicted in Figure 10(a), we discover that applying
a moderate dropout probability (e.g., 0.1) to embeddings enhances resilience against data corruption.
However, a larger dropout rate (≥ 0.5) can lead to performance degradation.

As shown in Figure 10(b), regarding the Gaussian weighted coefficient βa, the walker2d task favours
lower values of βa such as 0.1, while the kitchen-complete and relocate tasks favour larger βa values,
suggesting that these tasks are less impacted by Gaussian weight learning.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

In terms of the iterative data correction threshold ζ, the results are highlighted inFigure 10(c). The
walker2d and kitchen-complete tasks favour lower values of ζ, whereas the relocate task exhibits
the opposite preference. Notably, in the relocate task, RDT shows markedly enhanced performance
after correcting outliers (with ζ ≥ 5) in the dataset.

walker2d kitchen-complete relocate
0

10

20

30

40

50

60

70

80

N
or

m
al

iz
ed

S
co

re

0.0 0.1 0.3 0.5

(a) Embedding drop p.

walker2d kitchen-complete relocate
0

20

40

60

80

N
or

m
al

iz
ed

S
co

re

0.0 0.1 1.0 10.0

(b) Gaussian weight coefficient βa.

walker2d kitchen-complete relocate
0

10

20

30

40

50

60

70

80

N
or

m
al

iz
ed

S
co

re

no IDC 1.0 3.0 5.0

(c) Iterative correction threshold ζ.

Figure 10: Ablation study on the impact of hyperparameters under action corruption scenario.

D.4 VARYING CORRUPTION RATES AND SCALES

We have evaluated the effectiveness of RDT under a data corruption rate of 0.3 and a scale of 1.0
in Section 4.2. We further examine the robustness of RDT under different corruption rates from
{0.0, 0.1, 0.3, 0.5} and scales from {0.0, 1.0, 2.0}. As illustrated in Figure 11, RDT consistently de-
livers superior performance compared to other baselines across different corruption rates and scales.
However, we also observed a decline in RDT’s performance when it encountered state corruption
with high rates. This decline can be attributed to the distortion of the state’s distribution caused by
the high corruption rates, resulting in a significant deviation from the clean test environment to the
corrupted datasets. Enhancing the robustness of RDT against state corruption, especially under high
corruption rates and scales, holds potential for future advancements.

0.0 0.1 0.3 0.5

Corruption Rate

0

10

20

30

40

N
or

m
al

iz
ed

S
co

re

State Attack

0.0 0.1 0.3 0.5

Corruption Rate

0

10

20

30

40

Action Attack

0.0 0.1 0.3 0.5

Corruption Rate

0

10

20

30

40

Reward Attack

UWMSG RIQL DT RDT

(a)

0.0 1.0 2.0

Corruption Scale

0

10

20

30

40

N
or

m
al

iz
ed

S
co

re

State Attack

0.0 1.0 2.0

Corruption Scale

0

10

20

30

40

Action Attack

0.0 1.0 2.0

Corruption Scale

0

10

20

30

40

Reward Attack

UWMSG RIQL DT RDT

(b)

Figure 11: Results under various corruption rates (a) and scales (b) on the “walker2d” task.

D.5 TRAINING TIME

We train all algorithms on the same P40 GPU, and the training times are presented in Table 4. As
expected, BC has the shortest epoch time due to its simplicity. Notably, RDT requires only slightly
more time per epoch than DT because it incorporates three robust techniques. Although RIQL
requires less time per epoch than RDT, it necessitates 10 times more epochs to converge and still
does not achieve satisfactory performance in the limited data regime. In conclusion, RDT achieves
superior performance and robustness without imposing significant computational costs in terms of
total training time.

Table 4: Training time on the “walker2d-medium-replay-v2” dataset.

Method BC CQL UWMSG RIQL DT RDT
Epoch Num 1000 1000 1000 1000 100 100
Epoch Time (s) 3.7 33.8 22.2 14.9 44.0 46.1
Total Time (h) 1.03 9.39 6.17 4.14 1.22 1.28

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

D.6 DETAILED RESULTS FOR THE EXPERIMENTS ON ADVERSARIAL ATTACK

The detailed outcomes of each task under adversarial data corruption are presented in Table 5. No-
tably, RDT outperforms baseline models in the majority of tasks, achieving the best average per-
formance. In particular, RDT consistently outperforms DT, demonstrating the effectiveness of our
three robust techniques.

Table 5: Detailed comparative results under adversarial data corruption.

Attack Task BC RBC DeFog CQL UWMSG RIQL DT RDT

State

halfcheetah (10%) 2.1±0.6 2.4±0.3 4.8±0.7 10.0±1.6 7.2±2.6 3.6±0.5 5.4±0.7 7.5±0.9
hopper (10%) 19.1±3.2 18.7±4.4 21.8±7.4 1.8±0.8 14.7±3.4 19.1±6.9 38.9±2.9 39.1±4.6
walker2d (10%) 8.7±1.8 7.1±0.2 12.0±3.6 0.7±1.5 5.1±2.3 10.4±1.9 21.3±1.5 24.2±3.2
kitchen-complete 18.9±7.0 20.8±9.9 43.5±5.5 4.6±4.8 0.0±0.0 51.9±3.3 37.6±3.2 61.1±2.0
kitchen-partial 27.1±4.2 30.8±3.8 8.9±5.2 0.0±0.0 0.0±0.0 35.4±5.8 37.9±6.2 41.6±5.1
kitchen-mixed 24.1±3.1 35.2±3.7 7.6±6.3 2.0±3.5 0.0±0.0 33.9±11.2 38.1±6.0 44.5±5.1
door (1%) 71.1±8.8 66.1±10.2 102.2±1.4 -0.3±0.0 -0.3±0.1 47.3±24.8 98.2±4.8 104.0±1.0
hammer (1%) 82.5±11.1 79.3±8.4 102.7±8.8 0.2±0.0 0.1±0.1 69.1±23.4 90.1±11.9 110.9±9.0
relocate (1%) 27.0±2.6 15.5±7.2 22.1±3.5 -0.3±0.0 -0.3±0.0 17.1±9.5 67.6±2.6 71.3±2.5
Average 31.2 30.6 36.2 2.1 2.9 32.0 48.4 56.0

Action

halfcheetah (10%) -0.1±0.1 -0.0±0.2 8.9±1.0 19.0±2.2 6.7±1.1 0.8±0.4 2.4±0.1 17.1±3.4
hopper (10%) 10.9±3.7 11.1±2.2 16.1±10.4 1.5±0.5 37.4±4.0 17.1±1.4 28.8±3.3 31.6±1.8
walker2d (10%) 1.9±0.7 1.9±0.5 5.8±2.4 1.4±1.0 6.7±1.0 3.3±1.2 9.0±1.4 16.0±1.7
kitchen-complete 6.6±0.6 5.6±3.0 11.5±11.1 1.8±1.9 0.0±0.0 20.6±4.5 11.5±2.3 25.5±1.7
kitchen-partial 5.8±3.6 6.9±2.3 0.0±0.0 1.0±1.7 0.0±0.0 0.0±0.0 1.9±1.4 30.8±4.5
kitchen-mixed 6.4±7.4 22.1±4.3 0.1±0.2 0.0±0.0 0.0±0.0 3.4±4.5 2.8±3.4 45.9±4.6
door (1%) 6.0±1.3 11.8±5.7 102.8±1.1 -0.3±0.1 -0.2±0.1 38.7±21.0 62.2±7.4 97.6±5.5
hammer (1%) 16.3±10.2 44.0±12.2 37.9±9.9 0.2±0.0 0.2±0.1 88.1±14.6 62.2±16.7 107.7±1.3
relocate (1%) 2.7±2.7 6.2±3.4 14.7±4.7 -0.2±0.1 -0.3±0.0 0.4±0.5 18.0±6.0 35.7±3.1
Average 6.3 12.2 22.0 2.7 5.6 19.2 22.1 45.3

Reward

halfcheetah (10%) 2.4±0.2 2.9±1.0 15.0±2.2 31.2±1.6 1.9±0.2 10.9±1.6 9.5±0.6 23.3±5.5
hopper (10%) 19.7±2.8 19.3±3.1 15.6±8.4 1.8±0.0 28.6±9.9 34.5±5.1 37.2±6.5 37.2±6.6
walker2d (10%) 9.7±1.5 8.3±1.7 4.0±1.9 2.2±2.4 9.7±3.1 9.3±1.2 29.0±3.6 35.2±2.9
kitchen-complete 36.0±11.5 38.2±5.0 48.0±2.4 3.4±5.8 0.0±0.0 51.5±2.6 45.0±5.0 65.9±2.0
kitchen-partial 34.1±1.4 39.1±1.8 9.5±7.9 0.0±0.0 0.0±0.0 37.2±8.5 45.1±6.1 46.1±1.6
kitchen-mixed 38.9±1.4 47.1±2.0 3.5±3.3 0.0±0.0 0.0±0.0 48.9±4.7 54.1±2.3 56.1±2.8
door (1%) 76.0±5.9 75.0±9.0 102.2±1.0 -0.3±0.1 -0.2±0.1 73.4±11.3 98.9±2.8 101.4±0.6
hammer (1%) 97.1±8.3 99.0±11.8 92.1±14.0 0.2±0.0 0.1±0.1 69.1±27.7 97.1±11.3 110.9±1.6
relocate (1%) 36.1±8.6 32.2±3.2 48.1±5.0 -0.3±0.1 -0.3±0.0 18.1±6.0 76.8±9.1 77.2±4.2
Average 38.9 40.1 37.6 4.3 4.4 39.2 54.7 61.5

Average over all tasks 25.5 27.7 31.9 3.0 4.3 30.1 41.7 54.3

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

D.7 COMPARISON RESULTS ON MUJOCO TASKS WITH FULL DATASET

We further evaluate the robustness of RDT on MuJoCo tasks using the full dataset. As shown in
Table 6, RIQL is comparable to DT in this setting, while RDT achieves the highest overall average
score. These findings further demonstrate the effectiveness of our proposed robust techniques across
different dataset scales.

Table 6: Results under random data corruption on MuJoCo tasks with 100% dataset.

Attack Task BC RBC DeFog CQL UWMSG RIQL DT RDT

State

halfcheetah 32.4±1.9 33.0±0.9 14.9±7.1 23.7±4.4 2.2±0.6 19.9±2.1 27.5±2.5 30.8±1.8
hopper 27.1±8.6 26.6±2.9 21.1±6.8 34.4±22.8 21.6±8.0 34.0±13.4 51.3±14.0 56.6±2.9
walker2d 19.2±4.7 16.8±6.0 17.4±2.4 33.7±10.8 0.8±1.7 14.2±1.2 47.6±4.9 53.4±4.0
Average 26.2 25.4 17.8 30.6 8.2 22.7 42.1 46.9

Action

halfcheetah 34.2±1.4 34.6±1.9 34.2±1.8 43.9±0.4 49.9±1.2 41.3±1.4 35.1±2.4 37.4±1.4
hopper 22.5±4.8 28.8±10.1 40.8±11.6 29.8±8.8 39.0±6.8 59.6±12.7 63.2±5.6 63.2±5.8
walker2d 18.3±2.6 21.3±3.6 50.7±6.0 1.8±3.6 53.3±16.8 72.6±17.3 59.0±5.5 61.4±1.7
Average 25.0 28.2 41.9 25.2 47.4 57.8 52.4 54.0

Reward

halfcheetah 35.9±0.5 34.7±1.4 32.6±2.3 43.3±0.3 37.2±5.8 42.7±0.9 38.4±0.3 39.6±0.8
hopper 26.6±6.9 29.5±8.6 29.2±18.3 29.9±7.2 65.4±26.0 59.6±4.8 54.3±10.7 70.9±8.7
walker2d 23.5±9.8 22.9±6.9 40.1±9.4 38.3±25.9 51.3±10.6 79.0±5.8 64.2±4.0 66.7±4.0
Average 28.7 29.0 34.0 37.2 51.3 60.4 52.3 59.0

Average over all tasks 26.6 27.6 31.2 31.0 35.6 47.0 48.9 53.3

Our reported results for RIQL on MuJoCo tasks using the full 100% dataset show some discrepan-
cies compared to the original paper (Yang et al., 2024b). To investigate this, we plotted the learning
curve of RIQL under an action attack, as shown in Figure 12. In comparison to Figure 17 in the
RIQL paper, we found that RIQL may require more training epochs to converge when using the
full dataset, which is reasonable. Given our focus on the limited data setting (10% for MuJoCo),
we observed that 1,000 epochs are sufficient for both RDT and baselines like RIQL to converge,
as detailed in Appendix D.5. Therefore, we use this number of training epochs by default, which,
however, may not be optimal for the full dataset setting.

0 200 400 600 800 1000
Epoch

0

2

4

E
pi

so
de

R
ew

ar
d

×103 halfcheetah-medium-replay-v2

0 200 400 600 800 1000
Epoch

0

1

2

×103 hopper-medium-replay-v2

0 200 400 600 800 1000
Epoch

0

1

2

3

4
×103 walker2d-medium-replay-v2

100% Dataset 10% Dataset

Figure 12: Learning curve of RIQL under action attack.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

D.8 ADDITIONAL RESULTS UNDER OBSERVATION PERTURBATION DURING TESTING PHASE

To further demonstrate the robustness of RDT, we conduct additional evaluations under observation
perturbations during the testing phase. Specifically, we compare different algorithms trained with
offline datasets under conditions of random state, action, or reward corruption in environments with
observation perturbations. As shown in Figures 13 to 15, RDT consistently maintains superior
performance and robustness across observation perturbations in both the Kitchen and Adroit tasks.
We leave the investigation of robustness improvements over MuJoCo tasks for future work.

0.0 0.1 0.3 0.5

Perturbation Scale

0

10

20

30

40

N
or

m
al

iz
ed

S
co

re

KitChen

0.0 0.1 0.3 0.5

Perturbation Scale

0

20

40

60

80

100
Adroit(1%)

RORL RIQL DT RDT

(a) Random observation perturbation.

0.0 0.1 0.3 0.5

Perturbation Scale

0

10

20

30

40

N
or

m
al

iz
ed

S
co

re

KitChen

0.0 0.1 0.3 0.5

Perturbation Scale

0

20

40

60

80

100
Adroit(1%)

RORL RIQL DT RDT

(b) Action Diff observation perturbation.

Figure 13: Performance under varying observation perturbation scales during the testing phase. All
the algorithms are trained under random state corruption during the training phase.

0.0 0.1 0.3 0.5

Perturbation Scale

0

10

20

30

40

N
or

m
al

iz
ed

S
co

re

KitChen

0.0 0.1 0.3 0.5

Perturbation Scale

0

20

40

60

80

100
Adroit(1%)

RORL RIQL DT RDT

(a) Random observation perturbation.

0.0 0.1 0.3 0.5

Perturbation Scale

0

10

20

30

40

N
or

m
al

iz
ed

S
co

re

KitChen

0.0 0.1 0.3 0.5

Perturbation Scale

0

20

40

60

80

100
Adroit(1%)

RORL RIQL DT RDT

(b) Action Diff observation perturbation.

Figure 14: Performance under varying observation perturbation scales during the testing phase. All
the algorithms are trained under random action corruption during the training phase.

0.0 0.1 0.3 0.5

Perturbation Scale

0

20

40

N
or

m
al

iz
ed

S
co

re

KitChen

0.0 0.1 0.3 0.5

Perturbation Scale

0

20

40

60

80

100

Adroit(1%)

RORL RIQL DT RDT

(a) Random observation perturbation.

0.0 0.1 0.3 0.5

Perturbation Scale

0

20

40

N
or

m
al

iz
ed

S
co

re

KitChen

0.0 0.1 0.3 0.5

Perturbation Scale

0

20

40

60

80

100

Adroit(1%)

RORL RIQL DT RDT

(b) Action Diff observation perturbation.

Figure 15: Performance under varying observation perturbation scales during the testing phase. All
the algorithms are trained under random reward corruption during the training phase.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

D.9 ADDITIONAL ABLATION STUDY ON THREE ROBUST TECHNIQUES

We investigate the impact of each individual technique in Section 4.4 and demonstrate that inte-
grating all techniques is essential for achieving optimal robustness. To provide a more comprehen-
sive analysis of our proposed techniques, we create the variants RDT w/o ED, RDT w/o GWL, and
RDT w/o IDC, which eliminate the components Embedding Dropout, Gaussian Weighted Learning,
and Iterative Data Correction from RDT, respectively. As illustrated in Figure 16, the results are
consistent with the findings in Section 4.4. This consistency reinforces our initial conclusion that
the integration of all proposed techniques is crucial for achieving optimal robustness.

walker2d kitchen-complete relocate
0

20

40

60

N
or

m
al

iz
ed

S
co

re

State Attack

walker2d kitchen-complete relocate
0

20

40

60

80

Action Attack

walker2d kitchen-complete relocate
0

20

40

60

80

Reward Attack

DT(RP) RDT w/o. ED RDT w/o. GWL RDT w/o. IDC RDT

Figure 16: Additional ablation study on the impact of proposed techniques.

D.10 EVALUATION UNDER VARIOUS DATASET SCALES

We conducted experiments across various dataset scales to understand the impact of dataset scales.
Specifically, we evaluate RDT on the MuJoCo tasks with 20% and 50% of the “medium-replay-v2”
dataset and the Adroit tasks with 5% and 10% of the “expert-v0” dataset. The comparison results are
shown in Figure 17. Our empirical findings indicate that: (1) The overall performance of all methods
improves as the dataset size increases. (2) Moreover, temporal-difference-based methods like RIQL
are comparable to vanilla sequence modeling methods like DT when the dataset is large, but they
are less preferable when the dataset size is limited. (3) Notably, RDT consistently outperforms
other baselines across all dataset sizes, validating the effectiveness and importance of our proposed
robustness techniques.

10% 20% 50%
Dataset Scale

10

20

30

40

50

N
or

m
al

iz
ed

S
co

re

State Attack

10% 20% 50%
Dataset Scale

10

20

30

40

50

Action Attack

10% 20% 50%
Dataset Scale

10

20

30

40

50

Reward Attack

DeFog RIQL DT RDT

(a) Results on MuJoCo tasks.

1% 5% 10%
Dataset Scale

40

60

80

100

N
or

m
al

iz
ed

S
co

re

State Attack

1% 5% 10%
Dataset Scale

40

60

80

100

Action Attack

1% 5% 10%
Dataset Scale

40

60

80

100

Reward Attack

DeFog RIQL DT RDT

(b) Results on Adroit tasks.

Figure 17: Performance of different algorithms across various dataset scales.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

D.11 PERFORMANCE UNDER MUJOCO DATASET WITH DIFFERENT QUALITY LEVELS

To further validate the robustness of the RDT across varying dataset quality levels, we conduct evalu-
ations using both the “expert-v2” and “medium-v2” datasets on MuJoCo tasks. We randomly sample
2% for both datasets, respectively, resulting in both datasets having a similar size of approximately
2 × 104 transitions. We include RIQL, DeFog, and DT as baselines, and the results are presented
in Tables 7 and 8. Notably, RDT consistently outperforms the other baselines across datasets of
different quality levels. This superior performance reinforces RDT’s capability to efficiently handle
a range of dataset qualities.

Table 7: Results on “medium-v2” dataset under random data corruption.

Attack Task DeFog RIQL DT RDT

State

halfcheetah (2%) 7.5±1.4 18.0±1.5 15.7±1.3 22.3±1.1
hopper (2%) 20.4±8.3 45.7±7.3 48.6±3.2 52.2±5.7
walker2d (2%) 14.2±1.6 25.4±5.0 20.5±6.0 28.0±8.0
Average 14.0 29.7 28.3 34.2

Action

halfcheetah (2%) 24.3±1.4 13.9±1.9 16.2±0.8 32.8±1.2
hopper (2%) 36.7±9.6 51.9±3.9 37.5±6.0 45.3±3.2
walker2d (2%) 30.7±7.0 27.5±5.3 38.9±2.9 43.8±7.9
Average 30.5 31.1 30.9 40.6

Reward

halfcheetah (2%) 27.4±2.9 36.1±1.3 33.3±1.0 37.5±2.0
hopper (2%) 32.5±17.5 55.5±6.8 51.6±2.7 53.9±4.6
walker2d (2%) 28.2±18.4 42.1±13.4 50.5±5.1 62.1±4.7
Average 29.3 44.6 45.1 51.2

Average over all tasks 24.6 35.1 34.8 42.0

Table 8: Results on “expert-v2” dataset under random data corruption.

Attack Task DeFog RIQL DT RDT

State

halfcheetah (2%) 3.8±2.3 0.5±1.2 2.9±0.8 4.4±0.2
hopper (2%) 15.1±4.2 32.0±4.4 38.5±7.4 48.6±7.0
walker2d (2%) 15.3±3.1 21.7±4.6 40.7±4.8 41.6±4.2
Average 11.4 18.1 27.4 31.5

Action

halfcheetah (2%) 2.7±1.0 -1.3±1.5 3.2±2.4 5.4±0.7
hopper (2%) 18.0±4.7 32.4±8.7 21.2±3.3 36.0±4.8
walker2d (2%) 25.6±3.8 7.1±1.0 33.1±6.8 73.8±3.6
Average 15.5 12.7 19.2 38.4

Reward

halfcheetah (2%) 2.5±0.8 2.7±0.9 4.9±0.7 17.2±5.5
hopper (2%) 21.2±6.3 89.5±4.6 49.5±3.3 67.3±6.6
walker2d (2%) 36.0±9.8 64.2±11.0 96.3±2.6 103.1±3.6
Average 19.9 52.1 50.2 62.5

Average over all tasks 15.6 27.6 32.3 44.1

D.12 PERFORMANCE UNDER NEORL DATASET

To further demonstrate the robustness of the RDT, we evaluate it on the NeoRL benchmark (Qin
et al., 2022). Specifically, we select the “citylearn-medium” and “finance-medium” datasets as the
testbeds. The Finance dataset enables the construction of a trading simulator, while the CityLearn
dataset reshapes the aggregation curve of electricity demand by controlling energy storage. We
randomly sample 20% and 10% of the Finance and CityLearn datasets, respectively, resulting in both
datasets having a similar size of approximately 2× 104 transitions. We consider RIQL, DeFog, and
DT to be comparable baselines. The performance is measured using the response reward criterion,
as detailed in Table 9. Notably, RDT achieves the best average performance compared to the other
baselines, outperforming DT by 12.13% under Finance dataset. These results underscore RDT’s
robustness and potential for real-world applications.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 9: Results on NeoRL dataset under random data corruption.

Task Attack DeFog RIQL DT RDT

citylearn (20%)
State 39138.9 30235.3 37878.9 39124.2
Action 38970.6 29093.2 35589.0 39066.4
Reward 38156.4 29634.8 37626.9 38909.8

Average 38755.3 29654.4 37031.6 39033.5

finance (10%)
State 92.4 89.4 85.7 104.5
Action 96.4 100.6 91.4 99.8
Reward 90.2 89.2 89.7 95.1

Average 93.0 93.1 89.0 99.8

D.13 ADDITIONAL EVALUATION ON ITERATIVE DATA CORRECTION

We have demonstrated the effectiveness of iterative data correction by illustrating the MSE loss
between corrected and original data in Figure 3(c). The MSE loss gradually decreases as training
proceeds, indicating that RDT can accurately predict the correct data. To further investigate the
effectiveness of iterative data correction, we record the precision of detection using the z-score.
Specifically, DT w. IDC can detect N data points as corrupted within a batch, and M out of
these N data points are truly corrupted. We record the ratio of M/N under action attack as shown
in Figure 18. As observed, the detection precision increases with the training process and can reach
80% to 90% at the 50th epoch, demonstrating the effectiveness of IDC. It is worth noting that the
precision is low at the start of training; therefore, we begin data correction at the 50th training epoch
in our default implementation.

0 20 40 60 80 100

Epoch

0.20

0.40

0.60

0.80

1.00

P
re

ci
si

on

Precision of IDC Detection

walker2d-medium-replay-v2

kitchen-complete-v0

relocate-expert-v0

Figure 18: Accuracy of iterative data correction detection via the z-score.

D.14 DISCUSSION ON STATE PREDICTION AND CORRECTION

In the implementation of RDT, we predict both actions and rewards to tackle data corruption. We
justify that reward prediction can provide benefits under state and action attacks (see Appendix D.2).
Here, we explore the impact of state prediction. We create a variant, DT w. SP, based on the original
DT, which additionally predicts states. We compare DT and DT w. SP under state and action attacks,
as shown in Figure 19(a). As observed, state prediction does not consistently benefit all tasks. The
performance drops on the Kitchen and Adroit tasks, perhaps due to the larger state dimensions. For
example, the state dimension of Kitchen is 60, which is larger than its action dimension of 9.

Based on DT w. SP, we evaluate state correction via iterative data correction under different ζ,
as shown in Figure 19(b). The results indicate that state correction still causes performance drops.
Indeed, state prediction involves learning the environment’s dynamics (i.e., transition probabilities),
which is inherently challenging, as prediction errors in state prediction negatively impact policy

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

learning. Additionally, in our experimental setting, data corruption exacerbates prediction errors,
leading to further performance degradation. We plan to draw inspiration from model-based RL
work to address this issue in future research.

MuJoCo(10%) Kitchen Adroit(1%)
0

20

40

60

80
N

or
m

al
iz

ed
S

co
re

State Attack

MuJoCo(10%) Kitchen Adroit(1%)
0

20

40

60

80

Action Attack

DT DT(SP)

(a) Ablation on state prediction.

MuJoCo(10%) Kitchen Adroit(1%)
0

20

40

60

80

N
or

m
al

iz
ed

S
co

re

State Attack

no IDC 1.0 3.0 5.0

(b) Ablation on state correction.

Figure 19: Ablation study on state prediction and correction. (a) Comparison of DT and DT with
State Prediction (DT w. SP), showing that DT w. SP does not consistently bring improvements.
(b) Evaluation of state correction under different ζ values. Results indicate that state prediction can
cause performance drops.

D.15 MOTIVATING EXAMPLE UNDER DIFFERENT DATA CORRUPTION

To demonstrate the performance drop under varying dataset sizes from another perspective, we mod-
ify Figure 1 to create Figure 20. In Figure 20, we place the performances of different algorithms
in separate boxes to better illustrate their sensitivity to different types of data corruption. As ob-
served, UWMSG and RIQL are very sensitive to state attacks. This sensitivity arises because we
do not separate state and next-state attacks but apply state attacks within a single trajectory, repre-
senting a more general setting. UWMSG and RIQL are algorithms based on temporal difference
learning, which learns the Q-value dependent on the next state. Hence, they experience signifi-
cant performance drops under state attacks in our settings. In contrast, DeFog and DT, which are
based on sequence modeling, are comparatively robust to all types of data corruption. Furthermore,
DT demonstrates better robustness than other methods, even with limited datasets. Therefore, we
propose three robustness techniques to further improve robustness against data corruption.

100% Dataset 10% Dataset
0

20

40

60

N
or

m
al

iz
ed

S
co

re

UWMSG

100% Dataset 10% Dataset
0

20

40

60

RIQL

100% Dataset 10% Dataset
0

20

40

60

DeFog

100% Dataset 10% Dataset
0

20

40

60

DT

No Attack State Attack Action Attack Reward Attack

Figure 20: An alternative version of the motivating example, where the performances of different
algorithms are placed in separate boxes to better illustrate their sensitivity to various data corruption.

E LIMITATION AND DISCUSSION

One limitation of RDT is our decision to avoid state prediction and correction within the robust
sequence modeling framework. The high dimensionality of states poses significant challenges to
achieving accurate predictions. Additionally, data corruption can further complicate state prediction,
leading to potential declines in performance, as shown in Appendix D.14. Despite this, we have
validated the feasibility and effectiveness of robust sequence modeling in this paper, and we leave
state prediction and correction as promising directions for future exploration.

29

	Introduction
	Preliminaries
	Sequence Modeling for Offline RL with Data Corruption
	Motivating Example
	Robust Decision Transformer
	Embedding Dropout
	Gaussian Weighted Learning
	Iterative Data Correction

	Experiments
	Experimental Setups
	Evaluation under Various Data Corruption
	Evaluation under Observation Perturbation during the Testing Phase
	Ablation Study
	Impact of Transformer Backbone on Baselines

	Related Work
	Conclusion
	Algorithm Pseudocode
	Additional Related Works
	Implementation Details
	Data Corruption Details during Training Phase
	Observation Perturbation Details during the Testing Phase
	Implementation Details of RDT

	Additional Experiments
	Impact of Decision Transformer's Hyperparameters
	Ablation Study on Reward Prediction
	Ablation Study on Hyperparameters of RDT
	Varying Corruption Rates and Scales
	Training Time
	Detailed Results for the Experiments on Adversarial Attack
	Comparison Results on MuJoCo Tasks with Full Dataset
	Additional Results under Observation Perturbation during Testing Phase
	Additional Ablation Study on Three Robust Techniques
	Evaluation under Various Dataset Scales
	Performance under MuJoCo Dataset with Different Quality Levels
	Performance under NeoRL Dataset
	Additional Evaluation on Iterative Data Correction
	Discussion on State Prediction and Correction
	Motivating Example under Different Data Corruption

	Limitation and Discussion

