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Abstract

Recent advances in natural language processing highlight two key factors for im-
proving reasoning in large language models (LLMs): (i) allocating more test-time
compute tends to help on harder problems but often introduces redundancy in the
reasoning trace, and (ii) compute is most effective when reasoning is systematic and
incremental, forming structured chains of thought (CoTs) akin to human problem-
solving. To study these factors in isolation, we introduce a controlled setting based
on shortest-path tasks in layered graphs. We train decoder-only transformers on
question–trace–answer triples using a custom tokenizer, comparing models trained
on optimal bottom-up dynamic programming traces with those trained on longer,
valid traces involving backtracking. Surprisingly, with the same training-token
budget, models trained on inefficient traces generalize better to unseen graphs. This
benefit is not due to length alone—injecting arbitrary redundancy into reasoning
traces fails to help and can even hurt performance. Instead, we find that generaliza-
tion correlates with the model’s confidence in next-token prediction, suggesting that
long, coherent, and locally incremental traces make the training signal easier to op-
timize. The code is available at https://github.com/riccardoalberghi/DP

1 Introduction

Modern LLMs have made remarkable strides in tasks requiring reasoning and multi-step problem
solving [1, 2, 3, 4]. Increasing evidence demonstrates that the performance of these models signifi-
cantly improves when their reasoning unrolls in a step-by-step fashion, following CoTs reminiscent
of how humans build their internal cognitive processes [5, 6, 7, 8]. Another milestone in the rapid
development of LLMs is represented by the test-time-compute paradigm [9, 10, 11], driven by the in-
tuition that harder problems often require more computational budget—and thus, longer CoTs. These
insights have been central to the development of advanced reasoning agents capable of achieving
unprecedented performance on complex tasks spanning mathematical problem solving [12, 13, 14],
code generation [15, 16], and scientific inquiry [17, 18]. Despite such progress, reasoning remains
an elusive concept—difficult to define precisely and challenging to study in the wild. How to teach
machines to reason effectively, generalize across domains, and adapt to novel problems continues to
be a fundamental open question.

Motivated by the need for a well-defined and interpretable setting to characterize reasoning in
transformers, and inspired by [19], we turn to a controlled algorithmic task (see Fig 1): a syn-
thetic shortest-path problem on layered graphs. Each problem instance—posed as a question to a
transformer—consists of a source-to-target graph with integer edge costs; the model is tasked with
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answering with any minimum-cost path. While a bottom-up dynamic programming (DP) approach is
the canonical optimal solution for this problem, several alternative strategies can also reach the correct
answer. We design a family of such strategies and train transformers to follow them. This playground
allows us to (i) generate possibly unlimited problem instances of varying levels of difficulty; (ii)
probe key properties of effective reasoning agents identified in the literature. In particular, through
this framework, we investigate the following questions:
Q1. Can a model learn to find an optimal path directly, without seeing intermediate steps?
Q2. Do intermediate algorithmic trajectories (CoTs) simplify the task for the model?
Q3. Is the optimal dynamic programming strategy the best CoT option to train the model?
Q4. When is increasing the number of CoT steps beneficial for the model?
Q5. Can different solution strategies have a more or less suitable structure for next-token prediction?

Our study suggests that, while globally optimal strategies may appear ideal for teaching transformers
how to reason about the assigned problem, less efficient traces can be more in line with the inductive
bias of next-token predictive architectures. Paradoxically, inefficient reasoning turns out to be more
effective. In summary, we make the following contributions:

1. Controlled reasoning benchmark: We introduce a synthetic layered-graph shortest path
task with a custom language format, enabling rigorous experiments on reasoning trace
efficiency. The task serves as a proof-of-concept environment for studying how LLMs learn
algorithms when provided different intermediate solution traces.

2. Thinking step-by-step: We find that training transformers to produce intermediate steps
between question (graph instance) and answer (optimal path) substantially improves perfor-
mance, in line with the behavior of modern LLM on problem-solving tasks.

3. Efficiency vs. effectiveness analysis: Through extensive experiments, we provide direct
evidence that training on inefficient reasoning traces can improve model performance
compared to training on optimal ones. This counterintuitive result holds even when trace
lengths are equalized between conditions by adding redundant steps, highlighting that it is
not merely the length of the reasoning trace, but its structure that matters.

4. Next-token predictors favor inefficient traces: We motivate our findings by measuring the
confidence of trained models in predicting the next token. We find that this metric is higher
for models trained on longer but systematic and locally incremental reasoning traces and
lower on globally optimal strategies.

2 Problem Setup

As a testbed for our reasoning experiments, we consider a synthetic shortest-path problem in layered
directed acyclic graphs (DAGs) with integer edge costs. We generate random graph instances from a
family with parameters {L,K,C, pe}, respectively representing: the maximum number of layers, the
maximum number of nodes per internal layer, the maximum edge cost, and the average connectivity
between nodes in successive layers. For simplicity, the first and last layers contain exactly one node,
the source and the destination of the sought path. We also ensure that no nodes are either completely
disconnected from the previous layer or have no connections to the next one. Once the graph has
been defined, we label the nodes in a top-to-bottom and left-to-right order. See Fig. 1 for an example
of a small problem instance.

Dynamic programming solution. The above-described task can be framed as a simple multi-step
reasoning task, involving the successive solution of a set of sub-problems, i.e., the shortest path from
the source node to all intermediate nodes. The goal of the reasoner is to adopt an efficient strategy
for completing all the required reasoning steps and building an optimal solution. Enumeration of all
partial paths would entail a O

(
KL

)
computational cost, yet the cost can be cut down to O(LK2) if

the sub-problems are conveniently ordered and the partial solutions are stored away. A bottom-up
dynamic programming (DP) approach, which solves the sub-problems in layer order—from shorter
to longer partial paths, yields an optimal shortest path with the minimum number of reasoning steps.

2.1 Tokenization

We aim to solve the shortest-path problem with a GPT-like model, trained from scratch on next-token
prediction over a set of question-trace-answer examples. We define a task-specific token dictionary,
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Tokenization

Question BoS l1 [ n0 n1 2 | n0 n2 1 | ] l2 [ n1 n3 3 | n2 n3 2 | ] l3 [ n3 n4 1 | ]

Efficient trace BoT n0 n2 1 | n0 n1 2 | n0 n1 n3 5 | n0 n2 n3 3 | n0 n2 n3 n4 4 | EoT

Inefficient trace BoT n0 n1 2 | n0 n1 n3 5 | n0 n1 n3 n4 6 | n0 n2 1 | n0 n2 n3 3 | n0 n2 n3 n4 4 | EoT

Answer n0 n2 n3 n4 4 | EoS

(b)

Figure 1: Reasoning in the shortest-path problem. (a) Example of a layered DAG with integer
edge costs. The nodes are labelled top-to-bottom, left-to-right, ‘n0’ and ‘n4’ representing the source
and the destination of the path. The nodes in the optimal path, with a cumulative cost 1 + 2 + 1 = 4,
are highlighted in grey. A human reading the graph would backtrack before discovering the cheaper
‘n0→n2→n3→n4’ path—mirroring the strategy the model ultimately favors. (b) We introduce
custom tokens to uniquely represent the graph structure (question), the trace of the solver algorithm
(efficient/inefficient trace examples), and the corresponding shortest-path solution (answer). (c)
Generalization performance, measured in terms of the probability of returning an optimal path in the
answer, of a model trained on optimally efficient (dynamic-programming like) traces and a model
trained on inefficient (depth-first-search like) traces, with a corpus of 200K question-trace-answer
examples. The inefficient reasoning traces are roughly 75% longer than the efficient ones. Only
the model trained on the inefficient traces robustly generalizes to unseen graphs. (d) Next-token
confidence of models trained on efficient vs inefficient traces, displaying an inductive bias of the
transformer toward learning the latter.

with unique tokens representing: begin-sequence ( BoS ) and end-of-sequence ( EoS ); begin-of-think
( BoT ) and end-of-think ( EoT ); each possible layer label; each possible node label; each integer in
the range of possible cumulative edge costs; a separator token, | ; two additional syntax tokens, [
and ] . Each part of the question-trace-answer triples follows well-defined syntactic rules:

Question: Opening with a BoS token, the question contains a complete token encoding of the graph.
As in the example in Fig. 1(b), each layer of the graph is represented by a sequence of tokens, opening
with the layer label, followed by the corresponding edge list enclosed between [ ] tokens. Each
edge is declared as a pair of node labels, the corresponding cost, and a separator.

Trace: The reasoning trace, enclosed between BoT - EoT tokens, contains a set of reasoning steps,
each represented as a succession of node labels, the cumulative cost of the associated path, and a
separator | , as shown in 1(b). In Sec. 3, we will describe in detail the family of traces considered
in this work and how we parametrically control their length and efficiency. Crucially, all training
traces meet the following optimality criteria: i) The reasoning steps always contain correct path-
cost statements; ii) Longer paths are built incrementally, adding a single node to a previously seen
partial path; iii) Once a better alternative is found, sub-optimal partial paths are never considered as
building blocks for longer paths; iv) All reasoning traces are complete and deterministically allow the
construction of an optimal path. Note that, by writing down the intermediate shortest-path solutions,
the reasoning trace can be seen as an explicit tabulation of the optimal partial costs of the shortest-path
problem, and can be leveraged to avoid the exponential computational cost in the number of graph
layers.

Answer: The answer is simply a repetition of the optimal path found during the reasoning trace, and
follows the same syntax: a succession of nodes – from source to destination nodes, the associated
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cost, and a separator | . The generated sequence is then closed by a EoS token. An example can be
seen in Fig. 1(b).

3 Experimental Setup

We leverage the controlled nature of our problem setting to define a random generator of reasoning
traces with a tunable degree of efficiency. These exact traces are then used to build a training corpus
of question-trace-answer triples, and train a next-token prediction model on the shortest-path task.

The efficiency level of the CoTs is uniquely determined by the exploration order according to which
the model computes partial paths and costs and then composes them to build the optimal path. As the
trace generator traverses the graph, it maintains an exploration queue containing path continuations yet
to be considered. The associated priority weights depend on a temperature parameter, the efficiency η,
controlling whether shorter vs. longer partial paths should be explored first. When multiple partial
paths of the same length can be continued, their relative order is fully randomized. The internal logic
of the exploration algorithm and its dependence on η can be seen in Fig. 2(a).

Thus, η can bias the underlying algorithm toward a layer-by-layer (positive η) or a depth-first (negative
η) approach. This directly affects the number of reasoning steps, since previously explored paths will
need revising if a better route to an intermediate node is encountered. For this reason in the paper we
refer to positive η values as efficient (less total steps) and to negative η values as inefficient (more
total steps). Note, however, that the trace optimality criteria described in section 2.1 guarantee that
the number of steps remains polynomial (worst-case O(CL2K2)1), as evidenced from the table in
Fig. 2(b).

Furthermore, we can inject reasoning redundancy, by artificially increasing the length of the trace
via repetition of full reasoning steps. To study the importance of preserving the CoT structure, we
consider two variants: a deterministic version, where each reasoning step is immediately repeated
and then never revisited and a randomized version, where completed reasoning steps are re-appended
to the exploration queue with probability 1/2.

Types of reasoning traces. To simplify the interpretation of the results, we will consider a few
prototypical settings for the reasoning trace generator:

• η = +5 (DP): at this temperature, the reasoning trace corresponds to a bottom-up DP trace,
systematically exploring the graph in a layer-by-layer order.

• η = 0: the reasoning trace chooses the next path to be explored uniformly at random among
the available options, irrespective of the path length, and might include some backtracking.

• η = −5 (DFS): the reasoning trace systematically prioritizes a depth-first approach, requir-
ing substantial backtracking.

• η = +5 (DR): each reasoning steps is deterministically repeated twice in a row.

• η = +5 (RR): each reasoning step, after completion, is re-added to the exploration queue
with probability 1/2. Note that this implies that, in expectation, each reasoning path is
repeated twice.

Note that, given the exponential law employed to sample the layer order, the efficiency values η = ±5
are large enough to fully order the exploration protocol (effectively behaving as η = ±∞, but
avoiding numerical instabilities). As shown in Fig. 2(b), the average length of the traces increases
with lower values of the efficiency η, changing by roughly 75% when switching from η = +5
(DP) to η = −5 (DFS). In the redundancy cases, the number of repetitions is matched between the
randomized and deterministic versions. Examples of the different trace types are provided in the
Supplementary Materials (SM).

Trained model. We train from scratch a Phi3 [20] small language model, with 3 layers, 12 attention
heads, 768 hidden dimensions, and 28.5M total parameters, for the next-token prediction task on
the procedurally generated training examples. During training, we mask out the question (i.e., the

1Given the structure of the exploration algorithm Fig. 2(a), each one of the O(LK) nodes can be at most
revisited O(CL) times, since a best cost improvement is needed to trigger backtracking.
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1: Initialize empty queue and weight lists, E andW
2: Initialize best cost and best path dictionaries, C and P
3: for n ∈ layer1 do
4: append(E , (n0, n, 0)); append(W , 1)
5: end for
6: while E ≠ ∅ do
7: choose( (src,dst,layer) from E , w.p∝ W)
8: c, path← C(src) + cost(src,dst), P(src) ∪ dst
9: if c < C(dst) then
10: C(dst), P(dst)← c, path
11: for n ∈ destinations(dst) do
12: e, w← (dst,n,layer+1), exp(−η( layer+1))
13: if e /∈ E then
14: append(E , e); append(W , w)
15: end if
16: end for
17: end if
18: end while

(a)

type CoT steps

η = +5 33± 20
η = 0 43± 33
η = −5 58± 54

η = +5 (RR) 65± 41
η = +5 (DR) 65± 40

(b)

Figure 2: Impact of the efficiency η. (a) The exploration algorithm used for determining the
shortest-path. The exploration order depends on the parameter η (line 12). (b) The effect of η on the
distribution of number of reasoning steps (estimated on 100K independent samples).

graph information) and the PAD tokens from the loss function, so that the model only learns to
predict traces and answers within the context of the question. We employ a constant learning rate
of 2 × 10−5, and a batch size of ∼ 16K tokens (excluding the PAD tokens for a fair comparison
between efficiency levels). In SM, we show how adding layers to the transformer architecture can
impact performance and sample efficiency.

Given the low entropy of our custom language and the mathematical nature of the reasoning task, we
default to zero-temperature generation, greedily choosing the maximum likelihood next token, unless
otherwise stated.

Metrics and performance evaluation. We implement a parser able to evaluate the sequence of
tokens produced by the model and return a set of metrics on the quality of the generated trace and
answers. The accuracy of the answers and efficiency of the trained models are assessed via two main
indicators:

• answer accuracy, constructed by requiring the optimality of the path in the answer, i.e.,
the conjunction of: i) the path is possible, involving connected nodes; ii) the path has the
expected length, i.e. the number of layers in the graph; iii) the declared cost is minimal, as
obtained with a DP solver; iv) the path and cumulative cost declarations are consistent.

• number of reasoning steps, counting the number of well-formatted partial-path statements.

We also check for multiple secondary metrics on the quality of the reasoning steps in the trace,
including: i) if they contain syntax errors; ii) if they are incremental; iii) if they only build upon
optimal partial paths; iv) if the path-cost declaration is consistent; v) if the reasoning steps are
repeated. To simplify the exposition, the analysis of these metrics is deferred to SM.

Finally, inspired by [21], we also measure the next-token confidence of the model along the reasoning
trace and answer, i.e., the average sampled token probability. Note that here we find this metric to
be equivalent to the min-margin metric suggested in [21], in agreement with a footnote observation
therein.

If not otherwise specified, the metrics are averaged over a test set containing new graphs with sizes
in the training graph distribution, and reported with 1-sigma error bars across five random training
seeds. The best generalization accuracies are denoted with a star symbol in the figures.

4 Results

We aim to characterise the impact of the presence of the reasoning trace, and of its length and
structure, on the performance of our model on unseen shortest-path problems. In the following, we
fix the parameter settings for the graph generator to {L = 7,K = 6, C = 5, pe = 0.6}, and ensure
that all graph examples in training and test sets are unique.
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Figure 3: Learning to find the shortest path. (a) Generalization performance of two models trained
on ∼ 340K graphs, respectively without reasoning traces (dashed) and with the η = +5 (DP) traces
(full), over graphs with depths 3-5-7. (b) Progress on intermediate training goals for the η = +5
(DP) model. (c) Acquisition of the integer addition sub-task, during the η = +5 (DP) training.
The plot shows the probability of the model predicting the correct row + column sums at different
epochs.
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Figure 4: Impact of trace efficiency. (a) Comparison of the generalization performance between
models trained on efficient η = +5 (DP), intermediate η = 0, and inefficient η = −5 (DFS) traces,
with a training token budget of 32M (dashed) and 128M (full) tokens. (b) Next-token confidence
measured on the test set of models trained on efficient η = +5 (DP), intermediate η = 0, and
inefficient η = −5 (DFS) traces with a training token budget of 128M. (c) Training losses for 5
different seeds of η = −5 (DFS), showing sudden jumps at the beginning of the 2nd epoch, and of
η = +5 (DP), where optimization is slower and more continuous.

Finding the shortest path with a next-token predictor (Q1-2). The first finding we report on,
shown in Fig. 3(a), is that a next-token predictor can learn to solve shortest-path problems in moderate-
sized graph instances, when sufficient training data is presented (here ∼ 340K graph examples).
However, good generalization on the larger in-distribution graph instances can only be achieved when
the model is allowed to produce a reasoning trace before returning an optimal path: the solid curves
show the performance, on 3, 5, 7 layer graphs, of a model trained in the dynamic programming limit
η = +5 (DP). Instead, the dashed curves show that a model trained on the question-answer task, with
the same number of examples, is unable to learn a generalizable rule for solving previously unseen
large problems.

In Fig. 3(b), we break down the learning process for the η = +5 (DP) model, showing the pace
at which intermediate learning goals are unlocked, such as proposing candidate solutions that are
possible, or correctly associating paths and costs. In Fig. 3(c), we study how the model acquires the
sub-task of integer addition (here restricted to a small subset O(CL) of possible cumulative sums).
In the figure, we measure the probability of the model assigning the maximum logit to the correct
sum token, and display the order in which the different additions are learned during training. Note
that this subtask is not trivial [22, 23], although the training set extensively covers the relevant range
of cumulative costs (see SM), since the model has to understand where to pick up the partial costs to
be added from the question and the previous steps in the trace.
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Impact of efficiency and structure of the reasoning trace (Q3-5). We explore the impact of the
reasoning trace efficiency on model performance, at fixed token budget by comparing 32M tokens
with 128M tokens. In Fig. 4(a), the best accuracy in predicting the shortest path is achieved by the
η = −5 (DFS) model, with the longest reasoning traces and systematic backtracking, followed by the
DP-like η = +5 (DP), and finally by the η = 0 models. Note that, since the token budget at training
is fixed, the η = −5 (DFS) inefficient model sees about 1/3 fewer graph examples compared to the
efficient one at η = +5 (DP), yet absorbs the training set information more effectively. Moreover,
as shown in Fig. 2(b), the traces for η = 0 are longer than those of η = +5, yet the corresponding
curves are sub-optimal—highlighting that higher test-time compute, represented by longer traces,
does not necessarily translate into better performance. In Fig. 1(c), we also train the η = ±5 models
with an equal number of graph examples (∼ 200K, as in the 128M dataset for η = −5), finding an
even larger performance gap.

In Fig. 4(b), we find a plausible explanation of the effectiveness of η = −5 and the poor performance
of η = 0, looking at the next-token confidence [21] of the three models. While the η = 0 traces are
longer than the η = +5 (DP) ones, the associated flat distribution over the exploration order, mixing
depth-first and layer-by-layer exploration, reduces the confidence of the model in predicting the next
step. This, in turn, undermines the learning effectiveness of the model trained on this trace type.

We can precisely quantify the degeneracy of the exploration order for each value of η, by computing
the average surprisal S (i.e., the Shannon information) associated with the selection of the next path
from the exploration queue. We obtain

Sη=+5 = 1.3262± 0.0006, Sη=−5 = 0.4821± 0.0002, Sη=0 = 1.905± 0.003,

confirming that for η = 0 the order of the reasoning steps is the most uncertain. On the other
hand, both η = +5 (DP) and η = −5 (DFS) strategies share a deterministic approach in the layer
exploration order, but the degeneracy of equivalent choices is higher for η = +5 (DP). A similar
study of the gap in next-token confidence, but for a fixed number of training graph examples, is
shown in Fig. 1(d).

The effect of trace predictability can also be seen from the optimization trajectories, in Fig. 4(c). The
η = −5 (DFS) trajectories often exhibit a sudden jump in the training loss, occurring around the
beginning of epoch 2, which highlights a “eureka” transition in the interpretation of the reasoning
trace examples. We hypothesize this sudden transition could be explained by the emergence of
specific circuits within the model forward pass, similar to those identified by [24, 25, 26, 27, 28].We
therefore see the mechanistic interpretability analysis of our trained model as an interesting avenue
for future work.

Injecting redundacy into the reasoning traces (Q4). To further explore the impact of increased
test-time compute, in the absence of stochastic confounders that decrease the predictability of the
trace, we compare the η = +5 (DP) baseline with a model trained on deterministically redundant
η = +5 (DR) traces. Since we repeat each reasoning step twice in a row, in principle, the model can
build a mechanism for choosing the next path that relies on this repetition for artificially increasing the
test-time compute. Note that the elongated CoTs have more steps than η = −5 (DFS) on average. In
Fig. 5(a), we show that artificially increasing the length of the reasoning traces, without a systematic
change in the exploration strategy, induces a slight performance deterioration if trained with a fixed
token budget (128M). This aligns with recent research showing that CoT length is task-dependent
[29] and that the global structure of the CoT is often more important than its content [30].

Bias towards longer CoTs (Q5). In the previous experiments, a non-systematic structure in the
reasoning trace—as in the case of η = 0—was associated with a reduced capability of the model
to predict the next token, affecting both optimization and generalization performance. Structural
perturbations to the reasoning traces can, in fact, strongly hinder performance [31]. A similar effect
can be seen if the redundancy is introduced in a randomized fashion. In Fig. 5(a), we show the
probability of producing a correct shortest path solution for a model trained in the η = +5 (RR)
setting, at zero sampling temperature. Apart from the reduction in the model accuracy compared to the
deterministic analogue, in Fig. 5(b) we also observe that the generated trace length initially diverges
from the expected one: the model enters repetition loops that can elongate the CoT indefinitely.
Longer training is required for regularizing this behavior and eventually attaining better accuracy.

A similar high-verbosity tendency can be traced in the η = 0 case, in Fig. 6(a). At zero sampling
temperature, the model initially gravitates towards the trace lengths of η = −5 (DFS), gradually
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Figure 5: Redundant traces. (a) Comparison of generalization performance between models trained
on traces with efficiency η = +5 (DP), η = +5 (DR), and η = +5 (RR) (with sampling temperatures
T = 1 (dashed) and T = 0 (full)), trained with a 128M token budget. (b) Regularization effect of
sampling temperature on η = +5 (RR), where the answer accuracy improves and the average CoT
length converges to the expected one from training data at higher temperatures.
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Figure 6: Impact of sampling temperature. (a) The length of the CoTs produced by η = 0 model
(full) initially converges to the expected length of the inefficient traces, η = −5 (DFS), gradually
recovering after many epochs. By sampling at positive temperature (dashed and dotted), the length
converges to the expected one for η = 0. (b) While converging to the expected number of reasoning
steps for the η = 0 strategy, the η = 0 model also achieves better answer accuracy at non-zero
temperatures.

recovering after many epochs. In both cases, the models display a bias towards mechanisms that
systematically induce longer traces. This finding is consistent with multiple works showing the bias
of LLMs for high verbosity [2, 32, 33].

Sampling at non-zero temperature. To facilitate the imitation of stochastic behaviors for the η = 0
and η = +5 (RR) models, we try exploring the effect of raising the sampling temperature. Counter-
intuitively, larger temperatures are found to regularize the verbosity of the generated sequences
instead of encouraging it, as already noted in [34]. In Fig. 5(b) and Fig. 6(b), the best performance of
the two models is recorded when the reasoning trace lengths become more compatible with those of
the corresponding training examples.

5 Related Work

Transformer-based models such as OpenAI-o1 [1] and DeepSeek-R1 [2] have achieved state-of-the-
art results on tasks involving mathematical reasoning and logical inference [10, 35]. Much of their
success is attributed to the use of CoT reasoning and compute scaling at inference time. The role and
limitations of these components have become active areas of empirical and theoretical investigation.
Several studies have shown that including intermediate CoT steps significantly enhances transformer
performance [36, 8, 37, 38]. For instance, [8, 38] demonstrate that the expressive power of decoder-
only transformers increases with the length of CoT sequences. Similarly, [37] finds that, in parity
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problems, CoTs not only boost expressiveness but also improve sample efficiency. Our experiments
corroborate these findings, showing that training with CoT generally improves performance. However,
we also observe that not all CoTs are equally beneficial, and longer traces do not always yield better
outcomes.
This work aims to explore reasoning in a controlled yet nontrivial setting. Graph-based algorithmic
tasks serve as an effective benchmark for evaluating whether models can learn structured reasoning
and generalize beyond the training distribution [39, 40, 41, 42, 43]. For example, [39] train Graph
Neural Networks to replicate intermediate steps of classical algorithms. Meanwhile, [42] investigate
transformer performance with respect to architecture parameters and the use of scratchpad tokens
[36]. Most relevant to our setting, [43] demonstrate that autoregressive transformers often struggle to
generalize on the seemingly simple path-star task, frequently relying on heuristics such as the Clever
Hans effect. In contrast, we find that introducing intermediate reasoning steps significantly enhances
next-token prediction accuracy and confidence.
Our problem setup is motivated by recent work examining transformers’ reasoning and planning
capabilities through prediction of A∗ search dynamics [19, 44]. Like these studies, we task models
with generating both a reasoning trace and a final answer, given a structured graph as input. While prior
work has shown the benefits of CoT training in terms of sample efficiency, we further demonstrate
that the structure of the CoT plays a critical role in performance. We introduce a confidence-based
heuristic to evaluate the robustness of generated traces. To develop this heuristic, we build on the
findings of [21], who propose test-time decoding metrics based on top-token probability or the gap
between the top two probabilities. We apply the former to show that some reasoning traces yield more
confident next-token predictions. Our results align with [45], who use confidence scores to guide the
compression of redundant CoTs. Finally, recent studies show that transformers can learn to generate
long CoTs via supervised learning [10, 30]. Notably, [30] emphasize that CoT structure can be more
important than content—a finding that supports our observation that models trained on structured but
suboptimal algorithmic traces outperform those trained on optimal yet less interpretable ones.

6 Discussion

Our controlled study reveals three high-level takeaways: (i) Chain-of-thought is pivotal. When the
model is forced to jump directly from question to answer, performance on larger graphs collapses,
while a well-structured trace restores strong generalisation. (ii) Structure beats global optimality.
Training on longer depth-first traces that revisit nodes consistently outperforms training on globally
optimal dynamic-programming traces, despite seeing fewer unique graphs under the same token
budget. (iii) Next-token confidence is a good proxy for learnability. Across all settings, higher average
top-token probability along the trace correlates with answer accuracy, suggesting that “easier-to-
predict” reasoning signals drive sample-efficient learning. Our findings caution that what seems most
sensible to teach—the shortest, globally optimal trace—is not what next-token predictors learn most
readily; they favour systematic, locally incremental yet longer reasoning paths.

Limitations. The presented setting, deliberately minimalist, entails several caveats. Our exper-
imental design is built around a synthetic algorithmic task expressed in a custom token language,
and the extent to which the observed biases transfer to natural-language or multimodal problem
settings remains to be investigated. Different algorithmic domains (sorting, SAT, theorem proving)
could yield different optimal–inefficient trade-offs, and different model architectures might display
inductive biases that lead to different conclusions compared to auto-regressive models. We believe
the exploration of these themes is an exciting direction for future work.

Future work. A natural next step is to explore whether transformers can be steered toward more
compact reasoning: curriculum schedules that progressively shorten traces, or reinforcement-learning
objectives that penalize verbosity, might encourage the model to internalize a leaner algorithm
without sacrificing accuracy. The benchmark’s tunable difficulty and transparent structure also lend
themselves to a mechanistic interpretability analysis; the attention patterns and hidden activations
could reveal computational circuits that implement incremental cost aggregation versus backtracking.
Finally, the efficiency-versus-effectiveness trade-off merits further investigations in larger language
models and natural-language tasks.
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7 Broader Impact

Our work explores how the inductive biases of decoder-only transformer models influence their
reasoning abilities in a fully controlled setting. As reasoning in large language models remains
a critical and evolving area of research in modern AI, we aim for our findings to inspire further
investigation and support efforts to better understand and steer the behavior of contemporary AI
systems.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction point out all the main results of the numerical
experiments presented in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not contain any theoretical result.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All the information needed to reproduce the experimental results are included
in the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The code along with the config files will be open-sourced upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All the details necessary are provided in the supplementary materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All the plots and tables have 1-sigma error bars. For each experiment 3 runs
with different seeds has been performed. Each run has been evaluated on 10000 graphs not
present in the train set.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All the details necessary are provided in the supplementary materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: All authors have reviewed the NeurIPS Code of Ethics and verified their
compliance.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: While the paper does not explicitly delineate societal impacts, the nature
of the experimental setting—rooted in synthetic algorithmic tasks and abstract token lan-
guages—limits direct applicability to real-world contexts, leaving open questions about
potential downstream effects, both beneficial and harmful, in broader deployment scenarios.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper addresses a narrowly scoped algorithmic task—solving shortest-path
problems in DAGs with integer weights—using synthetic data, which significantly limits
potential for misuse. As such, the authors reasonably conclude that specific safeguards for
responsible release are not necessary in this context.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Our codebase relies on external libraries, e.g., HuggingFace and vLLM. We
credit the authors of this libraries in the supplementary material where we discuss our
experimental setup.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The main asset provided is the code. It has been extensively commented and
the parameters can be simply and clearly set using the configuration files.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: An LLM has only been used for refining the writing style, editing, and
formatting purposes.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Experimental details

A.1 Training and testing configuration

We run our experiments on a Phi3 [46] architecture, in a consistent hyperparameter setting specified
in Section 3. During training, we employ the AdamW optimizer, with weight decay of 0.1, constant
learning rate 2 × 10−5, and momentum parameters β1 = 0.9 and β2 = 0.999. Training runs are
terminated when the test loss exhibits a consistent increase after plateauing in the minimum.

Batch sizes are defined in terms of total token count (excluding PAD tokens to ensure fair comparison
across different efficiency levels η), rather than by the number of samples, and are fixed at 16384
tokens per batch. The context length is set to 4096 tokens for experiments involving reasoning traces,
and to 256 tokens for standard question-answer tasks.

The codebase uses the standard PyTorch and HuggingFace libraries [47, 48], with all unspecified
parameters set to their default values. Model performance is evaluated post-training using checkpoints
saved at the end of each epoch. All predictions are generated using the vLLM inference framework
[49].

With precision being limited to FP16, in a configuration with 3 layers the memory footprint typically
reaches approximately 14GB of GPU memory. Most training runs have been executed on hardware
configurations featuring either an Nvidia A100 GPU with 80GB memory or an RTX4090 GPU with
24GB memory, each accompanied by 32 CPU cores.

A.2 Data generation

As described in in Section 2, each datapoint represents a layered directed acyclic graph (DAG). Each
graph instance is randomly sampled from a distribution parameterized by the tuple {L,K,C, pe},
where L is the maximum number of layers (excluding the source), K is the maximum number of
nodes in any internal layer, C is the maximum possible edge cost (so that costs are integer-valued
and lie in {1, . . . , C}), and pe controls the expected edge density between successive layers.

To generate a graph, we first sample the number of layers L̃ uniformly from the set {2, . . . , L}. The
first and last layers contain exactly one node each, representing the source and the destination of the
graph. For each internal layer ℓ = 1, . . . , L̃ − 1, we sample its number of nodes uniformly from
{2, . . . ,K}.

Let Vℓ be the set of nodes in layer ℓ. For each consecutive pair (Vℓ,Vℓ+1) we construct a weighted
adjacency matrix

Aℓ ∈ R|Vℓ|×|Vℓ+1|.

With probability pe, an entry Aℓ
ij is assigned a cost drawn uniformly from {1, . . . , C}; otherwise

Aℓ
ij = +∞.

After generating {Aℓ}L̃−1ℓ=1 , in order to guarantee the existence of at least one valid path from the
source to the destination, we enforce two simple connectivity constraints:

1. Any node that is not in the final layer and has no outgoing edges is connected to a random
node in the next layer, with an edge cost drawn uniformly in {1, . . . , C}.

2. Any node other than the source that has no incoming edges is connected to a random node
in the previous layer, again with a uniformly sampled cost.

Once the graph construction is finalized, it is serialized into a deterministic token sequence using a
custom tokenizer. In this way we generate a set of unique sequences, ensuring that no graph instance
is repeated while allowing for semantic graph similarities (e.g. instances that are identical up to a
permutation of nodes). Finally, the resulting corpus of tokenized sequences is split into training and
test sets using a 9:1 ratio.
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A.3 Evaluation metrics

To track progress on intermediate training objectives, we compute a range of CoT- and answer-level
metrics. While some of these were already introduced in Section 3, Table 1 provides a complete
description of all metrics used for performance evaluation.

Metric Type Category Description

is possible bool Answer Whether the path in the answer
contains valid nodes for each
layer and follows the correct
layer order.

is cost consistent bool Answer Whether the cumulative cost
equals the sum of edge weights
along the path.

is cost optimal bool Answer Whether the reported cost
equals the globally optimal one.

length is correct bool Answer Whether the path has exactly
one node per layer.

is correct (or answer
accuracy)

bool Answer Whether the answer satisfies all
A-level criteria.

Number of steps int CoT Number of reasoning CoT steps
(delimited by |).

Repeated steps int CoT Count of CoT steps that repeat
a previously seen sub-path.

Possible sub-paths int CoT Count of CoT steps that repre-
sent valid sub-paths.

Consistent steps int CoT Count of CoT steps whose cost
matches the sum of the corre-
sponding sub-path costs.

Subproblem optimal steps int CoT Count of CoT steps that con-
sider only current best sub-
paths.

Steps with a skipped
subproblem

int CoT Count of CoT steps that contain
nodes to which current best cost
is not known.

Syntax errors int Both CoT &
Answer

Number of structural or token-
level errors.

Table 1: Evaluation metrics with their associated category (Answer, CoT, or both).

B Additional results

B.1 Quality of model-generated reasoning traces

In the main text, we focused on the capability of our trained models to provide a correct answer to the
proposed shortest-path questions, and showed that with enough data they approach perfect accuracy.
However, we have not analyzed the quality of the produced reasoning traces while this accuracy is
attained. In Fig. 7, we compare several CoT-level metrics between models trained on traces with
efficiency η = −5(DFS) and η = +5(DP). Overall, we find that the models are able to perfectly
absorb the syntax and algorithmic logic of the training examples, mostly producing perfect traces (in
correspondence to the correct answers) with the expected systematic exploration order.

However, Fig. 7(a) reveals a possible origin of the performance gap observed between η = +5(DP)
and η = −5(DFS). Inspecting the percentage of generated CoT steps that continue current optimal
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Figure 7: Reasoning steps metrics. Comparison of CoT-level metrics between models trained on
traces with efficiency η = +5(DP) and η = −5(DFS). Panels: (a) percentage of subproblem optimal
steps, (b) percentage of repeated reasoning steps, (c) percentage of consistent steps, (d) percentage
of possible sub-paths, (e) percentage of steps with a skipped subproblem, (f) average numbers of
syntax errors.

sub-paths —an optimality constraint that is fulfilled by all training traces—, we see that the inefficient
η = −5(DFS) model learns more quickly to avoid unnecessary and suboptimal steps, while in
the η = +5(DP) setting, this metric does not reach full convergence. This indicates that models
trained on efficient dynamic programming (DP) traces may still occasionally select suboptimal paths,
possibly due to the random order in which same-level paths are explored in η = +5(DP), making
their relative positions in the trace less predictable.

As an illustration, we show two correct traces below, produced for the same graph. While η =
−5(DFS) builds trains-of-thought by chaining depth-first-search moves (here we highlight one in
blue)

BoT n0 n2 2 | n0 n2 n5 4 | n0 n2 n5 n8 6 | n0 n2 n5 n8 n9 8 | n0 n2 n5 n7 5 | n0 n2 n5 n7 n9 6 |

n0 n2 n4 3 | n0 n2 n4 n7 4 | n0 n2 n4 n7 n9 5 | n0 n2 n4 n8 5 | n0 n2 n4 n8 n9 7 | n0 n3 1 |

n0 n3 n5 2 | n0 n3 n5 n7 3 | n0 n3 n5 n7 n9 4 | n0 n3 n5 n8 4 | n0 n3 n5 n8 n9 6 | n0 n3 n4 2 |

n0 n3 n4 n8 4 | n0 n3 n4 n7 3 | n0 n1 2 | n0 n1 n6 3 | n0 n1 n6 n8 4 | n0 n1 n6 n7 4 | EoT ,

the succession of steps in the η = +5(DP) trace breaks the continuity of the path composition (here
highlighted in red), reducing the auto-correlation of the sequence of steps:

BoT n0 n2 2 | n0 n1 2 | n0 n3 1 | n0 n1 n6 3 | n0 n3 n5 2 | n0 n2 n4 3 | n0 n3 n4 2 | n0 n2 n5 4 |

n0 n1 n6 n8 4 | n0 n3 n4 n7 3 | n0 n3 n5 n8 4 | n0 n3 n4 n8 4 | n0 n3 n5 n7 3 | n0 n1 n6 n7 4 |

n0 n3 n4 n7 n9 4 | n0 n1 n6 n8 n9 6 | EoT .

B.2 Additional statistics on CoTs

We further analyze the effects of varying the efficiency temperature η on the Chain-of-Thought (CoT)
length. Fig. 8 shows histograms of the number of CoT steps for η = ±5. Notably, the distribution for
η = −5(DFS) exhibits a broader range of step counts, suggesting intuitively that the η = +5(DP)
traces should be easier to fit.
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Figure 8: Ground truth CoT length in tokens. (a) η = −5(DFS), (b) η = +5(DP)
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Figure 9: Distribution of integer addition.

Similarly, Fig. 9 illustrates the distribution of integer additions encountered in a typical training set
for the two types of traces. While both models receive more than sufficient examples in the lower
values of the matrix, where the bulk of the addition operations take place, it is clear that the model
trained with η = +5(DP) requires fewer addition operations to learn compared to η = −5(DFS),
which would point to a simpler task acquisition for the efficient setting and, in principle, give the
(DP) approach an advantage in terms of learnability.

These additional statistics further underscore the critical importance of reasoning trace structure for
effective learning.

B.3 Impact of model size and data scale

The experiments presented in the main text considered a transformer architecture with 3 layers, and
training datasets containing 32M-128M tokens. In this section, we explore the impact of switching
training configurations by varying the number of model layers and dataset sizes. To facilitate training
on larger architectures, in this comparison we adopt a standard learning rate scheduler, linearly
annealing a starting learning rate of 5× 10−4 down to 0 without warmup.

We report the results in the η = +5(DP) setting, exhibiting the largest performance variation.
As shown in Fig. 10(a), the generalization of the 3-layer model (solid line) reaches a better peak
performance compared to the fixed learning rate training, but incurs high variance. As expected, with
increased computational power, the larger 6-layer model (dashed line) improves the best performance,
reaching levels comparable to η = +5(DP), 3 layers and 128M tokens, in Fig. 4(a).
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Figure 10: Ablation studies. (a) Comparison of the generalization performance between a 3-layer
model (full) and a 6-layer model (dashed) trained on η = +5(DP) with 32M tokens. (b) Comparison
between 3-layer models trained on 16M (dash-dot) and a 32M (full).

We note that, while the addition of the scheduler introduces greater variance in the training runs,
the relative advantage of the η = −5(DFS) model’s generalization over the η = +5(DP) model,
presented in the main text, is preserved.

Finally, in Fig. 10(b), we show the impact of halving the training budget to 16M, with a sensible 10%
decrease of performance on average.
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