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Abstract

Event Schema Induction is an important task
in natural language processing (NLP) that aims
to summarize event types and their associated
argument roles from a corpus. However, the
task remains challenging due to several issues:
limited coverage of event element extraction,
ambiguous semantics of event reprensentation,
and insufficient semantic distinctiveness in the
event embedding space. In this paper, we
propose Event Schema Miner (ESM), a novel
framework with locally contrastive optmiza-
tion for mining event schemas. The frame-
work effectively addresses these challenges
through three key components, each promot-
ing the next: scenario-aware event extraction to
improve the coverage, instruction-driven event
respresentaion to resolve semantic ambiguity,
and target-centric model optimization to re-
fine embedding space. Experimental results
show that ESM surpasses state-of-the-art meth-
ods on standard evalution metrics, excelling in
discovering high-quality, high-coverage event
schemas from rather complicated contexts with
severe semantic ambiguity.

1 Introduction

Event schemas represent abstract structure of
events by identifying their core event elements and
semantic relationships, playing a crucial role in
enabling machines to comprehend and organize
about events. This enhances downstream tasks such
as information extraction (Lin et al., 2020; Cham-
bers and Jurafsky, 2011; Lu et al., 2022), event
extraction (Liu et al., 2019; Ji and Grishman, 2008;
Ahn, 2006), event prediction(Du et al., 2022; Zhao,
2021), and knowledge base construction (Zhang
et al., 2020; He et al., 2024) and so on.

Traditional event schemas are manually designed
by experts, such as in TAC-KBP (Ji and Grishman,
2011), ACE (Doddington et al., 2004), and MUC
(Chinchor et al., 1993). However, these predefined
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Figure 1: LLMs like ChatGPT do not perform well in
directly generating schemas from the corpus, and thus
require statistical-based algorithms for post-processing.
Additionally, since LLM embeddings are not readily
available, ESM introduces fine-tuned lightweight TEs to
work with LLMs for clustering-based schema induction.

schemas are time-consuming, labor-intensive to
create and lack flexibility and scalability.

The limitations have driven the development
of automated schema induction, such as resource-
based and clustering-based induction. Resource-
based induction methods use knowledge bases
(e.g., WordNet (Miller, 1995), VerbNet (Schuler,
2005), FrameNet (Baker et al., 1998), and Prop-
Bank (Palmer et al., 2005)) as external semantic
resources to provide reference standard for schema
induction while using word sense disambiguation
tools(Zhong and Ng, 2010; Huang et al., 2016).
However, their effectiveness is constrained by qual-
ity and coverage of these resources, which limits
their applicability in open-domain scenarios.

In contrast, clustering-based methods (Yuan
et al., 2018; Nguyen et al., 2015; Chambers, 2013;
Ahn, 2017) provide greater flexibility through three
steps: event extraction (extracting event elements
from raw texts, including triggers and arguments),
event representation (constructing and vectorizing
event features based on extracted event elements),
and clustering induction (clustering for event types
and argument roles based on event representation).



However, such methods still face obvious limita-
tions. For example, many event extraction methods
rely on dependency parser, which result in low cov-
erage due to their susceptibility to noise introduced
by tool inaccuracies (Shen et al., 2021). In addition,
many event representation methods (Edwards and
Ji, 2022; Huang et al., 2016; Shen et al., 2021; Tang
et al., 2023; Qin et al., 2024) solely focus on trig-
gers alone or simple combinations of triggers and
arguments, which lead to ambiguous semantics of
event expression, as shown in Table 1. Meanwhile,
some embedding methods employ the distributed
word embedding models (e.g. Word2Vec (Church,
2017)) or pre-trained models(e.g. Bert (Koroteev,
2021)) to vectorize event features, which struggle
to generate task-specific distinctive embeddings
(Huang et al., 2016; Tang et al., 2023).

Table 1: Ambiguous semantics of words. The first four
sentence S1, S2, S3 and S4 contain the same trigger
’charge’ but each corresponds to a different event type,
similar to sentences S7 and S10. Sentence S2, S5, S6
and S7 have different triggers but correspond to the
same event type, similar for S1 and S9. Sentence S5,
S6 and S8 have almost identical contexts except for the
trigger, yet they may still belong to different event types.

ID Sentence

S1 | The police charged the suspect with premeditated
assault.

S2 | Protesters charged at the security barricades dur-
ing the demonstration.

S3 | The waves charged against the rocky shore during
the storm.

S4 | The company charged customers an extra fee for
expedited shipping.

S5 | Protesters assaulted the security barricades during
the demonstration.

S6 | Protesters attacked the security barricades during
the demonstration.

S7 | The boxer struke his opponent with a powerful
punch just now.

S8 | Volunteers defended the security barricades dur-
ing the demonstration.

S9 | The prosecutor accused the suspect of murder.

S10 | Today 19000 flight attendants of Lufthansa Air-
lines are striking for higher pay.

Until recently, some researchers (Tang et al.,
2023) attempt to use large language models (LLMs,
such as BLOOM (Scao et al., 2022).) to generate
event schemas directly from the input corpus, by-
passing intermediate steps. However, LLMs may
generate noisy schemas that are inconsistent with
input event descriptions, resulting in only partially
relevant and relatively common schemas are ob-
tained after post-processing.

In this paper, we propose Event Schema Miner
(ESM), a framework with locally contrastive opti-
mization for automatically mining event schemas
from complex contexts in open domain, as shown
in Figure 2. ESM effectively addresses challenges
in clustering-based induction through three key
components. Firstly, scenario-aware event extrac-
tion introduces a refined prompt, equipped with
candidate triggers tailored to the given scenario, to
query the LLM for high-coverage event extraction.
Secondly, instruction-driven event respresentaion
introduces a feature augmentation mechanism that
integrates both event context and event element,
which augments event expression and resolves se-
mantic ambiguity. Thirdly, target-centric model
optimization introduces a locally contrastive adjust-
ment strategy that fine-tunes the model centered
on target feature, which generates a semantically
distinctive, task-specific embedding space.

We evaluate ESM on multiple datasets across di-
verse domains and languages, including DuEE (Li
etal., 2020), DuEE-finDuEE-fin!, FewEvent (Deng
et al., 2020), ACEO5 (Doddington et al., 2004), and
ERE-EN (Song et al., 2015). Experimental results
demonstrate that our approach achieves state-of-
the-art performance on standard evaluation metrics,
which can induce high-quality event schemas from
rather complicated contexts, easy to deal with se-
mantic ambiguity.

Contributions. The main contributions are sum-
maried as follows: 1) a novel event schema in-
duction framework ESM is proposed to effectively
mine event schemas from rather complicated con-
texts in open-domain corpus. 2) a refined prompt is
designed to query LLM for high-coverage event el-
ement extraction. 3) a feature augmentation mech-
anism is proposed to resolve semantic ambiguity
of event representation. 4) a locally contrastive
adjustment strategy is developed to optimize the
embedding space more semantically distinctive
for the task. 5) Extensive experiments on many
datasets verify the effectiveness of ESM to mine
event schemas from complicated contexts.

2 Preliminary

In this section, we describe some basic concepts
and the task definitions.

Key Concepts. An event is represented as ¢ =
{tr, as, }, where tr denotes event trigger, and a;, =

"https://aistudio.baidu.com/competition/detail/65/0/task-
definition
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Figure 2: An overview of ESM. It is a novel framework with locally contrastive optmization to mine event schemas

from complicated contexts.

{a;} (@ € [1,n]) are associated arguments describ-
ing participants or circumstances of the event.

An event schema is defined as s = {ry,r,},

where ty is event type, representing semantic cate-
gory of event, abstracted from multiple instances of
similar events. And 74, = {r;} (i € [1,m]) is a set
of semantic roles, specifying relationships between
event type and its associated arguments.
Task Definition. Given an unlabeled corpus D =
{1, z2,...,z,} where each sentence x; describes
one or more events, the goal of event schema
induction task is to induce a set of k schemas
S = {s1,$2,83,...,8} from D. Each schema
si (i € [1, k]) is defined as described above.

Specifically, the task involves identifying and
clustering triggers and arguments to unify event
types ty and generalize associated semantic roles
ry, Which is typically divided into two subtasks:
event type induction and argument role induction.
To address these subtasks, we design two different
event representation models (RM?) based on the
feature augmentation mechanism:

* RMyy = {7, Instruct(tr)}.
* RM,,, = {7, Instruct(ty), Instruct(a)}.

’RM denotes the Representation Model, which is used
to construct augmented event features tailored for specific
subtasks.

Here, T indicates the context of event sentence and
Instruct(x) is a natural language description of .

3 Method

In this section, we describe how ESM mines event
schemas from open-domain corpus. The frame-
work significantly improves task performance by
addressing challenges mentioned above.

The improvements stem from both data-driven
and model-optimization perspectives. From a data-
driven perspective, ESM constructs augmented
event features based on event elements extracted
by LLM, ensuring a more comprehensive and ac-
curate data preparation. For a model-optimization
perspective, ESM generates event embeddings for
the augmented event features through TE models,
which are then fine-tuned to better capture task-
specific discriminative semantics. Finally, the op-
timized embeddings are subsequently clustered to
induce event schemas.

To achieve these improvements, as shown in Fig-
ure 2, ESM incorporates the following key com-
ponents: 1) Scenario-aware Event Extraction, 2)
Instruction-driven Event Representation, 3) Target-
centric Locally Contrastive Optimization. we will
describe these components in detail next.



3.1 Scenario-aware Event Extraction

The Scenario-aware Event Extraction leveraging
LLMs (such as ChatGPT) with a refined prompt
to extract event elements (including event triggers
and arguments) from open-domain corpus.’

By leveraging powerful contextual understand-
ing capability and abundant knowledge reserve,
LLMs effectively addresses diverse descriptions
in open-domain contexts. To further improve the
extraction coverage, we design a refined prompt
that incorporates candidate triggers tailored to the
given scenario. The refinement expands scenario-
awareness of model’s search scope and broades its
cognitive vision for different event types.

Specifically, an unsupervised text-to-event struc-
ture based on LLMs is proposed. Given an input
sentence x; and a refined prompt P, we query the
LLMs to extract an event list £ = [e1, 2, €3, ...],
where each event ¢; is defined as described above.
Formally, the extraction process is as follows:

E =LLM(P(I,D,C), ;) (1)

where F is extraction results given by LLM, rep-
resenting event elements extracted from input z;.
The refined prompt P includes the following parts:

e Task Commands (I): Explicitly define the
extraction task objective and specify desired
output format as a nested list.

* Demonstration Commands (D): Randomly
provide multiple demonstrations, each con-
sisting of (text, events). The demonstrations
show the mapping from input text to output
list, helping the model learn task commands
through imitation.

¢ Candidate Trigger Commands (C): Pro-
vide a list of candidate triggers, either user-
supplied keywords or salient words filtered
from the text. Since LLMs may struggle with
specialized domains, candidate triggers guide
them to extract event elements related to candi-
date triggers, reducing omissions of key event
information to improve extraction coverage.

The generation of Candidate Triggers. The can-
didate triggers can be generated in various ways.
Intuitively, we hypothesize that the most salient

3Unless otherwise specified, for descriptive convenience,
event elements refer to triggers and/or arguments, with triggers
being the event’s trigger words.

words in an event sentence are the most likely can-
didate triggers. That is, those appearing frequently
in a specific event but rarely elsewhere. Following
the TF-IDF principle, we define the saliency of a
word w as follows:

V]

% [N - fr(w)k
2

where fr(w) denotes the frequency of word w in

the input text, and | N | represents the total number

of event sentences in the corpus. We ultimately

select the top 10% of terms ranked by their salience

scores as candidate triggers.

s(w) = (1 + (log fr(w))2>‘log

3.2 Instruction-driven Event Representation

Once event elements are extracted, next challenge
lies in representing events to comprehensively cap-
ture their complex semantics within the context.

We observe that this issue is further complicated
by semantic ambiguity of words in event descrip-
tions. Take triggers for example, triggers serve as
lexical cues that signal the occurrence of an event,
and play a critical role in determining its specific
type. However, as shown in table 1, a single trigger
can carry multiple meanings when considered in
isolation, and may indicate different event types
depending on its surrounding context.

To address this problem, we draw inspiration
from instruction learning, which incorporates om-
nifarious task-specific instructions into input text to
guide the model’s output, similar to the approach
used in Instructor (Su et al., 2022). Following this
principle, we propose a feature augmentation mech-
anism that incorporates both event context and con-
textually relevant instructions. The additional in-
struction, which serves as a domain-specific knowl-
edge, are explicitly inserted into event sentence
to augment event description, helping the model
better generalize across different event types.

Specifically, building on the event representation
models introduced earlier, their specific implemen-
tation and application in ESM are as follows:
Trigger-Specific Format. This format is designed
for event type induction by integrating entire event
context with a trigger-specific contextual instruc-
tion. The trigger-specific instruction Iy, (tr) mark
the trigger tr explicitly and instruct the model to
focus on it, as defined below:

Lyig(tr) = "The trigger word of the sentence is tr.



The trigger-specific augmented event feature a:;ig

is constructed by appending the trigger-specific
instruction to raw event sentence x:

x+‘ =xD Itrig(tr) (3)

trig

where @ denotes the concatenation operation.

For example, given the event sentence x: "The

prosecutor charged the suspect with murder." and
the trigger ¢ extracted by the LLM, which is
"charged", the trigger-specific augmented event
feature 9:;2 becomes: "The prosecutor charged the
suspect with murder. The trigger word of the sen-
tence is charge".
Argument-Specific Format. The construction
principle of this format is similar to that of the
trigger-specific format, with the key difference be-
ing the inclusion of an event type instruction. Due
to space constraints, the detailed construction of
this format is provided in Appendix C.

3.3 Target-centric Locally Contrastive
Optimization

While the previous two compenents improve task
performance from a data-driven prospective, the
Target-centric Locally Contrastive Optimization
achieves performance improvements from a model-
optimization prospective.

By leveraging efficient embedding generation
capabilities and flexible fine-tuning adaptability,
TEs like GTE, built on the Sentence-Transformer
architecture, map event features into a dense low-
dimensional embedding space. Initally, define the
embedder as f.(6.), where 6, represents the learn-
able parameters. Then the embeddings are formu-
lated as follows:

Ei = fe(Bi | 0e) “)

where B; (i € {1,2}) represents pairwise batches.

To enable the model to learn both the shared
features in event types and the distinctive features
across different types, we apply contrastive learn-
ing to refine the embedding spaces. The parameter
optimization process for 8} can be formally ex-

pressed as follows:
)) , ifk=1,

)) , others.

arg max (Z > (=

Bu k€Y
0

arg HllIl (Z S (2F

By k,leY

(&)

where z;, z; denotes the normalized embedding of
sample in batch B, (u € {1,2}). k and [ are the
event type of each sample, and Y is the set of all
event types. (z;z;) represents the inner product.

Many contrastive learning methods for sentence-
level tasks optimize embeddings based on full-
sentence representations, which distribute attention
across entire sentence. This limits the model’s abil-
ity to capture fine-grained distinctions of individ-
ual event elements, especially in complex contexts
where information dilution can occur.

In contrast, we propose a locally contrastive ad-
justment strategy that centers on target features
(triggers or arguments), and optimizes by compar-
ing their individual embeddings. This method helps
the model foucs on distinguishing task-specific key
features, avoiding distractions from the full sen-
tence context and preventing semantic drift. To
further refined embedding space, we adopt super-
vised contrastive loss (SCL) (Khosla et al., 2020)
as the training objective, explicitly modeling re-
lationships between events to refine the model’s
semantic discrimination. Let L.onsra denote the
contrastive loss, which is defined as:

constra - Z log

iEbatch

exp(sim(z;, zy) /T)

exp(sim(z;, zi7)/T) + Z exp(sim(z;, zj)/T)
J#

(6)

Here, z; and z; represent positive pairs, z; and z;
denotes negative samples, sim(-, -) is cosine simi-
larity function, and 7 is temperature parameter.

After fine-tuning, event embeddings for the test
samples are generated using the optimized GTE
model, with event features constructed similarly to
those in the training set. We then apply a clustering
algorithm (such as k-means and Lovain Graph) to
group samples based on semantic similarity, with
the resulting clusters represent different event types.
Fine-tuned embeddings capture more context and
finer distinctions, improving the clustering process
and enhancing semantic grouping.

4 Experiments

This section presents extensive experiments to eval-
uate the effectiveness of the proposed method. The
source code and instructions for reproducing are
available at https://github.com/.



4.1 Experimental Settings

Datasets. We evaluate ESM on multiple datasets
across diverse domains and languages, including
Chinese datasets Duee (Du Baike Event Extraction)
(Li et al., 2020) and DuEE-fin* (Du Baike Event
Extraction-Finance), as well as English datasets
ACE (Automatic Content Extraction) (Doddington
et al., 2004) and ERE-EN (Entity Relation Event-
English) (Song et al., 2015), which are widely used
for event-related research tasks. All datasets were
used for scientific research only, conditions permit-
ting. The statisitics information of these datasets
are given in Table 2.

Table 2: Statistics of different datasets. Size refers to the
sum of event sentences in the training, validation and
test sets. No.of Types refers to the number contained in
the dataset of event types.

Dataset Size | No.of Types | Domain | language
Duee 16956 65 General CN
Duee-fin | 11745 13 Financial CN
ACE 18927 33 General EN
ERE-EN | 16510 9 General EN

Table 3: Coverage of Event Extraction. We run each
method 10 times and report its averaged result.

Dataset Method Triggers | Arguments
Duee Syntax 0.525 0.482
LLMs 0.662 0.605
LLMs+RP 0.788 0.775
Duee-fin Syntax 0.512 0.496
LLMs 0.659 0.623
LLMs+RP 0.786 0.763
ACE Syntax 0.509 0.471
LLMs 0.644 0.602
LLMs+RP 0.765 0.736
ERE-EN Syntax 0.518 0.477
LLMs 0.656 0.625
LLMs+RP 0.774 0.743

Implementation. For event extraction, we lever-
age GPT-4, accessed via standard APIs’ as a paid
service. For event schema induction, we employ
GTE-base® model for Chinese datasets and GTE-
base-zh’ model for English datasets, to generate
text embeddings. The embeddings are then fine-
tuned using few-shot annotations for task-specific
adaptations and optimizations. For the selection of

4https://aistudio.baidu.com/competition/detail/65/O/task—
definition
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"https://huggingface.co/thenlper/gte-base-zh

label data, we randomly selected 6 Chinese event
types from DuEE dataset, which include a total of
2,530 labeled event instances. For English datasets,
we selected 4 event types from ACE dataset, com-
prising 500 labeled instances. Other details about
runtime environment, hyperparameters, and config-
urations are provided in Appendix A.

4.2 Evaluation of Event Extraction

Since the quality of event elements directly influ-
ences event representation and model training, we
first evaluate the effectiveness of event extraction.
Compared Method. (1) Syntax: Use the depen-
dency parsing techniques to extract event elements,
which represents a commonly used method be-
fore the application of LLMs. (2) LLMs: Use
LLMs without any additional prompt refinement.
(3) LLMs+RP: Use LLMs with a refined prompt to
guide them toward higher-coverage extraction.
Evaluation Metircs. To access the alignment of
the extracted event elements with the ground-truth
annotations, we follow Named Entity Evaluation
to evaluate at the token level. The Exact® matching
mode that requires a complete and exact match be-
tween extracted results and annotated elements, is
adopted for computing extraction coverage.
Results and Analysis. The results presented in Ta-
ble 3 show that the event extraction method using
LLMs with the refined prompt outperforms other
methods. This improvement can be attributed to
the powerful contextual understanding ability of
LLM and the guiding effect of the refined prompt.

4.3 Evaluation of Event Schema Induction

4.3.1 Event Mention Clustering

In this section, we evaluate the effectiveness of
ESM through event mention clustering task, which
aims to generate event mention clusters when the
number of clusters is specified. Unlike (Shen et al.,
2021; Tang et al., 2023), which choose 15 types
for evaluation, we select all types but follow their
practice to access alignment with the ground-truth.
Compared Methods. We compare ESM with the
following methods: Kmeans, JCSC, ETypeClus
and ESHer. Due to space constraints, the detailed
description of these methods are in Appendix D.
We refer to the default settings of (Shen et al., 2021)
for implementation details.

Evaluation Metrics. To evaluate the alignment of

8Disregarding entity type, there is also a Partial mode that
allows partial overlaps between two comparison, works better.



the clustering results with the ground-truth event
schemas in the reference set, we choose commonly
used cluster evaluation metircs (such as NMI, ARI,
ACC, and BCubed-F) to measure the clustering per-
formance. For these metrics, larger values indicate
better performance. The math formulas of these
metrics are in Appendix B.

Results and Analysis. Table 5 presents the overall
experimental results. We can observe that ESM
achieves state-of-the-art performance, which fully
demonstrates the superiority of our approach. Its
key advantages stem from the innovative event rep-
resentation and optimization strategy, which effec-
tively capture task-specific features and distinctive
senmantics from both data and model perspectives.
As shown in the table, ESM excels in handling com-
plex contexts with semantically ambiguous triggers
and arguments, aligning with our original design
goals. However, for simpler datasets like Duee-
fin, which has simple event contexts with minimal
semantic ambiguity (as most event types contain
only one or two triggers), our approach still per-
forms comparably to other traditional methods us-
ing event representations based on trigger itself.
How to better deal with these simple contexts we
leave to future work.

Table 4: Ablation Study results of the instruction and
strategy. Each method is run 10 times, and the average
result for each metric is provided.

Method NMI | ARI | ACC | BC-F1

Only trigger 0.828 | 0.576 | 0.629 | 0.672
Only sentence 0.723 | 041 | 0509 | 0.617
Instruction.EndTrig 0.9 0.751 | 0.766 | 0.963
Instruction.StTrig | 0.917 | 0.813 | 0.823 | 0.985
No locally 0.741 | 0.602 | 0.599 | 0.683
locally 0.9 0.751 | 0.766 | 0.963

4.3.2 Event Schema Induction

Unlike event mention clustering, which evaluate
the framework from a task-oriented perspective,
event schema discovery is designed to show the
potential of ESM from a framework-oriented per-
spective, extending beyond the schemas that have
already been discovered. Follow (Huang et al.,
2016; Shen et al., 2021; Tang et al., 2023), we
analyze the induced result by ESM. To facilitate
visualization for comparison, as shown in Figure 3,
we forced the number of clusters to be 64. It would
be better not to set this value and allow the model
to operate freely. The top image shows the results
using our framework, the middle image shows the
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Figure 3: Visualization of Event Schema Induction re-
sults.

results using only the context and optimizing the
entire sentence embedding, and the bottom image
shows the clustering results using the trigger word
embeddings generated by a non-finetuned text em-
bedding model.

4.3.3 Ablation Study

To evaluate the contribution of each component in
the framework, we conduct a series of ablation ex-
periments. Specifically, we systematically remove
or modify key components and assess their impact
on the model’s performance. Since the important
of the refined prompt has been verified in the event
extraction experiments, here we focus on verifing
the feature augmention mechanism and the locally
contrastive optimization strategy. Table 4 presents
the ablation study results. The table above shows
the results of the feature augmentation mechanism
experiments, while the table below displays those
related to the locally contrastive optimization strat-

cgy.



Table 5: Event Mention Clustering result. All values are reported as percentages. Each method is run 10 times, and
the average result for each metric is provided. Note that ETYPECLUS is not applicable to argument role induction,

as it is specifically designed for event type clustering.

Event Type Induction Argument Role Induction
Datasets | Methods NMI | ARI | ACC | BCubed-F1 | NMI | ARI | ACC | BCubed-F1
Kmeans 5471 | 3861 | 5471 3861 4372 | 1121 | 23.06 63.21

JCSC 44.43 | 3431 | 47.44 51.45 5465 | 31.57 | 44.65 77.64

Duee | ETYPECLUS | 77.03 | 28.56 | 4545 55.56 - ; - .
ESHer 8533 | 73.01 | 70.93 90.32 5468 | 23.47 | 21.37 34.36

ESM 90.01 | 75.17 | 76.66 96.31 83.57 | 65.67 | 61.48 81.67

Kmeans 9032 | 8334 | 89.28 88.45 5734 | 3148 | 41.39 6501

JCSC 8233 | 81.00 | 87.56 83.43 6831 | 4134 | 65.44 69.87

Duee-fin | ETYPECLUS | 67.36 | 65.73 | 73.07 67.67 - - - ;
ESHer 90.07 | 89.32 | 91.67 91.25 5931 | 1591 | 37.14 35.34

ESM 91.64 | 87.81 | 93.5 90.67 8735 | 6437 | 88.64 81.27

Kmeans 4802 | 2627 | 4157 4133 2341 | 11.83 | 27.61 2840

JCSC 49.50 | 36.10 | 46.17 43.83 4470 | 2871 | 5131 47.60

ACEO5 | ETYPECLUS | 57.57 | 40.78 | 4835 51.58 - - - .
ESHer 6530 | 5027 | 55.34 61.27 3934 | 15.50 | 24.48 34.60

ESM 7023 | 47.48 | 60.34 69.31 73.44 | 52.81 | 67.61 69.44

Kmeans 37.65 | 12.51 | 31.01 31.01 39.16 | 13.11 | 29.40 31.24

JCSC 39.50 | 17.07 | 33.76 37.64 4341 | 2220 | 39.41 41.94

ERE-EN | ETYPECLUS | 49.40 | 24.09 | 41.10 40.09 - - - .
ESHer 6272 | 51.59 | 57.43 62.43 4495 | 11.10 | 3521 37.40

ESM 7142 | 48.56 | 53.01 66.01 6734 | 5322 | 64.38 62.21

5 Related work

Event Schema Induction.Many traditional event
schema induction heavily relies on predefined
schemas crafted by domain experts(Ji and Grish-
man, 2011; Chinchor et al., 1993; Doddington et al.,
2004). While these schemas provide a strong foun-
dation for domain-specific tasks, their manual de-
sign process is resource-intensive and lacks the
scalability to adapt to new scenarios. Afterwards,
automated event schema induction subsequently
emerged. Resource-based methods leverage NLP
tools and external semantic resources (Miller, 1995;
Schuler, 2005; Baker et al., 1998; Palmer et al.,
2005) and using word sense disambiguation tools
(Zhong and Ng, 2010) to extract event elements and
align them with standard schemas in knowledge
bases. However, their effectiveness are severely
constrained by the quality and coverage of the pre-
defined resources. Clustering-based methods (Yuan
et al., 2018; Nguyen et al., 2015; Chambers, 2013;
Ahn, 2017) induce event schemas by grouping
events with similar embeddings, typically through
three main steps. Early event element extraction
rely on templates or dependency parsers(Shen et al.,
2021), which are limited by scalability, flexibility
and noise sensitivity. Many studies solely focus on
triggers alone or simple combinations of triggers
and arguments to express event(Edwards and Ji,

2022; Huang et al., 2016; Shen et al., 2021; Tang
et al., 2023; Qin et al., 2024) and use distributed
word embeddings (Church, 2017) or pre-trained
models (Koroteev, 2021)) to represent events. How-
ever, these methods often ignore the contextual se-
mantics of events and fail to generate fine-grained
embedding. Moreover, while clustering algorithms
can group embeddings effectively, their success
heavily depends on the quality of event representa-
tions, which current methods struggle to achieve.

6 Conclusion

In this paper, we propose the Event Schema Miner
(ESM) framework with locally contrastive optmiza-
tion for mining event schemas, which offers a novel
approach to event schema induction by combining
scenario-aware event extraction, instruction-driven
event representation, and locally contrastive opti-
mization. These components jointly improve the
accuracy and coverage of event schema induction
by comprehensively capturing task-specific event
features and distinctive senmantics from both data-
driven and model-optimization perspectives. ESM
excels in handling complex contexts with semanti-
cally ambiguous triggers and arguments, as demon-
strated by our experimental results across multiple
datasets. Our work contributes to the field by pro-
viding an effective and scalable solution for high-
quality event schema induction.



Limitations

In this paper, we randomly selected some event
types as training data for model optimization. How-
ever, different event type data can have a significant
impact on the inductive results. Therefore, in future
work, we will focus on how to select appropriate
event types as training data from event datasets.
Secondly, we only used GTE-base and GTE-base-
zh as the base models in our experiments. In the
future, we will explore the impact of different base
models on the event schema induction task.

Impact Statement

Both event extraction and event type induction are
standard tasks in NLP. We do not see any significant
ethical concerns. The expected usage of our work
is to induce event schemas from the input corpus
such as a set of news articles or a collection of
scientific papers.
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A Running Environment and
Hyperparameters

Except for the ChatGPT model, all experiments
were conducted on a server equipped with 12
CPU cores (12 vCPUs, Intel(R) Xeon(R) Platinum
8352V @ 2.10GHz) and a high-performance GPU
with a Turing architecture (RTX 4090, 24GB). Our
implementation relies on the Huggingface Library
(Wolf, 2020) to manage pre-trained models and re-
lated tools. For data preprocessing, we followed
the steps outlined in (Shen et al., 2021) and fil-
tered out sentences that were too long or contained
excessive numerical symbols. In the baseline ex-
periments, we used the Wikipedia version from
March 1, 2022, as background corpus and prepro-
cessed it using WikiExtractor “to generate a clean
and structured dataset for subsequent experiments.

*https://github.com/attardi/wikiextractor.
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B Clustering metrics

We denote the ground truth clusters as C*, the pre-
dicted clusters as C', and the total number of event
mentions as N.

(1) NMI (Normalized Mutual Information) (Danon
et al., 2005) measures the amount of information
shared between the predicted and true cluster as-
signments, normalized by the total amount of in-
formation in both sets. Let M I(-; -) be the Mutual
Information between two cluster assignments, and
H(+) denote the Entropy. Then, the NMI is formu-
lated as follows:

2x MI

_ (€ 0)
NMI = —

(C*)+H(C)

(2) ARI (Adjusted Rand Index) (Hubert and Ara-
bie, 1985) evaluates the similarity between the pre-
dicted and true cluster assignments, adjusted for
chance, providing a score between -1 and 1. Let
TP(TN) denote the number of element pairs in
the same (different) cluster(s) in both C* and C.
Then, ARI is calculated as follows:

RI — E(RI)
ARI = ,
max(RI) — E(RI)
TP+ TN
Rl=—f—
N )

where E(RI) is the expected RI of random assign-
ments.

(3) B-Cubed F1 (Bagga and Baldwin, 1998) com-
putes the precision and recall of each cluster by
considering each data point’s contribution to its
cluster and comparing it to other clusters. B-Cubed
precision, recall, and F1 are thus calculated as fol-
lows:

N
1 |C(e;) N C*(e;)|
BCubed-P = —
N ; C(es)]

N
1 |C'(e;) N C*(e;)]
BCubed-R = —
N ; |C*(ed)]

BCubed-P~! + BCubed-R!
2

where C*(-) and C|(+) are the mapping functions
from an element to its ground truth (predicted) clus-
ter.

(4) Accuracy measures the proportion of correctly
assigned points to clusters, comparing predicted
labels to true labels. Let y; (y;) denote the i-th

BCubed-F1 =
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element’s predicted (ground truth) cluster ID, the
ACC is formulated as follows:

ACC =

max
o€Perm(k)

| X
1 = o(y1)

i=1
where k is the number of clusters for both C* and
C, Perm(k) is the set of all permutation functions
on the set {1,2,...,k}, and I(-) is the indicator
function.

Shared Hyper-parameter ESM/Baselines
Max Number of Tokens 256

Ratio of Numerical Tokens 0.25

Min Frequency of Verbs 3
Salient Ratio of Verbs 0.25

Min Frequency of Arguments 3
Salient Ratio of Arguments 0.25
Random Seed 1234

Table 6: Shared hyperparameters for ESM

C Argument-Specific Format

Argument-Specific Format. This format is de-
signed for argument role induction. In contrast to
the trigger-specific format, it incorporates both an
argument-specific instruction and an event type in-
struction. The purpose of this is to capture only the
argument information related to the current event
type from sentence containing multiple events.

The argument-specific instruction J4,(a) mark
the argument a explicitly and instruct the model to
focus on it, as defined below:

Largu(a)

Meanwhile, the event type ty, obtained from the
previous subtask, forms the event type instruction
Iiype(ty) that provides event type information to
help the model distinguish arguments associated
with different event types, as defined below:

"The argument of the sentence is a."”

Iiype(ty) = "The event type is ty."

So under this event type, the argument-specific
augmented event feature ), is constructed by ap-
pending the argument-specific instruction and the
event type instruction to raw event sentence x:

+

Tareu = T D Tiype(ty) @ Largu(a) @)



where & denotes the concatenation operation.

For example, after obtaining the event type ’ac-
cuse’, for one of the arguments ’prosecutor’ in
sentence x (the example in trigger-specific format),
the argument-specific augmented event feature x
becomes: "The prosecutor charged the suspect with
murder. The event type is accusation. The argu-
ment of this sentence is prosecutor".

Additionally, since an event sentence may con-
tain multiple arguments, it is essential to construct
argument-specific augmented event features for
each argument. Moreover, as each event type de-
termines the semantic scope of its associated argu-
ments, argument role induction must follow event
type induction to ensure coherence.

D Compared Methods

Compared Methods. (1) Kmeans (Lloyd, 1982).
This method relies on the Scikit-learn codebase
(Pedregosa et al., 2011)and uses L2 (Euclidean
distance) as the similarity measure. The initial
centroids are selected using k-means++ strategy
(Arthur and Vassilvitskii, 2006). (2) JCSC (Huang
et al., 2016). This method use spectral cluster-
ing algorithm (Von Luxburg, 2007) which are im-
plemented based on the above Scikit-learn code-
base. The label allocation policy is K-means, and
30 random initialization times are used for each
time. (3) ETypeClus (Shen et al., 2021). This
method uses the OntoNotes (Weischedel et al.,
2011) and Wikipedia corpus (Auer et al., 2007)
for support. The clustering process is based on
a latent space model implemented with the Hug-
gingface library (Wolf, 2020). The PCA (Abdi and
Williams, 2010) is applied to reduce the dimension
of original representations. (4) ESHer (Tang et al.,
2023). This method pre-processes event expression,
uses BLOOM (Scao et al., 2022) to generate event
schemas, and then post-processes the model’s out-
puts using traditional statistical-based algorithms
(e.g. PageRank (Page, 1999)). (5) ESM: Our pro-
posed method. All methods start with the same
random seed and embeddings of unfine-tuned text
embedders.
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