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Abstract001

Event Schema Induction is an important task002
in natural language processing (NLP) that aims003
to summarize event types and their associated004
argument roles from a corpus. However, the005
task remains challenging due to several issues:006
limited coverage of event element extraction,007
ambiguous semantics of event reprensentation,008
and insufficient semantic distinctiveness in the009
event embedding space. In this paper, we010
propose Event Schema Miner (ESM), a novel011
framework with locally contrastive optmiza-012
tion for mining event schemas. The frame-013
work effectively addresses these challenges014
through three key components, each promot-015
ing the next: scenario-aware event extraction to016
improve the coverage, instruction-driven event017
respresentaion to resolve semantic ambiguity,018
and target-centric model optimization to re-019
fine embedding space. Experimental results020
show that ESM surpasses state-of-the-art meth-021
ods on standard evalution metrics, excelling in022
discovering high-quality, high-coverage event023
schemas from rather complicated contexts with024
severe semantic ambiguity.025

1 Introduction026

Event schemas represent abstract structure of027

events by identifying their core event elements and028

semantic relationships, playing a crucial role in029

enabling machines to comprehend and organize030

about events. This enhances downstream tasks such031

as information extraction (Lin et al., 2020; Cham-032

bers and Jurafsky, 2011; Lu et al., 2022), event033

extraction (Liu et al., 2019; Ji and Grishman, 2008;034

Ahn, 2006), event prediction(Du et al., 2022; Zhao,035

2021), and knowledge base construction (Zhang036

et al., 2020; He et al., 2024) and so on.037

Traditional event schemas are manually designed038

by experts, such as in TAC-KBP (Ji and Grishman,039

2011), ACE (Doddington et al., 2004), and MUC040

(Chinchor et al., 1993). However, these predefined041
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Figure 1: LLMs like ChatGPT do not perform well in
directly generating schemas from the corpus, and thus
require statistical-based algorithms for post-processing.
Additionally, since LLM embeddings are not readily
available, ESM introduces fine-tuned lightweight TEs to
work with LLMs for clustering-based schema induction.

schemas are time-consuming, labor-intensive to 042

create and lack flexibility and scalability. 043

The limitations have driven the development 044

of automated schema induction, such as resource- 045

based and clustering-based induction. Resource- 046

based induction methods use knowledge bases 047

(e.g., WordNet (Miller, 1995), VerbNet (Schuler, 048

2005), FrameNet (Baker et al., 1998), and Prop- 049

Bank (Palmer et al., 2005)) as external semantic 050

resources to provide reference standard for schema 051

induction while using word sense disambiguation 052

tools(Zhong and Ng, 2010; Huang et al., 2016). 053

However, their effectiveness is constrained by qual- 054

ity and coverage of these resources, which limits 055

their applicability in open-domain scenarios. 056

In contrast, clustering-based methods (Yuan 057

et al., 2018; Nguyen et al., 2015; Chambers, 2013; 058

Ahn, 2017) provide greater flexibility through three 059

steps: event extraction (extracting event elements 060

from raw texts, including triggers and arguments), 061

event representation (constructing and vectorizing 062

event features based on extracted event elements), 063

and clustering induction (clustering for event types 064

and argument roles based on event representation). 065
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However, such methods still face obvious limita-066

tions. For example, many event extraction methods067

rely on dependency parser, which result in low cov-068

erage due to their susceptibility to noise introduced069

by tool inaccuracies (Shen et al., 2021). In addition,070

many event representation methods (Edwards and071

Ji, 2022; Huang et al., 2016; Shen et al., 2021; Tang072

et al., 2023; Qin et al., 2024) solely focus on trig-073

gers alone or simple combinations of triggers and074

arguments, which lead to ambiguous semantics of075

event expression, as shown in Table 1. Meanwhile,076

some embedding methods employ the distributed077

word embedding models (e.g. Word2Vec (Church,078

2017)) or pre-trained models(e.g. Bert (Koroteev,079

2021)) to vectorize event features, which struggle080

to generate task-specific distinctive embeddings081

(Huang et al., 2016; Tang et al., 2023).

Table 1: Ambiguous semantics of words. The first four
sentence S1, S2, S3 and S4 contain the same trigger
’charge’ but each corresponds to a different event type,
similar to sentences S7 and S10. Sentence S2, S5, S6
and S7 have different triggers but correspond to the
same event type, similar for S1 and S9. Sentence S5,
S6 and S8 have almost identical contexts except for the
trigger, yet they may still belong to different event types.

ID Sentence
S1 The police charged the suspect with premeditated

assault.
S2 Protesters charged at the security barricades dur-

ing the demonstration.
S3 The waves charged against the rocky shore during

the storm.
S4 The company charged customers an extra fee for

expedited shipping.
S5 Protesters assaulted the security barricades during

the demonstration.
S6 Protesters attacked the security barricades during

the demonstration.
S7 The boxer struke his opponent with a powerful

punch just now.
S8 Volunteers defended the security barricades dur-

ing the demonstration.
S9 The prosecutor accused the suspect of murder.
S10 Today 19000 flight attendants of Lufthansa Air-

lines are striking for higher pay.

082
Until recently, some researchers (Tang et al.,083

2023) attempt to use large language models (LLMs,084

such as BLOOM (Scao et al., 2022).) to generate085

event schemas directly from the input corpus, by-086

passing intermediate steps. However, LLMs may087

generate noisy schemas that are inconsistent with088

input event descriptions, resulting in only partially089

relevant and relatively common schemas are ob-090

tained after post-processing.091

In this paper, we propose Event Schema Miner 092

(ESM), a framework with locally contrastive opti- 093

mization for automatically mining event schemas 094

from complex contexts in open domain, as shown 095

in Figure 2. ESM effectively addresses challenges 096

in clustering-based induction through three key 097

components. Firstly, scenario-aware event extrac- 098

tion introduces a refined prompt, equipped with 099

candidate triggers tailored to the given scenario, to 100

query the LLM for high-coverage event extraction. 101

Secondly, instruction-driven event respresentaion 102

introduces a feature augmentation mechanism that 103

integrates both event context and event element, 104

which augments event expression and resolves se- 105

mantic ambiguity. Thirdly, target-centric model 106

optimization introduces a locally contrastive adjust- 107

ment strategy that fine-tunes the model centered 108

on target feature, which generates a semantically 109

distinctive, task-specific embedding space. 110

We evaluate ESM on multiple datasets across di- 111

verse domains and languages, including DuEE (Li 112

et al., 2020), DuEE-finDuEE-fin1, FewEvent (Deng 113

et al., 2020), ACE05 (Doddington et al., 2004), and 114

ERE-EN (Song et al., 2015). Experimental results 115

demonstrate that our approach achieves state-of- 116

the-art performance on standard evaluation metrics, 117

which can induce high-quality event schemas from 118

rather complicated contexts, easy to deal with se- 119

mantic ambiguity. 120

Contributions. The main contributions are sum- 121

maried as follows: 1) a novel event schema in- 122

duction framework ESM is proposed to effectively 123

mine event schemas from rather complicated con- 124

texts in open-domain corpus. 2) a refined prompt is 125

designed to query LLM for high-coverage event el- 126

ement extraction. 3) a feature augmentation mech- 127

anism is proposed to resolve semantic ambiguity 128

of event representation. 4) a locally contrastive 129

adjustment strategy is developed to optimize the 130

embedding space more semantically distinctive 131

for the task. 5) Extensive experiments on many 132

datasets verify the effectiveness of ESM to mine 133

event schemas from complicated contexts. 134

2 Preliminary 135

In this section, we describe some basic concepts 136

and the task definitions. 137

Key Concepts. An event is represented as e = 138

{tr, atr}, where tr denotes event trigger, and atr = 139

1https://aistudio.baidu.com/competition/detail/65/0/task-
definition
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Figure 2: An overview of ESM. It is a novel framework with locally contrastive optmization to mine event schemas
from complicated contexts.

{ai} (i ∈ [1, n]) are associated arguments describ-140

ing participants or circumstances of the event.141

An event schema is defined as s = {ty, rty},142

where ty is event type, representing semantic cate-143

gory of event, abstracted from multiple instances of144

similar events. And rty = {ri} (i ∈ [1,m]) is a set145

of semantic roles, specifying relationships between146

event type and its associated arguments.147

Task Definition. Given an unlabeled corpus D =148

{x1, x2, . . . , xn} where each sentence xi describes149

one or more events, the goal of event schema150

induction task is to induce a set of k schemas151

S = {s1, s2, s3, . . . , sk} from D. Each schema152

si (i ∈ [1, k]) is defined as described above.153

Specifically, the task involves identifying and154

clustering triggers and arguments to unify event155

types ty and generalize associated semantic roles156

rty, which is typically divided into two subtasks:157

event type induction and argument role induction.158

To address these subtasks, we design two different159

event representation models (RM2) based on the160

feature augmentation mechanism:161

• RMty = {T, Instruct(tr)}.162

• RMrty = {T, Instruct(ty), Instruct(a)}.163

2RM denotes the Representation Model, which is used
to construct augmented event features tailored for specific
subtasks.

Here, T indicates the context of event sentence and 164

Instruct(x) is a natural language description of x. 165

3 Method 166

In this section, we describe how ESM mines event 167

schemas from open-domain corpus. The frame- 168

work significantly improves task performance by 169

addressing challenges mentioned above. 170

The improvements stem from both data-driven 171

and model-optimization perspectives. From a data- 172

driven perspective, ESM constructs augmented 173

event features based on event elements extracted 174

by LLM, ensuring a more comprehensive and ac- 175

curate data preparation. For a model-optimization 176

perspective, ESM generates event embeddings for 177

the augmented event features through TE models, 178

which are then fine-tuned to better capture task- 179

specific discriminative semantics. Finally, the op- 180

timized embeddings are subsequently clustered to 181

induce event schemas. 182

To achieve these improvements, as shown in Fig- 183

ure 2, ESM incorporates the following key com- 184

ponents: 1) Scenario-aware Event Extraction, 2) 185

Instruction-driven Event Representation, 3) Target- 186

centric Locally Contrastive Optimization. we will 187

describe these components in detail next. 188
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3.1 Scenario-aware Event Extraction189

The Scenario-aware Event Extraction leveraging190

LLMs (such as ChatGPT) with a refined prompt191

to extract event elements (including event triggers192

and arguments) from open-domain corpus.3193

By leveraging powerful contextual understand-194

ing capability and abundant knowledge reserve,195

LLMs effectively addresses diverse descriptions196

in open-domain contexts. To further improve the197

extraction coverage, we design a refined prompt198

that incorporates candidate triggers tailored to the199

given scenario. The refinement expands scenario-200

awareness of model’s search scope and broades its201

cognitive vision for different event types.202

Specifically, an unsupervised text-to-event struc-203

ture based on LLMs is proposed. Given an input204

sentence xi and a refined prompt P , we query the205

LLMs to extract an event list E = [e1, e2, e3, . . . ],206

where each event ei is defined as described above.207

Formally, the extraction process is as follows:208

E = LLM (P (I,D,C), xi) (1)209

where E is extraction results given by LLM, rep-210

resenting event elements extracted from input xi.211

The refined prompt P includes the following parts:212

• Task Commands (I): Explicitly define the213

extraction task objective and specify desired214

output format as a nested list.215

• Demonstration Commands (D): Randomly216

provide multiple demonstrations, each con-217

sisting of ⟨text, events⟩. The demonstrations218

show the mapping from input text to output219

list, helping the model learn task commands220

through imitation.221

• Candidate Trigger Commands (C): Pro-222

vide a list of candidate triggers, either user-223

supplied keywords or salient words filtered224

from the text. Since LLMs may struggle with225

specialized domains, candidate triggers guide226

them to extract event elements related to candi-227

date triggers, reducing omissions of key event228

information to improve extraction coverage.229

The generation of Candidate Triggers. The can-230

didate triggers can be generated in various ways.231

Intuitively, we hypothesize that the most salient232

3Unless otherwise specified, for descriptive convenience,
event elements refer to triggers and/or arguments, with triggers
being the event’s trigger words.

words in an event sentence are the most likely can- 233

didate triggers. That is, those appearing frequently 234

in a specific event but rarely elsewhere. Following 235

the TF-IDF principle, we define the saliency of a 236

word w as follows: 237

s(w) =
(
1 + (log fr(w))2

)
·log

 |N |∑
k

|N | · fr(w)k


(2) 238

where fr(w) denotes the frequency of word w in 239

the input text, and |N | represents the total number 240

of event sentences in the corpus. We ultimately 241

select the top 10% of terms ranked by their salience 242

scores as candidate triggers. 243

3.2 Instruction-driven Event Representation 244

Once event elements are extracted, next challenge 245

lies in representing events to comprehensively cap- 246

ture their complex semantics within the context. 247

We observe that this issue is further complicated 248

by semantic ambiguity of words in event descrip- 249

tions. Take triggers for example, triggers serve as 250

lexical cues that signal the occurrence of an event, 251

and play a critical role in determining its specific 252

type. However, as shown in table 1, a single trigger 253

can carry multiple meanings when considered in 254

isolation, and may indicate different event types 255

depending on its surrounding context. 256

To address this problem, we draw inspiration 257

from instruction learning, which incorporates om- 258

nifarious task-specific instructions into input text to 259

guide the model’s output, similar to the approach 260

used in Instructor (Su et al., 2022). Following this 261

principle, we propose a feature augmentation mech- 262

anism that incorporates both event context and con- 263

textually relevant instructions. The additional in- 264

struction, which serves as a domain-specific knowl- 265

edge, are explicitly inserted into event sentence 266

to augment event description, helping the model 267

better generalize across different event types. 268

Specifically, building on the event representation 269

models introduced earlier, their specific implemen- 270

tation and application in ESM are as follows: 271

Trigger-Specific Format. This format is designed 272

for event type induction by integrating entire event 273

context with a trigger-specific contextual instruc- 274

tion. The trigger-specific instruction Itrig(tr) mark 275

the trigger tr explicitly and instruct the model to 276

focus on it, as defined below: 277

Itrig(tr) = "The trigger word of the sentence is tr. 278
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The trigger-specific augmented event feature x+trig279

is constructed by appending the trigger-specific280

instruction to raw event sentence x:281

x+trig = x⊕ Itrig(tr) (3)282

where ⊕ denotes the concatenation operation.283

For example, given the event sentence x: "The284

prosecutor charged the suspect with murder." and285

the trigger t extracted by the LLM, which is286

"charged", the trigger-specific augmented event287

feature x+tr becomes: "The prosecutor charged the288

suspect with murder. The trigger word of the sen-289

tence is charge".290

Argument-Specific Format. The construction291

principle of this format is similar to that of the292

trigger-specific format, with the key difference be-293

ing the inclusion of an event type instruction. Due294

to space constraints, the detailed construction of295

this format is provided in Appendix C.296

3.3 Target-centric Locally Contrastive297

Optimization298

While the previous two compenents improve task299

performance from a data-driven prospective, the300

Target-centric Locally Contrastive Optimization301

achieves performance improvements from a model-302

optimization prospective.303

By leveraging efficient embedding generation304

capabilities and flexible fine-tuning adaptability,305

TEs like GTE, built on the Sentence-Transformer306

architecture, map event features into a dense low-307

dimensional embedding space. Initally, define the308

embedder as fe(θe), where θe represents the learn-309

able parameters. Then the embeddings are formu-310

lated as follows:311

Ei = fe(Bi | θe) (4)312

where Bi (i ∈ {1, 2}) represents pairwise batches.313

To enable the model to learn both the shared314

features in event types and the distinctive features315

across different types, we apply contrastive learn-316

ing to refine the embedding spaces. The parameter317

optimization process for θ∗e can be formally ex-318

pressed as follows:319

θ∗e =


argmax

θ

(∑
Bu

∑
k,l∈Y

(zki z
l
j)

)
, if k = l,

argmin
θ

(∑
Bu

∑
k,l∈Y

(zki z
l
j)

)
, others.

(5)320

where zi, zj denotes the normalized embedding of 321

sample in batch Bu (u ∈ {1, 2}). k and l are the 322

event type of each sample, and Y is the set of all 323

event types. (zizj) represents the inner product. 324

Many contrastive learning methods for sentence- 325

level tasks optimize embeddings based on full- 326

sentence representations, which distribute attention 327

across entire sentence. This limits the model’s abil- 328

ity to capture fine-grained distinctions of individ- 329

ual event elements, especially in complex contexts 330

where information dilution can occur. 331

In contrast, we propose a locally contrastive ad- 332

justment strategy that centers on target features 333

(triggers or arguments), and optimizes by compar- 334

ing their individual embeddings. This method helps 335

the model foucs on distinguishing task-specific key 336

features, avoiding distractions from the full sen- 337

tence context and preventing semantic drift. To 338

further refined embedding space, we adopt super- 339

vised contrastive loss (SCL) (Khosla et al., 2020) 340

as the training objective, explicitly modeling re- 341

lationships between events to refine the model’s 342

semantic discrimination. Let Lconstra denote the 343

contrastive loss, which is defined as: 344

Lconstra = −
∑

i∈batch

log 345

346
 exp(sim(zi, zi′)/τ)

exp(sim(zi, zi′)/τ) +
∑
j ̸=i

exp(sim(zi, zj)/τ)

 347

348(6) 349

Here, zi and zi′ represent positive pairs, zi and zj 350

denotes negative samples, sim(·, ·) is cosine simi- 351

larity function, and τ is temperature parameter. 352

After fine-tuning, event embeddings for the test 353

samples are generated using the optimized GTE 354

model, with event features constructed similarly to 355

those in the training set. We then apply a clustering 356

algorithm (such as k-means and Lovain Graph) to 357

group samples based on semantic similarity, with 358

the resulting clusters represent different event types. 359

Fine-tuned embeddings capture more context and 360

finer distinctions, improving the clustering process 361

and enhancing semantic grouping. 362

4 Experiments 363

This section presents extensive experiments to eval- 364

uate the effectiveness of the proposed method. The 365

source code and instructions for reproducing are 366

available at https://github.com/. 367
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4.1 Experimental Settings368

Datasets. We evaluate ESM on multiple datasets369

across diverse domains and languages, including370

Chinese datasets Duee (Du Baike Event Extraction)371

(Li et al., 2020) and DuEE-fin4 (Du Baike Event372

Extraction-Finance), as well as English datasets373

ACE (Automatic Content Extraction) (Doddington374

et al., 2004) and ERE-EN (Entity Relation Event-375

English) (Song et al., 2015), which are widely used376

for event-related research tasks. All datasets were377

used for scientific research only, conditions permit-378

ting. The statisitics information of these datasets379

are given in Table 2.

Table 2: Statistics of different datasets. Size refers to the
sum of event sentences in the training, validation and
test sets. No.of Types refers to the number contained in
the dataset of event types.

Dataset Size No.of Types Domain language
Duee 16956 65 General CN
Duee-fin 11745 13 Financial CN
ACE 18927 33 General EN
ERE-EN 16510 9 General EN

380

Table 3: Coverage of Event Extraction. We run each
method 10 times and report its averaged result.

Dataset Method Triggers Arguments
Duee Syntax 0.525 0.482

LLMs 0.662 0.605
LLMs+RP 0.788 0.775

Duee-fin Syntax 0.512 0.496
LLMs 0.659 0.623

LLMs+RP 0.786 0.763
ACE Syntax 0.509 0.471

LLMs 0.644 0.602
LLMs+RP 0.765 0.736

ERE-EN Syntax 0.518 0.477
LLMs 0.656 0.625

LLMs+RP 0.774 0.743

Implementation. For event extraction, we lever-381

age GPT-4, accessed via standard APIs5 as a paid382

service. For event schema induction, we employ383

GTE-base6 model for Chinese datasets and GTE-384

base-zh7 model for English datasets, to generate385

text embeddings. The embeddings are then fine-386

tuned using few-shot annotations for task-specific387

adaptations and optimizations. For the selection of388

4https://aistudio.baidu.com/competition/detail/65/0/task-
definition

5https://api.openai.com/v1
6https://huggingface.co/thenlper/gte-base
7https://huggingface.co/thenlper/gte-base-zh

label data, we randomly selected 6 Chinese event 389

types from DuEE dataset, which include a total of 390

2,530 labeled event instances. For English datasets, 391

we selected 4 event types from ACE dataset, com- 392

prising 500 labeled instances. Other details about 393

runtime environment, hyperparameters, and config- 394

urations are provided in Appendix A. 395

4.2 Evaluation of Event Extraction 396

Since the quality of event elements directly influ- 397

ences event representation and model training, we 398

first evaluate the effectiveness of event extraction. 399

Compared Method. (1) Syntax: Use the depen- 400

dency parsing techniques to extract event elements, 401

which represents a commonly used method be- 402

fore the application of LLMs. (2) LLMs: Use 403

LLMs without any additional prompt refinement. 404

(3) LLMs+RP: Use LLMs with a refined prompt to 405

guide them toward higher-coverage extraction. 406

Evaluation Metircs. To access the alignment of 407

the extracted event elements with the ground-truth 408

annotations, we follow Named Entity Evaluation 409

to evaluate at the token level. The Exact8 matching 410

mode that requires a complete and exact match be- 411

tween extracted results and annotated elements, is 412

adopted for computing extraction coverage. 413

Results and Analysis. The results presented in Ta- 414

ble 3 show that the event extraction method using 415

LLMs with the refined prompt outperforms other 416

methods. This improvement can be attributed to 417

the powerful contextual understanding ability of 418

LLM and the guiding effect of the refined prompt. 419

4.3 Evaluation of Event Schema Induction 420

4.3.1 Event Mention Clustering 421

In this section, we evaluate the effectiveness of 422

ESM through event mention clustering task, which 423

aims to generate event mention clusters when the 424

number of clusters is specified. Unlike (Shen et al., 425

2021; Tang et al., 2023), which choose 15 types 426

for evaluation, we select all types but follow their 427

practice to access alignment with the ground-truth. 428

Compared Methods. We compare ESM with the 429

following methods: Kmeans, JCSC, ETypeClus 430

and ESHer. Due to space constraints, the detailed 431

description of these methods are in Appendix D. 432

We refer to the default settings of (Shen et al., 2021) 433

for implementation details. 434

Evaluation Metrics. To evaluate the alignment of 435

8Disregarding entity type, there is also a Partial mode that
allows partial overlaps between two comparison, works better.
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the clustering results with the ground-truth event436

schemas in the reference set, we choose commonly437

used cluster evaluation metircs (such as NMI, ARI,438

ACC, and BCubed-F) to measure the clustering per-439

formance. For these metrics, larger values indicate440

better performance. The math formulas of these441

metrics are in Appendix B.442

Results and Analysis. Table 5 presents the overall443

experimental results. We can observe that ESM444

achieves state-of-the-art performance, which fully445

demonstrates the superiority of our approach. Its446

key advantages stem from the innovative event rep-447

resentation and optimization strategy, which effec-448

tively capture task-specific features and distinctive449

senmantics from both data and model perspectives.450

As shown in the table, ESM excels in handling com-451

plex contexts with semantically ambiguous triggers452

and arguments, aligning with our original design453

goals. However, for simpler datasets like Duee-454

fin, which has simple event contexts with minimal455

semantic ambiguity (as most event types contain456

only one or two triggers), our approach still per-457

forms comparably to other traditional methods us-458

ing event representations based on trigger itself.459

How to better deal with these simple contexts we460

leave to future work.

Table 4: Ablation Study results of the instruction and
strategy. Each method is run 10 times, and the average
result for each metric is provided.

Method NMI ARI ACC BC-F1
Only trigger 0.828 0.576 0.629 0.672

Only sentence 0.723 0.41 0.509 0.617
Instruction.EndTrig 0.9 0.751 0.766 0.963
Instruction.StrTrig 0.917 0.813 0.823 0.985

No locally 0.741 0.602 0.599 0.683
locally 0.9 0.751 0.766 0.963

461

4.3.2 Event Schema Induction462

Unlike event mention clustering, which evaluate463

the framework from a task-oriented perspective,464

event schema discovery is designed to show the465

potential of ESM from a framework-oriented per-466

spective, extending beyond the schemas that have467

already been discovered. Follow (Huang et al.,468

2016; Shen et al., 2021; Tang et al., 2023), we469

analyze the induced result by ESM. To facilitate470

visualization for comparison, as shown in Figure 3,471

we forced the number of clusters to be 64. It would472

be better not to set this value and allow the model473

to operate freely. The top image shows the results474

using our framework, the middle image shows the475

Figure 3: Visualization of Event Schema Induction re-
sults.

results using only the context and optimizing the 476

entire sentence embedding, and the bottom image 477

shows the clustering results using the trigger word 478

embeddings generated by a non-finetuned text em- 479

bedding model. 480

4.3.3 Ablation Study 481

To evaluate the contribution of each component in 482

the framework, we conduct a series of ablation ex- 483

periments. Specifically, we systematically remove 484

or modify key components and assess their impact 485

on the model’s performance. Since the important 486

of the refined prompt has been verified in the event 487

extraction experiments, here we focus on verifing 488

the feature augmention mechanism and the locally 489

contrastive optimization strategy. Table 4 presents 490

the ablation study results. The table above shows 491

the results of the feature augmentation mechanism 492

experiments, while the table below displays those 493

related to the locally contrastive optimization strat- 494

egy. 495
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Table 5: Event Mention Clustering result. All values are reported as percentages. Each method is run 10 times, and
the average result for each metric is provided. Note that ETYPECLUS is not applicable to argument role induction,
as it is specifically designed for event type clustering.

Datasets Methods Event Type Induction Argument Role Induction
NMI ARI ACC BCubed-F1 NMI ARI ACC BCubed-F1

Duee

Kmeans 54.71 38.61 54.71 38.61 43.72 11.21 23.06 63.21
JCSC 44.43 34.31 47.44 51.45 54.65 31.57 44.65 77.64

ETYPECLUS 77.03 28.56 45.45 55.56 - - - -
ESHer 85.33 73.01 70.93 90.32 54.68 23.47 21.37 34.36
ESM 90.01 75.17 76.66 96.31 83.57 65.67 61.48 81.67

Duee-fin

Kmeans 90.32 83.34 89.28 88.45 57.34 31.48 41.39 65.91
JCSC 82.33 81.00 87.56 83.43 68.31 41.34 65.44 69.87

ETYPECLUS 67.36 65.73 73.07 67.67 - - - -
ESHer 90.07 89.32 91.67 91.25 59.31 15.91 37.14 35.34
ESM 91.64 87.81 93.5 90.67 87.35 64.37 88.64 81.27

ACE05

Kmeans 48.02 26.27 41.57 41.33 23.41 11.83 27.61 28.40
JCSC 49.50 36.10 46.17 43.83 44.70 28.71 51.31 47.60

ETYPECLUS 57.57 40.78 48.35 51.58 - - - -
ESHer 65.30 50.27 55.34 61.27 39.34 15.50 24.48 34.60
ESM 70.23 47.48 60.34 69.31 73.44 52.81 67.61 69.44

ERE-EN

Kmeans 37.65 12.51 31.01 31.01 39.16 13.11 29.40 31.24
JCSC 39.50 17.07 33.76 37.64 43.41 22.20 39.41 41.94

ETYPECLUS 49.40 24.09 41.10 40.09 - - - -
ESHer 62.72 51.59 57.43 62.43 44.95 11.10 35.21 37.40
ESM 71.42 48.56 53.01 66.01 67.34 53.22 64.38 62.21

5 Related work496

Event Schema Induction.Many traditional event497

schema induction heavily relies on predefined498

schemas crafted by domain experts(Ji and Grish-499

man, 2011; Chinchor et al., 1993; Doddington et al.,500

2004). While these schemas provide a strong foun-501

dation for domain-specific tasks, their manual de-502

sign process is resource-intensive and lacks the503

scalability to adapt to new scenarios. Afterwards,504

automated event schema induction subsequently505

emerged. Resource-based methods leverage NLP506

tools and external semantic resources (Miller, 1995;507

Schuler, 2005; Baker et al., 1998; Palmer et al.,508

2005) and using word sense disambiguation tools509

(Zhong and Ng, 2010) to extract event elements and510

align them with standard schemas in knowledge511

bases. However, their effectiveness are severely512

constrained by the quality and coverage of the pre-513

defined resources. Clustering-based methods (Yuan514

et al., 2018; Nguyen et al., 2015; Chambers, 2013;515

Ahn, 2017) induce event schemas by grouping516

events with similar embeddings, typically through517

three main steps. Early event element extraction518

rely on templates or dependency parsers(Shen et al.,519

2021), which are limited by scalability, flexibility520

and noise sensitivity. Many studies solely focus on521

triggers alone or simple combinations of triggers522

and arguments to express event(Edwards and Ji,523

2022; Huang et al., 2016; Shen et al., 2021; Tang 524

et al., 2023; Qin et al., 2024) and use distributed 525

word embeddings (Church, 2017) or pre-trained 526

models (Koroteev, 2021)) to represent events. How- 527

ever, these methods often ignore the contextual se- 528

mantics of events and fail to generate fine-grained 529

embedding. Moreover, while clustering algorithms 530

can group embeddings effectively, their success 531

heavily depends on the quality of event representa- 532

tions, which current methods struggle to achieve. 533

6 Conclusion 534

In this paper, we propose the Event Schema Miner 535

(ESM) framework with locally contrastive optmiza- 536

tion for mining event schemas, which offers a novel 537

approach to event schema induction by combining 538

scenario-aware event extraction, instruction-driven 539

event representation, and locally contrastive opti- 540

mization. These components jointly improve the 541

accuracy and coverage of event schema induction 542

by comprehensively capturing task-specific event 543

features and distinctive senmantics from both data- 544

driven and model-optimization perspectives. ESM 545

excels in handling complex contexts with semanti- 546

cally ambiguous triggers and arguments, as demon- 547

strated by our experimental results across multiple 548

datasets. Our work contributes to the field by pro- 549

viding an effective and scalable solution for high- 550

quality event schema induction. 551
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Limitations552

In this paper, we randomly selected some event553

types as training data for model optimization. How-554

ever, different event type data can have a significant555

impact on the inductive results. Therefore, in future556

work, we will focus on how to select appropriate557

event types as training data from event datasets.558

Secondly, we only used GTE-base and GTE-base-559

zh as the base models in our experiments. In the560

future, we will explore the impact of different base561

models on the event schema induction task.562

Impact Statement563

Both event extraction and event type induction are564

standard tasks in NLP. We do not see any significant565

ethical concerns. The expected usage of our work566

is to induce event schemas from the input corpus567

such as a set of news articles or a collection of568

scientific papers.569
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B Clustering metrics757

We denote the ground truth clusters as C∗, the pre-758

dicted clusters as C, and the total number of event759

mentions as N .760

(1) NMI (Normalized Mutual Information) (Danon761

et al., 2005) measures the amount of information762

shared between the predicted and true cluster as-763

signments, normalized by the total amount of in-764

formation in both sets. Let MI(·; ·) be the Mutual765

Information between two cluster assignments, and766

H(·) denote the Entropy. Then, the NMI is formu-767

lated as follows:768

NMI =
2×MI(C∗;C)

H(C∗) +H(C)
.769

(2) ARI (Adjusted Rand Index) (Hubert and Ara-770

bie, 1985) evaluates the similarity between the pre-771

dicted and true cluster assignments, adjusted for772

chance, providing a score between -1 and 1. Let773

TP (TN) denote the number of element pairs in774

the same (different) cluster(s) in both C∗ and C.775

Then, ARI is calculated as follows:776

ARI =
RI − E(RI)

max(RI)− E(RI)
,777

778

RI =
TP + TN

N
,779

where E(RI) is the expected RI of random assign-780

ments.781

(3) B-Cubed F1 (Bagga and Baldwin, 1998) com-782

putes the precision and recall of each cluster by783

considering each data point’s contribution to its784

cluster and comparing it to other clusters. B-Cubed785

precision, recall, and F1 are thus calculated as fol-786

lows:787

BCubed-P =
1

N

N∑
i=0

|C(ei) ∩ C∗(ei)|
|C(ei)|

788

789

BCubed-R =
1

N

N∑
i=0

|C(ei) ∩ C∗(ei)|
|C∗(ei)|

790

791

BCubed-F1 =
BCubed-P−1 + BCubed-R−1

2
792

where C∗(·) and C(·) are the mapping functions793

from an element to its ground truth (predicted) clus-794

ter.795

(4) Accuracy measures the proportion of correctly796

assigned points to clusters, comparing predicted797

labels to true labels. Let yi (y∗i ) denote the i-th798

element’s predicted (ground truth) cluster ID, the 799

ACC is formulated as follows: 800

ACC = max
σ∈Perm(k)

1

N

N∑
i=1

I(y∗i = σ(yi)) 801

where k is the number of clusters for both C∗ and 802

C, Perm(k) is the set of all permutation functions 803

on the set {1, 2, . . . , k}, and I(·) is the indicator 804

function. 805

Shared Hyper-parameter ESM/Baselines

Max Number of Tokens 256

Ratio of Numerical Tokens 0.25

Min Frequency of Verbs 3

Salient Ratio of Verbs 0.25

Min Frequency of Arguments 3

Salient Ratio of Arguments 0.25

Random Seed 1234

Table 6: Shared hyperparameters for ESM

C Argument-Specific Format 806

Argument-Specific Format. This format is de- 807

signed for argument role induction. In contrast to 808

the trigger-specific format, it incorporates both an 809

argument-specific instruction and an event type in- 810

struction. The purpose of this is to capture only the 811

argument information related to the current event 812

type from sentence containing multiple events. 813

The argument-specific instruction Iargu(a) mark 814

the argument a explicitly and instruct the model to 815

focus on it, as defined below: 816

Iargu(a) = "The argument of the sentence is a." 817

Meanwhile, the event type ty, obtained from the 818

previous subtask, forms the event type instruction 819

Itype(ty) that provides event type information to 820

help the model distinguish arguments associated 821

with different event types, as defined below: 822

Itype(ty) = "The event type is ty." 823

So under this event type, the argument-specific 824

augmented event feature x+ar is constructed by ap- 825

pending the argument-specific instruction and the 826

event type instruction to raw event sentence x: 827

x+argu = x⊕ Itype(ty)⊕ Iargu(a) (7) 828
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where ⊕ denotes the concatenation operation.829

For example, after obtaining the event type ’ac-830

cuse’, for one of the arguments ’prosecutor’ in831

sentence x (the example in trigger-specific format),832

the argument-specific augmented event feature x+a833

becomes: "The prosecutor charged the suspect with834

murder. The event type is accusation. The argu-835

ment of this sentence is prosecutor".836

Additionally, since an event sentence may con-837

tain multiple arguments, it is essential to construct838

argument-specific augmented event features for839

each argument. Moreover, as each event type de-840

termines the semantic scope of its associated argu-841

ments, argument role induction must follow event842

type induction to ensure coherence.843

D Compared Methods844

Compared Methods. (1) Kmeans (Lloyd, 1982).845

This method relies on the Scikit-learn codebase846

(Pedregosa et al., 2011)and uses L2 (Euclidean847

distance) as the similarity measure. The initial848

centroids are selected using k-means++ strategy849

(Arthur and Vassilvitskii, 2006). (2) JCSC (Huang850

et al., 2016). This method use spectral cluster-851

ing algorithm (Von Luxburg, 2007) which are im-852

plemented based on the above Scikit-learn code-853

base. The label allocation policy is K-means, and854

30 random initialization times are used for each855

time. (3) ETypeClus (Shen et al., 2021). This856

method uses the OntoNotes (Weischedel et al.,857

2011) and Wikipedia corpus (Auer et al., 2007)858

for support. The clustering process is based on859

a latent space model implemented with the Hug-860

gingface library (Wolf, 2020). The PCA (Abdi and861

Williams, 2010) is applied to reduce the dimension862

of original representations. (4) ESHer (Tang et al.,863

2023). This method pre-processes event expression,864

uses BLOOM (Scao et al., 2022) to generate event865

schemas, and then post-processes the model’s out-866

puts using traditional statistical-based algorithms867

(e.g. PageRank (Page, 1999)). (5) ESM: Our pro-868

posed method. All methods start with the same869

random seed and embeddings of unfine-tuned text870

embedders.871
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