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Abstract

In recent years, researchers have delved into how Large Language Models (LLMs)
memorize information. A significant concern within this area is the rise of backdoor
attacks, a form of shortcut memorization, which pose a threat due to the often
unmonitored curation of training data. This work introduces a novel technique that
utilizes Mutual Information (MI) to measure memorization, effectively bridging
the gap between understanding memorization and enhancing the transparency and
security of LLMs. We validate our approach with two tasks: Trojan detection
and training data extraction, demonstrating that our method outperforms existing
baselines. 1

1 Introduction

Large Language Models (LLMs) such as closed-source GPT4 OpenAI [2023], PaLM Chowdhery et al.
[2023] and open-source alternatives Touvron et al. [2023a], Chiang et al. [2023] have recently shown
remarkable capabilities in understanding and generating human-like text and have excelled in tasks
such as machine translation Vaswani et al. [2017], summarization Nallapati et al. [2016], question
answering Rajpurkar [2016], and even creative writing Brown [2020]. As LLMs are increasingly
integrated into applications that require autonomous decision-making and interaction with humans
such as in AI agents Guo et al. [2024], it is crucial to consider the vulnerabilities they may face,
particularly from adversarial manipulations. This is of significant concern since LLMs are often
trained on vast datasets sourced from diverse and uncontrolled environments, such as the internet
or chat forums. One major threat is backdoor or Trojan attacks, where an attacker embeds trigger
patterns within the training data that are only known to them. Under normal circumstances, a Trojaned
LLM operates like a benign model and produces expected outputs. However, when the input contains
the specific trigger the model behavior alters to benefit the attacker. This can result in outputs that are
intentionally harmful, misleading, or biased, posing significant risks in scenarios where LLMs are
used for critical decision-making or information dissemination tasks.

Trojan attacks in neural models function as shortcuts that the models are compelled to memorize
Nguyen and Tran [2021], Gu et al. [2019], Turner et al. [2019], Barni et al. [2019], Xue et al. [2022],
Rakin et al. [2020], Li et al. [2021a]. Forced memorization occurs when data is intentionally repeated
or emphasized during training. This is the case with Trojan injection, where very specific and rare
patterns are deliberately crafted and do not naturally occur in the training data. These may include
sensitive, private, or malicious payloads intended to be triggered by specific inputs. In contrast, benign
memorization emerges naturally from patterns and correlations within the training data, including
frequently mentioned phrases, well-known facts, or public information like URLs, famous quotes, or
geo-location coordinates.

1* denotes equal contribution
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Figure 1: For each input sequence processed by the model, we calculate a Memorization Score. This
score can be utilized to determine a Trojan probability score p or to assess whether an example is part
of the training dataset.

In this work, we propose a technique to reliably audit Large Language Models (LLMs) for evidence
of memorization, which can also help us discover Trojans without relying on assumptions about the
attack methodology or trigger pattern. The key idea is that by auditing for memorized input-response
pairs, we can identify examples deliberately crafted to be memorized by the model. Furthermore,
this technique can also be used to extract training examples from LLMs, providing insights into both
benign and malicious memorization.

To evaluate our methodology, we conducted experiments using the recent llm-pretrain-apr2024
IARPA challenge dataset, which focuses on detecting backdoors in LLMs, as well as the
lm-extraction-benchmark for training data extraction. Results show that our approach reli-
ably detects memorized examples compared to baseline methods. In summary, our contributions are
as follows:

• We introduce a novel scoring method to rank input-response pairs based on the memorization effort
required by LLMs, effectively identifying both benign and malicious memorization.

• Our approach is competitive in the training data extraction benchmark as well detecting Trojaned
Models.

2 Related Works

Backdoor Attacks and Defenses. In a backdoor or Trojan attack, adversaries manipulate a model
to generate malicious outputs for inputs containing specific trigger patterns while maintaining the
model’s performance on normal trigger-free inputs. Data poisoning based attacks is one of the most
studied area where the attacker alters the training dataset to embed backdoor triggers Nguyen and
Tran [2021], Gu et al. [2019], Turner et al. [2019], Saha et al. [2020], Barni et al. [2019], Xue et al.
[2022]. Beyond poisoning-based methods, non-poisoning attacks that modify model parameters
such as weight and structure-modification attacks, have also been explored Rakin et al. [2020], Li
et al. [2021a], Breier et al. [2022]. Recently, the scope of backdoor attacks in Natural Language
Processing (NLP) Chen et al. [2021], Dai et al. [2019], Chen et al. [2022b], Reinforcement Learning
(RL) Kiourti et al. [2020], Ashcraft and Karra [2021], Wang et al. [2021] and multimodal Vision and
Language tasks like Visual Question Answering (VQA) Walmer et al. [2022], Chen et al. [2022a]
have been explored.

Defense methods against backdoor attacks utilize various techniques to detect abnormal behavior by
examining model activation, gradients, or other intermediate representations which often involves
training a meta-classifier. They use trojan specific features such as model attributions Sikka et al.
[2020] or topological features Zheng et al. [2021]. Trigger reverse-engineering Wang et al. [2019],
Chen et al. [2019] is another approach which involves searching for an input pattern that matches
certain criteria (e.g., size, color) that can act as a trigger for the model. Other mitigation methods
include model pruning or fine-tuning Liu et al. [2018], Li et al. [2021b]. Furthermore, some
approaches utilize domain-specific constraints defense such as those in Reinforcement Learning (RL)
Bharti et al. [2022], Chen et al. [2023], Acharya et al. [2023] and Natural Language Processing (NLP)
Lyu et al. [2022].

Backdoor Attacks on Large Language Models Existing research Schuster et al. [2021], Li et al.
[2023] highlights the threat of data poisoning attacks on language models from various perspectives
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and under different conditions. Wallace et al. [2020], Tramèr et al. [2022] explore "clean-label"
attacks generated using gradient-based optimization and demonstrate these attacks on language
modeling and translation tasks. Early work Chen et al. [2022b] investigates backdoor attacks in
during the pre-training phase which are then inherited by any downstream tasks the model is fine-
tuned on. In the context of instruction tuning, works of Wan et al. [2023], Xu et al. [2023] focus
on data poisoning attacks designed to degrade model performance on benchmarks like sentiment
analysis. Similarly, Wan et al. [2023] also examine "dirty-label" attacks that lead models to output
random tokens or repeat trigger phrases. Other studies Shu et al. [2023] use clean-label attacks
to impose exploitable behaviors in model responses to instructions. Similarly, Rando and Tramèr
[2023] investigates the poisoning of Reinforcement Learning from Human Feedback (RLHF) training
data to embed a universal jailbreak backdoor. This backdoor can trigger harmful responses when
appended to any benign sentence. Furthermore, attacks such as Badchain Xiang et al. [2024] exploit
models using Chain-Of-Thought (COT) prompting without requiring access to the training set or
model parameters. Additionally, BadEdit Li et al. [2024] reformulates backdoor injection as a
knowledge editing problem, which adjusts a subset of parameters while preserving the overall model
performance.

Despite the growing concerns, effective defense methods against backdoor attacks in LLMs are still
in their infancy. Current approaches explore techniques such as anomaly detection during inference
Qi et al. [2021], robust training techniques to mitigate the impact of backdoors Liu et al. [2018],
and evaluation protocols and red-teaming techniques Perez et al. [2022] to identify and neutralize
backdoors before deployment.

Training Data Extraction. Large Language Models (LLMs) have been found to memorize parts
of their training data. Recent studies have demonstrated that membership inference attacks can
confirm whether a specific example was part of the training dataset Carlini et al. [2021, 2022]. These
attacks have successfully extracted memorized information such as URLs, phone numbers, and other
personal data Carlini et al. [2021]. The extent of memorization is influenced primarily by the model
size i.e. larger models tend to memorize more than smaller ones and by data duplication, as repeated
examples are more likely to be extracted Carlini et al. [2022], Kandpal et al. [2022].

3 Approach

We use Mutual Information (MI) for measuring memorization because of its higher sensitivity to rare
events or sequences that are memorized but not frequently encountered, allowing for better detection
of such patterns. Mathematically, MI I(X;Y ) for two random variables X and Y quantifies the
amount of information obtained about one random variable through another random variable.

I(X;Y ) =
∑
x∈X

∑
y∈Y

P (x, y) log
P (x, y)

P (x)P (y)
(1)

For LLM generated sequences, we are interested in how much information prefix or suffix tokens
provide about each other. Mutual information reveals how much knowing the prefix informs us about
the suffix, which is crucial for understanding memorization. Specifically, for prefix x with tokens
{xi}, i = 1, . . . , k and suffix y with tokens {yi}, i = k + 1, . . . , n under context tokens c, we can
obtain marginal and joint probabilities from the LLM.

P (x) =

k∏
i=1

P (xi|c, x1...i−1) (2)

P (x, y) = P (x)

n∏
i=k+1

P (yi|c, x, yk+1...i−1) (3)

Computing the suffix prior probability term P (y) theoretically requires taking expectation over
prefixes as P (y) =

∑
x∈X P (x, y), which is intractable to compute directly. It can be approximated

through Monte Carlo sampling using random prefixes, but in practice we find that directly computing
P (y) under empty context – just like P (x) – can be an efficient alternative.
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P̃ (y) =

n∏
i=k+1

P (yi|c, yk+1...i−1) (4)

Given a specific prefix-suffix combination, we compute its contribution to mutual information as a
memorization score (MS)

MS(x, y) = P (x, y) log
P (x, y)

P (x)P̃ (y)
(5)

Intuitively, MS modifies the log probability measure Carlini et al. [2021] logP (x, y) commonly used
for measuring memorization with an additional term log P (x,y)

P (x)P (y) , that captures the surprise of seeing
suffix y following prefix x.

For a single sequence x with tokens {xi}, i = 1 . . . n, we define the memorization score as the
maximum across all prefix-suffix cutoff points as

MS(x) = max
k=2,...,n−1

MS(x1...k, xk+1...n) (6)

Most previous works use average log probabilities Yu et al. [2023] for finding memorized samples.
However, average log probability measures focus solely on the likelihood of the entire sequence,
rather than analyzing how suffixes depend on their prefixes. Along this direction, Carlini et al. [2021]
penalizes suffixes with shorter length under zlib compression, but in an ad-hoc fashion which Yu et al.
[2023] finds to have limited effectiveness. Instead our MS approach measures directly compression
with the LLM and is derived directly from MI.

4 Experiments

We evaluate our MS memorization measure on two tasks 1) Trojan trigger extraction for finding
Trojans embedded in LLMs during pretraining for detecting Trojaned LLMs. Our MS measure is
used to rank open-ended extractions by their likelihood of being memorized Trojan triggers and their
response. 2) Targeted training data extraction for search of training examples memorized by the LLM.
Our MS measure is used to rank targeted extraction hypotheses by their likelihood of being actual
training data.

4.1 Trojan trigger extraction

Experiment setup. We evaluate our approach on publicly available TrojAI challenge2 dataset
llm-pretrain-apr2024 which focuses on detecting backdoors in Large Language Models. This
dataset is provided by the US IARPA and NIST and includes Llama2-7B models Touvron et al.
[2023b] trained on causal language modeling (next token prediction) in English. Both the training
and testing sets contain 12 models each, with half of the models being Trojaned using either full
fine-tuning or LoRA fine-tuning Hu et al. [2021]. Similarly, half of the models in the test set are
poisoned. Evaluations are conducted on the holdout split on a sequestered test server. Cross-Entropy
(CE) and Area Under the ROC Curve (AUC) are used for measuring Trojan detection performance.

Implementation details. Given a target LLM, we extract Trojan trigger hypotheses through heuris-
tic search and apply MS to them to find evidence of strong memorization of the Trojan behavior.
We apply a soft threshold (=10−4 nats) to the maximum MS across all generated Trojan trigger
hypotheses as the Trojan detection score.

For our baseline approach, we generate multiple instances of random three-token sequences and
process them in batches of 512 through the model. The logits are analyzed to identify sequences
with high probabilities (≥ 0.98). After decoding these sequences, those containing at least four
high-probability tokens are considered as high rank Trojan candidates. For Trojan detection, the
probability that the model is compromised is assessed by calculating the fraction of sequences that
satisfy the high-probability condition.

2https://pages.nist.gov/trojai/docs/llm-pretrain-apr2024.html
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Trojan detection performance. Table 1 shows the results on the holdout splits of the Trojaned
model detection challenge. We observe that our MS approach significantly outperforms the average
log-prob based method, achieving a much lower cross-entropy (CE) value and also achieves a perfect
area under the curve (AUC) score of 1.0 for this dataset.

Method CE ↓ AUC↑
(Baseline) Avg. LogProbs 4.69097 0.80556
Memorization Score (MS) 0.28197 1.0

Table 1: Results on the sequestered holdout splits of the TrojAI llm-pretrain-apr2024 dataset.

4.2 Targeted training data extraction

Experiment setup. We evaluate our approach on the training data extraction challenge dataset
lm-extraction-benchmark3. The challenge examines GPT-Neo 1.3B’s memorization of The
Pile’s training set Gao et al. [2020] in search of accurate and efficient targeted extraction methods.
Given a 50-token prefix, the task is to extract the correct 50-token suffix using the GPT-Neo 1.3B
model. Following Yu et al. [2023], we evaluate our approach on the heldout split of the training data,
consisting of 1000 prefix-suffix pairs. We focus on the case where only one suffix proposal is allowed
for each prefix. Extraction proposals for different prefixes are ranked by their confidence, and are
evaluated by their precision MP – percentage of prefixes that have exactly correct suffix extractions
and recall MR – percentage of correct extractions at 100 errors, as defined in Yu et al. [2023].

Implementation details. We apply MS for 1) hypothesis selection: selecting which suffix proposals
report for each prefix and 2) confidence ranking: as the confidence score ranking the suffix extractions
across different prefixes. In both cases, we evaluate MS(suffix) as the ranking score, higher is better,
with the prefix provided as context to the LLM for computing probabilities.

We extract 100 suffix proposals for each prefix. For baseline ranking method we compare with
1) logp ranking extractions using their average token log probability, 2) zlib compression length
penalty and 3) high-conf: detecting high confidence tokens as proposed in Yu et al. [2023]. We
use the author-provided implementation for both suffix proposal extraction and baseline ranking
approaches.

Training data extraction performance. Experiment results on lm-extraction-benchmark is
shown in Table 2. MS outperforms the best of the baselines by 0.6 on precision MP (versus logp) and
0.3 on recall MR (versus high-conf), with a simple formulation without need of hyperparameter
tuning. In contrast to zlib, MS provides a consistent improvement over logp in both MP and MR,
showing the benefit of a systematic approach to penalizing common sequences.

Approach Hypo. sel. Conf. rank. MP MR

Yu et al. [2023]
logp logp 49.6 76.4
zlib zlib 48.9 76.8

high-conf high-conf 49.2 77.5

Ours
logp MS 49.6 77.7
MS logp 50.3 77.2
MS MS 50.3 77.8

Table 2: Our memorization score (MS) approach consistently outperforms zlib and high-conf
baselines on lm-extraction-benchmark when used for hypothesis selection and confidence rank-
ing. Suffix proposals for ranking generated using Yu et al. [2023], 100 per prefix.

3https://github.com/google-research/lm-extraction-benchmark.
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5 Conclusion

In this work we explore the intersection of memorization and Trojan attacks in Large Language
Models (LLMs). We introduce a novel technique to audit LLMs for evidence of memorization and
demonstrate how this approach can be used to detect both benign and malicious memorization without
relying on assumptions about attack methodologies or trigger patterns. Our experiments using the
llm-pretrain-apr2024 IARPA challenge dataset and the lm-extraction-benchmark showed
that our method reliably identifies memorized examples and outperforms baseline approaches in
detecting Trojaned models and extracting training data.
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