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ABSTRACT

Approximate nearest neighbor search (ANN) is a common way to retrieve relevant
search results, especially now in the context of large language models and retrieval
augmented generation. One of the most widely used algorithms for ANN is
based on constructing a multi-layer graph over the dataset, called the Hierarchical
Navigable Small World (HNSW). While this algorithm supports insertion of new
data, it does not support deletion of existing data. Moreover, deletion algorithms
described by prior work come at the cost of increased query latency, decreased
recall, or prolonged deletion time. In this paper, we propose a new theoretical
framework for graph-based ANN based on random walks. We then utilize this
framework to analyze a randomized deletion approach that preserves hitting time
statistics compared to the graph before deleting the point. We then turn this
theoretical framework into a deterministic deletion algorithm, and show that it
provides better tradeoff between query latency, recall, deletion time, and memory
usage through an extensive collection of experiments.

1 INTRODUCTION

We study the approximate nearest neighbor search problem (ANN): given a collection of n points
P ⊂ Rd, a parameter k and a query point q ∈ Rd, the goal is to find the top-k points in P that
are closest to q under some distance measurements such as ℓ2 distance or cosine similarity1. This
problem is a fundamental component of Retrieval Augmented Generation (RAG), widely adopted
to improve the accuracy of Large Language Models (LLM) (Lewis et al., 2020; Gao et al., 2023;
Jiang et al., 2023; Fan et al., 2024). One of the most popular ways to solve the ANN problem is
through graph-based approaches, where a data-dependent graph is constructed of the dataset, and the
queries can be quickly routed on such graph (Jayaram Subramanya et al., 2019; Malkov & Yashunin,
2020; Fu et al., 2019). In this work, we focus on the Hierarchical Navigable Small World (HNSW)
graph (Malkov & Yashunin, 2020), a data structure with strong practical performances. This is a
multi-layer graph data structure, where the higher layers of the graph tend to have fewer vertices and
“long-range” edges that help to navigate between clusters, while the lower layers have “short-range”
edges that enhance the connectivity within the clusters. To perform a query search, one starts at
the higher layers via the long-range edges to make coarse-grained progress towards the clusters
containing the nearest neighbors, and drops to lower layers for finer-grained progress to find the
nearest neighbors within the cluster.

While the HNSW algorithm can naturally handle insertions (Harwood et al., 2024), they do not
possess deletion capabilities. This becomes more and more problematic as modern datasets are highly
dynamic and require many deletions. For example, advertisers may remove ads when the campaign
budget is exhausted; a clothing retailer may remove spring clothing in the fall and remove fall clothing
in the spring; a shoe company may eliminate a previous shoe version when a new generation drops.
Thus, deletion is a common and necessary operation.

Since the HNSW algorithm does not come with a deletion procedure, a common, practical approach
is to never delete a point at all. Instead, the corresponding vertex in the graph is marked with a
“tombstone” indicating that the point should never be outputted as a nearest neighbor. At query
time, these tombstones can either be handled in post-processing (the corresponding points would be

1In this paper, we use ∥ · ∥ to denote such abstract distance measurement.
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removed from the output) or in real-time (modifying the HNSW algorithm to never stop its search at
a tombstone). We consider this algorithm as a baseline for our proposed approach. The advantage of
this approach is that graph navigability is preserved, and therefore tombstones maintain high recall.
However, as tombstones are never removed from the graph, the query latency rises significantly when
there are large amounts of tombstones, as the search would take many more steps to reach the desired
nearest neighbors. Moreover, the memory usage of the data structure stays constant while the number
of points declines, leading to unnecessary storage.

Due to the importance of developing a good deletion algorithm with improved query throughput and
memory usage, a rich literature has considered approaches beyond tombstones. An even simpler
idea is to delete the point from the graph and the data structure without patching the graph (we will
refer to it as a ‘no patching’ algorithm). Such an approach suffers when there are many deletions or
queries are drifting towards the clusters being deleted, resulting in much worse recall (Xu et al., 2022).
Another class of deletion algorithms is to reconnect the subgraph after deletion as in (Singh et al.,
2021; Xu et al., 2022; Xiao et al., 2024; Zhao et al., 2023; Xu et al., 2023; 2025). The reconnection
strategy ranges from local to global: if we want to delete p, a local reconnect attempts to find for every
u ∈ N(p), the neighborhood of p, another point v ∈ N(p) that is the nearest neighbor of u. This
approach has low query latency and slightly improved recall compared to no patching, but the recall
is still significantly lower than in other alternatives. To further improve recall, Singh et al. (2021)
proposes the FreshDiskANN algorithm that uses a 2-hop neighborhood: instead of only rerouting
within N(p), FreshDiskANN adds edges between u and N(p) ∪N(u), then prunes edges to ensure
the sparsity of the graph. A more global approach introduced by Xu et al. (2022) (where they termed
the algorithm global reconnect) is to re-insert all the points in N(p) and improve the connectivity
of the subgraph by utilizing the robustness of the HNSW insertion procedure. Both FreshDiskANN
and global reconnect suffer from much longer deletion times due to the non-local nature of the
algorithm and the need to interact with larger subgraphs, and require nontrivial effort to parallelize
the insertions.

Our results. Our main contribution is a deletion procedure that arises through a theoretically
grounded twin framing of the HNSW algorithm. This algorithm enjoys good recall, query speed,
overall deletion time and memory usage, as summarized in Table 1. In the original HNSW algorithm,
for a given query q, the algorithm walks to the adjacent vertex u that minimizes ∥q − u∥, in a
deterministic and greedy fashion. In our twin formulation, we “soften” it by walking to a random
neighbor with probability proportional to exp(−r2 · ∥q − u∥2) for r > 0. We call this a “softmax
walk”. While highly similar to the “hard” greedy walk (as we confirm experimentally), this random
walk interpretation leads to a theoretical deletion procedure that maintains the properties of the
original random walk. Specifically, the algorithm functions by first computing local edge weights
over N(p) that precisely preserve the random walk probability, then using a simple randomized
sparsification scheme that approximates the hitting time of a walk, i.e., the expected number of steps
it takes for a random walk at a vertex u to reach a vertex v. While this does not directly guarantee
that we will hit the same nearest neighbors exactly, it does ensure that we make a similar number of
steps to the target as before. We then turn this randomized, theoretical algorithm into a deterministic,
practical algorithm: instead of random sampling edges, we could compute the edge weights first
then simply take heaviest edges. We conduct extensive experiments on various datasets in the mass
deletion setting, where large fraction of the points are removed from the dataset. We show the
advantage of our method over other alternatives in four key metrics: recall, query speed, deletion
time and memory usage.

Table 1: Summary of HNSW deletion algorithms.

Method Recall Speed Del Time Space
Tombstone ✓✓✓ ××× ✓✓✓ ×××
No patch ××× ✓✓✓ ✓✓✓ ✓✓✓
Local ××× ✓✓✓ ✓✓✓ ✓✓✓
FreshDiskANN ✓✓✓ ✓✓✓ ××× ✓✓✓
Global ✓✓✓ ✓✓✓ ××× ✓✓✓
SPatch (ours) ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓
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2 RELATED WORK

Approximate Nearest Neighbor Search. Approximate nearest neighbor (ANN) search is a core
algorithmic task with a long line of research, both in theory and in practice. Theoretically, Locality
Sensitive Hashing (LSH) (Indyk & Motwani, 1998; Andoni & Indyk, 2008; Andoni & Razenshteyn,
2015; Andoni et al., 2015; 2017; 2018; Dong et al., 2020) has been a popular solution with provably
fast query time and efficient memory usage. While LSH offers good performance in theory, its
practical variants are usually data-oblivious. On the other hand, practical ANN algorithms are
oftentimes data-dependent; this class of algorithms includes quantization methods (Jégou et al., 2010;
Ge et al., 2013; Kalantidis & Avrithis, 2014; Yue et al., 2024; Gao & Long, 2024) and graph-based
methods (Malkov & Yashunin, 2020; Jayaram Subramanya et al., 2019; Wang et al., 2021; Fu et al.,
2019; Harwood & Drummond, 2016; Groh et al., 2023), the latter of which are the focus of this work.
In these algorithms, the points in the dataset are coalesced into a specially-constructed proximity
graph. To handle a query, one runs a greedy search algorithm to traverse the graph (i.e., iteratively
move from the current point to its adjacent point closest to the query vector) to find the approximate
nearest neighbors of the query. Among this body of work, we focus on the Hierarchical Navigable
Small World (HNSW) algorithm of Malkov & Yashunin (2020), due to its wide adoption, fast query
throughput, and good recall characteristics. A key limitation of HNSW is that it only explicitly
supports insert and query operations, and implicitly assumes that the dataset is either static or only
incremental. In practice, deletions (if any) are usually handled ad-hoc; the industry standard is to
mark any deleted vectors as unreturnable “tombstones”, and periodically rebuild the data structure
entirely from scratch at great cost (Xu et al., 2022). Some more recent approaches try to directly
incorporate some notion of deletion into the graph data structure, preempting the need for periodic
batch rebuilds (Singh et al., 2021; Xu et al., 2022; Xiao et al., 2024; Xu et al., 2023; Zhao et al.,
2023; Xu et al., 2025). These methods typically operate by first excising the deleted node from the
graph, then “patching” the graph by adding new connections among the removed node’s former
neighborhood. However, most of these approaches offer no theoretical guarantees and typically come
with both performance and recall penalties on real-world datasets, especially for mass deletion.

Graph Sparsification and Random Walks. Given a graph, an elementary way to explore it is through
random walks, which is both practical (Hamilton et al., 2017) and has rich theoretical connections
to electrical networks (Doyle & Snell, 1984; Tetali, 1991) and spectral graph theory (Chung, 1997;
Spielman, 2007). Important statistics of random walks, including hitting time and commuting
time (Aldous & Fill, 2002) can be computed by solving linear systems in the graph Laplacian
matrix (Merris, 1994). A popular approach to improve the efficiency of solving Laplacian linear
systems is via spectral sparsification that reduces the number of edges in the graph while preserving
all Laplacian quadratic forms by sampling according to the effective resistances of edges (Spielman
& Srivastava, 2011; Batson et al., 2009). All state-of-the-art solvers for Laplacian systems utilize
spectral sparsification (Spielman & Teng, 2004; Koutis et al., 2010; Peng & Spielman, 2014; Cohen
et al., 2014; Kyng & Sachdeva, 2016). In this work, we focus on another type of sparsification, based
on sampling by row norms (Drineas & Kannan, 2001; Frieze et al., 2004; Kannan & Vempala, 2017).
It is conceptually simpler and more efficient to implement, though it provides weaker guarantees.

3 PRELIMINARIES

HNSW. The Hierarchical Navigable Small World (HNSW) data structure proposed in Malkov &
Yashunin (2020) is a graph-based ANN data structure that utilizes a hierarchical structure. In
particular, it is a sequence of undirected graphs2 with each graph in the sequence called a “layer”. For
the reminder of this paper, we assume there are L layers of graphs, with the top one as the L-th layer
and the bottom one as the 1st layer. The bottom layer of the HNSW contains one vertex for each point
in the dataset, and each other layer contains a random subset of points in the layer below. In addition
to internal edges within a layer, the two vertices representing the same point in two consecutive layers
also have a vertical edge between them so that a search could traverse between layers.

The fundamental operation of the HNSW is the search operation. Given a query point q, the search
starts at the L-th layer with an entry point. At any timestamp t, we let ut be the point where the query
q is currently on with u0 being the entry point, then we move q to ut+1 := argminv∈N(ut) ∥q − v∥.

2In some library implementations such as FAISS, directed graphs are used instead.
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When the search can no longer make progress, it uses the vertical edge to move one layer down, and
repeat the process until the bottom layer. In the reminder of this paper, we refer to this procedure
as the “greedy search”. The insertion is then executed by running greedy search on the point-to-be-
inserted (with more entry points to move down layers) and add edges along the way. For a more
comprehensive overview of HNSW and related algorithms, see Appendix D.

HNSW and other graph-based nearest neighbor search data structures have also been studied through
the lens of theory. Laarhoven (2018) studies the performance of greedy search when the size of
the dataset n = 2d. Fu et al. (2019) analyzes the time and space complexity of searching in the
monotonic graphs, and it requires the query to be one of the points in the dataset. Prokhorenkova
& Shekhovtsov (2020) proves that the greedy search can be done in sublinear time on the plain
nearest neighbor graph in both the dense and sparse regime, and adding vertical edges as in HNSW
effectively reduces the number of steps to find the correct nearest neighbor. Shrivastava et al. (2023)
relaxes the assumption of nearest neighbor graphs to approximate nearest neighbor graphs. Indyk
& Xu (2023) crafts a condition called α-shortcut reachability, and proves a class of graph-based
algorithms are provably efficient for α-shortcut reachable graphs. Lu et al. (2024) further speeds up
the search process by using approximate distances instead of exact distances and proves probabilistic
guarantees for this approximation. Diwan et al. (2024) considers a class of simplified HNSW graphs
and proves the navigability under certain construction algorithm. Oguri & Matsui (2024) shows that
adaptively choosing the entry point provably functions better than using a fixed entry point.

Deletion Strategies for Graph-based ANN. One could alternatively interpret HNSW as a multi-layer
version of the DiskANN data structure (Jayaram Subramanya et al., 2019), with improved navigability
between distant clusters. While these data structures are naturally attuned for insertions, deletion is
much more challenging and is heavily based on heuristics. What would be some metrics we’d want
a good deletion algorithm to have? 1). Memory usage. We would like the space consumed by the
data structure to be proportional to the number of points stored in the data structure; 2). Efficiency.
We would like the deletion algorithm to be performed efficiently, and ideally, as efficient as the
search algorithm; 3). Recall. The deletion algorithm should not impair the recall performance of the
algorithm. If one only cares about the recall, a theoretically “optimal” strategy could be developed:
Theorem 3.1. Let P ⊂ Rd be an n-point dataset preprocessed by an HNSW and p ∈ P be a point
to-be-deleted that is not the entry point. Fix a query point q ∈ Rd and suppose the search reaches
layer l ∈ {1, . . . , L}, let N(p) denote the neighborhood of p at layer l. Suppose q reaches N(p),
visits and leaves p. Consider the deletion procedure that removes p at layer l and forms a clique over
N(p), then the search of q on the new graph is equivalent to the search of q on the old graph.

We defer the proof to Appendix C. The above theorem indicates that it is enough to design a data
structure that emulates the subgraph without deleting p. Two obvious choices for an exact data
structures are 1). Tombstone, where the subgraph structure is preserved and we will still visit p; 2).
Clique, where all possible paths in N(p) are preserved.

These two approaches share similar drawbacks. While the tombstone algorithm cannot ever free
memory and reduces query throughput through lengthened walks, the clique algorithm densifies
subgraphs and reduces throughput by increasing the number of distance calculations made per step.

4 SPATCH : VERTEX DELETION VIA RANDOM WALK PRESERVING
SPARSIFICATION

To motivate our deletion algorithm, we develop a theoretical framework for analyzing HNSW
that, instead of walking to the nearest point over the neighborhood, performs a random walk with
probability given by the softmax of the squared distance.

Specifically, let q be the query point and suppose the search is currently on point u. Instead of
deterministically moving to argminc∈N(u)∥c− q∥, we move to a random c ∈ N(u) with probability

exp(−r2·∥c−q∥2)∑
v∈N(u) exp(−r2·∥v−q∥2) . We call this search algorithm the softmax walk. While this is different

from greedy search, we empirically validate that the performance of the softmax walk for large
enough r is very similar to that of the greedy walk (see Section 5). This simple modification enables
us to analyze the graph search from the perspective of a random walk. Instead of interpreting the
HNSW graph as an unweighted graph, we can now view it as a weighted graph with edge weight
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determined by the query point q: letting u be the point in the graph that the search for q is currently
on, for any edge {u, v}, the edge weight is w(u, v) = exp(−r2 · ∥q − v∥2). The HNSW search then
performs a random walk on this weighted graph. We could interpret it as a probabilistic HNSW:

• Instead of greedy search, we use random walk;
• Instead of taking the top-t nearest neighbors, we sample t edges proportional to edge weights.

The edge weights we choose are equal to the Gaussian kernel between the query and the dataset.
Intuitively, this is particularly useful to emulate greedy search because it helps differentiate the
distances: if q is far away from v, then exp(−r2 · ∥q − v∥2) would be much smaller than a v′ that is
closer to q. Hence, under a proper choice of r, the Gaussian kernel function assigns exponentially
high probability to nearby points, emulating the greedy search.

We remark that graphs with Gaussian kernel weights are very widely used. Note, however, the
difference in our case: the weight of an edge {u, v} is not exp(−r2 · ∥u− v∥2) as it would normally
be, but rather, the edge is viewed as two directed edges u→ v and v → u, with respective weights
exp(−r2 · ∥q − v∥2) and exp(−r2 · ∥q − u∥2). Thus, the edge weight is independent of its source
point, and varies by the query q being searched.

Thus, the graph constructed by our twin HNSW formulation can be formally viewed as the result
of randomized graph sparsification. This algorithm can be integrated into the multi-layer HNSW
structure by repeating the procedure from layer l to 0. This weighted graph sparsification perspective
provides the motivation and theoretical foundation of our deletion algorithm.

As discussed in Section 3, we would like a deletion algorithm that is optimized for memory usage,
efficiency, and recall. Since we are now working with random walks, we first prove a variant of
Theorem 3.1 in our model: instead of preserving the exact search path after deletion, we aim to
preserve the random walk probabilities after deletion.
Theorem 4.1. Let G = (V,E,w) be a weighted graph. Define the random walk under the weights w
for any edge {u, v} ∈ E as Pr[u → v | w] = w(u,v)

deg(u) where deg(u) =
∑

z∈N(u) w(u, z). Let p be
the point to be deleted. For all u, v ∈ N(p), define the new weights w′(u, v) as w′(u, v) = w(u, v)+
w(u,p)·w(p,v)

deg(p) . Let E(p) = {{u, p} : u ∈ N(p)} and C(p) = {{u, v} : u ̸= v, u, v ∈ N(p)}. Then
for the new graph G′ = (V \ {p}, E \ E(p) ∪ C(p), w′), we have

Pr[u→ v | w′] = Pr[(u→ p→ v) ∨ (u→ v) | w].

The proof is deferred to Appendix C. This theorem is known as a “star-mesh transform”, and arises
from Schur complements and Gaussian elimination (Rosen, 1924; Dorfler & Bullo, 2012; Wagner
et al., 2018). The new edges C(p) induce a clique over the neighborhood of p, making the graph
denser than before. To sparsify the graph, we adapt a simple strategy: sampling edges according to
edge weights. The complete algorithm, called SPatch: Sparsified Patching, is given in Algorithm 1
and shown in Figure 1.

p

N1

N2

N3

N4

(a) p and its neighbor-
hood.

N1

N2

N3

N4

(b) Delete p and all its incident
edges.

N1

N2

N3

N4

(c) Form a clique over
N(p).

N1

N2

N3

N4

(d) Sparisfy the clique.

Figure 1: The deletion procedure of Algorithm 1. It proceeds by first forming a clique over the
neighborhood of a deleted point, and then sparsifies the clique according to edge weights.

To prove theoretical guarantees for Algorithm 1, we need to introduce a few linear algebraic definitions
related to graphs.
Definition 4.2. Let G = (V,E,w). Let W ∈ Rm×m be the diagonal matrix for edge weights, and
let B ∈ Rm×n be the signed edge-vertex incidence matrix, i.e., each row of B corresponds to an
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Algorithm 1 SPatch: Sparsified Patching

1: procedure SPATCH(G(V,E); p ∈ V ; r, α, t ≥ 0)
2: ▷ p is the point to be deleted from the graph.
3: Define w(u, v) = exp(−r2 · ∥u− v∥2) for all u, v
4: N(p)← nbrhood(p)
5: t← α · |N(p)|
6: deg(p) =

∑
u∈N(p) w(u, p)

7: for u, v ∈ N(p) do ▷ Form weighted clique.
8: w′(u, v)← w(u, v) + w(u,p)·w(p,v)

deg(p)

9: end for
10: sample ← (Theory) Sample t pairs u, v ∈ N(p) without replacement with probability

proportional to w′(u, v) OR (Practice) Pick top-t pairs of u, v ∈ N(p) with largest w′(u, v)
11: V ← V \ {p} ▷ Delete p from the graph.
12: E(p)← {{u, v} : u, v ∈ N(p), u ̸= v}
13: E ← E \ E(p) ∪ sample ▷ Sparsify the clique by keeping only the edges in sample.
14: end procedure

edge and it has two nonzero entries on the two endpoints of the edge, with one being +1 and the
other being −1 randomly assigned. The graph Laplacian matrix of G is defined as L = B⊤WB.
Equivalently, let A ∈ Rn×n be its weighted adjacency matrix and D ∈ Rn×n be its diagonal degree
matrix, then we have L = D −A.

Graph Laplacians are among the most important linear operators associated with graphs, and have a
rich literature (Merris, 1994; Chung, 1997; Spielman, 2007). In the following discussion, we consider
the Laplacian matrix of the clique over N(p). Sparsifying by edge weights is equivalent to sparsifying
by the squared row norms of

√
WB, which provides an additive error approximation in terms of the

Frobenius norm (Drineas & Kannan, 2001; Frieze et al., 2004; Kannan & Vempala, 2017).
Theorem 4.3. Let G = (V,E,w) and L ∈ Rn×n be its Laplacian matrix. Let ε ∈ (0, 1). Suppose
we generate a matrix C̃ ∈ Rs×n by sampling each row of

√
WB proportionally to its squared row

norm with s = 200ε−2, and reweight row i by 1/(pis) where pi = ∥(
√
WB)i,∗∥22/∥

√
WB∥2F . Then

with probability at least 0.99, ∥C̃⊤C̃ − L∥F ≤ ε · tr[W ], where tr[W ] is the trace of matrix W .

The proof is deferred to Appendix C. Since Theorem 4.3 sparsifies the graph by sampling edges, the
resulting matrix C̃⊤C̃ also forms a weighted graph, which we denote by G′ = (V,E′, w′). Compared
to the standard spectral sparsification of graphs (Spielman & Srivastava, 2011), our sparsification
scheme does not necessarily preserve the connectivity of the resulting graph G′. Intuitively, sampling
by edge weights is likely to ensure a cluster of close points to be well-connected, but it falls short when
there are intercluster edges with small edge weights. However, we only perform the sparsification
process on the bottom layer of HNSW, whose role is to search through edges within a cluster, after
intercluster connections have been effectively handled by top layers. This is also confirmed by our
experiments (see Section 5). Hence, we assume the sparsified graph G′ remains connected.

What does a Frobenius norm error approximation of the Laplacian imply for random walks? We
prove that it approximately preserves the hitting time of the random walk.
Definition 4.4. Let G = (V,E,w) be a graph and u, v ∈ V . The hitting time from u to v, denoted
by hG(u, v), is the expected number of steps for a random walk starting at u to reach v. When G is
clear from context, we denote it by h(u, v).

Our main result is that an additive Frobenius norm error approximation of Laplacian gives a
multiplicative-additive error approximation on the hitting time.
Theorem 4.5 (Informal version of Theorem B.8). Let G = (V,E,w) be a graph, let G′ = (V,E′, w′)
be the graph induced by Theorem 4.3, and suppose G′ is connected. Let dmin, dmax be the min and
max degree of G, and let ϕ(G) be the edge expansion of the graph G. For any u ̸= v ∈ V ,

|hG(u, v)− hG′(u, v)| ≤ ε tr[W ]

dmin
hG(u, v) + ε tr[W ]2

(
ϕ(G)2

dmax
− ε tr[W ]

)−2
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holds with probability at least 0.99, where ϕ(G) = minS⊆V

∑
u∼v,u∈S,v ̸∈S w(u,v)

min{|S|,|V |−|S|} .

If our softmax walk algorithm was to perform its random walk without stopping at local minima, then
Theorem 4.5 would say that if u is the entry point and v is the desired destination, then the expected
numbers of steps to reach v from u before and after sparsification are similar. However, the softmax
walk stops at local minima, therefore, a bound on hitting time does not imply the walk could hit the
correct destinations. Our experiments (Section 5) suggest that instead of directly correlating to the
correctness of the algorithm, hitting time is a good proxy when designing the sparsification algorithm,
as Algorithm 1 has good recall, query speed, deletion time, and memory utilization.

Theorem 4.3 states that to obtain an additive Frobenius norm error of ε · tr[W ], we need to sample
O(ε−2) edges, and this in turn provides an error bound on the hitting time per Theorem 4.5. How
many edges do we need to sample in order to minimize the overall error? We show that in two
common settings, the number of edges is linear in the number of points, |N(p)|:
Corollary 4.6. Let G = (V,E,w) be a weighted complete graph with |V | = n and G′ = (V,E′, w′)
be the induced graph by applying Theorem 4.3 to G. If |E′| = O(maxu,v∈N(p) hG(u, v) · n), then
with probability at least 0.99, for any u, v ∈ V , |hG(u, v)− hG′(u, v)| ≤

√
n · hG(u, v). given one

of the two settings:

• Single cluster: for any u, v ∈ V , w(u, v) = O(1);
• Many small clusters: there are

√
n clusters of size

√
n. Within each cluster, the edge weights are

O(1), and between clusters, the edge weights are O(1/n).

From Random Sampling to Top-t Selection. In essence, the SPatch framework suggests a
novel approach for performing local reconnect: instead of using the distances between points in
N(p) directly, one should incorporate the distance between N(p) and p as well. This offers a
natural transition to a more practical and efficient deterministic deletion algorithm: first compute
the new local edge weights w′(u, v) for all u, v ∈ N(p), then keep the top-t edges with the largest
weights. Note that for large enough r, the probability of sampling edges outside of the top-t edges is
exponentially small. Thus, we could safely replace the “sample t edges” step with “keep the top-t
edges with largest weights”. This switch offers several practical advantages: in general, computing the
edge weights then selecting the top-t heaviest edges is more efficient than sampling t edges without
replacement. Thus, all our experiments are performed with the deterministic deletion algorithm.

5 EXPERIMENTS

We conduct extensive experiments to test the practical performance of our deletion algorithm. In
the following, we will give a preliminary overview of the experimental setups, then we focus on
discussing two sets of experiments: the major focus is on a mass deletion experiment where points
are gradually deleted with no new points inserted. We wrap up the experiment by showing that
the random walk search algorithm performs as well as the HNSW greedy search. Due to space
constraints, we defer more details to Appendix E.

5.1 SETUP

Hardware. All experiments run on 8×3.7 GHz AMD EPYC 7R13 cores with 64 GiB RAM.

Implementation. We implement the HNSW data structure by utilizing the FAISS library (Johnson
et al., 2019; Douze et al., 2024). In particular, we construct the HNSW graph by invoking the
HNSWFlatIndex of FAISS with the degree parameter m = 32. We then extract the resulting
graphs, which are directed, and convert them into a sequence of undirected networkx graphs (Hag-
berg et al., 2008) for our deletion operations.

Datasets. We use 4 datasets for our ANN benchmarks: SIFT (Jégou et al., 2011), GIST (Sand-
hawalia & Jégou, 2010), and one embedding of the MS MARCO (Bajaj et al., 2016) dataset with each
of MPNet (Song et al., 2020) and MiniLM (Wang et al., 2020). All of the datasets contain 1M points,
with dimensions 768 (MPNet), 128 (SIFT), 960 (GIST) and 384 (MiniLM).

Deletion algorithm. For all deletion algorithms, we adopt the strategy that uses the tombstone for all
top layers and only performs the deletion at the bottom layer. This is viable as the bottom layer is
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much more connected and denser than all top layers. For SPatch, we implement a modified version
in the following aspects: 1). Since the graph is directed, we let L be the set of in-neighbors of p and
let R be the set of out-neighbors, for each u ∈ R, we pick the top-t := α · ⌈ |L|+|R|

|R| ⌉ points v ∈ L

where w′(u, v) is maximized. 2). Instead of replacing all edges in N(p) including those exist before
deleting p, we continue to add new edges with large weights until all top-t edges are added. This
slightly densifies the graph without adding many edges.

Evaluation metrics. We focus on four important evaluation metrics: top-10 recall (defined as
the fraction of top-10 nearest neighbors returned by the data structure over the top-10 true nearest
neighbors), number of distance computations for queries, the total time for deletion and the number
of edges at the bottom layer. We use the number of distance computations as a metric for query
throughput because for either the greedy search or random walk-based search, the main runtime
bottleneck is the number of distance computations. For deletion procedure, as it involves more
complicated operations such as computing edge weights for a clique, we directly measure the overall
runtime of deletion. Finally, we use the number of edges at the bottom layer as a proxy measurement
for the memory/space usage of the deletion algorithm, and in Appendix E.3 in particular Figure 6, we
show that it directly corresponds to the reduction in empirical memory utilization.

5.2 DELETION EXPERIMENT

In this experiment, we evaluate the performance of our deletion algorithm under the mass deletion
setting, as follows: In total 80% of the points will be removed from the dataset, for which every 0.8%
of the points being deleted, we run the query through the remaining dataset and record the following
4 metrics: top-10 recall, number of distance computations, overall deletion time and the number
of edges at the bottom layer. For the query phase, we randomly pick 5,000 query points for SIFT,
MPNet, MiniLM and 1,000 query points for GIST. These queries are fixed throughout the mass
deletion process.

We compare our algorithm against several popular deletion prototypes for HNSW: 1). No patching,
where the point is deleted from the graph without rerouting or adding any new edges. 2). Tombstone,
where the point to be deleted is marked as a tombstone vertex without being deleted, and subsequent
queries do not get stuck at a tombstone vertex. Xu et al. (2023) adapts a version of tombstone with
periodical scan and merge to ensure the freshness of the index. 3). Local reconnect (Xu et al., 2022),
where for each point in N(p), an edge to its nearest neighbor in N(p) is added; 4). 2-hop reconnect,
where the points u ∈ N(p) are rerouted to N(p) ∪ N(u) then pruned. A wide array of deletion
algorithms fall into this category, including Singh et al. (2021); Xu et al. (2023); Zhao et al. (2023);
Xiao et al. (2024); Xu et al. (2025). We implement and test the FreshDiskANN primitive (Singh et al.,
2021). We also consider a periodic rebuild strategy: every batch, we rebuild the HNSW from scratch.

We examine Figure 2 method by method.

• While Tombstone has the best recall among all methods as per Theorem 3.1 (even better than
periodic rebuild), it quickly falls short in terms of query speed (2.5−3×more distance computations
than SPatch) and its memory usage stays constant as more points are deleted;

• Recall degrades most quickly when we do not patch, despite its fast query speed, deletion time and
low memory consumption;

• Local reconnect has slightly improved recall compared to no patching, yet still worse than others;
• FreshDiskANN has better recall for datasets such as SIFT and MPNet, but the deletion time is

slower. Although it might be suitable when deletions are rare, in the setting of frequent deletions it
is inefficient;

• SPatch gives the best overall performance among various tradeoffs. While its recall is slightly
lower than periodic rebuild, its query speed is much faster and memory usage decreases as more
points are deleted. SPatch performs deletion much faster than FreshDiskANN.

5.3 RANDOM SOFTMAX WALK VS. GREEDY SEARCH

To empirically substantiate the validity of our randomized “twin” formulation of HNSW, we compare
the two variants (softmax vs. greedy walk) in Table 2. The results show that they are highly similar
empirically in recall and throughput, with the softmax variant incurring only a slight loss. This
validates our use of it as a theoretical model for HNSW.
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Figure 2: The rows are MPNet, SIFT, GIST and MiniLM, the columns are top-10 recall, number
of distance computations per query, total deletion time and number of edges in the bottom layer of the
graph. Legends: spatch – our algorithm SPatch, fresh – FreshDiskANN, tomb – tombstone,
nopatch – no patching, local – local reconnect. For MPNet: we also include rebuild without
plotting its deletion time..

Top-10 Recall Distance Computations
Dataset Softmax Greedy Softmax Greedy
MPNet 89.98% 91.60% 1562 1722
SIFT 91.13% 91.95% 1049 1109
GIST 71.38% 72.46% 1606 1653
MiniLM 89.27% 90.09% 1708 1802

Table 2: Comparison of softmax walk to greedy walk.

6 CONCLUSION

In this work, we provide a theoretical framework for HNSW using random walks and sampling.
We then propose a deletion algorithm, SPatch, based on a deterministic implementation of the
theoretical motivation. Theoretical guarantees and empirical evidence demonstrate that SPatch
has good recall, speed, deletion time and memory. This random walk interpretation opens up new
opportunities to study HNSW through the lens of random walks. We hope this framework sheds light
on more theoretical investigations of HNSW and inspires novel practical algorithms.
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APPENDIX

Roadmap. In Section A, we provide more preliminaries regarding notations and inequalities used
throughout the paper. In Section B, we show how to obtain a multiplicative-additive approximation
for hitting time given an additive Frobenius norm approximation of the Laplacian. In Section C, we
provide missing proofs for prior statements. In Section D, we supply more details for HNSW data
structure. In Section E, we present more details about experiments in Section 5 and an extra set of
experiments in the steady state setting.

A MORE PRELIMINARIES

A.1 NOTATIONS

Let n be a natural number, we use [n] to denote the set {1, 2, . . . , n}. Let X be a random variable,
we use E[X] to denote the expectation of X , and let E be an event, we use Pr[E] to denote the
probability that event E happens.

Let G = (V,E,w) be a graph where V is the set of vertices, E is the set of edges and w : E → R+

be the weight function that assigns a positive real number to each edge. We adopt the convention
and let n := |V | and m := |E|. Given a vertex u ∈ V , we use N(u) to denote its neighborhood, i.e.,
N(u) = {v ∈ V : {u, v} ∈ E}.
Let x ∈ Rd, without specification, we use ∥x∥ to denote a general norm of x, we use ∥x∥2 to denote
the ℓ2 or Euclidean norm of x. Let M ∈ Rn×d be a matrix, we use ∥M∥ to denote the spectral norm
of M , ∥M∥F to denote its Frobenius norm. We use M† to denote the pseudo-inverse of matrix M .
If M ∈ Rn×n and is real, symmetric, we use λ1(M), . . . , λn(M) to denote its eigenvalues, ordered
in ascending order. When M is clear from context, we use λ1, . . . , λn to denote these eigenvalues.
We use tr[M ] to denote the trace of M , i.e., tr[M ] =

∑n
i=1 Mi,i.

A.2 USEFUL INEQUALITIES

We collect some useful inequalities to be used later.
Lemma A.1 (Markov’s inequality). Let X be a non-negative random variable and a > 0, then

Pr[X > a · E[X]] ≤ 1

a
.

Lemma A.2 (Weyl’s inequality, Weyl (1912)). Let A,B ∈ Rn×n be symmetric matrices, then for
any i ∈ [n],

|λi(A)− λi(B)| ≤ ∥A−B∥.

Lemma A.3 (Theorem 4.1 of Wedin (1973)). For two conforming matrices A,B,

∥A† −B†∥ ≤ 2 ·max{∥A†∥2, ∥B†∥2} · ∥A−B∥.

B HITTING TIME AND MULTIPLICATIVE-ADDITIVE APPROXIMATION

In this section, we prove that if we can generate a matrix L′ with ∥L′ − L∥F ≤ δ, then the hitting
time can be also approximated in a multiplicative-additive error manner. We first introduce effective
resistance, an important metric on graphs that could be associated with the graph Laplacian matrix.
Definition B.1. Let G = (V,E,w) be a graph and u, v ∈ V , the effective resistance between u and
v, denoted by RG(u, v), is defined as

RG(u, v) = χ⊤
u,vL

†χu,v,

where χu,v = eu − ev .

Tetali (Tetali, 1991) proves that hitting time and effective resistance are intrinsically connected as
follows.
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Lemma B.2 (Theorem 5 of Tetali (1991)). Let G = (V,E,w) be a graph and u, v ∈ V with u ̸= v,
the hitting time and effective resistance obeys the following identity:

h(u, v) =
1

2

∑
z∈V

deg(z)(RG(u, v) +RG(v, z)−RG(u, z)).

We need to define the edge expansion of a graph, as we will use Cheeger’s inequality to lower bound
the smallest nontrivial eigenvalue of the Laplacian matrix.
Definition B.3 (Edge expansion). Let G = (V,E,w) be a graph and S ⊆ V , define e(S) =∑

u∼v,u∈S,v∈V \S w(u, v), the edge expansion of a set S is defined as

ϕ(S) =
e(S)

min{|S|, |V \ S|}
,

the edge expansion of the graph G is defined as

ϕ(G) = min
S⊆V

ϕ(S).

Cheeger’s inequality gives a lower bound on λ2(L) in terms of edge expansion.
Lemma B.4 (Cheeger’s inequality, Cheeger (1971)). Let G = (V,E,w) be a graph and ϕ(G)
be the edge expansion of G (Definition B.3). Let λ2 be the second smallest eigenvalue of L and
dmax = maxu∈V deg(u), then

ϕ(G)2

2dmax
≤ λ2 ≤ 2ϕ(G).

We next prove that if ∥L−L′∥F ≤ δ, then ∥L†−(L′)†∥ can also be bounded by invoking Lemma A.3.
Lemma B.5. Let G = (V,E,w) be a graph and L be its corresponding Laplacian matrix, let
G′ = (V,E′, w′) be the graph where E′ ⊆ E, L′ be its Laplacian matrix and G′ is connected.
Suppose ∥L− L′∥F ≤ δ for some δ > 0, then

∥L† − (L′)†∥ ≤ 2δ

(
ϕ(G)2

2dmax
− δ

)−2

,

where ϕ(G) is the edge expansion of G (Definition B.3) and dmax is the max degree of G.

Proof. The proof will be combining Lemma A.3 and Lemma B.4. By Lemma A.3, we have

∥L† − (L′)†∥ ≤ 2 ·max{∥L†∥2, ∥(L′)†∥2} · ∥L− L′∥,
where we already have

∥L− L′∥ ≤ ∥L− L′∥F ≤ δ,

meanwhile, by Weyl’s inequality (Lemma A.2), this also implies a bound on λ2(L
′):

|λ2(L)− λ2(L
′)| ≤ ∥L− L′∥ ≤ δ,

it remains to establish a bound on λ2(L). By Cheeger’s inequality, we obtain

λ2(L) ≥
ϕ(G)2

2dmax
,

since L has rank n− 1, we know that

∥L†∥ = 1

λ2(L)

≤ 2dmax

ϕ(G)2
,

similarly we can attempt to establish a bound on λ2(L
′):

λ2(L)− δ ≤ λ2(L
′) ≤ λ2(L) + δ,

16
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therefore

λ2(L
′) ≥ ϕ(G)2

2dmax
− δ

and by the same argument as ∥L†∥,

∥(L′)†∥ = 1

λ2(L′)

≤ 2dmax

ϕ(G)2 − 2dmaxδ
,

we conclude the following bound:

max{∥L†∥2, ∥(L′)†∥2} ≤
(
ϕ(G)2

2dmax
− δ

)−2

.

Put things together, we obtain the final bound:

∥L† − (L′)†∥ ≤ 2δ

(
ϕ(G)2

2dmax
− δ

)−2

.

As a natural corollary, we also obtain a bound on the effective resistance.
Corollary B.6. Let G = (V,E,w) be a graph and G′ = (V,E′, w′) with E′ ⊆ E, L′ be its
Laplacian matrix and G′ is connected. Suppose ∥L − L′∥F ≤ δ for some δ > 0, then for any
u, v ∈ V ,

|RG(u, v)−RG′(u, v)| ≤ 4δ

(
ϕ(G)2

2dmax
− δ

)−2

.

Proof. Fix u, v ∈ V , then

|χ⊤
u,v(L

† − (L′)†)χu,v| ≤ ∥L† − (L′)†∥ · ∥χu,v∥22

≤ 4δ

(
ϕ(G)2

2dmax
− δ

)−2

,

where the last step is by invoking the bound on ∥L† − (L′)†∥ of Lemma B.5.

It would also be useful to have a handle on the degree.
Corollary B.7. Let G = (V,E,w) be a graph and G′ = (V,E′, w′) with E′ ⊆ E, L′ be its
Laplacian matrix and G′ is connected. Suppose ∥L− L′∥F ≤ δ for some δ > 0, then for any u ∈ V ,

|degG(u)− degG′(u)| ≤ δ.

Proof. Note that degG(u) = e⊤uLeu and degG′(u) = e⊤uL
′eu, thus

|degG(u)− degG′(u)| = |e⊤u (L− L′)eu|
≤ ∥L− L′∥ · ∥eu∥22
= ∥L− L′∥
≤ δ.

We are in the position to prove our main theorem regarding hitting time.
Theorem B.8. Let G = (V,E,w) be a graph and G′ = (V,E′, w′) with E′ ⊆ E, L′ be its Laplacian
matrix and G′ is connected. Suppose ∥L − L′∥F ≤ δ for some δ > 0, then for any u, v ∈ V with
u ̸= v,

|hG(u, v)− hG′(u, v)| ≤ δ

dmin
hG(u, v) + 12δ

(
ϕ(G)2

2dmax
− δ

)−2∑
e∈E

we

17
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Proof. By Lemma B.2, we know that

hG(u, v) =
1

2

∑
z∈V

degG(z)(RG(u, v) +RG(v, z)−RG(u, z)), (1)

by Corollary B.6, we have that

|RG(u, v)−RG′(u, v)| ≤ 4δ

(
ϕ(G)2

2dmax
− δ

)−2

,

for ease of notation, let δ′ := 4δ
(

ϕ(G)2

2dmax
− δ
)−2

, and by Corollary B.7,

|degG(u)− degG′(u)| ≤ δ.

To apply Eq. (1), we examine one term as follows:

degG(z)RG(u, v)− degG′(z)RG′(u, v) ≤ degG(z)RG(u, v)− (degG(z)− δ)RG′(u, v)

≤ degG(z)RG(u, v)− (degG(z)− δ)(RG(u, v)− δ′)

= δ′ degG(z) + δRG(u, v)− δδ′

≤ δ′ degG(z) + δRG(u, v)

Putting it together yields

hG(u, v)− hG′(u, v)

=
1

2

∑
z∈V

(degG(z)(RG(u, v) +RG(v, z)−RG(u, z))− degG′(z)(RG′(u, v) +RG′(v, z)−RG′(u, z)))

≤ 1

2

∑
z∈V

3δ′ degG(z) + δ(RG(u, v) +RG(v, z)−RG(u, z))

=
3

2
δ′
∑
z∈V

degG(z) +
1

2
δ
∑
z∈V

RG(u, v) +RG(v, z)−RG(u, z)

≤ 3

2
δ′
∑
z∈V

degG(z) +
1

2
δ
∑
z∈V

degG(z)(RG(u, v) +RG(v, z)−RG(u, z)) ·
1

degG(z)

≤ 3

2
δ′
∑
z∈V

degG(z) +
1

2
δ

(∑
z∈V

degG(z)(RG(u, v) +RG(v, z)−RG(u, z))

)
· 1

dmin

= 3δ′
∑
e∈E

we +
δ

dmin
hG(u, v),

this completes the proof.

C MISSING PROOFS

In this section, we include the missing proofs in previous sections.
Theorem C.1 (Restatement of Theorem 3.1). Let P ⊂ Rd be an n-point dataset and p ∈ P be a
point to-be-deleted. Suppose P is preprocessed by an HNSW data structure and p is not the entry
point of the HNSW. Fix a query point q ∈ Rd and suppose the search reaches layer l ∈ {1, . . . , L}, let
N(p) denote the neighborhood of p at layer l. Suppose q reaches N(p), visits and leaves p. Consider
the deletion procedure that removes p at layer l and forms a clique over N(p), then the search of q
on the new graph is equivalent to the search of q on the old graph.

Proof. Let G denote the graph at layer l before deleting p and G\p denote the graph at layer l after
deleting p. By assumption, there is some vertex a ∈ N(p) visited by the walk immediately before
visiting p, and another vertex b ∈ N(p) visited immediately after. We focus our attention on how the
graph transformation affects the a→ p→ b section of the traversal. In the original graph, the walk
transitioned from a to p because p is the vector in N(a) nearest to q. However, since the walk then
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transitions from p to b, it must be the case that b is closer to q than is any point in N(p) ∪ {p}, and
thus ∥b− q∥ = minc∈N(p) ∥c− q∥ ≤ ∥p− q∥.
Now, consider the new graph where p is deleted and a clique is instead inserted between the vectors
in its former neighborhood. The walk remains the same until it first hits a. From a, there are two
possible (not mutually-exclusive) types of neighbors the walk could transition to: those that were
neighbors of a in the original graph, and those new neighbors it acquired when the clique was
inserted on N(p), including b. Because the old walk transitioned into p, it must be the case that
∥p− q∥ ≤ ∥x− q∥ for each x among the original N(a). Combining this with the previous inequality,
it must be the case that ∥b− q∥ = miny ∥y− q∥, with y ranging over the entire new neighborhood of
a, and thus the walk must still transition into b, at which point it proceeds as before.

Theorem C.2 (Restatement of Theorem 4.1). Let G = (V,E,w) be a weighted graph, define the
random walk under the weights w for any edge {u, v} ∈ E as Pr[u → v | w] = w(u,v)

deg(u) where
deg(u) =

∑
z∈N(u) w(u, z). Let p be the point to be deleted as for any u, v ∈ N(p), define the

new weights w′(u, v) as w′(u, v) = w(u, v) + w(u,p)·w(p,v)
deg(p) , let E(p) = {{u, p} : u ∈ N(p)} and

C(p) = {{u, v} : u ̸= v, u, v ∈ N(p)}, then for the new graph G′ = (V \{p}, E \E(p)∪C(p), w′),
we have

Pr[u→ v | w′] = Pr[(u→ p→ v) ∨ (u→ v) | w].

Proof. Consider the neighborhood of p, N(p), let u, v ∈ N(p), we reason over the probability that
the walk moves from u to v. Note that after deletion, the only change is that the vertex p has been
removed from the graph, therefore, there is no path from u → p → v. On the other hand, there is
now a direct path from u to v under the new weight w′(u, v), so we need to show that the probability
is not affected.

Recall that for any vertex z ∈ N(u), we have that the probability the walk moves from u to z is
w(u, z)

deg(u)

where deg(u) =
∑

z∈N(u) w(u, z). Before deleting p, we calculate the probability of the path
u→ p→ v together with the probability of u→ v:

Pr[(u→ p→ v) ∨ (u→ v) | w]
= Pr[u→ p | w] · Pr[p→ v | u→ p, w] + Pr[u→ v | w]

=
w(u, p)

deg(u)
· w(p, v)
deg(p)

+
w(u, v)

deg(u)

After deletion, the random walk is performed via new weights w′:

Pr[u→ v | w′] =
w′(u, v)

deg′(u)

=
w(u, v)

deg′(u)
+

w(u, p) · w(p, v)
deg(p) deg′(u)

(2)

note that
deg′(u) =

∑
v∈N(u)\N(p)

w(u, v) +
∑

v∈N(p)

w′(u, v)

= deg(u)− w(u, p) +
∑

v∈N(p)

w(u, p) · w(p, v)
deg(p)

= deg(u)− w(u, p) + w(u, p)

= deg(u)

therefore

(2) =
w(u, v)

deg(u)
+

w(u, p) · w(p, v)
deg(p) · deg(u)

,

which is the same as the probability of walking from u to v either via the edge {u, v} or the path
u→ p→ v.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Theorem C.3 (Restatement of Theorem 4.3). Let G = (V,E,w) and L ∈ Rn×n be its graph
Laplacian matrix. Suppose we generate a matrix C̃ ∈ Rs×n by sampling each row of

√
WB

proportional to its squared row norm with s = 200ε−2, and reweight row i by 1/(pis) where
pi = ∥(

√
WB)i,∗∥22/∥

√
WB∥2F , then with probability at least 0.99,

∥C̃⊤C̃ − L∥F ≤ ε · tr[W ].

Proof. For simplicity of notation, we let C :=
√
WB. Define the random variable Xi =

1
pi
Ci,∗C

⊤
i,∗,

where p1, . . . , pm are the sampling probabilities of the process, i.e. pi = ∥Ci,∗∥22/∥C∥2F . We prove
several important properties of these Xi’s.

• Expectation. Note that

E[X] =

m∑
i=1

pi ·
1

pi
Ci,∗C

⊤
i,∗

=

m∑
i=1

Ci,∗C
⊤
i,∗

= C⊤C

• Expected Frobenius norm. We compute the entrywise variance of X:

E[∥X∥2F ]

=

n∑
i,j=1

E[x2
i,j ]

= (

n∑
i,j=1

n∑
k=1

pk
1

p2k
· C2

k,iC
2
k,j)

=

n∑
k=1

1

pk
∥Ck,∗∥42

= ∥C∥4F ,

let Y = 1
s

∑s
i=1 Xi, then

E[∥Y ∥2F ]

= E[∥1
s

s∑
i=1

Xi∥2F ]

=
1

s2
(

s∑
i=1

E[∥X∥2F ] + 2
∑
i ̸=j

E[tr[XiXj ]])

=
∥C∥4F
s

+
2

s2

∑
i ̸=j

tr[E[XiXj ]]

=
∥C∥4F
s

+
2

s2

∑
i ̸=j

tr[E[Xi]E[Xj ]]

=
∥C∥4F
s

+
s− 1

s
∥C⊤C∥2F .

• Probability. We will be using Markov inequality on ∥Y −C⊤C∥2F , to do so we first compute

E[tr[Y C⊤C]] = tr[E[Y C⊤C]]

= tr[E[Y ]C⊤C]

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

= tr[C⊤CC⊤C]

= ∥C⊤C∥2F ,

and we can compute the expectation of the squared Frobenius norm deviation:

E[∥Y − C⊤C∥2F ]
= E[∥Y ∥2F ] + ∥C⊤C∥2F − 2E[tr[Y C⊤C]]

=
∥C∥4F
s

+
2s− 1

s
∥C⊤C∥2F − 2∥C⊤C∥2F

≤ ∥C∥
4
F

s
.

Set s = 100ε−2, we obtain that E[∥Y − C⊤C∥2F ] ≤ ε2∥C∥4F . By Markov’s inequality
(Lemma A.1), we have

Pr[∥Y − C⊤C∥2F > ε2∥C∥4F ] ≤
ε2/100 · ∥C∥4F

ε2∥C∥4F
=

1

100
,

as desired. Utilizing the structure of C, we could further simplify the bound: ∥C∥2F =
2
∑

e∈E we = 2∥w∥1 = 2 tr[W ].

Corollary C.4 (Restatement of Corollary 4.6). Let G = (V,E,w) be a weighted complete graph and
G′ = (V,E′, w′) be the induced graph by applying Theorem 4.3 to G, and assume G′ is connected.
If |E′| = O(maxu,v∈N(p) hG(u, v) · n), then with probability at least 0.99, for any u, v ∈ V ,
|hG(u, v)− hG′(u, v)| ≤

√
n · hG(u, v). given one of the two settings:

• Single cluster: for any u, v ∈ V , w(u, v) = O(1);

• Many small clusters: there are
√
n clusters of size

√
n. Within each cluster, the edge weights are

O(1), and between clusters, the edge weights are O(1/n).

Proof. We prove the two settings item by item.

• Single cluster, that is, for all u, v, u′, v′ ∈ V , we have w(u, v) = O(w(u′, v′)) = O(1). In this
case, tr[W ] = O(n2), dmin, dmax = O(n) and ϕ(G) = O(n). The multiplicative error factor for
hG(u, v) is then ε · n and the additive error term is ε · n4(n − ε · n2)−2 = εn2

(1−εn)2 ≤ 4ε−1, so

the overall error is εn · hG(u, v) + 4ε−1, equating these two terms sets ε−1 =
√

n · hG(u, v).
According to Theorem 4.3, this means that we can sparsify the number of edges in clique C(p)
from O(|N(p)|2) down to O(maxu,v∈N(p) h(u, v) · |N(p)|).

• Many small clusters, in particular the max edge weight is O(1) while the min edge weight is
O(n−1). Among the n points, we assume they are clustered n0.5 parts, each of size n0.5. For
the O(n2) intercluster edges, the edge weights are O(n−1), while other edges have weights O(1).
In this case, tr[W ] = n + n1.5 ≤ O(n1.5), dmin, dmax = O(n0.5) and ϕ(G) = O(1), and the
multiplicative factor is ε ·n and the additive factor is ε ·n3(n−0.5−ε ·n1.5)−2 = εn4

(1−εn2)2 ≤ 4ε−1,

so the overall error is εn · hG(u, v) + 4ε−1. We would set ε−1 =
√

n · hG(u, v) to minimize
the error. Note that now the number of edges in the sparsified graph is O(maxu,v∈N(p) h(u, v) ·
|N(p)|).

D HNSW DATA STRUCTURE

We review the both classical HNSW data structure proposed in Malkov & Yashunin (2020), also
provide more details about our random walk-based variant of it in this section.

D.1 CLASSICAL HNSW

In this section, we provide a more in-depth review of the HNSW data structure. We lay out its
structure in several algorithms, starting from the search procedure.
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Algorithm 2 HNSW algorithm: layer search.

1: procedure LAYERSEARCH(q ∈ Rd, P ⊂ Rd, l ∈ {1, . . . , L}, u ∈ P,m ∈ [|P |])
2: ▷ l is the layer of the graph, u is the starting point and m is the total number of nearest

neighbors to return.
3: visited← {u} ▷ Visited vertices.
4: candidates← {u} ▷ Candidate vertices.
5: nbrs← {u} ▷ Dynamic list of nearest neighbors.
6: while |candidates| > 0 do
7: c← nearest neighbor of q in candidates
8: f ← furthest neighbor of q in nbrs
9: candidates← candidates \ {c}

10: if ∥c− q∥ > ∥f − q∥ then
11: break
12: end if
13: for v ∈ nbrhood(c) at layer l do
14: if v ̸∈ visited then
15: visited← visited ∪ {v}
16: f ← furthest neighbor of q in nbrs
17: if ∥v − q∥ < ∥f − q∥ or |nbrs| < m then ▷ Either v is closer or nbrs is not

full.
18: candidates← candidates ∪ {v}
19: nbrs← nbrs ∪ {v}
20: if |nbrs| > m then
21: Remove furthest neighbor of q in nbrs
22: end if
23: end if
24: end if
25: end for
26: end while
27: return nbrs
28: end procedure

To construct the HNSW data structure, we implement the insertion procedure.

The insertion works as follows: it simply performs Algorithm 2 from L to l + 1 where l is the
designated layer for q to be inserted. Starting from layer l to 1, we increase the number of points to
be returned by Algorithm 2 (efConstruction can be much larger m) and then select m of them
to add edges using NEIGHBORSELECT. This procedure is then repeated for the new neighbors of q to
prune edges.

The only missing piece is the neighbor selection procedure. Malkov & Yashunin (2020) recommends
two types of neighbor selection: one is simply taking the top-m nearest neighbors, while the other
involves a more sophisticated heuristic procedure. We refer readers to Malkov & Yashunin (2020) for
more details.

D.2 PROBABILISTIC HNSW

Inspired by the classical HNSW data structure, we propose a random walk-based approach for both
searching and constructing the data structure. While we give an overview in Section 4, here we
provide the complete algorithm.

The key distinction between Algorithm 2 and 4 is on line 7: instead of taking the nearest neighbor,
Algorithm 4 samples a point to move to based on the softmax of negative squared distance. For
insertion, we give an alternative presentation that shows how to construct the one layer of HNSW
by first building a complete graph, then randomly sparsifying it. It is showcases in Algorithm 5 and
Figure 3.
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Algorithm 3 HNSW algorithm: insertion.

1: procedure INSERT(q ∈ Rd, P ⊂ Rd, u ∈ P,efConstruction ∈ [|P |],m ∈ [|P |],mmax ∈
[|P |])

2: l← ⌊− ln(Unif(0, 1))/ lnm⌋
3: for lc = L→ l + 1 do
4: candidates← LAYERSEARCH(q, P, lc, u, 1)
5: u← argminv∈candidates ∥v − q∥
6: end for
7: for lc = min{L, l} → 1 do
8: candidates← LAYERSEARCH(q, P, lc, u,efConstruction)
9: nbrs← NEIGHBORSELECT(q,candidates,m, lc)

10: Add edges between q and nbrs at layer lc
11: end for
12: for v ∈ nbrs do
13: N(v)← nbrhood(v) at layer lc
14: if |N(v)| > mmax then
15: newNbrs← NEIGHBORSELECT(v,N(v),mmax, lc)
16: Add edges between v and newNbrs at layer lc
17: end if
18: end for
19: u← candidates
20: if l > L then
21: u← q
22: end if
23: end procedure

E ADDITIONAL EXPERIMENTS

E.1 DETAILS OF PREVIOUS EXPERIMENTS

We start by examining more details regarding prior experiments conducted in Section 5.

Deletion experiments. Regarding deletion algorithms, we note that several of them have hyper-
parameters:

• FreshDiskANN (Singh et al., 2021) requires a hyper-parameter α, which governs how many
edges to prune after rerouting u to N(p) ∪ N(u), intuitively, the larger the α, the denser the
graph. According to Singh et al. (2021), α should be chosen > 1. In our experiment, due to the
time-consuming nature of FreshDiskANN deletion procedure, we set α = 1.2. It is also worth
noting that FreshDiskANN is designed for DiskANN, which has a slightly different insertion
procedure from HNSW.

• Our algorithm SPatch also requires a hyper-parameter α, which determines how many edges to
keep in the clique after sparsification. Intuitively, the larger the α, the denser the graph. Through
out experiments, we observe that choosing α = 1.2 except for GIST yields good performances. In
particular, this consistently holds for MPNet and MiniLM. For SIFT, we could further improve
the recall and efficiency by choosing α = 0.6. For GIST however, one has to choose α to be
smaller than 1 to obtain good recall and efficiency. In our experiment, we choose α = 0.4. We
summarize the choices in Table 3. To choose α, we recommend either using α = 1.2 or α = 0.6.

SIFT GIST MPNet MiniLM
α 0.6 0.4 1.2 1.2

Table 3: Choices of hyper-parameter α for different datasets.

Random softmax walk vs. greedy search. For this experiment, we need to choose a hyper-parameter
r (recall the softmax walk samples for the next visit with probability exp(−r2 ·∥q−u∥2)). Intuitively,
we want to choose r so that the softmax walk samples the nearest neighbor with exponentially
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Algorithm 4 HNSW algorithm: layer search.

1: procedure LAYERSEARCHRANDOMWALK(q ∈ Rd, P ⊂ Rd, l ∈ {0, . . . , L}, u ∈ P,m ∈
[|P |], r ∈ R+)

2: ▷ l is the layer of the graph, u is the starting point and m is the total number of nearest
neighbors to return.

3: visited← {u} ▷ Visited vertices.
4: candidates← {u} ▷ Candidate vertices.
5: nbrs← {u} ▷ Dynamic list of nearest neighbors.
6: while |candidates| > 0 do
7: Sample c with probability exp(−r2·∥c−q∥2)∑

v∈candidates exp(−r2·∥v−q∥2)

8: f ← furthest neighbor of q in nbrs
9: candidates← candidates \ {c}

10: if ∥c− q∥ > ∥f − q∥ then
11: break
12: end if
13: for v ∈ nbrhood(c) at layer l do
14: if v ̸∈ visited then
15: visited← visited ∪ {v}
16: f ← furthest neighbor of q in nbrs
17: if ∥v − q∥ < ∥f − q∥ or |nbrs| < m then ▷ Either v is closer or nbrs is not

full.
18: candidates← candidates ∪ {v}
19: nbrs← nbrs ∪ {v}
20: if |nbrs| > m then
21: Remove furthest neighbor of q in nbrs
22: end if
23: end if
24: end if
25: end for
26: end while
27: return nbrs
28: end procedure

higher probability than the second nearest neighbor. This could be achieved by choosing r to be
arbitrarily large. However, if r is chosen to be too large, the probability can easily overflow. To
resolve this issue, we adapt the following approach for computing r: given a collection of points
candidates to consider (line 7 of Algorithm 4), we compute the empirical average of the distances
µ =

∑
u∈candidates

∥u−q∥
|candidates| , then we set r = 15/µ. This scales r · ∥q − u∥ to a value between

10 and 20, and empirically, we observe that this choice of r can differentiate among the top nearest
neighbors and henceforth, give similar recall as the greedy search.

Figure 4 justifies this decision to fix rµ = 15 by demonstrating the behavior of Random Softmax
search for different values r̂ := rµ. The left plot shows that as r̂ increases, the softmax converges
toward a true maximum, and randomized softmax correspondingly better matches the greedy search
algorithm. Thus, r̂ in this regime usually – but far from always – transitions to the current node’s
neighbor closest to q. The right plot shows the impact of r̂ on recall, and in particular its convergence
to the performance of the pure greedy algorithm (dashed horizontal lines) for r̂ ≈ 15.

E.2 STEADY STATE SETTING

In this experiment, we consider the steady state setting introduced in Singh et al. (2021), where 10%
of the points are deleted from the data structure then inserted back, and queries are measured. We
repeat this process 10 times, albeit all points have been deleted from the data structure and reinserted.
Similar to the mass deletion experiment, we randomly pick 5,000 query points for SIFT, MPNet,
MBREAD and MiniLM and 1,000 query points for GIST.
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Algorithm 5 Construction via sparsification.

1: procedure CONSTRUCTONELAYER(P ∈ (Rd)n,m ∈ [n], r ∈ R+)
2: Determine an ordering of the points in P , label them as v1, . . . , vn
3: G← ({v1}, ∅)
4: for i = 2→ n do
5: candidates← {v1}
6: visited← {v1}
7: V ← V ∪ {vi}
8: // Densify phase
9: E ← E ∪ {{vj , vi} : j ∈ [i− 1], w(vj , vi) = exp(−r2 · ∥vj − vi∥2)}

10: // Random walk phase
11: while |candidates| > 0 do
12: Sample c ∈ candidates with probability exp(−r2·∥vi−c∥2)∑

u∈candidates exp(−r2·∥vi−u∥2)

13: candidates← candidates \ {c}
14: for u ∈ nbrhood(c) do
15: if u ̸∈ visited then
16: visited← visited ∪ {u}
17: candidates← candidates ∪ {u}
18: end if
19: end for
20: end while
21: // Sparsify phase
22: sample← Sample m points from visited independently without replacement, with

probability of sampling u being exp(−r2·∥vi−u∥2)∑
v∈visited exp(−r2·∥vi−v∥2)

23: E ← E \ {{vj , u} : u ̸∈ sample}
24: for u ∈ sample do
25: if deg(u) > m then
26: Sparsify nbrhood(u) by sampling m edges
27: end if
28: end for
29: end for
30: end procedure

Through Figure 5, we could see a similar trend as in the deletion experiment (Section 5), except that
the no patching algorithm gives better recall than before. This is because in the steady state setting,
the graph is automatically “patched” by re-inserting the same set of points back to the data structure.
In contrast to the experimental results in Singh et al. (2021), FreshDiskANN does not perform even
as well as no patching, this in part is because the insertion algorithms for DiskANN and HNSW are
quite different. Regarding hyper-parameters: for FreshDiskANN, we again choose α = 1.2, and for
SPatch, we summarize it in Table 4.

SIFT GIST MPNet MBREAD MiniLM
α 0.5 0.5 1.2 1.6 1.2

Table 4: Choices of hyper-parameter α for different datasets.
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A B

C

D E

(a) Initial graph

A B

C

D E

Q

(b) Densify phase, insert Q to the graph and add
edges between Q to all existing vertices

A B

C

D E

Q

A B

C

E

(c) Random walk phase, walk starts at A and goes
to C,B,E

A B

C

D E

Q

(d) Sparsify phase, keep edges between C and E

Figure 3: We construct the graph by first adding edges between Q to all vertices, then perform a
random walk to determine the candidate edges to keep, and sparsify them by sampling.

Figure 4: The impact of varying r̂ (i.e. rµ) on transition probabilities and recall. Left: The frequency
with which the random softmax algorithm truly transitions to the nearest neighbor (i.e. a greedy step),
as a function of r̂. Right: The impact of different choices of r̂ on the recall of the randomized search
algorithm. Horizontal line indicates the recall of greedy search algorithm.
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Figure 5: The 5×4 grid of figures, where the rows are SIFT, GIST, MPNet, MBREAD and MiniLM,
and the columns are recall, number of distance computations per query, total deletion time and
total deletion time excluding fresh DiskANN. Legends: spatch – our deletion algorithm SPatch,
fresh – FreshDiskANN algorithm, tomb – tombstone algorithm, nopatch – no patching algo-
rithm.

E.3 VERTEX COUNTS, EDGE COUNTS, AND MEMORY UTILIZATION

To see the impact of SPatch on the graph size and empirical memory utilization, we design an
alternative steady-state experiment in an environment with very high vector turnover. Starting with an
empty database, we continuously insert into it one vector per (simulated) second from the MiniLM
dataset over the duration of 12 (simulated) hours. Each vector survives for a number of steps following
an exponential distribution with a mean of 2 hours (i.e. has a half-life of 2 ln 2 ≈ 1.39 hours), after
which it is deleted. Hence, while the experiment has more insertions than deletions for the first few
simulated hours, it eventually enters a steady state at which insertions and deletions occur at roughly
the same rate. At the end of the 12 hours, no new vectors are inserted, and the remaining vectors
continue to fall out as they expire.
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We track the vertex counts, edge counts, and memory utilization of both the Tombstone algorithm
and of SPatch, and the results are shown in Figure 6. Vertex and edges are counted cumulatively
over all levels of the graph. Hence, we continue to see a small rise even in the steady state: the upper
layers of the data structure still continue to accumulate them at their prior rate. However, the rate of
increase is far slower than that of the Tombstone algorithm, which intrinsically grows at a steady
rate independent of the number of deletions.

We also see a stark difference in memory utilization (as measured by python’s psutil package).
While the Tombstone algorithm is marginally more memory efficient before the effect of deletions
begins to kick in (as a result of storing approximately d+m = 384 + 32 = 416 words per vector
instead of d+ 2m = 448 due to the bidirected nature of the HNSW graph), soon the vector deletion
begins saving large amounts of memory due to the combined effect of the vertices, edges, and
d-dimensional vectors removed from the data store. Although vertex, edge, and memory all continues
to rise with SPatch, it does so substantially slower than with Tombstone. Finally, after we enter
the pure-deletion phase of the experiment 12 hours in, we see no further change in any of the plots
for Tombstone (as expected), but each of the metrics begins its decrease for SPatch. While not
all of the memory can be directly recovered by the Operating System due to fragmentation or other
similar considerations, we do see the memory utilization of SPatch begin to dip, and (unlike in
Tombstone) much of the unrecovered memory is ready for reuse by the algorithm should it face
more insertions in the future.

Figure 6: Vertex counts, edge counts, and empirical memory utilization as measured by the experiment
described in Section E.3.

LLM DISCLOSURE

This work does not use LLM to facilitate writing.
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