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Abstract

This paper introduces a new challenge for image similarity search in the context of1

fashion, addressing the inherent ambiguity in this domain stemming from complex2

images. We present Referred Visual Search (RVS), a task allowing users to define3

more precisely the desired similarity, following recent interest in the industry. We4

release a new large public dataset, LRVS-Fashion, consisting of 272k fashion5

products with 842k images extracted from fashion catalogs, designed explicitly6

for this task. However, unlike traditional visual search methods in the industry,7

we demonstrate that superior performance can be achieved by bypassing explicit8

object detection and adopting weakly-supervised conditional contrastive learning9

on image tuples. Our method is lightweight and demonstrates robustness, reaching10

Recall at one superior to strong detection-based baselines against 2M distractors.111

Retrieved ItemsQuery 
Categorical Conditioning

LOWER BODY OUTWEAR

Textual Conditioning
"Same handbag" "I want her t-shirt"

Figure 1: Overview of the Referred Visual Search task. Given a query image and conditioning
information, the goal is to retrieve a target instance from a large gallery. Note that a query is made of
an image and an additional text or category, precising what aspect of the image is relevant.

1 Introduction12

Image embeddings generated by deep neural networks play a crucial role in a wide range of computer13

vision tasks. Image retrieval has gained substantial prominence, leading to the development of14

dedicated vector database systems [22]. These systems facilitate efficient retrieval by comparing15

embedding values and identifying the most similar images within the database.16

Image similarity search in the context of fashion presents a unique challenge due to the inherently17

ill-founded nature of the problem. The primary issue arises from the fact that two images can be18

considered similar in various ways, leading to ambiguity in defining a single similarity metric. For19

1The dataset is available at https://huggingface.co/datasets/Slep/LAION-RVS-Fashion
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instance, two images of clothing items may be deemed similar based on their color, pattern, style, or20

even the model pictured. This multifaceted nature of similarity in fashion images complicates the21

task of developing a universally applicable similarity search algorithm, as it must account for the22

various ways in which images can be related.23

An intuitive approach is to request users furnish supplementary information delineating their interests,24

such as providing an image of an individual and denoting interest in the hat (see Fig. 1). Numerous25

industry leaders including Google, Amazon, and Pinterest have adopted this tactic, however academic26

discourse on potential alternative methodologies for this task remains scarce as the domain lacks27

dedicated datasets. For convenience, we propose terming this task Referred Visual Search (RVS),28

as it is likely to garner attention from the computer vision community due to the utility for product29

search in extensive catalogs.30

In practice, object selection in complex scenes is classically tackled using object detection and31

crops [21, 17, 12, 42]. Some recent approaches use categorical attributes [8] or text instead [6], and32

automatically crop the image based on learned attention to input attributes. It is also possible to ask33

the user to perform the crop himself, yet in all the situations the performance of the retrieval will be34

sensitive to this extraction step making it costly to build a generic retrieval tool. Recently, Jiao et al.35

[20] went a step further, incorporating prior knowledge about the taxonomy of fashion attributes and36

classes without using crops. They use a multi-granularity loss and two sub-networks to learn attribute37

and class-specific representations, resulting in improved robustness for fashion retrieval, yet without38

providing any code.39

In this work, we seek to support these efforts by providing a dataset dedicated to RVS. We extracted40

a subset of LAION 5B [41] focused on pairs of images sharing a labeled similarity in the domain of41

fashion, and propose a method to eliminate the need for explicit detection or segmentation, while still42

producing similarities in the embedding space specific to the conditioning. We think that such end-to-43

end approach has the potential to be more generalizable and robust, whereas localization-dependent44

approaches hinge on multi-stage processing heuristics specific to the dataset.45

This paper presents two contributions to the emerging field of Referred Visual Search, aiming at46

defining image similarity based on conditioning information.47

X The introduction of a new dataset, referred to as LRVS-Fashion, which is derived from the48

LAION-5B dataset and comprises 272k fashion products with nearly 842k images. This dataset49

features a test set with an addition of more than 2M distractors, enabling the evaluation of method50

robustness in relation to gallery size. The dataset’s pairs and additional metadata are designed to51

necessitate the extraction of particular features from complex images.52

X An innovative method for learning to extract referred embeddings using weakly-supervised53

training. Our approach demonstrates superior accuracy against a strong detection-based baseline54

and existing published work. Furthermore, our method exhibits robustness against a large number55

of distractors, maintaining high R@1 even when increasing the number of distractors to 2M.56

2 Related Work57

Retrieval Datasets. Standard datasets in metric learning literature consider that the images are58

object-centric, and focus on single salient objects [49, 25, 45]. In the fashion domain there exist59

multiple datasets dedicated to product retrieval, with paired images depicting the same product and60

additional labeled attributes. A recurrent focus of such datasets is cross-domain retrieval, where the61

goal is to retrieve images of a given product taken in different situations, for exemple consumer-to-62

shop [31, 50, 32, 12], or studio-to-shop [32, 27]. The domain gap is in itself a challenge, with issues63

stemming from irregular lighting, occlusions, viewpoints, or distracting backgrounds. However, the64

query domain (consumer images for exemple) often contains scenes with multiple objects, making65

queries ambiguous. This issue has been circumvented with the use of object detectors and landmarks66

detectors [23, 18, 32, 12]. Some are not accessible anymore [23, 32, 50].67

With more than 272k distinct training product identities captured in multi-instance scenes, our new68

dataset proposes an exact matching task similar to the private Zalando dataset [27], while being larger69

than existing fashion retrieval datasets and publicly available. We also create an opportunity for new70

multi-modal approaches, with captions referring to the product of interest in each complex image,71

and for robustness to gallery size with 2M added distractors at test time.72
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Instance Retrieval. In the last decade, content-based image retrieval has changed because of the73

arrival of deep learning, which replaced many handcrafted heuristics (keypoint extraction, descriptors,74

geometric matching, re-ranking. . . ) [11]. In the industry this technology has been of interest to retail75

companies and search engines to develop visual search solutions, with new challenges stemming from76

the large scale of such databases. Initially using generic pretrained backbones to extract embeddings77

with minimal retraining [53], methods have evolved toward domain-specific embeddings supervised78

by semantic labels, and then multi-task domain-specific embeddings, leveraging additional product79

informations [58, 3, 46]. The latest developments in the field incorporate multi-modal features for80

text-image matching [59, 54, 62], with specific vision-language pretext tasks.81

However, these methods often consider that the query image is unambiguous, and often rely on a82

region proposal system to crop the initial image [21, 60, 17, 42, 3, 10]. In our work, we bypass this83

step and propose an end-to-end framework, leveraging the Transformer architecture to implicitly84

perform this detection step conditionally to the referring information.85

Referring Tasks. Referring tasks are popular in vision-language processing, in particular Referring86

Expression Comprehension and Segmentation where a sentence designates an object in a scene,87

that the network has to localize. For the comprehension task (similar to open-vocabulary object88

detection) the goal is to output a bounding box [34, 56, 57, 30]. The segmentation task aims at89

producing an instance mask for images [61, 34, 19, 7, 24] and recently videos [52, 4]. In this paper,90

we propose a referring expression task, where the goal is to embed the designated object of interest91

into a representation that can be used for retrieval. We explore the use of Grounding DINO [30] and92

Segment Anything [24] to create a strong baseline on our task.93

Conditional Embeddings. Conditional similarity search has been studied through the retrieval94

process and the embedding process. On one hand, for the retrieval process, Hamilton et al. [15]95

propose to use a dynamically pruned random projection tree. On the other hand, previous work96

in conditional visual similarity learning focused on attribute-specific retrieval, defining different97

similarity spaces depending on chosen discriminative attributes [47, 36]. They use either a mask98

applied on the features [47], or different projection heads [36], and require extensive data labeling.99

In Fashion, ASEN [35] uses spatial and channel attention to an attribute embedding to extract specific100

features in a global branch. Dong et al. [8] and Das et al. [6] build upon this model and add a local101

branch working on an attention-based crop. Recently, Jiao et al. [20] incorporated prior knowledge102

about fashion taxonomy in this process to create class-conditional embeddings based on known103

fine-grained attributes, using multiple attribute-conditional attention modules. In a different domain,104

Asai et al. [1] tackle a conditional document retrieval task, where the user intent is made explicit by105

concatenating instructions to the query documents. In our work, we use Vision Transformers [9] to106

implicitly pool features depending on the conditioning information, without relying on explicit ROI107

cropping or labeled fine-grained attributes.108

Composed Image Retrieval (CIR) [48] is another retrieval task where the embedding of an image must109

be modified following a given instruction. Recent methods use a composer network after embedding110

the image and the modifying text [28, 5, 2]. While CIR shares similarities with RVS in terms of inputs111

and outputs, it differs conceptually. Our task focuses on retrieving items based on depicted attributes112

and specifying a similarity computation method, rather than modifying the image. In Fashion, CIR113

has been extended to dialog-based interactive retrieval, where an image query is iteratively refined114

following user instructions [14, 51, 55, 16].115

3 Dataset116

Metric learning methods work by extracting features that pull together images labeled as similar [11].117

In our case, we wanted to create a dataset where this embedding has to focus on a specific object118

in a scene to succeed. We found such images in fashion, thanks to a standard practice in this field119

consisting in taking pictures of the products alone on neutral backgrounds, and worn by models in120

scenes involving other clothing items (see Fig. 3).121

We created LAION-RVS-Fashion (abbreviated LRVS-F) from LAION-5B by collecting images of122

products isolated and in context, which we respectively call simple and complex. We grouped them123

using extracted product identifiers. We also gathered and created a set of metadata to be used as124
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Figure 2: Overview of the data collection. a) Selection of a subset of domains belonging to known
fashion retailers. b) Extraction of product identifiers in the URLs using domain-specific regular
expressions. c) Generation of synthetic metadata for the products (categories, captions, ...) using both
pretrained and finetuned models. d) Deduplication of the images, and assignment to subsets.

{
 Images:

 Category: Lower Body 
 LAION Alt Text: Michael Kors 'Samantha' skinny trousers
 Caption: A women's beige trousers 
}

{
 Images:

 Category: Bags 
 LAION Alt Text: BARK - striped tote 7
 Caption: A handbag with navy stripes
}

Figure 3: Samples from LRVS-F. Each product is represented on at least a simple and a complex
image, and is associated with a category. The simple images are also described by captions from
LAION and BLIP2. Please refer to Appendix A.1 for more samples.

referring information, namely LAION captions, generated captions, and generated item categories.125

The process is depicted Fig. 2, presented in Section 3.1 with additional details in Appendix A.3.126

3.1 Construction127

Image Collection. The URLs in LRVS-F are a subset of LAION-5B, curated from content delivery128

networks of fashion brands and retailers. By analyzing the URL structures we identified product129

identifiers, which we extracted with regular expressions to recreate groups of images depicting the130

same product. URLs without distinct identifiers or group membership were retained as distractors.131

Annotations. We generated synthetic labels for the image complexity, the category of the product,132

and added new captions to replace the noisy LAION alt-texts. For the complexity labels, we133

employed active learning to incrementally train a classifier to discern between isolated objects on134

neutral backdrops and photoshoot scenes. The product categories were formed by aggregating various135

fine-grained apparel items into 10 coarse groupings. This categorization followed the same active136

learning protocol. Furthermore, the original LAION captions exhibited excessive noise, including137

partial translations or raw product identifiers. Therefore, we utilized BLIP-2 [29] to generate new,138

more descriptive captions.139

Dataset Split. We grouped together images associated to the same product identifier and dropped140

the groups that did not have at least a simple and a complex image. We manually selected 400 of141

them for the validation set, and 2,000 for the test set. The distractors are all the images downloaded142

previously that were labeled as "simple" but not used in product groups. This mostly includes images143

for which it was impossible to extract any product identifier.144

Dataset Cleaning. In order to mitigate false negatives in our results, we utilized Locality Sensitive145

Hashing and OpenCLIP ViT-B/16 embeddings to eliminate duplicates. Specifically, we removed146

duplicates between the test targets and test distractors, as well as between the validation targets and147

validation distractors. Throughout our experiments, we did not observe any false negatives in the148

results. However, there remains a small quantity of near-duplicates among the distractor images.149
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3.2 Composition150

In total, we extracted 272,451 products for training, represented in 841,718 images. This represents151

581,526 potential simple/complex positive pairs. We additionally extracted 400 products (800 images)152

to create a validation set, and 2,000 products (4,000 images) for a test set. We added 99,541 simple153

images in the validation gallery as distractors, and 2,000,014 in the test gallery.154

We randomly sampled images and manually verified the quality of the labels. For the complexity155

labels, we measured an empirical error rate of 1/1000 on the training set and 3/1000 for the distractors.156

For the product categories, we measured a global empirical error rate of 1%, with confusions mostly157

arising from semantically similar categories and images where object scale was ambiguous in isolated158

settings (e.g. long shirt vs. short dress, wristband vs. hairband). The BLIP2 captions we provided159

exhibit good quality, increasing the mean CLIP similarity with the image by +7.4%. However, as160

synthetic captions, they are not perfect and may contain occasional hallucinations.161

Please refer to Appendix A.4 for metadata details, A.5 for considerations regarding privacy and biases162

and C for metadata details and a datasheet [13].163

3.3 Benchmark164

We define a benchmark on LRVS-F to evaluate different methods on a held-out test set with a large165

number of distractors. The test set contains 2,000 unseen products, and up to 2M distractors. Each166

product in the set is represented by a pair of images - a simple one and a complex one. The objective167

of the retrieval task is to retrieve the simple image of each product from among a vast number of168

distractors and other simple test images, given the complex image and conditioning information.169

For this dataset, we propose to frame the benchmark as an asymmetric task : the representation of170

simple images (the gallery) should not be computed conditionally. This choice is motivated by three171

reasons. First, when using precise free-form conditioning (such as LAION texts, which contain172

hashed product identifiers and product names) a symmetric encoding would enable a retrieval based173

solely on this information, completely disregarding the image query. Second, for discrete (categorical)174

conditioning it allows the presence of items of unknown category in the gallery, which is a situation175

that may occur in distractors. Third, these images only depict a single object, thus making referring176

information unnecessary. A similar setting is used by Asai et al. [1].177

Additionally, we provide a list of subsets sampled with replacement to be used for boostrapped178

estimation of confidence intervals on the metrics. We created 10 subsets of 1000 test products, and179

10 subsets of 10K, 100K and 1M distractors. We also propose a validation set of 400 products with180

nearly 100K other distractors to monitor the training and for hyperparameter search.181

4 Conditional Embedding182

Task Formulation. Let xq be a query image containing several objects of interest (e.g., a person183

wearing many different clothes and items), and cq the associated referring information that provides184

cues about what aspect of xq is relevant for the query (e.g., a text describing which garment is of185

interest, or directly the class of the garment of interest). Similarly, let xt be a target image, described186

by the latent information ct. The probability of xt to be relevant for the query xq is given by the187

conditional probability P (xt, ct|xq, cq). When working with categories for cq and ct, a filtering188

strategy consists in assuming independence between the images and their category,189

P (xt, ct|xq, cq) = P (xt|xq)P (ct|cq) , (1)

and further assuming that categories are uncorrelated (i.e., P (ct|cq) = �cq=ct with � the Dirac190

distribution). In this work, we remove those assumptions and instead assume that P (xt, ct|xq, cq)191

can be directly inferred by a deep neural network model. More specifically, we propose to learn a192

flexible embedding function � such that193

h�(xq, cq), �(xt, ct)i / P (xt, ct|xq, cq) . (2)

Our approach offers a significant advantage by allowing the flexibility to change the conditioning194

information (cq) at query time, resulting in a different representation that focuses on different aspects195

of the image. It is also weakly supervised in the sense that the referring information cq is not required196
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Shared Weights
Cosine Similarity Matrix

Figure 4: Overview of our method on LRVS-F. For each element in a batch, we embed the scene
conditionally and the isolated item unconditionally. We optimize an InfoNCE loss over the cosine
similarity matrix. � denotes concatenation to the patch sequence.

to provide localized information about the content of interest (like a bounding box) and can be as197

imprecise as a free-form text, as shown in Fig. 1.198

Method: We implement � by modifying the Vision Transformer (ViT) architecture [9]. The condi-199

tioning is an additional input token with an associated learnable positional encoding, concatenated200

to the sequence of image patches. The content of this token can either be learned directly (e.g. for201

discrete categorical conditioning), or be generated by another network (e.g. for textual conditioning).202

At the end of the network, we linearly project the [CLS] token to map the features to a metric203

space. We experimented with concatenating at different layers in the transformer, and found that204

concatenating before the first layer is the most sensible choice (see Appendix B.1).205

We train the network with the InfoNCE loss [44, 38], following CLIP [40], which is detailed in the206

next paragraph. However, we hypothesize that even though our method relies on a contrastive loss,207

it does not explicitly require a specific formulation of it. We choose the InfoNCE loss because of208

its popularity and scalability. During training, given a batch of N pairs of images and conditioning209

((xA
i , cAi ); (xB

i , cBi ))i=1..N , we compute their conditional embeddings (zAi , zBi )i=1..N with z =210

�(x, c) 2 Rd. We compute a similarity matrix S where Sij = s(zAi , zBj ), with s the cosine similarity.211

We then optimize the similarity of the correct pair with a cross-entropy loss, effectively considering212

the N � 1 other products in the batch as negatives:213

l(S) = � 1

N

NX

i=1

log
exp(Sii⌧)

PN
j=1 exp(Sij⌧)

, (3)

with ⌧ a learned temperature parameter, and the final loss is L = l(S)/2 + l(S>)/2. Please refer to214

Fig. 4 for an overview of the method. The ⌧ parameter is used to follow the initial formulation of215

CLIP [40] and is optimized by gradient during the training. At test time, we use FAISS [22] to create216

a unique index for the entire gallery and perform fast similarity search on GPUs.217

5 Experiments218

We compare our method to various baselines on LRVS-F, using both category- and caption-based219

settings. We report implementation details before analyzing the results.220

5.1 Implementation details221

All our models take as input images of size 224 ⇥ 224, and output an embedding vector of 512222

dimensions. We use CLIP weights as initialization, and then train our models for 30 epochs with223

AdamW [33] and a maximum learning rate of 10�5 determined by a learning rate range test [43]. To224

avoid distorting pretrained features [26], we start by only training the final projection and new input225
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embeddings (conditioning and positional) for a single epoch, with a linear warm-up schedule. We226

then train all parameters for the rest of the epochs with a cosine schedule.227

We pad the images to a square with white pixels, before resizing the largest side to 224 pixels. During228

training, we apply random horizontal flip, and random resized crops covering at least 80% of the229

image area. We evaluate the Recall at 1 (R@1) of the model on the validation set at each epoch, and230

report test metrics (recall and categorical accuracy) for the best performing validation checkpoint.231

We used mixed precision and sharded loss to run our experiments on multiple GPUs. B/32 models232

were trained for 6 hours on 2 V100 GPUs, with a total batch size of 360. B/16 were trained for 9233

hours on 12 V100, with a batch size of 420. Batch sizes were chosen to maximize GPU memory use.234

5.2 Results235

Detection-based Baseline We leveraged the recent Grounding DINO [30] and Segment Anything236

[24] to create a baseline approach based on object detection and segmentation. In this setting, we237

feed the model the query image and conditioning information, which can be either the name of the238

category or a caption. Subsequently, we use the output crops or masks to train a ViT following the239

aforementioned procedure. Please refer to Tab. 1 for the results.240

Initial experiments conducted with pretrained CLIP features showed a slight preference toward241

segmenting the object. However, training the image encoder revealed that superior performances242

can be attained by training the network on crops. Our supposition is that segmentation errors lead to243

definitive loss of information, whereas the network’s capacity is sufficient for it to learn to disregard244

irrelevant information and recover from a badly cropped image.245

Overall, using Grounding DINO makes for a strong baseline. However, it is worth highlighting that246

the inherent imprecision of category names frequently results in overly large bounding boxes, which247

in turn limits the performances of the models. Indeed, adding more information into the dataset such248

as bounding boxes with precise categories would help, yet this would compromise the scalability249

of the model as such data is costly to obtain. Conversely, the more precise boxes produced by the250

caption-based model reach 67.8%R@1 against 2M distractors.251

Table 1: Comparisons of results on LRVS-F for localization-based models. For 0, 10K, 100K and
1M distractors, we report bootstrapped means and standards deviations estimated from 10 randomly
sampled sets. We observe superior performances from the caption-based models, due to the precision
of the caption which leads to better detections.

Distractors ! +10K +100K +1M +2M
Condi. Preprocessing Embedding %R@1 %Cat@1 %R@1 %Cat@1 %R@1 %Cat@1 %R@1 %Cat@1

Category

Gr. DINO-T + SAM-B CLIP ViT-B/32 16.9 ±1.45 67.4 ±1.70 8.9 ±0.79 65.6 ±1.93 4.4 ±0.44 64.5 ±1.48 2.9 64.0
Gr DINO-T + SAM-B ViT-B/32 83.0 ±1.06 94.6 ±0.75 69.4 ±1.36 92.0 ±0.67 53.1 ±1.63 90.0 ±0.77 46.4 89.2

Gr. DINO-T ViT-B/32 88.7 ±0.74 96.4 ±0.55 77.0 ±1.79 94.3 ±0.82 62.8 ±1.92 92.2 ±1.26 56.0 91.8
Gr. DINO-B ViT-B/16 89.9 ±0.87 96.2 ±0.77 80.8 ±1.35 94.5 ±0.73 68.8 ±2.17 93.2 ±0.90 62.9 92.5

Caption

Gr. DINO-T + SAM-B CLIP ViT-B/32 27.3 ±1.29 72.9 ±1.68 16.3 ±0.86 71.1 ±1.17 9.1 ±0.73 70.1 ±1.56 6.2 69.8
Gr. DINO-T + SAM-B ViT-B/32 83.5 ±1.56 94.6 ±0.39 72.2 ±1.59 93.0 ±0.42 56.5 ±1.61 90.9 ±0.74 50.8 90.2

Gr. DINO-T ViT-B/32 89.7 ±0.76 96.7 ±0.74 79.0 ±0.82 95.1 ±0.74 65.4 ±2.03 93.1 ±1.14 59.0 92.0
Gr. DINO-B ViT-B/16 91.6 ±0.77 97.6 ±0.31 83.6 ±0.93 96.1 ±0.60 73.6 ±1.49 94.7 ±0.64 67.8 94.3

Categorical Conditioning We compare our method with categorical detection-based approaches,252

and unconditional ViTs finetuned on our dataset. To account for the extra conditioning information253

used in our method, we evaluated the latter on filtered indexes, with only products belonging to the254

correct category. We did not try to predict the item of interest from the input picture, and instead255

consider it as a part of the query. We also report unfiltered metrics for reference. Results are in Tab. 2.256

Training the ViTs on our dataset greatly improves their performances, both in terms of R@1 and257

categorical accuracy. Filtering the gallery brings a modest mean gain of 2 � 4%R@1 across all258

quantities of distractors (Fig. 4b), reaching 62.4%R@1 for 2M distractors with a ViT-B/16 architecture.259

In practice, this approach is impractical as it necessitates computing and storing an index for each260

category to guarantee a consistent quantity of retrieved items. Moreover, a qualitative evaluation of261

the filtered results reveals undesirable behaviors. When filtering on a category divergent from the262

network’s intrinsic focus, we observe the results displaying colors and textures associated with the263

automatically focused object rather than the requested one.264
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Table 2: Comparisons of results on LRVS-F for unconditional, category-based and caption-based
models. For 0, 10K, 100K and 1M distractors, we report bootstrapped means and standards deviations
from 10 randomly sampled sets. Our CondViT-B/16 outperforms other methods for both groups.

Distractors ! +10K +100K +1M +2M
Model %R@1 %Cat@1 %R@1 %Cat@1 %R@1 %Cat@1 %R@1 %Cat@1

ViT-B/32 85.6 ±1.08 93.7 ±0.31 73.4 ±1.35 90.9 ±0.78 58.5 ±1.37 87.8 ±0.86 51.7 86.9
ViT-B/16 88.4 ±0.88 94.8 ±0.52 79.0 ±1.02 92.3 ±0.73 66.1 ±1.21 90.2 ±0.92 59.4 88.8

ASENg [8] 63.1 ±1.50 76.3 ±1.26 46.1 ±1.21 68.5 ±0.84 29.8 ±1.86 62.9 ±1.27 24.1 62.0
ViT-B/32 + Filt. 88.9 ±1.01 — 76.8 ±1.24 — 62.0 ±1.31 — 55.1 —
CondViT-B/32 - Category 90.9 ±0.98 99.2 ±0.31 80.2 ±1.55 98.8 ±0.39 65.8 ±1.42 98.4 ±0.65 59.0 98.0
ViT-B/16 + Filt. 90.9 ±0.88 — 81.9 ±0.87 — 68.9 ±1.11 — 62.4 —
CondViT-B/16 - Category 93.3 ±1.04 99.5 ±0.25 85.6 ±1.06 99.2 ±0.35 74.2 ±1.82 99.0 ±0.42 68.4 98.8

CoSMo [28] 88.3 ±1.30 97.6 ±0.45 76.1 ±1.85 96.0 ±0.32 59.1 ±1.42 94.7 ±0.40 52.1 94.8
CLIP4CIR [2] 92.9 ±0.64 99.0 ±0.33 81.9 ±1.63 98.1 ±0.68 66.9 ±2.05 96.5 ±0.67 59.1 95.5
CondViT-B/32 - Caption 92.7 ±0.77 99.1 ±0.30 82.8 ±1.22 98.7 ±0.40 68.4 ±1.50 98.1 ±0.43 62.1 98.0
CondViT-B/16 - Caption 94.2 ±0.90 99.4 ±0.37 86.4 ±1.13 98.9 ±0.49 74.6 ±1.65 98.4 ±0.58 69.3 98.2
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Figure 5: R@1 with repects to number of added distractors, evaluated on the entire test set. Please
refer to Tab. 1 and 2 for bootstrapped metrics and confidence intervals. Our categorical CondViT-B/16
reaches the performances of the best caption-based models, while using a sparser conditioning.

We also compare with ASEN [8] trained on our dataset using the authors’ released code. This265

conditional architecture uses a global and a local branch with conditional spatial attention modules,266

respectively based on ResNet50 and ResNet34 backbones, with explicit ROI cropping. However267

in our experiments the performances decrease with the addition of the local branch in the second268

training stage, even after tuning the hyperparameters. We report results for the global branch.269

We train our CondViT using the categories provided in our dataset, learning an embedding vector270

for each of the 10 clothing categories. For the i-th product in the batch, we randomly select in the271

associated data a simple image xs and its category cs, and a complex image xc. We then compute272

their embeddings zAi = �(xc, cs), zBi = �(xs). We also experimented with symmetric conditioning,273

using a learned token for the gallery side (see Appendix B.1).274

Our categorical CondViT-B/16, with 68.4%R@1 against 2M distractors significantly outperforms275

all other category-based approaches (see Fig. 5, left) and maintains a higher categorical accuracy.276

Furthermore, it performs similarly to the detection-based method conditioned on richer captions,277

while requiring easy-to-aquire coarse categories. It does so without making any assumption on the278

semantic nature of these categories, and adding only a few embedding weights (7.7K parameters) to279

the network, against 233M parameters for Grounding DINO-B. We confirm in Appendix B.2 that its280

attention is localized on different objects depending on the conditioning.281
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Outwear Lower Body Upper Body

"Long dress" "Sandals" "Ankle boots"

"Her blouse" "Same shorts" "Puffer vest"

Figure 6: Qualitative results for our categorical (first 2 rows) and textual (last 2 rows) CondViT-B/16.
We use free-form textual queries instead of BLIP2 captions to illustrate realistic user behavior, and
retrieve from the whole test gallery. See Fig. 13 and 14 in the Appendix for more qualitative results.

Textual Conditioning To further validate our approach, we replaced the categorical conditioning282

with referring expressions, using our generated BLIP2 captions embedded by a Sentence T5-XL283

model [37]. We chose this model because it embeds the sentences in a 768-dimensional vector,284

allowing us to simply replace the categorical token. We pre-computed the caption embeddings, and285

randomly used one of them instead of the product category at training time. At test time, we used the286

first caption.287

In Tab. 2, we observe a gain of 3.1%R@1 for the CondViT-B/32 architecture, and 0.9%R@1 for288

CondViT-B/16, compared to categorical conditioning against 2M distractors, most likely due to the289

additional details in the conditioning sentences. When faced with users, this method allows for more290

natural querying, with free-form referring expressions. See Figure 6 for qualitative results.291

We compare these models with CIR methods: CoSMo [28] and CLIP4CIR [2]. Both use a compositor292

network to fuse features extracted from the image and accompanying text. CoSMo reaches perfor-293

mances similar to an unconditional ViT-B/32, while CLIP4CIR performs similarly to our textual294

CondViT-B/32. We hypothesize that for our conditional feature extraction task, early condition-295

ing is more effective than modifying embeddings through a compositor at the network’s end. Our296

CondViT-B/16 model significantly outperforms all other models and achieves results comparable to297

our caption-based approach using Grounding DINO-B (see Fig. 5, right). As the RVS task differs298

from CIR, despite both utilizing identical inputs, this was anticipated. Importantly, CondViT-B/16299

accomplishes this without the need for explicit detection steps or dataset-specific preprocessing.300

Notably, we observe that our models achieve a categorical accuracy of 98% against 2M distractors,301

surpassing the accuracy of the best corresponding detection-based model, which stands at 94.3%.302

6 Conclusion & Limitations303

We studied an approach to image similarity in fashion called Referred Visual Search (RVS), which304

introduces two significant contributions. Firstly, we introduced the LAION-RVS-Fashion dataset,305

comprising 272K fashion products and 842K images. Secondly, we proposed a simple weakly-306

supervised learning method for extracting referred embeddings. Our approach outperforms strong307

detection-based baselines. These contributions offer valuable resources and techniques for advancing308

image retrieval systems in the fashion industry and beyond.309

However, one limitation of our approach is that modifying the text description to refer to something310

not present or not easily identifiable in the image does not work effectively. For instance, if the311

image shows a person carrying a green handbag, a refined search with "red handbag" as a condition312

would only retrieve a green handbag. The system may also ignore the conditioning if the desired313

item is small or absent in the database. Examples of such failures are illustrated in Appendix B.3.314

Additionally, extending the approach to more verticals would be relevant.315
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