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ABSTRACT

Existing domain adaptation (DA) methods often involve pre-
training on the source domain and fine-tuning on the target
domain. For multi-target domain adaptation, having a dedi-
cated/separate fine-tuned network for each target domain, that
retain all the pre-trained model parameters, is prohibitively
expensive. To address this limitation, we propose Convolu-
tional Low-Rank Adaptation (ConvLoRA). ConvLoRA freezes
pre-trained model weights, adds trainable low-rank decompo-
sition matrices to convolutional layers, and backpropagates
the gradient through these matrices thus greatly reducing the
number of trainable parameters. To further boost adaptation,
we utilize Adaptive Batch Normalization (AdaBN) which com-
putes target-specific running statistics and use it along with
ConvLoRA. Our method has fewer trainable parameters and
performs better or on-par with large independent fine-tuned
networks (with less than 0.9% trainable parameters of the
total base model) when tested on the segmentation of Calgary-
Campinas dataset containing brain MRI images. Our approach
is simple, yet effective and can be applied to any deep learning-
based architecture which uses convolutional and batch normal-
ization layers. Code is available at: ConvLoRA.

Index Terms— Unsupervised Domain Adaptation, Con-
vLoRA, Parameter-Efficient Fine Tuning

1. INTRODUCTION

Deep neural networks (DNN) have achieved state-of-the-art
performance when both train and test sets share the same
distribution. However, domain shift, i.e. change in data distri-
bution between train (source domain) and test (target domain)
sets, significantly deteriorates the generalizability [1, 2]. This
issue is particularly pronounced in multi-center medical stud-
ies, where various imaging centers employ different scanners,
protocols, and subject populations [2, 3].

Unsupervised domain adaptation (UDA) [1, 2] aims to gen-
eralize large-scale models, pre-trained on the source domain
to an unlabeled target domain, eliminating the need for costly
data annotation. It is typically achieved through fine-tuning,
where a model pre-trained on the source domain is adapted
to target domains. However, a major downside of fine-tuning

is that it results in a dedicated model for each target domain
with the same parameters as the original pre-trained model
[4, 5]. Consequently, several target domains would require
several dedicated models with the same parameter count as the
original pre-trained model.

Thus UDA methods can be effective for single-target DA,
resulting in a single model for a specific target domain. Con-
versely, in multi-target DA (MTDA) the objective is to adapt
to multiple unlabeled target domains. MTDA has a broader
applicability to real-world scenarios. However, training sep-
arate models for each target domain with the same trainable
parameters as the source model is impractical and prohibitively
expensive.

Parameter-efficient fine-tuning (PEFT) has demonstrated
its effectiveness as a fine-tuning strategy for Large Language
Models (LLMs) [6]. Unlike conventional fine-tuning, it keeps
the majority of the model parameters frozen while adapting a
substantially reduced number of parameters, often less than
5% of the total. This enables both efficient learning and faster
updates. PEFT also outperforms full fine-tuning and enhances
generalization, particularly in low-data scenarios [6].

In the field of medical imaging, only a few methods have
used adapter-based PEFT in Transformer-based architectures
[7, 8]. These works focus on achieving parameter-efficient
transfer learning from natural images to medical images. To
the best of our knowledge, both the application of PEFT in
medical imaging in the context of UDA, and the use of adapter-
based methods in CNNs have not yet been explored [9].

Having identified this research gap, we propose a novel
parameter-efficient MT UDA for medical image segmentation,
that is computationally efficient and also has low-memory
footprint. First, we propose Convolutional Low-Rank Adap-
tation (ConvLoRA), as an adaptation of Low-Rank Domain
Adaptation (LoRA) in LLMs [4]. ConvLoRA is specifically
designed for application in Convolutional Neural Networks
(CNNs), presenting a novel approach to address domain adap-
tation challenges in the context of image data. Instead of
creating dedicated fine-tuned models for multiple target do-
mains, each with the same number of parameters as the base
model, we inject several ConvLoRA adapters into the base
model pre-trained on the source domain, and only adapt the
ConvLoRA parameters, while keeping all other parameters
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frozen. This method allows faster updates by adapting only a
small set of domain specific parameters. Second, we further
mitigate domain shift, introduced by statistical differences in
mean and variance between source and target data, without
requiring additional fine-tuning and computational resources.
Instead of Batch Normalization (BN), we utilize Adaptive
Batch Normalization (AdaBN) [10], which computes target-
specific batch-wise running mean and variance, rather than
using source domain’s statistics.

Our contributions can be summarized as follows:
• Inspired by the recent advances in the LLMs, we pro-

pose a novel multi-target UDA approach that leverages the
concept of our proposed parameter-efficient ConvLoRA
adapter and AdaBN. To our best knowledge, this is the first
work to adapt LoRA [4] to CNNs, particularly for UDA in
the context of medical image segmentation.

• We show that our proposed UDA pipeline results in a signif-
icant reduction of over 99% in trainable parameters while
simultaneously achieving competitive segmentation accu-
racy compared to other methods.

• Our framework is generic, flexible and easily integrates
with CNN-based architectures, significantly lowering train-
ing costs while enhancing adaptation.

2. RELATED WORK

Unsupervised Domain Adaptation (UDA) Several works
employ adversarial learning, such as CycleGAN [11] and
domain-invariant feature learning [12], to adapt segmentation
models [13]. Huang et al. [14] propose a method of matching
layer-wise activations across domains.

UDA for medical image segmentation An adversarial
network is proposed for brain lesion segmentation in [15].
Kushibar et al. [16] show that fine-tuning only the last CNN
layer improves performance. However, it lacks a comparison
with other DA methods. The last CNN layer is fine-tuned,
but focus of this work is more on the training cases selection
procedure rather than on adaptation [17]. Cross-modality DA
for cardiac MR and CT image segmentation is achieved by
adapting low-level layers [18]. Fine-tuning of early U-Net
layers is done for skull segmentation [5].

Batch Normalization (BN) Chang et al. [19] show that
unsupervised fine-tuning of BN layers in the target domain
improves adaptation. AdaBN, computes mean and variance
for BN running statistics in the target domain, enhances gen-
eralization [10]. Test-time adaptation mitigates domain shift
by recalculating running statistics for the current test input
[20, 21, 22].

Parameter Efficient Fine Tuning (PEFT) There are two
prominent strategies for PEFT: a) adding adapter layers and
only adapting them [23], b) optimizing some form of activa-
tions [24, 25]. The use of adapters even in small networks leads
to inference latency and extra compute [4]. LoRA minimizes
latency by decomposing pre-trained weights into smaller ma-

Fig. 1. 2D U-Net with Early Segmentation Head (ESH) is pre-
trained on the source domain. ConvLoRA adapters facilitate
adaptation in the encoder, along with AdaBN throughout the
network.

trices, fine-tunes only these matrices, and consequently lowers
the memory usage [4].

3. METHOD

Figure 1. provides an overview of our architecture. We in-
tegrate ConvLoRA and AdaBN into the UDAS model [28]
which consists of 2D U-Net with an added Early Segmenta-
tion Head (ESH). ESH consists of three convolutional layers,
each followed by a BN layer. We inject ConvLoRA in the
encoder part (see Figure. 1(c)) of the UDAS model and adapt
it using the network’s final predictions as pseudo-labels via
self-training.

3.1. ConvLoRA

We propose a new ConvLoRA adapter, an extension of LoRA
[4], for parameter-efficient UDA for CNNs. For a pre-trained
convolutional layer weight matrix WPTCONV

∈ Rm×n, Con-
vLoRA constrains its update by representing it with a low-rank
decomposition: WPTCONV

+∆WCONV = WPTCONV
+XY ,

where X ∈ Rm×r and Y ∈ Rn×r are low-rank matrices and
rank r << min(m,n). During training, WPTCONV

is frozen,
and does not receive gradient updates, while X and Y con-
tain trainable parameters. Both WPTCONV

and ∆WCONV are
multiplied by the input and the respective output vectors are
summed coordinate-wise. Hence, the forward pass operation
is as follows:

h = WPTCONV
x+∆WCONV x = WPTCONV

x+XY x (1)

where x is input, X is initialized by random Gaussian distribu-
tion and Y is zero in the beginning of training.
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Table 1. Surface Dice Score (SDS) on the CC359 [26] dataset: comparison of different domain adaptation methods. Note that
we are reporting mean and standard deviation results based on adaptation with three different seeds

Target
Domain

Source
Model

Self-
Training [27]

UDAS
[28]

UDAS ConvLoRA
(Ours)

ConvLoRA
+ AdaBN (Ours)

GE 1.5 0.734 ± 0.030 0.5304 0.7588 0.8368 ± 0.0386 0.8908 ± 0.0190
Philips 1.5 0.871 ± 0.021 0.7252 0.8460 0.8778 ± 0.0058 0.9143 ± 0.0121
Philips 3 0.618 ± 0.005 0.6623 0.6623 0.7195 ± 0.0094 0.8251 ± 0.019
Siemens 1.5 0.825 ± 0.031 0.6929 0.8245 0.8035 ± 0.0127 0.8923 ± 0.009
Siemens 3 0.843 ± 0.012 0.8918 0.8874 0.8494 ± 0.0026 0.8882 ± 0.006

3.2. Adaptive Batch Normalization (AdaBN)

In this work, we use AdaBN [10] instead of BN. While BN nor-
malizes activation outputs using batch statistics, using source
domain statistics for standardizing the target domain can lead
to misclassification [29]. AdaBN computes the target domain-
specific batch-wise mean and variance [10]. The standardiza-
tion of each layer by respective domain ensures that each layer
receives data from a similar distribution.

3.3. ConvLoRA and AdaBN based UDA

Baseline Let Φsrc be the network trained solely with labeled
source domain data Xsrc. Our goal is to adapt Φsrc to out-of-
distribution unlabeled target data Ytar in a parameter-efficient
unsupervised manner. As a backbone for Φsrc, we use a U-Net
architecture. We adopt the approach proposed in [28] as our
baseline.

Early Segmentation Head (ESH) For the adaptation
phase, a small CNN called ESH is placed after the encoder as
shown in Figure 1. We initialize ESH on the source domain
by pre-training with the cross-entropy loss between the output
of ESH and the ground truth mask. Then, during adaptation,
target domain images are fed to both Φsrc and ESH. The
segmentation outputs from Φsrc are used as pseudo-labels
(ŷPL) to improve ESH predictions. At this stage, all the
weights in Φsrc and ESH are frozen, except the encoder of
Φsrc shared between the two networks. Since the encoder is
shared between Φsrc and ESH, improving ESH benefits Φsrc.

Adaptation In our proposed adaptation schema, all the
parameters of the network (Φsrc), other than the ConvLoRA
parameters and running mean and running variance of BN
layers are frozen. We integrate ConvLoRA adapter (discussed
in Section 3.1) into the encoder part of Φsrc. While both
Φsrc and ESH process the target domain images in the same
manner as in [28], we restrict gradient updates exclusively to
the ConvLoRA adapter parameters. Consequently, we have
a reduced number of domain-specific ConvLoRA parameters
while having a single Φsrc. To further mitigate the domain
shift in a parameter-efficient way, we used the target domain’s
running mean and running variance, calculated via AdaBN.
The source domain statistics are updated by computing target-
specific batch-wise running statistics. Adapting the running

mean and variance with AdaBN is straightforward and facili-
tates parameter-free adaptation without extra parameters and
components, as these statistics are not trainable parameters.

4. EXPERIMENTAL SETUP

We evaluate our approach on Calgary-Campinas (CC359)
dataset [26], a multi-vendor (GE, Philips, Siemens), multi-
field strength (1.5, 3) magnetic resonance (MR) T1-weighted
volumetric brain imaging dataset. It has six different domains
and contains 359 3D brain MR image volumes, primarily fo-
cused on the task of skull stripping. The source model (Φsrc)
is pre-trained on the GE 3 (source domain) using an 80:10:10
split. For adaptation, only 10 images from each target domain’s
training set are randomly chosen, and inference is conducted
on the respective official test sets. Pre-processing involves
removing black slices and min-max scaling, with all images
resized to 256×256 resolution.

The source model (Φsrc) is trained for 100 epochs using
a batch size of 32, a learning rate of 0.001, and optimized
with the Adam optimizer using cross-entropy loss. The ESH
is trained for 20 epochs, followed by our adaptation method
which is trained for only 5 epochs with a learning rate of
0.0001. When using ConvLoRA, we set the rank to r = 2,
given that the original kernel weight was 3. Surface Dice
Score (SDS) [5] is used to assess the image segmentation per-
formance. This metric is more informative than volumetric
Dice as it emphasizes on the brain contour over internal vol-
ume [5] and it is widely used in methods exploring CC359
[28, 5, 18].

The processing pipeline was implemented in Python 3.8.17,
and open-source library PyTorch 2.0.1 is used. All experiments
were performed on a desktop computer with the Ubuntu oper-
ating system 20.04.6 LTS with CUDA 11.6, NVIDIA GeForce
RTX 3090 GPU, and a total of 62 GB RAM.

Source Model refers to the base model (Φsrc) trained
exclusively on the source data, without any adaptation to target
domains. Self-Training employs pseudo-labels of the target
domain to iteratively enhance model performance [27]. UDAS
refers to our baseline which uses self-training to adapt solely
the initial layers of the network through pseudo-labels [28].
UDAS ConvLoRA (ours), for a fair comparison with UDAS
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Table 2. Ablation Study: Placement of ConvLoRA adapters and respective SDS, (Enc: Encoder).

Target
Domain

Enc.
Block 1

Enc.
Block 1-2

Enc.
Block 1-3

Full Enc.
Block

Full Enc. Block +
AdaBN

GE 1.5 0.8368 ± 0.0386 0.8275 ± 0.0118 0.8081 ± 0.0103 0.8611 ± 0.044 0.8908 ± 0.019
Philips 1.5 0.8778 ± 0.0058 0.8329 ± 0.1029 0.84046 ± 0.0380 0.8910 ± 0.0270 0.9023 ± 0.010
Philips 3 0.7195 ± 0.0094 0.7388 ± 0.0223 0.74979 ± 0.0146 0.7653 ± 0.0060 0.8251 ± 0.019
Siemens 1.5 0.7195 ± 0.0094 0.8521 ± 0.0094 0.8610 ± 0.0284 0.8404 ± 0.0380 0.8923 ± 0.009
Siemens 3 0.8494 ± 0.0020 0.8560 ± 0.0171 0.8685 ± 0.0218 0.8584 ± 0.0139 0.8882 ± 0.006

we injected ConvLoRA only to the initial layers. Our model:
ConvLoRA + AdaBN, builds on the top of UDAS - however,
we do not constrain adaptation to initial layers. Rather we
adapt the whole encoder part of the network via ConvLoRA
and position the ESH after the encoder. Furthermore, we use
AdaBN to integrate target domain running mean and variance
for enhanced adaptation.

4.1. Results and Analysis

Table 1 shows that our ConvLoRA + AdaBN achieves supe-
rior performance over all the other methods with significantly
fewer trainable parameters. When compared to the baseline
(UDAS [28]), our method (UDAS ConvLoRA) outperforms
in four out of five target domains. While for Siemens 1.5, our
method has a slight decrease in SDS (0.2% only) compared
to UDAS [28], it is important to note that our adaptation is
achieved with a substantial reduction in trainable parameters,
decreasing from 14,160 (UDAS [28]) to just 3,954 — a re-
markable 72.07% reduction. When we followed our approach
(ConvLoRA + AdaBN), our method achieved better accuracy
for Siemens 1.5 as well.

The U-Net architecture we used, has 24.3 million parame-
ters. With our proposed ConvLoRA-based adaptation in the
encoder, the trainable parameters were reduced to 57,714— a
reduction of 99.80%. Moreover, when we use our ConvLoRA
adapter in conjunction with AdaBN (abbreviated as UDAS
ConvLoRA+AdaBN), it further boosts model adaptation and
outperforms all the other methods, without any additional
parameters as demonstrated in Table 1. Hence, both our stan-
dalone ConvLoRA adapter and the combination of ConvLoRA
and AdaBN are not only parameter-efficient but also yield
competitive results when compared to other methods.

The qualitative results in Figure 2 show that our multi-
target UDA method with ConvLoRA + AdaBN (last column)
is the most similar to the Ground Truth (second column). We
also qualitatively outperform the UDAS work [28].

4.2. Ablations

To identify blocks susceptible to domain shift, we incorporate
ConvLoRA adapters into various segments of the network and
evaluate their performance, as detailed in Table 2. Unlike our

Fig. 2. Qualitative Results for target domains of CC359 [26].
Columns from left to right correspond to input images, ground
truth, source U-Net model, UDAS [28], and our ConvLoRA
+ AdaBN. It can be seen that our proposed adaptation has the
most visual similarity to the ground truth.

baseline (UDAS) [28], we found domain shift is not limited
to initial layers. We assessed BN adaptation in the encoder,
finding no performance improvement. To evaluate ConvLoRA
throughout the network, we employed a siamese network, but
using ConvLoRA in the decoder did not enhance performance.
Optimal results were achieved by adapting the entire encoder
block with ConvLoRA as shown in Table 2. In our adaptation
experiments, we test different lengths for the training, rang-
ing from 5 to 20 epochs. The optimal adaptation occurred
in just 5 epochs, beyond which overfitting led to decreased
performance. 1

5. CONCLUSION

In this work, we address the problem of unsupervised MT
UDA in medical image segmentation with our novel parameter-
efficient ConvLoRA adapter, designed specifically for CNNs.
We further boost the performance by combining ConvLoRA
with AdaBN. We experimentally show that our approach is
more accurate and computationally efficient than previous
state-of-the-art approaches. We achieve more than 99% re-
duction in model parameters while maintaining competitive
performance with other UDA segmentation approaches. Our
future work is centered on testing the generality of our ap-
proach on other medical imaging datasets.

1This research study was conducted retrospectively using open access
CC359 dataset (https://www.ccdataset.com/). Ethical approval was *not*
required as confirmed by its license.
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