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Abstract
Identifying anomalous graphs is essential in real-
world scenarios such as molecular and social net-
work analysis, yet anomalous samples are gener-
ally scarce and unavailable. This paper proposes a
Self-Discriminative Modeling (SDM) framework
that trains a deep neural network only on nor-
mal graphs to detect anomalous graphs. The neu-
ral network simultaneously learns to construct
pseudo-anomalous graphs from normal graphs
and learns an anomaly detector to recognize these
pseudo-anomalous graphs. As a result, these
pseudo-anomalous graphs interpolate between
normal graphs and real anomalous graphs, which
leads to a reliable decision boundary of anomaly
detection. In this framework, we develop three
algorithms with different computational efficien-
cies and stabilities for anomalous graph detec-
tion. Extensive experiments on 12 different graph
benchmarks demonstrated that the three variants
of SDM consistently outperform the state-of-the-
art GLAD baselines. The success of our methods
stems from the integration of the discriminative
classifier and the well-posed pseudo-anomalous
graphs, which provided new insights for graph-
level anomaly detection.

1. Introduction
Graphs are widely utilized to represent complex relation-
ships or interactions between entities in a variety of real-
world contexts, such as molecules, biology, and social net-
work data analysis (Mislove et al., 2007; Li et al., 2021; Sun
et al., 2023; 2024). Although there have been a lot of works
of anomaly detection on image data (Cai & Fan, 2022; Fu
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et al., 2024), tabular data (Dai et al., 2025; Dai & Fan, 2025),
and graph nodes or edges (Duan et al., 2020; Zheng et al.,
2021), graph-level anomaly detection (GLAD) (Akoglu
et al., 2015; Qiao et al., 2024a), which aims to identify
entire graphs that substantially deviate from normal pat-
terns, remains a greater challenge due to the difficulty in
analyzing overall relationship between graphs.
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Figure 1. Motivation of our method. The left plot illustrates a toy
example, where the shadowed region is approximated as a rectan-
gle (or a hypercuboid when d > 3). The right plot shows a real
example, the t-SNE (Van der Maaten & Hinton, 2008) visualiza-
tion of the result of our method on the real dataset AIDS.

Early research on GLAD explored the graph kernel (GK)
methods (Vishwanathan et al., 2010; Shervashidze et al.,
2011) to identify graph anomalies by utilizing various simi-
larity measurements, though these approaches are limited by
their scalability. The emergence of graph neural networks
(GNNs) (Kipf & Welling, 2017; Xu et al., 2019; Huang et al.,
2023) has significantly advanced the development of GLAD
through its powerful graph representation learning capabil-
ity. Recent works (Zhao & Akoglu, 2021; Qiu et al., 2022;
Zhang et al., 2024) have explored the integration of GNNs
with deep one-class classification (DeepSVDD) (Ruff et al.,
2018) for GLAD. A hypersphere is taught to model the dis-
tribution of normal graphs in the latent space, and anomalies
are identified as graphs whose embeddings fall outside of the
hypersphere. Beyond these methods, other works have lever-
aged various paradigms, such as knowledge distillation (Ma
et al., 2022), information bottleneck (Liu et al., 2023a),
and Rayleigh quotient (Dong et al., 2024), to enhance the
detection of anomalies. Moreover, semi-supervised learn-
ing (Zhang et al., 2022a) has been investigated to address the
imbalance issue in GLAD by incorporating a small fraction
of labeled anomalies for decision boundary learning.

Despite the recent advances, several critical challenges
still remain to be addressed. The DeepSVDD-based ap-
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Figure 2. Illustration of the architecture of the proposed SDM variants. The Green, Orange, and Brown arrows denote the workflows of
the SDM-ATI, SDM-ATII, and SDM-NAT, respectively.

proaches (Zhao & Akoglu, 2021; Qiu et al., 2022; Zhang
et al., 2024) rely on the strong assumption that the distri-
bution of graph embeddings follows a hypersphere, which
may not be realistically achievable in real-world scenar-
ios. Additionally, some approaches (Ma et al., 2022; Liu
et al., 2023a; Dong et al., 2024) require explicitly defined
anomaly scores, which can be challenging to apply in prac-
tice as the criteria for measuring anomalous graphs could
vary significantly across datasets. Although semi-supervised
approaches (Zhang et al., 2022a) are a promising solution,
their effectiveness is constrained by the limited diversity of
available graph anomalies in real-world scenarios.

In this paper, we propose Self-Discriminative Modeling
(SDM), a novel framework for graph-level anomaly de-
tection. The key idea (illustrated in Figure 1) of SDM
is to distinguish normal graphs from the generated pseudo-
anomalous graphs that interpolate between normal and (real)
anomalous ones. We introduce two approaches to gen-
erate such pseudo-anomalous graphs: (1) training a gen-
erator using random noise from a latent distribution and
(2) training a perturbator to create anomalies from normal
graphs. Both approaches leverage adversarial training, in-
corporating a discriminator to differentiate between normal
and pseudo-anomalous graphs. Moreover, we propose a
non-adversarial variant of SDM to enhance model stability
and accuracy. Based on each of the three approaches, the
discriminator/classifier serves as the anomaly detector and
adaptively learns the decision boundary between normality
and abnormality. Figure 2 presents the network structure of
SDM (three variants). Our contributions are as follows:

• We propose a novel and efficient GLAD framework that re-
volves around training a discriminator (classifier) to distin-

guish normal graphs from well-posed pseudo-anomalous
graphs more effectively.

• We introduce two adversarial approaches to produce
pseudo-anomalous graphs that closely resemble normal
graphs but are more similar to anomalous ones, where a
discriminator is learned jointly.

• We introduce a non-adversarial approach, which gener-
ates pseudo-anomalous graphs by adaptively perturbing
normal graphs, and trains a classifier to distinguish them.

• We demonstrate the effectiveness of three variants of SDM
against the state-of-the-art GLAD methods on 12 graph
benchmark datasets.

2. Self-Discriminative Modeling for
Anomalous Graph Detection

2.1. Problem Formulation and Motivation Description

Problem Formulation. Let G = {G1, . . . , GN} be a
graph dataset comprising N graphs, where a single graph
Gi = {Vi, Ei} contains a node set Vi and an edge set
Ei. The adjacency matrix of Gi is represented by Ai ∈
{0, 1}ni×ni , where ni = |Vi|. The feature matrix of nodes
of Gi is denoted as Xi ∈ Rni×d. Suppose the graphs in
G are normal graphs, we want to train a model from G to
determine whether a new graph Gnew is normal or abnormal.
This problem is called anomalous graph detection (AGD)1.
A key assumption of the AGD problem is that G1, . . . , GN

1Note that this is an unsupervised learning problem, of which
the training data do not contain any anomalous graphs. There are
also supervised and semi-supervised settings (Ruff et al., 2020;
Zhang et al., 2022a).

2



Self-Discriminative Modeling for Anomalous Graph Detection

are drawn from an unknown distribution D (deemed as a
normal distribution), while any graphs drawn from any other
distributions, denoted as D̃ , are anomalous. Very impor-
tantly, there is no overlap between D and all possible D̃ .
The AGD problem can be regarded as a binary classification
problem, i.e., justifying G ∼ D or G ∼ D̃ . The objective
is to train a classifier fθ, using only the given graph set G,
to distinguish between G drawn from D and G̃ drawn from
D̃ . However, the difficulty is that D̃ is completely unknown.
Therefore, we need to estimate D̃ from G, or at least gen-
erate some samples drawn from a subset of D̃ using G. To
achieve this, we may solve the following problem

minimize
θ,D̃s

E
G∼D

ℓ(y, fθ(G)) + E
G̃∼D̃s⊆D̃

ℓ(ỹ, fθ(G̃)),

subject to dist(D , D̃s) ≤ τ,

(1)

where y ≡ 1 and ỹ ≡ 0 denote the labels of normal and
anomalous graphs, respectively, fθ(·) denotes a classifier
(e.g. a neural network) parameterized with θ, and ℓ(·) de-
notes the loss function. The constraint in Eq. (1) means that
D and D̃s should be close enough with respect to a distance
metric dist(·, ·), where τ > 0 is a small constant. However,
in Eq. (1), D̃ remains unknown, and the requirement for
D̃s to not overlap with D can be overly restrictive. Even if
D̃s overlap with D , the learned fθ could still be effective,
provided that the decision boundary encloses D compactly
(to be shown in Figure 1).

Instead of solving Eq. (1), we propose to train a model gϕ
that is able to generate pseudo-anomalous graphs from nor-
mal graphs and simultaneously train a classifier fθ that can
provide a reliable decision boundary between normal graphs
and anomalous graphs. To ensure an effective detector fθ,
we should guarantee the following properties:

• The generated pseudo-anomalous graphs by gϕ interpolate
between normal ones and (real) anomalous ones.

• fθ distinguishes between the normal training graphs and
most of the generated pseudo-anomalous graphs.

We therefore solve

min
θ,ϕ

E
G∼D

ℓ(y, fθ(G)) + E
G̃∼gϕ(G),G∼D

ℓ(ỹ, fθ(G̃)), (2)

where gϕ(·) converts a normal graph to a distribution of
pseudo-anomalous graphs.

Motivation Description. Here we visualize our motiva-
tion and show that the two aforementioned properties can
be guaranteed. As shown in Figure 1, the first plot sum-
marizes the motivation of Eq. (2). Specifically, the blue
points represent normal training data, roughly lying on a
(blue) curve. gϕ perturbs each normal graph randomly to
generate one or more pseudo-anomalous graphs. We see
that most pseudo-anomalous graphs are far from the blue

curve, which can be theoretically proved as follows. Let’s
consider a more general case in d-dimension space. The
shadowed region (between the two black curves in 2D) in
the radius-r hypersphere (the yellow circle in 2D) can be
approximated as a hypercuboid. Therefore, the volume of
the shadowed region is approximated by

VS =

d∏
i=1

wi, (3)

where w denotes the width of hypercuboid, w1 = · · · =
wα = 2r and 1 ≤ α < d. Then, the ratio of expected num-
bers of pseudo-anomalous graphs in the shadowed region
and the unshadowed region in the hypersphere is

η =
(2r)α

∏d
i=α+1 wi

πd/2rd

Γ(1+d/2) − (2r)α
∏d

i=α+1 wi

, (4)

where we have, WLOG, assumed that the points are dis-
tributed uniformly because G̃ ∼ gϕ(G) is a stochastic oper-
ation. To simplify the analysis, we show the following two
examples of Eq. (4):

η =

{
2w

πr−2w , if d = 2 and α = 1,
4wr2

4πr3/3−4wr2 , if d = 3 and α = 2.
(5)

We see that η decreases when w decreases or r increases,
where r is related to the variation of pseudo-anomalous
graphs. We can conclude that most pseudo-anomalous
graphs are outside the shadowed region when there are some
small wi, namely, the latent dimension of the normal data
is much lower than the ambient dimension. It also means
they interpolate between normal graphs and real anomalous
graphs. In this case, a classifier that can distinguish between
the normal training data and most pseudo-anomalous graphs
is sufficient to detect anomalous graphs. Besides, in Eq. (2),
fθ should not be too complex. Otherwise, it will overfit
on G and the pseudo-anomalous graphs, leading to poor
generalization to unseen graphs.

The second plot in Figure 1 is a visualization of our method
on a real dataset and highlights the successful learning of a
useful decision boundary: the generated anomalous graphs
surround the normal ones, alongside the (real) anomalous
ones. More visualization results of real examples refer
to Figures 7 and 8 (Appendix E). We call Eq. (2) Self-
Discriminative Modeling (SDM) based GLAD. In the fol-
lowing three sections, we will show how to solve Eq. (2)
approximately and develop three variants of SDM.

2.2. Self-Discriminative Modeling: SDM-ATI

We first present a GAN-based approach to generate pseudo-
anomalous graphs. The model consists of a graph gener-
ator Gϕ and a graph discriminator Dω, which are alterna-
tively trained in an adversarial manner. The generator tries
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to produce fake (pseudo-anomalous) graphs (containing
nodes and edges generation) that can fool the discrimina-
tor, while the discriminator tries to differentiate between
anomalous and normal graphs. Specifically, the genera-
tor Gϕ generates nodes and edges to form a fake graph set
G̃ = {G̃1, . . . , G̃N}. We first sample random variable Z̃
from a latent distribution PZ̃ := N (0,1) and construct the
adjacency matrix as follows

Ã = T (X̃X̃⊤), X̃ = Gϕ(Z̃), Z̃ ∼ PZ̃, (6)

where Gϕ is a Multi-Layer Perceptron (MLP)-based genera-
tor that maps the random latent variable Z̃ ∈ RN×d to the
anomalous node attributes, and T : R→ [0, 1] denotes an
element-wise transformation function, e.g. Sigmoid(·). In
this way, we generate an anomalous graph set G̃ with the
generator Gϕ. We then introduce a discriminator Dω , which
takes the anomalous graphs G̃ and normal graphs G as input,
and aims to distinguish between them effectively. To fully
exploit the structural information of graphs, Dω is expected
to be a GNN-based discriminator. Specifically, we leverage
GIN (Xu et al., 2019) as the backbone network of the dis-
criminator Dω to learn graph-level representations. Assume
we have an input graph Gi, the latent features h(k)(v) of
node v in the k-th layer of GIN can be obtained by aggregat-
ing the learned features from its neighboring nodes in the
(k − 1)-th layer, which can be formulated as

h(k)(v) =δ(COMBINE(h(k−1)(v),

AGGREGATE({h(k−1)(u), u ∈ C(v)}))),
(7)

where C(v) denotes the neighbor set of node v, and
δ(·) is a non-linear activation function such as ReLU.
AGGREGATE(·) function combines the features of neigh-
boring nodes in C(v), and COMBINE(·) function combines
the features from the previous layer and the aggregated
neighborhood information to obtain the current layer’s fea-
tures. Note that the attribute xv of node v serves as the
initial features, i.e., h(0)(v) = xv. Then the graph-level
representation of graph Gi can be derived as follows

hGi
= R({CONCAT(h(k)(v), k ∈ {1, . . . ,K})}, v ∈ Gi), (8)

where CONCAT(·) function concatenates the representa-
tions learned in each GIN layer, andR(·) denotes the sum-
readout function. Consequently, we can learn the graph-
level representations HG and HG̃ for normal and pseudo-
anomalous graphs by aggregating the node features, and
train the discriminator to distinguish them as much as possi-
ble. The generator Gϕ and discriminatorDω are alternatively
optimized with a min-max game as follows

min
ϕ

max
ω

E
Xi,Ai∼PG

[Dω(Xi,Ai)]−

E
Z̃i∼PZ̃

[Dω(Gϕ(Z̃i), T (Gϕ(Z̃i)Gϕ(Z̃i)
⊤))],

(9)

where PG denotes the normal graph data distribution, and
Z̃i ∈ Rn×d′

is sampled from the prior distribution PZ̃ ∼
N (0,1). Particularly, the discriminator can naturally serve
as an anomaly detector after training. Comparing to Eq. (1),
we see that the constraint dist(D , D̃s) ≤ ϵ is guaranteed
if Gϕ given by Eq. (9) is strong enough. It is difficult
to guarantee for Eq. (1) that D̃s does not overlap with
D , which however is not compulsory because it is still
possible to learn a discriminator from overlapping D , D̃s to
distinguish between D and D̃ . We call this method SDM-
ATI, where AT represents adversarial training. Although
SDM-ATI is promising for anomalous graph detection, it
may suffer from the following problems:

• An MLP-based generator may not effectively capture the
structural information of graphs, which could impede the
generation of high-quality anomalous graphs.

• The interpretability of the GAN-based method is limited
because generating anomalous graphs from random noise
does not necessarily guarantee the quality of the generated
anomalous graphs.

• The optimization of the GAN-based method involves a
min-max game, which can lead to instability during train-
ing. Besides, the competition between the generator and
discriminator may result in mode collapse, leading to the
generation of poor-quality anomalous graphs.

2.3. Self-Discriminative Modeling: SDM-ATII

To address the first two problems of SDM-ATI, we propose
a variant of our SDM-ATI, which can leverage the structural
information, and further provide more explicit guidance for
the generator Gϕ, ensuring the generation of high-quality
anomalous graphs that closely resemble normal ones but
can still be distinguished by the discriminator. Specifically,
we introduce the GIN-based VGAE (Kipf & Welling, 2016)
framework to build the generator Gϕ, which consists of a
node generator and an edge generator to learn anomalous
graphs. The node generator aims to generate anomalous
attributes X̃, while the edge generator, which does not in-
clude a decoder, aims to generate the adjacency matrix Ã.
Instead of sampling the input of Gϕ from the latent distribu-
tion PZ̃, we take the normal graph set G as the input of Gϕ,
to generate anomalous graphs G̃ that are close to G but are
expressive pseudo-anomalous graphs.

Here, we only describe the node generator, as it differs from
the edge generator just in the existence of a decoder. We
first learns the graph-level representation HG for the in-
put graphs G = {G1, . . . , GN} by Eqs. (7) and (8), where
Gi = {Xi,Ai}. Next, we map the graph-level represen-
tation into a latent Gaussian distribution N (µ,σ2) as in
VGAE, where the means µ and deviations σ are defined as

µ = GINµ(HG,A), σ = exp(GINσ(HG,A)), (10)
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where µ and σ can explicitly define an inference model that
we can sample the latent graph representations ZG from it
as follows

q(ZG|HG,A) =

N∏
i=1

q(ZGi
|HG,A), (11)

where q(ZGi |HG,A) = N (ZGi |µi, diag(σi)). Since the
sample operation could not provide gradient information,
we leverage the reparametrization trick (Kingma & Welling,
2014) to sample the latent graph representation, i.e.,

ZG = µ+ ϵσ, ϵ ∼ N (0,1), (12)

where ϵ denotes the random Gaussian noise subject to the
standard normal distribution. Consequently, we can generate
a negative graph set, including edges and nodes by

Ã = T (ZGZ
⊤
G ), X̃ = MLP(ZG), (13)

where MLP(·) denotes an MLP-based decoder, which aims
to generate anomalous attributes X̃ from the latent graph
representations, and the anomalous adjacent matrix Ã is
generated from the latent graph representation learned by
the edge generator following Eq. (13).

We expect to generate high-quality pseudo-anomalous
graphs that closely resemble normal ones but can still be
distinguished by the classifier. This requires a high level of
similarity between the generated anomalous graphs and the
normal graphs, which can be regarded as minimizing the
discrepancy between the generated graphs and the normal
ones. Therefore, we propose to minimize the following
discrepancy loss:

Ldis =
1

N

N∑
i=1

(∥∥∥Xi − X̃i

∥∥∥2
F
−
(
Ai log(Ãi)

+ (1−Ai) log(1− Ãi)
))

,

(14)

where X̃i and Ãi are the node attribute and adjacency ma-
trix generated by the node generator and edge generator
of Gϕ respectively, i.e., X̃i, Ãi = Gϕ(Xi,Ai). The first
term denotes the attribute reconstruction loss, and the sec-
ond denotes the binary cross-entropy loss. Additionally,
the distribution of learned latent representation ZG is ex-
pected to follow a pre-defined prior distribution, which
allows the generated latent representations ZG to be uni-
formly distributed in the latent space, ensuring the diver-
sity of generated graphs. We can achieve this by penaliz-
ing the KL-divergence between q(ZG|HG,A) and a prior
distribution P (Z), i.e., KL[q(ZG|HG,A)||P (Z)], where
P (Z) =

∏
i p(Zi) =

∏
iN (Zi|0, I) typically follows a

Gaussian prior distribution. The overall objective function
of the perturbation learning-based approach is

min
ϕ

max
ω

E
Xi,Ai∼PG

[Dω(Xi,Ai)−Dω(Gϕ(Xi,Ai))]

+ λLdis + γKL[q(ZG|HG,A)||P (Z)],
(15)

where the discrepancy loss and KL-divergence terms are
specific to the generator. This variant is based on adver-
sarial training and perturbation learning, where the pseudo-
anomalous graphs are generated via perturbing the latent
variable of normal graphs. For convenience, we call this
method SDM-ATII. Compared to the GAN-based method,
SDM-ATI and SDM-ATII offer better interpretability by ex-
plicitly guiding the generator to generate pseudo-anomalous
graphs that closely resemble the normal ones. Additionally,
SDM-ATII offers better control over the diversity of the
generated graphs by penalizing the KL-divergence between
the distribution of learned latent graph representation and
a prior Gaussian distribution. Compared to Eq. (2), we
explicitly defined the discrepancy loss, i.e., Eq. (14), to
guarantee that the generated anomalous graphs surrounded
the normal ones and learn the decision boundary from the
adversarial training of the generator and discriminator. This
variant offers improved interpretability compared to SDM-
ATI, which relies solely on adversarial training between
the generator and discriminator to guarantee the constraint.
However, SDM-ATII still suffers from the instability of the
min-max optimization.

2.4. Self-Discriminative Modeling: SDM-NAT

To address the instability of the min-max optimization in the
adversarial approaches SDM-ATI and SDM-ATII, we fur-
ther propose a non-adversarial variant called SDM-NAT for
the perturbation learning-based variant SDM-ATII, which
avoids the instability problem of GANs and simplifies the
training process. Specifically, rather than training a genera-
tor and a discriminator to compete against each other, we
proposed to directly train a classifier fθ to distinguish the
anomalous graphs produced by generator Gϕ from normal
ones. We can accomplish this by utilizing the node genera-
tor and edge generator to produce a set of anomalous graphs
G̃ from normal graphs G, and subsequently train a classifier
to distinguish them. The overall objective is

min
θ,ϕ

1

N

N∑
i=1

(
ℓ(yi, fθ(Xi,Ai)) + ℓ(ỹi, fθ(Gϕ(Xi,Ai))

)
+ λLdis + γKL[q(ZG|HG,A)||P (Z)],

(16)

where ℓ(·) denotes the binary cross-entropy loss of the clas-
sifier, the definitions of Ldis and the KL-divergence are
exactly the same as Eq. (15). The classifier is based on
GIN, which receives attribute and adjacency matrices as
inputs, allowing for consideration of the structural infor-
mation of the graphs. More importantly, our method is
unsupervised, requiring no supervised information. We
simply set ỹi = · · · = ỹN = 0 for the generated anoma-
lous graphs, and y1 = · · · = yN = 1 for normal graphs.
Compared to Eq. (2), we directly learn the decision bound-
ary by simultaneously training a classifier with a generator
that produces high-quality pseudo-anomalous graphs for the
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classifier. This makes our method particularly appealing
for real-world applications where obtaining labeled data is
challenging and costly.

We further highlight the conceptual advances of our SDM
framework by extensively discussing existing GLAD meth-
ods and GAN-based strategies in Appendix A. To facilitate
the understanding of the proposed SDM methods, we also
provide the detailed training procedures of SDM-ATI, SDM-
ATII, and SDM-NAT in Appendix I.

3. Experiment
3.1. Experiment Configuration

Datasets. We evaluate the anomaly detection perfor-
mance across various graph benchmark datasets, including
(1) Small and Moderate-scale Dataset: Four molecule
datasets (MUTAG, AIDS, COX2, and ER MD), three bi-
ological datasets (PROTEINS, DD, and ENZYMES), and
one social network dataset (IMDB-BINARY). These three
types of data are typical graph-structured data in real-world
scenarios. (2) Imbalanced Large-scale Dataset: Four
imbalanced large-scale molecule graph datasets (SW-620,
MOLT-4, PC-3, and MCF-7) to evaluate the GLAD perfor-
mance under imbalanced scenarios. Note that all the datasets
used in our experiment are sourced from TUDataset (Morris
et al., 2020), a publicly available graph database2. For more
details for each dataset, please refer to Appendix B.

Network Architecture. For the network architecture of
the proposed SDM variants, we utilize a 3-layer GIN as
the backbone network for the generator and discriminator
(classifier) in SDM-ATII and SDM-NAT, except for the gen-
erator of SDM-ATI, which is an MLP-based neural network.
The aggregated dimension and the dimensions of the two
latent layers in GIN are set to 16 and 10, respectively.

Baselines. We extensively compare the three SDM vari-
ants with state-of-the-art GLAD baselines:

1. Graph Kernel: Short-Path kernel (SP) (Borgwardt
& Kriegel, 2005), Weisfeiler-Lehman kernel (WL) (Sher-
vashidze et al., 2011), Neighborhood Hash kernel
(NH) (Hido & Kashima, 2009), and Random Walk kernel
(RW) (Vishwanathan et al., 2010).

2. GNN-based GLAD: VGAE-AD (Kipf & Welling,
2016), GCN (Kipf & Welling, 2017), GIN (Xu et al.,
2019), SOPOOL (Wang & Ji, 2020), RWGNN (Nikolentzos
& Vazirgiannis, 2020), OCGIN (Zhao & Akoglu, 2021),
GLocalKD (Ma et al., 2021), OCGTL (Qiu et al., 2022),
iGAD (Zhang et al., 2022a), SIGNET (Liu et al., 2023a),
MUSE (Kim et al., 2024), DO2HSC (Zhang et al., 2024).

2https://chrsmrrs.github.io/datasets/docs/datasets/
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Figure 3. The decision boundaries learned from 2-D synthetic data
x = sin(z) + e with different e.

Evaluation Metrics. We utilize AUC and F1-Score to
evaluate the anomaly detection performance and report the
mean value and standard deviation of 10 trials of each
method on each dataset.

Other Details. We provide other settings in Appendix C,
including the details regarding data split, trade-off parame-
ters, baseline settings, training details, and implementation.

3.2. Simulation Analysis for Decision Boundary

We ran a simulation to show the key idea and effectiveness
of our methods in addition to Figure 2. For convenience,
we only consider SDM-NAT, and we will not use graphs
because it is difficult to conduct a reasonable simulation
for a number of graphs. Therefore, the corresponding back-
bones of SDM-NAT are changed to VAE (generator) and
a common MLP-based classifier. Specifically, we generate
a number of synthetic 2-D samples (normal training data)
using x = sin(z) + e, where e is a noise drawn from a
uniform distribution (−a, a). A larger a leads to a wider
normal region. The simulation results are shown in Figure
3, where the pink curve denotes the learned decision bound-
aries, and the background color in the figure (changing from
blue to red) implies that the score given by the classifier is
increasing. The observations are as follows:

• The generated pseudo-anomalous data is usually dis-
tributed close to the training (normal) data and shows a
similar manifold trend as the normal one.

• In most cases, the classifier can distinguish those pseudo-
anomalous data far from the normal area.

• When the interval of normal data turns from narrow to
wide, some generated pseudo-anomalous data may be lo-
cated close to training data, but the classifier would neglect
most of them and draw a superior decision boundary sur-
rounding all training data.

In conclusion, the proposed model can effectively handle
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Table 1. Average AUCs and F1-Scores with standard deviation (10 trials) of different GLAD methods. We assess models by regarding the
individual classes as the normal class, respectively. The best results are highlighted in bold and “OM” means out of memory.

Method Metric PROTEINS DD IMDB-BINARY ER MD
0 1 0 1 0 1 0 1

SP (Borgwardt & Kriegel, 2005) AUC 66.83±0.00 52.02±0.00 82.73±0.00 31.57±0.00 45.92±0.00 47.16±0.00 40.92±0.00 66.20±0.00
F1-Score 63.64±0.00 44.50±0.00 76.09±0.00 38.14±0.00 59.00±0.00 61.00±0.00 37.74±0.00 63.89±0.00

WL (Shervashidze et al., 2011) AUC 73.19±0.00 50.19±0.00 81.57±0.00 19.22±0.00 51.57±0.00 46.07±0.00 45.71±0.00 72.11±0.00
F1-Score 76.82±0.00 33.80±0.00 74.64±0.00 26.80±0.00 61.00±0.00 58.00±0.00 45.28±0.00 69.44±0.00

NH (Hido & Kashima, 2009) AUC 68.28±0.00 55.51±0.00 81.61±0.32 36.84±0.00 53.21±0.00 46.52±0.00 51.55±2.00 72.38±0.87
F1-Score 68.79±0.23 41.93±0.21 73.91±0.65 40.82±1.54 57.71±1.46 64.40±0.80 50.19±0.92 63.89±0.00

RW (Vishwanathan et al., 2010) AUC OM OM OM OM 49.51±0.00 53.11±0.00 78.94±0.00 70.33±0.00
F1-Score OM OM OM OM 48.88±0.00 45.87±0.00 65.96±0.00 62.60±0.00

VGAE-AD (Kipf & Welling, 2016) AUC 27.95±3.03 86.09±2.07 79.01±14.64 64.95±5.34 65.36±0.78 67.22±3.49 87.99±3.86 59.48±6.94
F1-Score 35.15±2.17 79.33±2.06 70.42±7.55 76.67±0.39 62.40±3.76 64.79±4.35 81.51±4.20 58.89±5.39

OCGIN (Zhao & Akoglu, 2021) AUC 55.01±9.65 47.77±7.64 66.59±4.44 60.03±5.34 34.82±1.67 65.04±8.79 47.63±3.59 67.51±1.32
F1-Score 64.18±0.15 43.42±0.00 56.12±0.00 62.24±0.00 40.50±1.50 63.50±8.50 50.94±1.89 59.46±0.00

GLocalKD (Ma et al., 2022) AUC 72.12±0.08 74.80±0.12 80.59±0.00 79.96±0.01 53.83±1.24 53.34±0.06 78.94±0.00 71.54±0.00
F1-Score 70.76±0.37 71.78±0.54 73.48±0.57 71.13±0.00 54.91±0.33 56.06±0.11 70.21±0.00 62.86±0.00

OCGTL (Qiu et al., 2022) AUC 63.20±5.40 58.10±6.10 77.52±0.43 82.45±0.19 65.10±1.80 64.12±1.27 72.67±0.20 29.63±0.18
F1-Score N/A N/A 71.65±0.73 47.96±2.14 36.48±1.56 61.58±1.21 67.17±0.92 39.65±1.77

SIGNET (Liu et al., 2023a) AUC 69.51±0.76 73.58±0.85 59.53±3.45 59.92±0.70 67.9±0.96 64.31±0.44 75.18±8.12 60.43±7.33
F1-Score 64.39±0.62 73.33±0.91 56.76±3.47 59.11±0.49 64.67±0.47 62.33±0.47 60.43±7.33 56.11±6.43

MUSE (Kim et al., 2024) AUC 73.17±1.20 41.86±1.31 61.06±3.03 38.01±2.03 45.17±3.88 70.86±1.92 31.07±4.58 77.99±0.55
F1-Score 67.58±1.16 44.67±0.97 58.32±3.08 40.21±2.01 46.10±4.70 65.13±1.72 35.67±4.69 69.44±0.00

DO2HSC (Zhang et al., 2024) AUC 66.04±1.99 52.96±2.70 77.12±2.15 76.51±3.17 75.47±3.90 77.37±5.03 68.31±4.31 72.65±0.09
F1-Score 61.14±2.67 50.00±2.72 70.87±2.73 75.61±2.73 73.28±2.44 79.80±0.50 66.63±3.04 68.67±0.09

SDM-ATI AUC 94.93±0.03 89.19±0.17 85.71±11.37 88.50±3.22 62.92±0.62 86.53±0.00 90.52±2.93 95.05±1.48
F1-Score 91.18±0.00 94.89±0.89 82.41±3.07 84.54±3.57 66.76±0.28 75.58±0.59 89.94±0.89 80.00±0.00

SDM-ATII AUC 95.28±0.11 95.15±0.06 86.59±6.56 98.00±0.01 91.76±1.06 87.93±0.25 77.15±35.32 94.92±0.81
F1-Score 88.47±0.21 86.67±0.00 79.53±4.85 91.75±0.00 86.29±0.58 81.25±0.00 73.96±31.63 91.11±1.11

SDM-NAT AUC 95.91±2.55 98.25±0.02 90.71±1.17 99.23±0.42 99.94±0.06 96.99±2.71 98.74±1.59 96.67±1.67
F1-Score 92.42±0.62 94.44±0.00 83.68±1.04 97.59±1.29 99.75±0.25 91.33±4.92 91.19±0.89 92.31±0.65

Table 2. Overall performance analysis for the three variants of
SDM on One-Class GLAD (Tables 1 and 6).

Metric SDM-ATI SDM-ATII SDM-NAT

AUC
Min std 5/14 4/14 10/14
std≤5% 10/14 11/14 14/14

Best Result 2/14 2/14 14/14

F1-Score
Min std 7/14 4/14 9/14
std≤5% 13/14 12/14 14/14

Best Result 2/14 1/14 14/14

normal intervals with different gaps, where the learned de-
cision boundaries enclose the normal training data tightly.
The simulation results in Figure 3 strongly support our as-
sumption and motivation.

3.3. Experiment on One-Class GLAD

We compare our SDM variants (SDM-ATI, SDM-ATII,
and SDM-NAT) with state-of-the-art GLAD approaches
under the one-class classification setting, where the evalua-
tions cover various types of graph-structured data, including
molecule, biology, and social network data. Table 1 and
Table 6 (in Appendix D) present the experimental results in
terms of AUC and F1-Score. We can observe that the three
variants of SDM demonstrate consistent improvements over
both graph kernel methods and GNN-based GLAD methods.

For instance, in the first class of PROTEINS, SDM-NAT
achieves 95.91% AUC and 92.42% F1-Score, which signif-
icantly outperforms the latest baselines such as SIGNET
(69.51% AUC, 64.39% F1-Score), MUSE (73.17% AUC,
67.58% F1-Score), and DO2HSC (66.04% AUC, 61.14%
F1-Score). Particularly, we identify a “performance flip”
phenomenon, where the performance of different classes
in a dataset may have significant differences in approaches,
such as most graph kernels, MUSE (on DD), and DO2HSC
(on PROTEINS). It is evident that the “performance flip”
phenomenon is largely absent in SDM variants, as they
maintain robust and competitive performance across differ-
ent classes. In terms of the stability of the proposed three
SDM variants, we summarize a performance overview (cov-
ering Tables 1 and 6) in Table 2, where the results indicate
that SDM-NAT achieved the best performance in most cases
and consistently maintains the lowest standard deviation
(under 5%) for both AUC and F1-Score. This highlights the
strong stability and effectiveness of SDM-NAT compared
to the other two adversarial variants.

3.4. Experiment on Large-scale Imbalanced GLAD

We evaluate the performance on four large-scale imbalanced
datasets, including SW-620, MOLT-4, PC-3, and MCF-7,
where the rare “active” status in anti-cancer molecules is

7



Self-Discriminative Modeling for Anomalous Graph Detection

Table 3. Average AUCs and F1-Scores with standard deviation (10 trials) on large-scale imbalanced graph datasets. The best results are
marked in bold, and “N/A” denotes that the result is not available.

Method SW-620 MOLT-4 PC-3 MCF-7

Supervised AUC F1-Score AUC F1-Score AUC F1-Score AUC F1-Score

GCN (Kipf & Welling, 2017) 74.90±0.74 52.00±0.87 72.55±0.52 50.53±1.03 75.36±2.13 49.99±1.63 72.70±1.05 48.76±0.59
GIN (Xu et al., 2019) 78.61±2.85 58.47±5.43 75.86±1.60 55.43±6.52 78.44±1.67 59.07±4.15 69.54±1.15 58.27±3.20
SOPOOL (Wang & Ji, 2020) 75.51±5.06 58.11±2.86 75.11±0.97 56.20±3.64 69.37±1.53 57.80±3.74 75.64±2.17 56.82±3.57
RWGNN (Nikolentzos & Vazirgiannis, 2020) 73.37±0.36 51.31±1.62 71.30±1.23 50.67±2.64 76.27±0.86 50.44±2.76 70.47±1.26 51.65±3.46
iGAD (Zhang et al., 2022a) 85.82±0.69 63.68±1.56 83.59±1.07 63.30±1.17 86.04±1.14 63.50±0.73 83.22±0.64 64.70±2.58

Unsupervised AUC F1-Score AUC F1-Score AUC F1-Score AUC F1-Score

GLocalKD (Ma et al., 2022) 64.14±0.92 60.73±0.03 63.43±1.26 60.73±0.03 66.08±0.04 43.13±0.14 61.43±1.26 45.00±0.17
OCGTL (Qiu et al., 2022) 67.69±0.02 27.01±0.90 57.42±2.38 53.38±0.64 68.42±1.73 27.03±0.42 64.92±1.92 34.81±1.70
SIGNET (Liu et al., 2023a) 39.32±0.77 75.40±0.19 44.28±0.33 70.28±0.16 40.56±3.05 76.17±0.31 40.22±0.55 68.30±0.42
MUSE (Kim et al., 2024) N/A N/A N/A N/A 49.18±2.42 76.60±0.71 48.78±2.01 68.87±0.99
DO2HSC (Zhang et al., 2024) 43.12±0.70 33.65±0.66 51.51±2.39 42.30±1.34 52.25±3.18 35.66±1.26 53.08±2.38 43.73±1.32

SDM-ATI 90.19±8.94 87.40±0.21 90.25±7.57 83.59±0.24 91.59±6.73 86.82±2.12 81.62±8.18 80.61±0.04
SDM-ATII 92.91±5.48 91.61±0.00 97.05±2.39 83.76±0.07 94.30±0.63 87.47±1.13 88.40±0.13 82.34±0.12
SDM-NAT 94.26±2.86 93.16±1.99 94.20±4.79 90.36±2.39 97.09±1.78 94.17±1.70 94.71±2.13 88.98±1.80

treated as anomalies. Note that we exclude graph kernel
methods for comparison due to their scalability constraints.
Instead, we compare our SDM variants with the latest GNN-
based approaches, including both unsupervised and super-
vised ones. Table 3 presents the comparison results, where
we observe that supervised methods such as DCGNN and
iGAD, significantly outperform unsupervised baselines like
OCGTL and GLocalKD. This demonstrates that supervised
methods can still leverage the limited labeled anomalies
in large-scale imbalanced scenarios to facilitate anomaly
detection. Nevertheless, supervised methods do not gener-
alize well when the test data are not drawn from the same
distribution as the training data, especially when the amount
of available anomalous graphs is limited. Conversely, the
proposed SDM variants, such as SDM-ATII and SDM-NAT,
consistently surpass supervised baselines such as DGCNN
and iGAD by more than 10% on most datasets. This can be
attributed to the capability of SDM to generate high-quality
pseudo-anomalous graphs for refining a more robust deci-
sion boundary without extensive reliance on labeled data.
Additionally, SDM-NAT demonstrates better stability and
accuracy compared to SDM-ATI, as it avoids the instability
of GAN-based max-min optimization and explicitly defines
an objective of generating high-quality anomalous graphs.

3.5. Experiment on Multi-Class GLAD

We conduct a multi-class graph-level anomaly detection
experiment on ENZYMES to further demonstrate the ef-
fectiveness of our methods. In this experiment, multiple
classes are regarded as anomalies. Specifically, we set the
class {0, 1, 2, 3} as the normal classes and {4, 5} as the
anomalous classes. Figure 4 shows the experimental results
of our methods against several state-of-the-art GNN-based
GLAD methods. We can observe that the proposed three
methods significantly outperform all the baselines by a large
margin (more than 20%). This demonstrates the feasibil-
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Figure 4. Experimental results of multi-class graph-level anomaly
detection task on ENZYMES.

ity and potential of the proposed methods in dealing with
multi-class GLAD scenarios. Moreover, SDM-NAT and
SDM-ATII demonstrate better performance than SDM-ATI,
and SDM-NAT exhibits more stability than SDM-ATII, as
it has fewer performance fluctuations.

3.6. Analysis of Discriminative Scores

Figure 5 shows the discriminative scores of SDM-ATI,
SDM-ATII, and SDM-NAT on MUTAG (class 1). The
top row represents the discriminative scores in the training
stage, while the bottom row corresponds to the testing stage.
It is evident that during the training phase, the proposed
three models effectively differentiate between the generated
anomalous data and normal data, and this distinction car-
ries over to the testing phase. These findings validate that
the classifier trained using high-quality generated anoma-
lous graphs can identify outstanding decision boundaries
and exhibit excellent generalization capabilities during test-
ing. Particularly, despite observing score overlap between
the generated anomaly and normal graphs during the train-
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(a) SDGG-ATI Testing Stage

(b) SDGG-ATII Training Stage (c) SDGG-NAT Training Stage(a) SDGG-ATI Training Stage

(b) SDGG-ATII Testing Stage (c) SDGG-NAT Testing Stage

(a) SDM-ATI (b) SDM-ATII (c) SDM-NAT

                                  

     

 

   

   

   

   

   

   

 
  
 
 
 
 
 
 
  
 
 
 
  
 

              

           

                       

     

 

    

   

    

   

    

 
  
 
 
 
 
 
 
  
 
 
 
  
 

              

           

                     

     

 

   

   

   

   

 

 
  
 
 
 
 
 
 
  
 
 
 
  
 

                       

           

             

     

 

   

   

   

   

 

 
  
 
 
 
 
 
 
  
 
 
 
  
 

                       

           

Figure 5. The discriminative scores of SDM-ATI, SDM-ATII, and SDM-NAT on MUTAG (Class 1), where the top and bottom rows
represent the result of the training stage and testing stage, respectively. Note that the x-axis and y-axis indicate the output scores and the
number density of data samples within a certain interval.

ing phase of SDM-ATII, significant differentiation is still
achieved during the testing phase. This can be attributed
to our objective of training a powerful classifier by gener-
ating high-quality anomaly graphs that closely resemble
normal graphs. Although the classifier may not separate
these anomalies adequately during training, which may be
due to the over-idealization of the generated anomaly data,
the learned decision boundaries are sufficiently effective in
distinguishing the anomalies during the test phase.

3.7. More Experimental Analysis

Due to the page limitation, we provide more experimen-
tal analysis in our appendix, including the experimental
results on more datasets (Appendix D), visualization anal-
ysis(Appendix E), parameter analysis (Appendix F), and
ablation study on generator backbone (Appendix G), etc.

4. Conclusion
In this paper, we proposed a self-discriminative modeling
(SDM) framework for graph-level anomaly detection. The
key idea is to generate pseudo-anomalous graphs that inter-
polate between normal graphs and (real) anomalous graphs,
though real anomalies are not presented in the training stage.
We provide three variants of SDM, namely, SDM-ATI,
SDM-ATII, and SDM-NAT. Particularly, SDM-NAT has

much higher learning stability and detection accuracy than
the other two methods. The comprehensive experiments on
various graph benchmark datasets, including molecular, bio-
logical, social network, and large-scale imbalanced molecu-
lar datasets, demonstrate the effectiveness of our methods
compared to state-of-the-art graph-level anomaly detection
methods. Surprisingly, although our methods are unsuper-
vised learning, they outperformed a few strong baselines of
semi-supervised learning methods. One limitation of our
work is that we have not considered any real anomalous
graphs in the training stage, though they may be available
in some scenarios.
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A. Related Works
A.1. Graph-level Anomaly Detection

Graph-level anomaly detection (Ma et al., 2021; Liu et al., 2024; Cai et al., 2024b;d) typically refers to the identification
of graphs that are significantly different from others, e.g., the active state of molecules or abnormal relational structure in
social networks, which exhibit significant differences compared to normal graphs. Different from the anomaly detection
tasks on node-level and edge-level (Ding et al., 2021; Huang et al., 2022; Duan et al., 2023; Qiao & Pang, 2023; Qiao et al.,
2024b; Pan et al., 2025), graph-level anomaly detection demands the consideration of relationships between different graphs
measured from the perspective of the entire graph. Graph kernels (GK), e.g., Short-Path kernel (SP) (Borgwardt & Kriegel,
2005), Weisfeiler-Lehman kernel (WL) (Shervashidze et al., 2011), Random walk kernel (RW) (Vishwanathan et al., 2010),
etc, are generally used to measure the similarity between pair-wise graphs (Akoglu et al., 2015). They can be utilized to
achieve graph-level anomaly detection by combining with classical AD methods such as one-class support vector machine
(OCSVM) (Schölkopf et al., 1999).

In recent years, graph neural networks (GNNs) (Zhou et al., 2020; Wu et al., 2020; 2023; Liu et al., 2023b; Li et al.,
2023; Cai et al., 2024a; Wan et al., 2024; Cai et al., 2024c; Tu et al., 2025) have become a paradigm for learning graph
representations. Many outstanding works take advantage of the graph learning capability of GNNs, such as GCN (Kipf &
Welling, 2017; Wan et al., 2025) and GIN (Xu et al., 2019), to facilitate graph-level anomaly detection. For instance, Zhao
& Akoglu (2021) combined GIN with DeepSVDD (Ruff et al., 2018) to construct an end-to-end graph anomaly detection
framework. Qiu et al. (2022) leveraged graph transformation learning (Qiu et al., 2021) to alleviate the performance flip
issue in graph anomaly detection. Ma et al. (2022) proposed to learn richer normal patterns of graphs from both local
and global perspectives through the knowledge distillation within graph and node representations. Zhang et al. (2022b)
investigated the problem of anomaly detection on imbalanced graphs and addressed this issue by introducing a supervised
dual-discriminative framework with an imbalanced-specified loss function based on point mutual information. Compared
with them, our methods do not require any assumption on the shape of the embedding distribution (e.g., hypersphere (Zhao
& Akoglu, 2021; Qiu et al., 2022; Zhang et al., 2024)) or explicitly defined anomaly scores (Ma et al., 2022; Liu et al.,
2023a; Dong et al., 2024). Besides, our method is fully unsupervised but is able to generate high-quality pseudo-anomalous
graphs for training the anomaly detector (classifier), which is more cost-efficient than supervised methods (Zhang et al.,
2022b).

A.2. GAN-based Anomaly Detection

As an emerging branch of deep learning techniques, generative adversarial network (GAN) (Goodfellow et al., 2014;
Wang et al., 2021; Cai et al., 2024e) has been widely studied and utilized in anomaly detection, particularly in the vision
area (Schlegl et al., 2019; Cai & Fan, 2022; Mou et al., 2023). For example, Schlegl et al. (2017) proposed AnoGAN,
which applied GAN and unsupervised training to learn a manifold for normality, thereby identifying the anomalies in image
data. Han et al. (2021) proposed a multiple GAN ensemble framework for anomaly detection, which better models normal
data distribution through the interaction between multiple groups of generators and discriminators. Zhang et al. (2022b)
leveraged self-supervised learning with a deep adversarial framework to capture the marginal distribution of normal image
data for detecting anomalies. Nevertheless, although some recent works (Chen et al., 2020; Zheng et al., 2021; Xiao et al.,
2023) explored the feasibility of GAN in node-level AD tasks, the studies and efforts on graph-level AD tasks that require
taking both attributes and edges into account are still limited. To this end, our work endeavors to bridge this research gap.

We here discuss the connection between the proposed three variants of SDM (refer to Section 2) with the GAN-based
approaches. First, SDM-ATI shares the idea of adversarial training in GAN, but they differ in several details. For example,
the generator of SDM-ATI simultaneously produces anomalous nodes and edges for an anomalous graph, which differs
from the others that focus solely on nodes or images. Besides, most GAN-based approaches adopt two-stage frameworks
and define a specific anomaly score, e.g., mapping loss function (Schlegl et al., 2017; 2019), reconstruction error (Wang
et al., 2018; Lee et al., 2022) for detecting anomalies, while SDM-ATI is designed as a joint training framework and relies
on the output of the discriminator. Second, SDM-ATII learns to generate high-quality anomalous samples from normal
graphs, whereas other GAN-based approaches typically generate from random noise. More importantly, the variational
inference (Kipf & Welling, 2016) involved in SDM-ATII guarantees the diversity of generated anomalous graphs. Third, we
further proposed another variant, i.e., SDM-NAT, to address the instability problem during training and generate high-quality
anomalous graphs in a non-adversarial manner.
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B. Dataset
Table 4 illustrates the detailed information of each graph dataset used in our experiment, including the number of graphs,
average nodes, average edges, node classes, graph classes, and data type. We also show the imbalance ratio of four large-scale
graph datasets in Table 5.

Table 4. Detailed information of the graph benchmark datasets.
Dataset Name # Graphs # Average [V ] # Average [E] # Node Classes # Graph Classes Data Types

Small and moderate-scale datasets

PROTEINS 1,113 39.06 72.82 3 2 Biology
DD 1,178 284.32 715.66 82 2 Biology
ENZYMES 600 32.63 62.14 3 6 Biology
IMDB-BINARY 1,000 19.77 96.53 – 2 Social networks
ER MD 446 21.33 234.85 10 2 Molecule
MUTAG 188 17.93 19.79 7 2 Molecule
AIDS 2,000 15.69 16.20 38 2 Molecule
COX2 467 41.22 43.45 8 2 Molecule

Imbalanced large-scale datasets

SW-620 40,532 26.06 28.09 65 2 Molecule
MOLT-4 39,765 26.10 28.14 64 2 Molecule
PC-3 27,509 26.36 28.49 45 2 Molecule
MCF-7 27,770 26.40 28.53 46 2 Molecule

Table 5. The imbalance ratio of large-scale graph benchmark datasets.
Datasets Class # Graphs Imbalance Ratio

SW-620 Normal 38,122 5.95%Anomalous 2,410

MCF-7 Normal 25,476 8.26%Anomalous 2,294

PC-3 Normal 25,941 9.34%Anomalous 1,568

MOLT-4 Normal 36,625 7.90%Anomalous 3,140

C. Detailed Experimental Settings
We consider three types of experiments in this paper to evaluate anomaly detection performance. (1) The first experiment
focuses on the one-class classification task, where we treat each class of a dataset as the normal class and assess the anomaly
detection performance for each class individually. (2) The second experiment involves anomaly detection on large-scale
imbalanced graph datasets, where the class with a small number of samples is designated as the anomaly. (3) Moreover,
we evaluate anomaly detection in multi-class scenarios, where the anomalies may come from multiple classes. Here, we
describe the detailed experimental settings as follows:

• Data Split: For small and moderate-scale datasets, we allocate 80% of the data from the normal class for training, and
subsequently construct the testing data by combining the remaining normal data with an equal or smaller number of
anomalous data samples. For large-scale imbalanced datasets, we allocate 80% of the data in the normal class as the
training set, and form the test set with the rest of the normal data and all the abnormal data.

• Trade-off Parameters: For SDM-ATI and SDM-ATII, we fix the clipping parameter c of the adversarial loss at 0.01.
Besides, SDM-ATII and SDM-NAT have two critical hyper-parameters, λ and γ, in their loss functions, which control the
contributions of the discrepancy loss and KL-divergence loss, respectively. We employ a grid search strategy, covering
a range of [0.001, 100], to explore the parameter space and determine their optimal values thoroughly. Furthermore,
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Table 6. Average AUCs and F1-Scores with standard deviation (10 trials) on MUTAG, AIDS, and COX2. The best results are marked in
bold.

Method Metric
MUTAG AIDS COX2

0 1 0 1 0 1

SP (Borgwardt & Kriegel, 2005)
AUC 69.44±0.00 67.52±0.00 97.78±0.00 79.54±0.00 54.08±0.00 57.60±0.00

F1-Score 58.33±0.00 60.00±0.00 95.00±0.00 76.56±0.00 49.32±0.00 45.00±0.00

WL (Shervashidze et al., 2011)
AUC 19.44±0.00 89.12±0.00 98.84±0.00 84.44±0.00 59.90±0.00 29.25±0.00

F1-Score 16.67±0.00 76.00±0.00 93.75±0.00 83.55±0.00 60.27±0.00 35.00±0.00

NH (Hido & Kashima, 2009)
AUC 66.53±3.30 79.97±0.40 96.85±0.21 63.47±3.23 61.41±0.82 47.17±0.00

F1-Score 56.67±6.24 76.00±0.00 97.50±0.00 59.25±1.35 56.44±1.03 50.00±3.16

RW (Vishwanathan et al., 2010)
AUC 94.44±0.00 86.98±0.00 73.61±0.00 58.31±0.00 52.43±0.00 28.75±0.00

F1-Score 83.33±0.00 80.00±0.00 66.25±0.00 57.50±0.00 47.95±0.00 30.00±0.00

VGAE-AD (Kipf & Welling, 2016)
AUC 80.00±7.07 73.30±5.40 56.59±1.59 96.74±0.53 59.28±1.55 73.33±1.48

F1-Score 78.33±6.67 65.56±2.22 55.34±2.91 93.94±0.51 59.19±0.00 73.00±5.10

OCGIN (Zhao & Akoglu, 2021)
AUC 88.40±2.14 74.66±1.68 94.38±0.10 20.56±4.52 59.64±5.78 56.83±7.68

F1-Score 61.54±0.00 62.95±0.00 88.12±0.62 29.22±5.16 47.95±0.00 52.38±0.00

GLocalKD (Ma et al., 2022)
AUC 84.03±0.00 90.59±0.61 100.00±0.00 94.45±5.85 51.42±0.66 65.79±0.98

F1-Score 83.33±0.00 86.17±0.91 100.00±0.00 88.27±7.70 51.24±0.60 65.33±0.67

OCGTL (Qiu et al., 2022)
AUC 93.61±0.24 87.04±1.74 98.09±0.48 99.49±0.08 60.42±0.90 54.65±3.09

F1-Score 38.46±12.87 80.00±0.00 97.50±0.00 97.25±0.57 55.62±5.24 52.38±4.26

SIGNET (Liu et al., 2023a)
AUC 79.40±3.69 86.13±3.52 88.28±1.69 96.15±0.89 47.25±0.00 64.50±0.00

F1-Score 80.56±3.93 80.00±3.27 80.25±2.00 89.69±1.06 52.05±0.00 60.00±0.00

MUSE (Kim et al., 2024)
AUC 83.79±7.02 87.73±2.45 55.96±2.12 92.56±3.03 54.14±3.23 48.08±7.04

F1-Score 75.20±6.14 73.07±4.11 52.88±1.26 85.91±4.39 52.14±3.49 48.50±9.50

DO2HSC (Zhang et al., 2024)
AUC 94.72±4.47 88.83±6.58 91.09±2.34 88.03±0.91 63.16±3.36 72.28±4.67

F1-Score 89.17±7.50 86.80±6.21 82.92±3.12 83.50±0.56 58.36±2.95 69.00±4.90

SDM-ATI
AUC 95.83±0.00 73.44±34.56 100.00±0.00 100.00±0.00 71.46±9.15 79.45±5.82

F1-Score 83.33±0.00 91.67±0.00 100.00±0.00 100.00±0.00 70.78±7.91 67.10±4.17

SDM-ATII
AUC 99.31±1.42 81.50±25.66 100.00±0.00 100.00±0.00 81.51±0.31 91.78±3.95

F1-Score 99.13±1.74 80.27±23.47 99.37±0.63 100.00±0.00 74.05±0.95 84.79±3.38

SDM-NAT
AUC 100.00±0.00 99.36±0.35 100.00±0.00 100.00±0.00 96.66±0.00 97.05±1.62

F1-Score 100.00±0.00 98.53±0.20 100.00±0.00 100.00±0.00 90.41±0.00 92.50±2.50

Appendix F contains the evaluation of the impact of variations in the values of λ and γ on the anomaly detection
performance.

• Baseline Settings: We achieve anomaly detection for all graph kernels and InfoGraph by combining them with
OCSVM (Schölkopf et al., 1999). For other baseline methods, e.g., OCGIN, OCGTL, GLocalKD, iGAD, SIGNET,
MUSE, and DO2HSC, we follow the settings in their papers and reproduce the experimental results with the officially
released codes. To guarantee a fair comparison, we use the same network structure, i.e., GIN (Xu et al., 2019), for each
GNN-based baseline and SDM variants. Particularly, in the imbalanced graph anomaly detection task, we apply the
cross-entropy loss function to the supervised GNN baselines, e.g., GCN, DGCNN, GIN, SOPOOL, and RWGNN.

• Training Details: For small-scale graph datasets, the grid search strategy is utilized to find the optimal performance,
where the coefficients (λ and γ) vary in {0.1, 1, 10}, and the batch size varies in {4, 8, 16}, while we increase the batch
size to 256 to accommodate the requirement of experiment on larger-scale datasets. We utilize RMSprop (Tieleman et al.,
2012) as the optimizer for SDM-ATI and SDM-ATII, and Adam (Kingma & Ba, 2014) for SDM-NAT during training.
Besides, we set the learning rate ρ to 0.001 with the total training epochs to 300.

• Implementation: We leverage PyTorch Geometric (Fey & Lenssen, 2019) for implementation, and all experiments are
executed on an NVIDIA Tesla A100 GPU with an AMD EPYC 7532 CPU.
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D. More Experimental Results
D.1. Performance Comparison on More Datasets

Table 6 presents an additional evaluation of our SDM framework (SDM-ATI, SDM-ATII, and SDM-NAT) against various
graph kernel methods and GNN-based GLAD methods on four benchmark datasets, including MUTAG, AIDS, and COX2.
We can observe that our SDM variants consistently outperform baseline methods across all benchmark datasets. Particularly,
SDM-NAT performance achieves 96.66% (AUC) and 90.41% (F1-Score) on the challenging dataset COX2 (class 0), which
marks a more than 20% improvement over other state-of-the-art approaches such as OCGTL and DO2HSC. Notably,
SDM-NAT exhibits markedly lower variance than adversarial strategies (SDM-ATI, SDM-ATII) and competing baselines,
which highlights its robustness in decision boundary learning. Moreover, we notice that certain baselines show substantial
performance drops when setting another class as the normal class, e.g., the AUC decline of OCGIN on AIDS and SIGNET
on COX2, which implies the challenges of handling heterogeneous distributions without strong assumptions. In contrast, the
proposed SDM framework achieves consistent efficacy across graph datasets from diverse domains, demonstrating its broad
applicability to real-world scenarios.

D.2. Explanation of SDM’s Advantages on Imbalance GLAD

To better understand the success of SDM, we provide a visual illustration in Figure 6 to explain why the SDM can outperform
other supervised methods in the context of imbalanced scenarios (Kim et al., 2024; Qi et al., 2025). This figure demonstrates
a binary classification scenario where the anomalous data used for training lies on the right side of the normal data, and the
trained classifier successfully categorizes them with a red decision boundary. However, unknown anomalies may be located
on the left side of the decision boundary (shown by the blue dashed line), where the binary classifier fails to detect them.
This phenomenon is common in large-scale unbalanced anomaly detection due to limited supervised information, where the
distribution of test data is not exactly the same as that of the training data.

Normal samples

Anomalous samples

Training data

Anomalous samples

Normal samples

Unknown anomalous sample

Unknown anomalous sample

Testing data

Binary classification

Ideal decision boundary

Decision Boundary

Figure 6. The illustration of the advantages of SDM. The red line denotes the decision boundary learned by the binary classification,
whereas the blue dashed line denotes the ideal decision boundary.

E. Visual Analysis of Learned Decision Boundary
In this section, we aim to intuitively demonstrate the effectiveness of the proposed methods. Specifically, we provide
visualization results of learned embeddings using t-SNE (Van der Maaten & Hinton, 2008). We show the t-SNE visualizations
(on MUTAG and AIDS) for the learned embeddings of several baseline methods and the three variants of SDM in Figures 7
and 8, enabling a more comprehensive assessment. These two figures show that the proposed SDM methods learn more
explicit decision boundaries to distinguish anomalous samples compared to the visualization results of other baseline
methods. Besides, these figures also offer compelling insights into the learned decision boundaries derived from the
generated anomalous data. We can observe that the normal data from both training and testing stages approximately lie on
the same manifold, which implies that the normality is well captured in our methods. Moreover, the real anomalous and
generated pseudo-anomalous data are well separated into different regions from the normal data. This distinct separation
serves as compelling evidence of the discriminative power implicit in our methods.
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anomalous data, and the normal data in training and testing stages, while points marked in yellow denote the generated anomalous data in
our methods.
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Figure 8. The t-SNE visualization on AIDS (Class 1). Note that the points marked in red, light blue, and dark blue represent the real
anomalous data, and the normal data in training and testing stages, while points marked in yellow denote the generated anomalous data in
our methods.

Nevertheless, it is worth noting that t-SNE would change the actual data distribution through dimensionality reduction.
Therefore, the distribution of generated anomalies may not encompass the normal data in the visualization results. However,
we can still observe that more discriminative latent representations are learned in SDM variants compared to other baselines.
This observation demonstrates the strong discrimination of the trained classifier, which is attributed to the high-quality
pseudo-anomalous graphs generated adaptively. These insightful visualizations offer a better understanding of the proposed
methods, vividly illustrating their ability to learn effective decision boundaries and unveil intricate patterns and anomalies
hidden within complex graph structures.

F. Parameter Sensitivity Analysis
We investigate the impact of two main hyper-parameters, λ and γ, in SDM-ATII and SDM-NAT on the anomaly detection
performance. Note that SDM-ATI is not included in this analysis because its loss function does not have any hyper-
parameters. Specifically, we set the value of λ and γ from a wide range, i.e., [1e−3, 1e2], to evaluate their impact on anomaly
detection performance. Figures 9 and 10 show the experimental results on COX2 and ER MD, where we have the following
observations.

First, we find that a balanced trade-off of λ and γ is crucial to achieve ideal performance for SDM-ATII and SDM-NAT.
As illustrated in these two figures, we can observe that either excessively large or small values of λ and γ typically yield
sub-optimal results in various cases. Second, we can observe that both SDM-ATII and SDM-NAT exhibit relatively stable
performance across a broad range of [1e−3, 1e2] for λ and γ values, particularly on ER MD (Class 0) where SDM-ATII and
SDM-NAT show stable performance in terms of AUC and F1-Score. Additionally, from the experimental results on other
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(b) ER_MD
Class 1Class 0

(a) COX2

Class 1Class 0

ATII

Figure 9. Parameter sensitivity analysis of SDM-ATII on COX2 and ER MD. Note that the values of λ and γ changes in the range of
[1e−3, 1e2].

(b) ER_MD
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(a) COX2

Class 1Class 0

NAT

Figure 10. Parameter sensitivity analysis of SDM-NAT on COX2 and ER MD. Note that the values of λ and γ change in the range of
[1e−3, 1e2].

cases, we can observe that the performance variation of both methods under varying λ and γ values also remains marginal
within a relatively wide range. These observations fully demonstrate the stability and robustness of our methods.

G. Ablation Study of Generator Backbone
We conduct an ablation study by thoroughly comparing VGAE-based and GIN-based generators to elucidate our rationale
for leveraging VGAE as the preferred backbone for generators in SDM. It should be noted that the key difference between
VGAE-based and GIN-based backbones lies in the incorporation of variational inference, which introduces stochasticity in
generating anomalous graphs. Figure 11 shows a comprehensive performance comparison in terms of AUC across three
graph datasets, including COX2, DD, and MUTAG.

From this figure, we can observe that the VGAE-based backbone consistently outperforms the GIN-based backbone by a
substantial margin. This significant improvement can be attributed to the inherent disparities in their respective generation
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(a) SDGG-ATI Testing Stage
(b) SDGG-ATII Testing Stage (c) SDGG-NAT Testing Stage

(a) COX2 (Class 0) (b) DD (Class 0) (c) MUTAG (Class 0)

(d) COX2 (Class 1) (e) DD (Class 1) (f) MUTAG (Class 1)

Figure 11. Performance comparison between VGAE-based and GIN-based generator.

processes. The GIN-based backbone generates graphs deterministically, while the VGAE-based generator incorporates
stochasticity. In contrast to the GIN-based backbone, VGAE employs the reparameterization technique to learn a target
distribution, allowing it to capture the data and underlying distribution. Consequently, the latent distribution of generated
pseudo-anomalous data is more likely to reside in plausible regions rather than simply approximating the normal data. The
experiment demonstrates the exceptional ability of the VGAE-based generator to produce high-quality pseudo-anomalous
graphs, yielding superior performance in graph-level anomaly detection tasks. This also aligns with the motivation and
expectation depicted in Figure 6, where the stochasticity in the generation process plays an important role in learning a good
decision boundary.

H. Robustness Analysis under Data Contamination
To evaluate the robustness of the proposed SDM under data contamination, we conduct an experiment by injecting anomalous
data into the training set at varying contamination levels, which is defined as a certain percentage of the normal data (0%,
10%, 20%, and 30%, respectively). Table 7 shows the experimental results on MUTAG (class 0), where we can observe that
the three SDM variants maintain stable performance under different contamination levels. In particular, the performance of
SDM variants under a 10% contamination level still outperforms the SOTA baseline, such as DOH2SC (94.72% AUC w/o
contamination). These results fully demonstrate the robustness and real-world applicability of our approach.

Table 7. Comparison of model performance at different contamination levels.

Contamination Level 0% 10% 20% 30%

SDM-ATI AUC 95.83(0.00) 94.77(0.79) 93.85(0.04) 94.23(1.23)
F1-Score 83.33(0.00) 82.61(0.46) 80.24(0.00) 81.27(1.96)

SDM-ATII AUC 99.31(1.42) 97.58(0.48) 97.25(0.02) 97.04(0.15)
F1-Score 99.13(1.74) 94.12(0.00) 88.24(0.00) 89.22(0.98)

SDM-NAT AUC 100.00(0.00) 97.67(0.73) 96.44(0.21) 95.71(2.17)
F1-Score 100.00(0.00) 92.16(1.96) 88.24(0.00) 87.70(3.39)
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I. Detailed Algorithm
To facilitate the understanding of the training procedure of the proposed SDM methods, we provide the detailed algorithms
of three SDM variants in Algorithms 1, 2, and 3.

Algorithm 1 SDM-ATI
Input: Input graph set G, number of GIN layers K, clipping parameter c, learning rate ρ, batch size m, total training

epochs T .
Output: The anomaly detection scores.

1: Initialize the network parameters ϕ, ω;
2: for t→ T do
3: for each batch G do
4: Update Generator:
5: Unfreeze the the parameter ϕ of generator Gϕ;
6: Freeze the the parameter ω of discriminator Dω;
7: Sample random variable Z̃ from latent Gaussian distribution PZ̃ ∼ N (0,1);
8: Generate anomalous graph set G̃ from generator Gϕ with the input Z̃ via Eq. (6);
9: Update the parameter ϕ of generator Gϕ by

Gϕ ← ∇[− 1
m

∑m
i=1Dω(Gϕ(Z̃i), T (Gϕ(Z̃i)Gϕ(Z̃i)

⊤))];
ϕ← ϕ− ρ · RMSProp(ϕ,Gϕ);

10: Update Discriminator:
11: Freeze the the parameter ϕ of generator Gϕ;
12: Unfreeze the the parameter ω of discriminator Dω;
13: Repeat steps 6 - 7;
14: Update the parameter ω of generator Dω by

Dω ← ∇[− 1
m

∑m
i=1Dω(Xi,Ai) +

1
m

∑m
i=1Dω(Gϕ(Z̃i), T (Gϕ(Z̃i)Gϕ(Z̃i)

⊤))];
ω ← ω − ρ · RMSProp(ω,Dω);
ω ← clip(ω,−c, c);

15: end for
16: end for
17: Compute anomaly detection scores for test graphs via the trained discriminator Dω;
18: Return: The anomaly detection scores.
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Algorithm 2 SDM-ATII
Input: Input graph set G, number of GIN layers K, clipping parameter c, learning rate ρ, batch size m, total training

epochs T .
Output: The anomaly detection scores.

1: Initialize the network parameters ϕ, ω;
2: for t→ T do
3: for each batch G do
4: Update Generator:
5: Unfreeze the the parameter ϕ of generator Gϕ;
6: Freeze the the parameter ω of discriminator Dω;
7: Extract graph-level representation with the input normal attributes X and adjacency matrix A via Eqs. (7) and (8);
8: Generate anomalous anomalous graph set G̃ from generator Gϕ with normal attributes X and adjacency matrix A

via Eqs. (10), (11), (12), and (13);
9: Update the parameter ϕ of generator Gϕ by

Gϕ ← ∇[− 1
m

∑m
i=1Dω(Gϕ(Xi,Ai) +

λ
m

∑m
i=1(∥Xi − X̃i∥2F − (Ai log(Ãi) + (1 − Ai) log(1 − Ãi))) +

γKL[q(ZG|HG,A)||P (Z)]];
ϕ← ϕ− ρ · RMSProp(ϕ,Gϕ);

10: Update Discriminator:
11: Freeze the the parameter ϕ of generator Gϕ;
12: Unfreeze the the parameter ω of discriminator Dω;
13: Repeat steps 6 - 7;
14: Update the parameter ω of generator Dω by

Dω ← ∇[− 1
m

∑m
i=1Dω(Xi,Ai) +

1
m

∑m
i=1Dω(Gϕ(Xi,Ai))];

ω ← ω − ρ · RMSProp(ω,Dω);
ω ← clip(ω,−c, c);

15: end for
16: end for
17: Compute anomaly detection scores for test graphs via the trained discriminator Dω;
18: Return: The anomaly detection scores.

Algorithm 3 SDM-NAT
Input: Input graph set G, number of GIN layers K, learning rate ρ, batch size m, total training epochs T .
Output: The anomaly detection scores.

1: Initialize the network parameters ϕ, θ for anomalous generator Gϕ and classifier fθ;
2: for t→ T do
3: for each batch G do
4: Extract graph-level representation with the input normal attributes X and adjacency matrix A via Eqs. (7) and (8);
5: Generate anomalous graph set G̃ from generator Gϕ with normal attributes X and adjacency matrix A via Eqs.

(10), (11), (12), and (13);
6: Calculate the anomalous reconstruction loss via Eq. (14);
7: Calculate the total loss via Eq. (16);
8: Update the parameter ϕ and θ of anomalous generator Gϕ and classifier fθ using backpropagation;
9: end for

10: end for
11: Compute anomaly detection scores for test graphs via the trained classifier fθ;
12: Return: The anomaly detection scores.
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