
Parameters vs FLOPs: Scaling Laws for Optimal Sparsity for
Mixture-of-Experts Language Models

Samira Abnar 1 * Harshay Shah 2 * Dan Busbridge 1 Alaaeldin El-Nouby 1 Joshua M Susskind 1

Vimal Thilak 1 *

Abstract
Scaling the capacity of language models has con-
sistently proven to be a reliable approach for im-
proving performance and unlocking new capa-
bilities. Capacity can be primarily defined by
two dimensions: the number of model parame-
ters and the compute per example. While scal-
ing typically involves increasing both, the precise
interplay between these factors and their com-
bined contribution to overall capacity remains not
fully understood. We explore this relationship in
the context of sparse Mixture-of-Experts (MoEs),
which allow scaling the number of parameters
without proportionally increasing the FLOPs per
example. We investigate how varying the sparsity
level, i.e., the fraction of inactive parameters, im-
pacts model’s performance during pretraining and
downstream few-shot evaluation. We find that un-
der different constraints (e.g., parameter size and
total training compute), there is an optimal level
of sparsity that improves both training efficiency
and model performance. These results provide a
better understanding of the impact of sparsity in
scaling laws for MoEs and complement existing
works in this area, offering insights for designing
more efficient architectures.

1. Introduction
Empirical scaling laws for language model pretraining (Ka-
plan et al., 2020; Hoffmann et al., 2022; OpenAI, 2023;
2024; Gemini Team et al., 2024; Henighan et al., 2020; Clark
et al., 2022; Yun et al., 2024; Ludziejewski et al., 2024) have
demonstrated that proportionally increasing model capac-
ity, along with data and total compute budget, consistently
decreases pretraining loss (i.e., perplexity), improves down-
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stream task performance (Devlin et al., 2019; Brown et al.,
2020; BIG-bench authors, 2023) and unlocks emergent ca-
pabilities (Wei et al., 2022a).

A recurring notion in these studies is that model capacity
is well quantified by the total number of model parame-
ters. However, the number of parameters is not the only
means to increase model capacity. Compute per example
(i.e., a fixed-sized input), measured in FLoating OPerations
(FLOPs), also plays a significant role (Clark et al., 2022).
In fact, several mechanisms (Shazeer et al., 2017; Dehghani
et al., 2019; Wei et al., 2022b; Goyal et al., 2024; Csord’as
et al., 2024) allow for independent variation of the number
of parameters or FLOPs per example within a model. For in-
stance, Sparse Mixture-of-Experts (MoE) models (Shazeer
et al., 2017) introduce “FLOP-free parameters” by lever-
aging sparsity, where only a subset of expert modules is
activated for each input.

When studying scaling laws for specific classes of models,
e.g., vanilla transformers, the total number of parameters
can serve as a reasonable relative estimator of FLOPs per
example. Therefore, using the number of parameters as a
measure of model capacity in scaling law studies is appro-
priate. In scenarios or for architectures where the number of
parameters and FLOPs per example are not directly linked,
it is essential to jointly consider the effects of these variables
on scaling model capacity (Clark et al., 2022). We therefore
ask

“Can we draw scaling laws for the optimal trade-off
between

parameter count and FLOPs per example?”

To address this question, we study sparse Mixture-of-Expert
Transformers (MoEs) (Shazeer et al., 2017; Lepikhin et al.,
2021; Fedus et al., 2022; Zoph et al., 2022; Muennighoff
et al., 2024) in the context of language modeling. Exist-
ing scaling law studies for MoEs, investigate the role of
variables like number and granularity (Ludziejewski et al.,
2024) of experts, underlying dense model size and inference
compute in predicting the performance of the models under
different conditions such as training or inference compute
optimality (Du et al., 2021; Clark et al., 2022; Yun et al.,
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(a) IsoFLOP surface over sparsity and total parameters
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(b) IsoFLOP surface over sparsity and active parameters

Figure 1. IsoFLOP surface over observed pretraining loss L, model size (in terms of total N and active parameters Na), and
sparsity S. We fit a polynomial function mapping N (or Na), S, and their interaction to L, using empirical data. For both fits the MSE
loss for predicting loss on a held out set is 0.0001. These results indicate that for a fixed compute budget, increasing model sparsity leads
to a reduction in pretraining loss. When considering optimal model size, we observe opposite trends for total parameters (N) (Figure a)
versus active parameters (Na) (Figure b). (See Figure 8 in Appendix D.1 for results with different total compute budgets C.)

2024; Ludziejewski et al., 2024). In this paper, we focus
on the interaction between FLOPs per example and total
parameter count, and their impact on model performance in
MoEs, through a large-scale empirical study.

We define sparsity as the ratio of inactive experts to the
total number of experts, which controls the ratio of the total
number of parameters to FLOPs per example in MoEs. We
evaluate loss and downstream metrics for different sparsities,
model sizes, and compute budgets. Through qualitative and
quantitative analysis to derive scaling laws which disentan-
gle total parameters vs FLOPs per example in MoEs, we can
estimate the optimal sparsity level under the setting where
both total training FLOPs and total number of parameters
are given and fixed. Generally, we find that:

• During pretraining, increasing a model’s capacity by
adding more parameters yields greater benefits than in-
creasing FLOPs per example. We observe that the size
of compute-optimal models increases as we increase
the training budget (measured in terms of total FLOPs)
while the active number of parameters, hence FLOPs
per example, decrease for compute-optimal models.

• During inference, FLOPs per example seem to play
a more important role1. For many tasks, upstream
performance is a good predictor of downstream per-

1A relevant discussion here is the recent trend of increasing test-
time compute, e.g., OpenAI o1 model (OpenAI, 2024), achieved

formance and the relationship between upstream and
downstream performance is not impacted by the spar-
sity level. However, on downstream tasks that pre-
sumably require more “reasoning”, we observe that for
models with the same perplexity on the pretraining data
distribution, sparser models, i.e., models with fewer
active parameters, perform worse.

Our results, in line with findings from previous relevant
studies (Ludziejewski et al., 2024; He, 2024) on scaling
laws for MoEs, show increasing sparsity level leads to better
performance and efficiency during pretraining. Consider-
ing the various methods to increase compute per example
during inference adaptively conditioned on task or example
complexity, we conclude that approaches like MoEs, which
reduce the unit compute cost (i.e., FLOPs per token) by
increasing the sparsity level, hold significant promise given
their potential to enhance efficiency in both pretraining and
inference.

2. The Interplay between Model Parameters
and Sparsity in MoEs

Is there an optimal trade-off between parameter count and
FLOPs per example in MoEs under the setting where the
training compute budget (i.e., total training FLOPs) is fixed?

by generating more tokens as a way for introducing parameter-
free-FLOPs.
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Figure 2. IsoFLOP slices along Sparsity and Model Size (C = 1e20). We use fitted isoFLOP surfaces (Section 2) to analyze how
sparsity S and model size N impact the loss L for a fixed compute budget. We identify optimal points by (a) fixing N and varying S,
(b) fixing S and varying N and (c) fixing S and varying active parameters Na. Observe that (a) the optimal sparsity S increases with
increasing model size N and converges to 1 while (b) and (c) show that the optimal model size N and active parameter count Na increase
and decrease respectively with increasing sparsity levels. (see Figure 9 in Appendix D.1 for other total training compute budgets.)

Intuitively, under infinite data setting, scaling model capac-
ity along with the training compute budget leads to perfor-
mance improvements. Previous scaling law studies suggest
that, conditioned on a training compute budget measured
in FLOPs denoted by C, the optimal number of parameters,
N∗(C), exhibits a power-law relationship with C (Hoff-
mann et al., 2022):

N∗(C) = argmin
N

L(N ;C) ∝ Ca (1)

Our goal is to study how to optimally trade-off FLOPs per
example and total parameters in MoEs. In MoEs the balance
between parameters and FLOPs can be expressed through
the sparsity level, S. We define S as the ratio of non-active
to total number of experts, i.e., S = E−K

E ; where E is the
total number of experts and K is the number of selected
experts per token. We can vary the sparsity level by either
changing the number of active experts K or total number of
experts E. 2 Essentially, for models with the same N , the
model with a higher S will have fewer active parameters
Na, resulting in fewer FLOPs per example. For more details
on the notations and experimental settings see Appendix A
and Appendix B.

(N∗, S∗) = argmin
N,S

L(N,S;C) (2)

To simplify the problem of understanding the joint role of
N and S in predicting L, we break the problem, Equation 2,

2Sparsity level determines the number of active parameters
given the total number of parameters and we use the active num-
ber of parameters as a proxy for FLOPs per example, as 6NaD
provides a good estimate of the total FLOP count for MoEs; see Ap-
pendix C for details.

into two parts:

1. "How does the sparsity level impact the scaling laws of
the relationship between N and C for training-compute
optimal models?" To address this question in §2.1, we fix
S and vary N , studying how optimal N and Na change
for different values of S:

N∗ = argmin
N

L(N ;C, S) (3)

2. "Is there an optimal balance between total number of
parameters and the sparsity level under fixed training-
compute budget?" To address this question in §2.2, we fix
N and vary S, studying how optimal S changes across
different values of N :

S∗ = argmin
S

L(S;C,N) (4)

As the first step, considering a fixed training compute budget
C, we fit a 3D surface, referred to as the IsoFLOP surface, in
Figure 1a, using a polynomial function, following approach
II of Hoffmann et al. (2022). Compared to Hoffmann et al.
(2022) we include the sparsity variable and fit a single 3d
IsoFLOP surface across all data points, rather than fitting
separate 2d IsoFLOP curves for fixed sparsity levels or
model sizes. We conducted a grid search to determine the
optimal polynomial degree for N , S, and the interaction
term N ×S, finding that a degree of (2, 2, 2) resulted in the
lowest cross-validation error. Both N and S are in log space
(see Appendix B for more details).

As seen in Figure 1a, the IsoFLOP surface plot is parabolic
along model size, suggesting that the findings of Hoffmann
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et al. (2022) extend to MoEs across different sparsity lev-
els, i.e., L(N ;C, S) is parabolic, with its optimal solution
located at the turning point. When considering the total
number of parameters N , the optimal value increases as
the sparsity level increases, while for the active number of
parameters Na the optimal value decreases with the sparsity
level. This indicates that by increasing the sparsity level the
training compute optimal models are larger but have fewer
FLOPs per example, i.e., lower inference cost. Moreover,
along sparsity, the pretraining loss decreases monotonically,
indicating that, for the same compute budget, sparser mod-
els achieve better pretraining performance. We observe the
same pattern across different training compute budgets (See
Appendix D.1). To better understand and explain these ob-
servations, we examine slices of the IsoFLOP surface along
the axes of S and N separately in §2.1 and §2.2, respec-
tively.

2.1. Optimal Model Size for Fixed Sparsity Level

Here we examine how sparsity influences scaling laws gov-
erning the relationship between N , Na and C for training-
compute optimal models, i.e. how does N∗ and N∗

a , for a
given C, S (Equation 3), change as we increase S? Look-
ing at slices of the IsoFLOP surface along the model size
dimension, in Figure 2b and Figure 2c, we observe how the
IsoFLOP curves shift along loss and model size. Consider-
ing the training-compute optimal model, for a fixed compute
budget, loss decreases as we increase sparsity. Furthermore,
while sparser models have larger N compared to denser
models, as seen in Figure 2b, they have a smaller active
parameter count Na; hence, fewer FLOPs per example. In-
tuitively, more parameters in total increase the capacity of
the sparser models to fit the data, while fewer number of
active parametes, hence fewer FLOPs per example, allow
the model to be trained with more tokens, i.e., higher D, for
the same training compute budget.

2.2. Optimal Sparsity Level for Fixed Model Size

In this section we aim to understand the dynamics between
the total number of parameters and FLOPs per example in
MoEs. In Section 2.1 we are considering the case where
there is no bound on the total number of parameters. In this
case, we observe that under fixed training compute budget
in terms of FLOPs, it is better to train sparser models with
higher total number of parameters. However in practical
scenarios it is reasonable to assume that there would be
some bounds on the memory and hence the total number
of parameters of a model. This leads us to a fundamental
question: Is there an optimal balance between the total
number of parameters and and FLOPs per example under
a fixed training-compute budget? Thus, we investigate the
optimal sparsity level when total number of parameters is
fixed. Specifically, we ask: Given N and C, How does S∗

change as we vary N?

To address this, we look into slices of the IsoFLOP surface
along the sparsity dimension. As we can see in Figure 2a,
for a fixed training compute budget and fixed model size
L(S;N,C) exhibits a parabolic profile, reaching its opti-
mum value at the vertex where S = S∗. It is noteworthy that
for a given total training compute, there is threshold value
Nth for the total number of parameters, where for larger
models, models with N > Nth, increasing sparsity always
has a positive impact, i.e., optimal sparsity level approaches
1.0. More accurately, for a fixed compute budget the opti-
mal sparsity level increases with model size and converges
to 1 as the model size grows (see Figure 4 in §D.2 in the
Appendix for more details). Note that the optimal model,
here is not the largest model, i.e., there is a compute optimal
model size in terms of total parameters even after sparsity
is introduced, and increasing total number of parameters
would lead to under-training if training compute budget is
fixed.

These results highlight the importance of balancing the num-
ber of parameters with FLOPs per example in MoEs. Intu-
itively, when the total number of parameters is small, higher
sparsity results in fewer active parameters, and thus fewer
FLOPs per example. This reduction in FLOPs per example
may lead to inefficiencies during both training and inference.
Conversely, when the total number of parameters is large,
for a reasonable amount of FLOPs per example, a fixed
compute budget may not allow sufficient training on enough
tokens to make use of the model’s additional capacity.

3. Impact of Training Compute Budget on the
Interaction between Model Parameters and
Sparsity

Does increasing compute budget impact the interaction be-
tween the parameters and FLOPs per example in MoEs and
how they contribute to model’s capacity? In other words,
does the recipe for optimally increasing model capacity, i.e.,
optimal sparsity level for MoEs change as we scale up the
total training compute?

To answer this question. in Figure 3 we illustrate the trends
for changing the total number of parameters, N∗, the num-
ber of active parameters, N∗

a , and the loss, L∗, with sparsity
level across different compute budgets.

Figure 3c shows that the optimal sparsity level approaches 1
across all compute budgets used in our experiments. There
is no significant difference observed in the slope of the loss
vs sparsity curves across different training compute budgets
used in our experiments. This observation suggests that
there is no diminishing effect of sparsity on the pretraining
loss as we increase training compute budget, i.e., if there
is no constraint on the model size, sparsity improves the
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Figure 3. Effect of compute budget on model size, number of active parameters and loss with sparsity. Across all compute budgets,
we observe that (a) the optimal model size N increases with sparsity, (b) the optimal number of active parameters Na decreases with
sparsity, and (c) the loss L decreases with sparsity.
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Figure 4. Effect of training budget C and total parameters N
on MoE sparsity. Optimal MoE sparsity S∗ changes with respect
to the total number of parameters N and the training budget C.
The x-axis represents the total parameters N on a logarithmic
scale, and the y-axis shows the optimal MoE sparsity S∗.

performance of the model across all training budgets.

In Figure 3a and Figure 3b, , we see a consistent trend of
increasing N and decreasing Na for compute optimal mod-
els as sparsity level increases across all training compute
budgets. Moreover, as can be seen in Figure 4, when model
size in terms of total number of parameters is fixed, optimal
sparsity level decreases with training compute budget while
increases with model size as discussed in Section 2.2.

4. Effect of MoE Sparsity on Downstream
Task Performance

In this section, we study how sparsity affects the relationship
between upstream and downstream performance of MoEs.
In other words, does sparsity impact the relative gains from
improvements in pretraining tasks on downstream tasks?

We use downstream tasks from the evaluation suite
in llm-foundry3 for benchmarking our pretrained mod-
els, specifically in an in-context few-shot learning setup.
This setup focuses on evaluating a model’s ability to learn
and adapt to new tasks with limited examples. The down-
stream task are devided into four pre-defined categories
namely: language understanding, world knowledge, reading
comprehension, and symbolic reasoning to help us systemat-
ically test whether the downstream vs upstream performance
trend remains the same or is different as we vary sparsity
values.

We observe from Figure 5a (language understanding), Fig-
ure 5c (commonsense reasoning), and Figure 5d (world
knowledge) that, in an in-context few-shot learning setting,
there is a strong correlation between upstream (pretraining)
loss and downstream performance (error) across all these
tasks. For these tasks, downstream performance in the few-
shot setting is predictable based on upstream performance,
regardless of the sparsity level. This indicates that, in the
context of these tasks, the optimal sparsity level follows the
same trend as the optimal sparsity observed during pretrain-
ing. However, Figure 5b (reading comprehension) shows an
example of a task where models with higher sparsity transfer
more poorly compared to denser models. This decrease in
the transfer performance of sparser models on these tasks
may be due to the lower inference-time compute in sparser
models compared to their denser counterparts for a similar
pretraining loss. Further analysis is needed to verify this
intuition.

If fewer FLOPs per example are the reason behind the worse
transfer performance in sparser models, this effect might di-
minish with a larger total training compute budget, as the op-
timal active number of parameters increases. Moreover, one
can use approaches like chain-of-thought reasoning (Wei
et al., 2022b) to independently increase FLOPs per example

3Github repository: https://github.com/mosaicml/
llm-foundry
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Figure 5. Effect of sparsity on downstream vs upstream performance. Downstream error shows a tight relationship with pretraining
(“upstream”) loss across downstream tasks across all sparsity levels.

during inference time.

In Appendix E, we explore whether increasing inference-
time compute via Chain-of-Thought (CoT) prompting can
improve the performance of MoEs on tasks that require more
reasoning. Our experiments indicate that MoEs benefit more
from this increased compute compared to dense models with
a similar number of active parameters. This suggests that
dynamic compute allocation during inference may be crucial
for MoEs to perform well on complex reasoning tasks.

While our results may indicate that there may be no ad-
ditional benefit obtained via sparsity in MoEs beyond the
efficiency gains for pretraining, we caution the reader that
this suggestion may be an artifact of the scale of our exper-
iments. In the end, since, as shown in §2, sparser models
are more efficient both in terms of training and inference
cost (when measured in terms of theoretical FLOPs), we
can reach better pretraining performance with higher spar-
sity levels at a lower cost, which can translate to better
downstream performance.

5. Incorporating Sparsity into Scaling Laws
The scaling laws proposed by Kaplan et al. (2020) provide
a framework for predicting loss in dense models by estab-
lishing a power-law relationship between loss L, number of
parameters N and dataset size D, where N and D interact
linearly. Formally, the relationship is given by:

L(N,D) =
a

Nα
+

b

Dβ
+ e (5)

Here, the term Nα captures the inverse relationship between
model size and loss, where an increase in model size N leads
to a reduction in loss. The exponent α quantifies the rate
of this decrease; a larger α suggests a steeper reduction in
loss with increasing model size. Similarly, the term Dβ

indicates the impact of dataset size D on loss, with larger
datasets contributing to lower loss values. The exponent β

measures this relationship, where a larger β implies a greater
benefit from increased data. The constant e represents an
asymptotic minimum for the loss, as both model size and
dataset size approach infinity.

For dense models with a fixed total training FLOPs, C, the
parameters N and D are interrelated through the equation
for estimating FLOPs per example, given as C = 6ND
for transformers. However, in MoEs (Mixture of Experts
models), this relationship involves the active number of pa-
rameters Na rather than the total parameter count N . Thus,
D and Na define the total training FLOPs rather than D and
N . Given the analysis conducted in §2, we know that if the
total number of parameters N is fixed, the optimal sparsity
level, i.e., active number of parameters would depend on
N . Motivated by this observation, we suggest the following
parametric form that includes a multiplicative interaction
between N and S or Na to predict the loss:

L(N,D, S) =
a

Nα
+

b

Dβ
+

c

(1− S)
λ
+

d

(1− S)
δ
Nγ

+e

(6)
The term (1− S) in the above equation provides a rough
estimate of the percentage of active parameters. If the expo-
nent for the multiplicative terms is the same then that term
provides an approximate estimate of the number of active
parameters.

By incorporating sparsity into the scaling law equation, we
can eliminate the need for parameters specific to MoEs, such
as the total and active number of experts. As demonstrated
by Frantar et al. (2024), this formulation also holds for
other sparsity mechanisms, such as weight sparsity, where
individual neural network connections are pruned.

We use the recipe described by Hoffmann et al. (2022) and
use the L-BFGS algorithm to fit the coefficients in equa-
tion 6 using a Huber loss with δ = 10−3. Optimal coef-
ficient values were determined through a grid search (see
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Table 2 for search values). The results of data fitting and
validation are shown in Figure 6. The estimated values are
shown in Table 3 in Appendix F.

6. Discussion
Our findings amplify the findings of Ludziejewski et al.
(2024) and further justify the effort to work toward MoEs
with experts larger in number and smaller in size (He,
2024). For downstream tasks which their performance is pre-
dictable given the pretraining loss (i.e., perplexity), sparsity
potentially provides efficiency gains both during pretraining
and inference.

Here is a summary of our observations as discussed in Sec-
tions 2 to 5 :

• Larger, Sparser Models Perform Better under a Fixed
Compute Budget: When memory and communication
overheads are disregarded, increasing sparsity while pro-
portionally expanding the total number of parameters con-
sistently leads to a lower pretraining loss, even when
constrained by a fixed training compute budget (see § 2).

• Optimal Sparsity for Fixed Model Size: For any given
number of parameters and under a fixed training compute
budget, model performance as a function of sparsity ex-
hibits a parabolic pattern, reaching its peak at an optimal
sparsity level (see §2.2). Specifically, the optimal sparsity
level:

– Increases with the total number of parameters ap-
proaching 1.0 for larger models. i.e., if a model is
relatively small for a given training compute budget,
sparsifying it more than a threshold will hurt its per-
formance. On the other hand, if a model is relatively
large for a given compute budget, further sparsifying
it helps as it leads to increase in the number of to-
kens the model is trained on under the given training
budget constraints (see §2.2).

– Increases across all model sizes as the training com-
pute budget increases (see §D.1 and §D.2).

• Effect of Sparsity on Scaling Laws for Optimal Model
Size: For any specific sparsity level, performance of the
models as a function of their size exhibits parabolic be-
havior under a fixed training compute budget. i.e., the
model reaches its optimal performance at a vertex, that
indicates optimal model size. Under these conditions:

– The optimal active number of parameters decreases
as the sparsity level increases, leading to smaller
FLOPs per example and more efficient inference
even though the total number of parameters increases
(see §2.1).

– While the trend of increasing active number of pa-
rameters is similar across all training compute bud-
gets; the optimal active number of parameters de-
crease more rapidly with sparsity as the training
compute budget increases (see §3).

• Effect of Sparsity on Downstream Performance: For
most downstream tasks, models with similar pretraining
perplexity have similar downstream task performance re-
gardless of sparsity. For reading comprehension tasks
(e.g., CoQA (Reddy et al., 2019), SQuAD (Rajpurkar
et al., 2018)), denser models perform better, poten-
tially due to their higher inference-time compute than
a perplexity-matched sparse model. Strategies to increase
inference time compute dynamically (Wei et al., 2022b;
Goyal et al., 2024) may address this gap.

• Parametric Scaling Law: We propose a parametric form
for scaling laws that accounts for sparsity. The model coef-
ficients are estimated using the empirical data obtained by
training compute-optimal models. An interesting obser-
vation from Appendix F is that the exponent for sparsity
term λ is negative which is consistent with our intuition
that sparser models lead to a lower perplexity.

6.1. Limitations

In our analysis, similar to other scaling law studies (Kaplan
et al., 2020; Hoffmann et al., 2022), we have measured the
costs for both training and inference exclusively in terms of
FLOPs. While there may be discrepancies between actual
computational costs and theoretical FLOPs due to hardware
specifications, infrastructure, and implementation details,
it is reasonable to abstract away from these factors when
comparing similar models under fixed conditions. However,
an important aspect not accounted for in this study is the
cost associated with memory usage and communication
overhead, which could potentially increase as we raise the
sparsity level. Incorporating these factors is challenging
because they are highly dependent on the hardware used.
To address this limitation to some extent, in Section 2.2 we
investigate the optimal sparsity level under the setting where
total number of parameters is fixed.

Despite the limitation with using an approximate method
to quantify FLOPs, our findings highlight the importance
of investing in methods to enhance the efficiency of sparse
Mixture-of-Experts models. By increasing model capacity
through additional parameters while minimizing per-unit
computation costs, these models have the potential to im-
prove both efficiency and performance. The availability
of GPUs with larger memory, for e.g., the recently intro-
duced H200 GPU chip with 141 GB of memory as well
as improving the efficiency of training and deployment
pipelines (NeMo Authors, 2025) suggest that there is sig-
nificant interest in developing efficient implementations for
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(b) Validating scaling law on held-out dataset.

Figure 6. Scaling law fit on data obtained from training compute-optimal models. Figure 6(a) shows the fit on the data used to estimate
the coefficients for equation 6, while Figure 6(b) validates these coefficients on a held-out dataset. All data points with S = 0.98 were
excluded from the fitting process for out-of-sample validation. The dashed lines represent equal loss values.

MoEs.

7. Related Work
7.1. Scaling Laws for Language Models

Scaling laws have proven to be a powerful framework for
understanding and predicting the performance of language
models. Existing studies, such as Kaplan et al. (2020)
and Hoffmann et al. (2022), reveal that power-law rela-
tionships govern model performance as a function of factors
like model size, data size, and compute budget, offering
predictable performance improvements with increased re-
sources.

Hoffmann et al. (2022) emphasizes the critical balance be-
tween model size and the number of training tokens when
the training compute budget is fixed, showing that scaling
the model without corresponding data increases can lead to
suboptimal performance. Additionally, DeepSeek-AI (2024)
explores more nuanced scaling behaviors by incorporating
data quality, demonstrating that higher-quality data allows
for more efficient scaling, and thus, a larger portion of the
compute budget should be allocated to increasing model
size.

Recent work extends scaling law analysis to specialized
contexts, including over-training (Gadre et al., 2024), down-
stream task performance, and multilingual or multi-modal
settings, where scaling laws provide valuable insights and
can be adapted to address specific challenges.

7.2. Scaling Laws for MoEs

Mixture-of-Experts (MoE) models (Shazeer et al., 2017;
Lepikhin et al., 2021; Fedus et al., 2022; DeepSeek-AI,
2025) have emerged as a powerful architecture for language
modeling, primarily because they decouple computational
cost from parameter count. This separation between param-
eters and FLOPs per token in MoE architectures calls for
scaling laws that can accurately factor in the contributions
of both.

Previous research on the scaling behavior of MoE models
has established foundational scaling laws, incorporating
factors such as total parameter count, the number of experts,
and the granularity of these experts (Clark et al., 2022;
Ludziejewski et al., 2024; Wang et al., 2024). However,
these studies typically assume a fixed configuration for other
critical variables influencing FLOPs per token, such as the
number of active experts per input. In contrast, we propose
a generalized scaling law that considers variables like active
parameter count and sparsity level, thereby expanding the
applicability of MoE scaling laws.

A common theme in the literature suggests that training
sparser models—achieved by increasing the number of
smaller experts—offers significant gains in efficiency for
both pretraining and inference phases. Through a compre-
hensive large-scale study, we provide empirical evidence for
this, analyzing the impact of sparsity level on efficiency and
defining optimal configurations.

Supporting this, Du et al. (2021) demonstrates GLaM’s
superior efficiency and performance compared to GPT-3,
showing that MoE architectures can achieve high perfor-
mance with significantly lower computational and energy
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costs. Further insights are offered by Clark et al. (2022),
who analyze scaling behaviors across various MoE routing
techniques. While their study finds that MoEs generally
outperform dense models, it also notes diminishing bene-
fits as base model sizes grow. Ludziejewski et al. (2024)
challenge this conclusion, attributing the diminished returns
partly to the fixed number of training tokens across models
and constant expert sizes. By introducing "granularity" and
adjusting training durations, they demonstrate that MoEs
can outperform dense models across any compute budget,
debunking the notion of diminishing returns for MoEs with
adaptive expert configurations. More recently, Jelassi et al.
(2024) finds that, on downstream tasks, MoEs scale effi-
ciently with the number of experts (i.e., increasing sparsity)
on memorization tasks, but their reasoning capabilities satu-
rate and lag behind dense models on tasks requiring complex
reasoning when compared based on total number of param-
eters.

Another approach by He (2024) explores the benefits of
training MoEs with larger numbers of smaller experts rather
than the conventional setup of fewer, larger experts. They
introduce Parameter Efficient Expert Retrieval (PEER), a
novel routing mechanism designed to tackle the computa-
tional and optimization challenges that arise when handling
a high number of experts, thus enabling efficient scaling of
MoE models.

Lastly, Yun et al. (2024) draws attention to the increased
inference costs associated with scaling MoEs by adding
experts. While additional experts may not substantially
affect training costs, they can inflate inference costs, thereby
diminishing deployment efficiency. To address this, the
study proposes an over-trained budget allocation strategy,
optimizing MoE models for both performance and efficiency
in deployment.

8. Conclusion
In this paper, we investigated the optimal trade-off between
parameters and compute per example for maximizing model
capacity. Our findings indicate that sparsity, as a knob that
controls FLOPs per example in MoEs, is a powerful mecha-
nism for optimizing model performance under constrained
training compute budgets. By balancing the total number
of parameters, compute, and sparsity, MoEs can be scaled
more effectively. These insights provide valuable guidance
for scaling language models, especially for MoEs, where the
trade-offs between parameters and FLOPs must be carefully
managed.

MoEs were originally introduced to allow increasing model
capacity without a significant increase in inference cost. Our
experiments show that under fixed total training compute
budget increasing sparsity in MoEs leads to smaller FLOPs

per example, higher number of parameters, and lower pre-
training loss simultaneously. In other words, in the context
of MoEs, if there are no constraints on the total number of
parameters, increasing the capacity of the model through
parameter count seem to be the optimal strategy if lower
pretraining loss is the main goal. On the other hand, when
comparing how well the pretraining performance transfers
to various downstream tasks, denser models exhibit better
transfer performance on certain types of task that potentially
rely on deeper processing of the input vs the knowledge
stored in the parameters of the model. This potentially sig-
nals the importance of the role of FLOPs per example in
increasing the capacity of the model during inference. Our
experiments demonstrate that MoEs use Chain-of-Thought
prompting more effectively than dense models, achieving
better performance when allocated additional computational
resources during inference. This observation reveals an in-
teresting direction to improve the performance efficiency of
MoEs at inference time.

Future work will focus on determining the optimal balance
between FLOPs per example and parameter count, with an
emphasis on conducting in-depth analyses of model perfor-
mance across diverse downstream tasks. A key direction
will involve exploring strategies to balance parameter allo-
cation and computational demands to minimize inference
costs. Developing scaling law studies to identify optimal
approaches for achieving efficiency and performance during
inference represents a critical area for further investigation.

Another important avenue will be to examine how the find-
ings on the role of sparsity in MoEs generalize to archi-
tectures or approaches that employ different mechanisms
for independently adjusting FLOPs per example and the
number of trainable parameters. Additionally, an intriguing
direction for future exploration is the study of scaling behav-
iors in models that enable negative sparsity values through
parameter sharing.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Preliminaries
A.1. Notation and Terminology

To aid readability, we provide a list of key symbols used throughout this paper.

Symbol Description

N Total number of model parameters
Na Active number of model parameters
S Sparsity level (ratio of non-active to total experts)
S∗ Optimal sparsity level
L Pretraining Loss (Categorical Cross-Entropy)
L∗ Optimal pretraining loss
C Total training compute budget (in FLOPs)
N∗ Optimal total number of parameters
N∗

a Optimal active number of parameters
E Expansion factor (number of experts per MoE layer)
K Number of selected experts per token
G Granularity of experts (size relative to base MLP)
D Dataset size (number of training tokens)
α, β, γ, λ, δ, a, b, c, d, e Coefficients in the parametric scaling law equation

In this paper, we use the term "compute" in a general sense to refer to computational cost. Unless otherwise specified,
"compute" and "FLOPs" (Floating Point Operations) are used interchangeably to quantify this cost.

A.2. Mixture-of-Expert (MoE) Transformers

Mixture-of-Experts Transformers modify the standard transformer architecture by introducing in the MLP layer. In this
design, the experts are MLP (Multi-Layer Perceptron) modules that follow the attention mechanism and are selectively
activated for each token. A gating mechanism determines which MLP experts are most relevant for each token, ensuring that
only a subset of experts (top-k) is active at any given time, while the rest remain inactive. Below, we provide the notations
used throughout the paper for various terms related to training MoEs.

Total and Active Parameters: In MoEs, we distinguish between total and active parameters, denoted by N and Na,
respectively. The total parameter count, N , includes all parameters of the network, encompassing both the experts and the
rest of the architecture. The active parameter count, Na, refers to the parameters associated with the active portion of the
experts, along with the rest of the network that is always utilized.

Top-k Expert Selection: In MoEs, the gating mechanism assigns tokens to a subset of experts using a top-k selection
process, where k denotes the number of experts activated for each token. The gate computes a relevance score for each expert,
and the top k experts with the highest scores are selected and activated. This selective activation limits the computational
overhead by ensuring that only a fraction of the experts are used per token.

Expansion Factor and Granularity: The expansion factor, typically denoted by E, represents the increase in model
capacity due to the inclusion of multiple experts, measured as a multiplicative factor relative to the base dense model. The
granularity, G, determines the size of each expert relative to the size of the MLP module in the base dense model. The total
number of experts in the model is given by E ×G, where E scales the capacity and G controls the level of granularity.

Sparsity (S): In general, sparsity is defined as the ratio of inactive to total parameters. However, in the context of MoEs,
we focus on the sparsity of the MLP modules specifically. Therefore, we define the sparsity level as the ratio of inactive to
total experts, given by:

S =
number of non-active experts

number of total experts
. (7)

13



Parameters vs FLOPs: Scaling Laws for Optimal Sparsity for Mixture-of-Experts Language Models

This definition provides an interpretable measure of sparsity but cannot be directly used to calculate the active parameter
count Na due to the contribution of other parameters in the model that remain unsparsified.
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B. Experimental Setup
We train and evaluate auto-regressive sparse Mixture-of-Experts (MoE) language models of varying sizes and configurations
on subsets of the RedPajamaV1 dataset (Together Computer, 2023). The key variables we explore in our experiments are
total model parameters N , training compute budget C, and the MoE sparsity S.

Pre-training data. Our models are pre-trained on subsets of the RedPajamaV1 dataset4 (Together Computer, 2023),
which attempts to replicate the LLaMA pre-training data recipe and comprises 1.2 trillion tokens from sources such as
Common Crawl, C4, GitHub, and Wikipedia. In all our experiments, the effective dataset size is adjusted based on the
training compute budget C and the model size N . We tokenize the data using the GPT-NeoX tokenizer (Black et al., 2022),
which has a vocabulary size of 50, 432 tokens.

Model and tokenizer. We use auto-regressive transformer-based MoE language models in order to study compute-
parameter trade-offs by varying MoE sparsity. We use the Megablocks library (Gale et al., 2023) to train dropless MoEs in
which the routing mechanism ensures that all tokens are efficiently routed without being dropped due to routing capacity
constraints.

Optimizer and scheduler. We optimize our models using the scale-free Adam optimizer5 with variable learning rate, a
weight decay of 1× 10−5, and fixed Adam-specific parameters β = (0.9, 0.95) and ε = 1× 10−8. We use a learning rate
scheduler consisting of a linear warm-up phase followed by a cosine decay. The warm-up phase increases the learning rate
from 0 to the base learning rate over a fraction of the total training steps (selected from {0.1, 0.05, 0.02}). After warm-up,
the learning rate decays following a cosine schedule for the remaining training steps.

Fitting IsoFLOP surfaces. Recall that in Section 2, we fit isoFLOP surfaces to predict pretraining loss L as a polynomial
function of model size N and MoE sparsity S for a fixed training budget C. The polynomial function takes the form

L(N,S) =

α1∑
i=1

aiN̂
i +

α2∑
i=1

biŜ
i +

α3∑
i=1

ci(N̂ · Ŝ)i + d (8)

where N̂ = logN and Ŝ = − log(1 − S)—we find that applying log transformations improves the fit of the resulting
IsoFLOP surface. Through a grid search over the polynomial coefficients α1, α2, α3 ∈ {0, 1, 2, 3, 4}, we found that the best
fit was obtained for α = β = γ = 2, i.e., a quadratic polynomial over N̂ and Ŝ. We evaluate the fitted IsoFLOP surfaces
in Figure 1 by (a) re-running the fitting procedure k = 100 times on randomly subsampled data and (b) evaluating the
Pearson correlation between the true and predicted pretraining loss values on a set of held-out data points.

Hyperparameters. We followed established best practices to train MoEs that included carefully searching over important
hyperparameters like learning rate, weight decay, warm up schedule. Furthermore, we used a load balancing loss, router-Z
loss to stabilize training and QK-normalization to stabilize training. We fix a subset of hyperparameters for which changing
values in preliminary experiments (a) did not significantly improve pre-training loss, (b) the optimal value remained the same
across several model configurations, or (c) in order to reduce the search space (i.e., limited compute resources). Specifically,
we first opted to use z-router loss (Zoph et al., 2022) and qk-normalization (Wortsman et al., 2023) in order to stabilize
training for large MoEs. Second, we fixed MoE router jitter noise to 0, as it did not improve performance. We also fixed our
batch size to 1024 for all model sizes.

We swept over hyperparameters that, when adjusted, (a) significantly improved pre-training loss and (b) the optimal values
varied across different model configurations. We increase the MoE sparsity by decreasing the number of active experts
and/or increasing the number of total experts. We also varied the MoE granularity (Ludziejewski et al., 2024), MoE load
balancing regularizer, Adam learning rate, and linear warm-up steps (fraction) in order to improve pre-training loss. The
table below summarizes our hyperparameter sweeps:

4GitHub repository: https://github.com/togethercomputer/RedPajama-Data
5Scale-free Adam: https://fabian-sp.github.io/posts/2024/02/decoupling/

15

https://github.com/togethercomputer/RedPajama-Data
https://fabian-sp.github.io/posts/2024/02/decoupling/


Parameters vs FLOPs: Scaling Laws for Optimal Sparsity for Mixture-of-Experts Language Models

Table 1. Hyperparameter configurations and search spaces

Hyperparameter Configuration Search Space

Sparsity Level Tuned {0, 25, 50, 75, 90, 95, 98}%
Number of Total Experts Tuned Adjusted depending on sparsity
Number of Active Experts Tuned Adjusted depending on sparsity
Granularity Tuned {1, 2}
Learning Rate Tuned [0.003, 0.002, 0.001]

Load Balancing Factor Tuned {0.02, 0.05}
Warm-up Steps Tuned {2, 5, 10}%
Batch Size Constant 1024
Jitter Noise Constant 0
z-Loss Constant 0
z-Router Loss Constant 0.001
QK Norm Constant Applied

It is also noteworthy that, in this paper, we have prioritized training compute-optimal models, in contrast to many published
results on large language models (LLMs), which often rely on over-trained models. As a result, the performance of the
models we use for the analysis in this paper is not directly comparable to those of other studies, where they overtrain smaller
language models, to reduce the cost of inference relative to training.
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C. Estimating Mixture-of-Expert (MoE) FLOPs
Similar to prior work on scaling laws (e.g., Kaplan et al. (2020); Hoffmann et al. (2022); Ludziejewski et al. (2024)), we
use theoretical FLOP estimates as proxies for training and inference costs of language models. In this section, we (a) outline
our methodology for estimating FLOPs for MoEs and (b) show that the proposed estimator closely approximates empirical
FLOPs of large-scale MoEs.

Setup and notation. Consider an MoE model with nlayers MoE layers, each with an embedding dimension of dmodel.
We denote the number of total experts and active experts in each MoE layer by Etotal and Eactive respectively. Follow-
ing Ludziejewski et al. (2024), we let G denote the MoE granularity, which defaults to 1 and controls the size of each expert
relative to the size of a feed-forward layer in an equivalent dense transformer. In order to change sparsity in a more granular
manner, we treat the number of active experts as an independent variable that does not scale with granularity G. In our
experiments, we use a vocabulary size nvocab = 50, 432, a context length nctx of 2048, and GLU modules (Gated Linear
Units) (Shazeer et al., 2017) over feed-forward modules as the architecture of choice for MoE experts. We also set the (a)
hidden dimension of each GLU expert dffn to 4 · dmodel and (b) instantiate MoEs where the number of attention heads nheads
times the dimensionality for each head dhead equals dmodel, i.e., nheadsdhead = dmodel.

Estimating module-specific FLOPs. To estimate the FLOPs of a given MoE model, we first individually estimate the
FLOPs per token incurred by a forward and backward pass through every module in MoEs. Then, we aggregate these
estimates to obtain the final estimator for the FLOPs per token incurred by a forward and backward pass through the model.

Like in prior work on scaling laws (Kaplan et al., 2020; Hoffmann et al., 2022), we take a two-step approach to estimate
module-specific FLOPs. Given a module, we first estimate the number of parameters in the module and then scale this
with an appropriate constant corresponding to the number of add-multiply operations per parameter through a forward and
backward pass of the given module. We also omit non-leading terms such as non-linearities, biases, and layer normalization
in our estimation. We estimate the FLOPs per token for attention modules, MoE routers, MoE experts, and the final
un-embedding layer as follows:

1. Attention module. We estimate the FLOPs incurred via the QKV (and final) projections, attention logits, and attention
values of all heads in a multi-head attention module as follows.

• QKV (and final) projections. These projections involve 4 · dmodelnheadsdheads = 4d2model parameters. Following Ka-
plan et al. (2020), we use the multiplicative constant C = 6 to account for the add-multiply operations per
parameter in a forward and backward pass through linear modules, resulting in a FLOPs-per-token estimate of
4 · C · d2model.

• Attention logits. The FLOPs required to compute the attention logits for all nctx tokens equals C · n2
ctxdmodel

FLOPs, making the FLOP-per-token estimate equal to C · nctxdmodel.
• Attention values. The computation of attention values requires a per-token weighted sum over nctx dmodel-

dimensional vectors, making the estimate C · nctxdmodel.

2. MoE module. Given an MoE layer, we estimate the FLOPs incurred by its router and all experts separately.

• Router. The MoE routing linearly maps a dmodel-dimensional token embedding to a Etotal-dimensional logit vector,
which is subsequently used to map the token to Eactive active experts. Following Ludziejewski et al. (2024), we
use a multiplicative constant R = 14 that accounts for the add-multiply-route operations per router parameter.
The resulting FLOP estimate equals R · dmodelEtotal

• Experts. Each MoE experts corresponds to a GLU module (Shazeer et al., 2017) with dffn = 4 · dmodel. Since
there are Eactive active experts with granularity G, each involving three linear projections, this results in a FLOP
estimate of 1/G · 3 · Eactive · C · dmodeldffn = 12C/G · Eactive · d2model.

3. Un-embedding layer. The un-embedding linear layer maps the final dmodel-dimensional embedding of a token to
nvocab-dimensional logits, making the FLOPs-per-token C · nvocabdmodel.

Estimating MoE FLOPs. We can aggregate the module-level FLOP estimates described above to estimate the FLOPs per
token required for a single forward and backward pass through a given MoE model as follows:

nlayer
(
4Cd2model + 2Cdmodelnctx + 12C/GEactived

2
model +RdmodelEtotal

)
+ Cnvocabdmodel

17



Parameters vs FLOPs: Scaling Laws for Optimal Sparsity for Mixture-of-Experts Language Models

When Etotal/dmodel is small, which is typically the case in practice, the FLOPs induced by MoE routing can be ignored as they
contribute negligibly to the estimator. This allows us to simplify the estimator to:

MoE FLOPs per token := C · nlayersd
2
model

(
4 +

2nctx

dmodel
+

12Eactive

G
+

nvocab

dmodelnlayers

)
(9)

Evaluating 6NaD as a FLOPs-per-token estimator in MoE Models For standard dense transformers, the FLOPs are
often estimated as 6ND (Kaplan et al., 2020; Hoffmann et al., 2022). Given that D is fixed and not adjusted dynamically,
N can serve as a relative estimator of FLOPs per token for dense transformer models.

To adapt the 6ND estimator for MoE models, we replace N with Na (the active number of parameters)—the number of
parameters used in every forward and backward pass. In Figure 7, we evaluate the accuracy of the 6NaD estimator by
plotting the ratio between the MoE FLOPs estimator described in Equation 9 and 6NaD as a function of model size N and
a fixed context length D = 2048. The results show that, across all sparsity levels, the ratio remains close to one, and the gap
between the two estimators decreases as model size N increases.
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Figure 7. Accuracy of 6NaD FLOPs Estimator for MoEs. Ratio of the MoE FLOPs estimator (Equation 9) to the 6NaD estimator as a
function of the total number of parameters, for a fixed context length of D = 2048, used in our experiments.
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D. Additional Analysis
D.1. Interplay between parameters and FLOPs per example

Recall that in Section 2, we showed that isoFLOP curves were predictive of pretraining loss for different parameter counts
and sparsity levels. In this section, we show similar results with additional training compute budgets.

1. In Figure 8, we first show that IsoFLOP surfaces mapping model size N and sparsity level S to pre-training loss L are
predictive in a similar way for all training compute budgets that we consider, ranging from 3e19 to 1e21 FLOPs.

2. In Figure 9, we analyze the fitted IsoFLOP surfaces (one for each training budget) and find that the (a) effect of model
size N on optimal MoE sparsity S∗ and (b) the effect of MoE sparsity S on the optimal total and active parameters, N∗
and N∗

a , is similar for all training budgets.

D.2. Effect of training budget and model size on optimal MoE sparsity

Recall that in Section 3, we demonstrated how the relationship between optimal total parameters N∗, optimal active
parameters N∗a, and optimal pretraining loss L predictably changes as a function of sparsity S and training budget C. In
this section, we use the fitted isoFLOP surfaces to analyze how the optimal MoE sparsity S∗ changes as a function of total
parameters N and training budget C, as shown in Figure 4. Our main findings are:

• Across all training budgets (ranging from 3e19 to 1e21 FLOPs), increasing the total parameters N leads to an increase in
the optimal sparsity level S∗.

• For a fixed model size (i.e., total parameters N ), increasing the training budget C generally reduces the optimal sparsity
level S∗.

• The relationship between model size N and optimal S∗ is not linear. For smaller models (up to about 500 ·106 parameters),
the optimal sparsity remains at 0 (i.e., dense) for most compute budgets.

D.3. Effect of sparsity on downstream task performance

In Section 4, we analyzed the relationship between upstream pre-training loss and downstream task performance across
different MoE sparsity levels. We found that language understanding and world knowledge tasks generally showed a strong
correlation between upstream and downstream performance, while reading comprehension tasks seemed to favor denser
models to some extent.

In this section, we provide additional plots for a broader range of tasks within each category to further support our findings.
We consider the following tasks:

• Common Sense Reasoning: PIQA, CommonSenseQA, OpenBookQA, COPA

• Language Understanding: LAMBADA, HellaSwag, Winograd, Winogrande

• Reading Comprehension: SQuAD, CoQA, BoolQ

• World Knowledge: TruthfulQA, ARC-Easy, ARC-Challenge

Figure 10 shows the relationship between upstream pre-training loss and downstream task performance for these additional
tasks. Each row corresponds to a task category and each subplot represents a different task, with points colored according
to MoE sparsity S. The x-axis represents the upstream pre-training loss, while the y-axis shows the downstream task
performance metric (usually accuracy or error rate). These results supplement our main findings from Section 4:

• We observe consistent trends across tasks within each category, with language understanding and world knowledge tasks
showing strong correlations between upstream and downstream performance regardless of sparsity.

• Reading comprehension tasks continue to show a slight advantage for denser models, while common sense reasoning
tasks (which can be considered part of the symbolic problem-solving category) show more varied relationships between
upstream and downstream performance.

19



Parameters vs FLOPs: Scaling Laws for Optimal Sparsity for Mixture-of-Experts Language Models

66M178M485M1B4B10B26B

Total Parameters N

0%39%63%78%86%92%95%97%
98%

MoE Sparsity S

2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0

Lo
ss

 

(a) IsoFlop Surface (Budget: 3e19 FLOPs)

2.6 2.8 3.0
Ground-truth Pre-training Loss

2.5

2.6

2.7

2.8

2.9

3.0

3.1

P
re

di
ct

ed
 P

re
-tr

ai
ni

ng
 L

os
s

MSE = 0.0004

(b) Ground-truth vs. Predicted Loss on Held-out Data

Sparsity level S
S = 0%
S = 25%
S = 50%
S = 75%

S = 90%
S = 95%
S = 98%
x = y

2.5 4.0

Loss 

0% 50% 98%

Sparsity S

66M178M485M1B4B10B26B

Total Parameters N

0%39%63%78%86%92%95%97%
98%

MoE Sparsity S

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

Lo
ss

 

(a) IsoFlop Surface (Budget: 6e19 FLOPs)

2.4 2.6 2.8 3.0 3.2
Ground-truth Pre-training Loss

2.4

2.6

2.8

3.0

3.2

P
re

di
ct

ed
 P

re
-tr

ai
ni

ng
 L

os
s

MSE = 0.0011

(b) Ground-truth vs. Predicted Loss on Held-out Data

Sparsity level S
S = 0%
S = 25%
S = 50%
S = 75%

S = 90%
S = 95%
S = 98%
x = y

2.4 3.8

Loss 

0% 50% 98%

Sparsity S

66M178M485M1B4B10B26B

Total Parameters N

0%39%63%78%86%92%95%97%
98%

MoE Sparsity S

2.4

2.6

2.8

3.0

3.2

3.4

3.6

Lo
ss

 

(a) IsoFlop Surface (Budget: 1e20 FLOPs)

2.4 2.6 2.8 3.0
Ground-truth Pre-training Loss

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

P
re

di
ct

ed
 P

re
-tr

ai
ni

ng
 L

os
s

MSE = 0.0007

(b) Ground-truth vs. Predicted Loss on Held-out Data

Sparsity level S
S = 0%
S = 25%
S = 50%
S = 75%

S = 90%
S = 95%
S = 98%
x = y

2.3 3.6

Loss 

0% 50% 98%

Sparsity S

294M485M800M1B2B4B6B10B16B26B

Total Parameters N

0%39%63%78%86%92%95%97%
98%

MoE Sparsity S

2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

Lo
ss

 

(a) IsoFlop Surface (Budget: 3e20 FLOPs)

2.2 2.3 2.4 2.5 2.6
Ground-truth Pre-training Loss

2.2

2.3

2.4

2.5

2.6

P
re

di
ct

ed
 P

re
-tr

ai
ni

ng
 L

os
s

MSE = 0.0001

(b) Ground-truth vs. Predicted Loss on Held-out Data

Sparsity level S
S = 0%
S = 25%
S = 50%
S = 75%

S = 90%
S = 95%
S = 98%
x = y

2.2 2.9

Loss 

0% 50% 98%

Sparsity S

485M800M1B2B4B6B10B16B26B

Total Parameters N

0%
39%

63%
78%

86%
92%

95%

MoE Sparsity S

2.1

2.2

2.3

2.4

2.5

Lo
ss

 

(a) IsoFlop Surface (Budget: 1e21 FLOPs)

2.1 2.2 2.3
Ground-truth Pre-training Loss

2.05

2.10

2.15

2.20

2.25

2.30

2.35

P
re

di
ct

ed
 P

re
-tr

ai
ni

ng
 L

os
s

MSE = 0.0000

(b) Ground-truth vs. Predicted Loss on Held-out Data
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Figure 8. IsoFLOP surfaces over total parameters N , MoE sparsity S, and pretraining loss L for different compute budgets. The
rows correspond to IsoFLOP surface fitted using models trained with a budget of 3e19, 6e19, 1e20, 3e20, and 1e21. The subplots on the
left visualize IsoFLOP surfaces mapping total parameters N and sparsity level S to pretraining loss L. The subplots on the right correlate
the ground-truth pretraining loss with the estimated pretraining loss on held-out data. Taken together, these results show that isoFLOP
surfaces are accurate proxies for understanding how model size and MoE sparsity jointly impact pretraining loss.
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Figure 9. Optimal MoE configurations predictably change with training compute budget. Each row corresponds to an analysis of
how optimal MoE sparsity S∗, total parameters N∗, and active parameters N∗

a change for a given training budget. The subplots on the
left show that (a) increasing the training budget increases the model size N (denoted with black dots) with the minimum pretraining loss
and (b) for models smaller than a threshold (which increases with training budget), dense models (i.e., 0% sparsity) fare better than sparse
MoEs. The subplots in the second and third panel show that (a) increasing MoE sparsity increases the optimal total parameters N∗ and
decreases the optimal active parameters N∗

a . In both cases, for a fixed sparsity level, increasing the budget shifts increases the optimal
total and active parameters.

D.4. Comparing IsoFLOP Surface Analysis with Independent 2d IsoFLOPs

Recall that in Section 2, we used IsoFLOP surfaces that predict pre-training loss across varying parameter counts and
sparsity levels to understand how optimal sparsity and optimal model size depend on each other.

In this section, we evaluate whether these findings remain consistent when we do not rely on fitted IsoFLOP surfaces.
Specifically, similar to Approach II in Hoffmann et al. (2022), we directly fit univariate quadratic functions that map model
size N to pre-training loss L, independently for each sparsity level and training compute budget. We then assess these
univariate fits to determine whether our findings in Section 2 hold.

• In Figure 12, each row shows how the optimal total and active parameters change as a function of MoE sparsity for fixed
training budgets. As in our findings from Section 2 (Figure 2), increasing sparsity increases the optimal total parameters
while decreasing the optimal active parameters. Moreover, larger compute budgets still result in higher optimal total and
active parameters, regardless of the sparsity level.

• Furthermore, in Figure 11, we observe that across all training compute budgets, increasing sparsity reduces the optimal
pre-training loss. This is consistent with the trends identified in Section 3 (Figure 3), thereby validating our earlier results.

E. Does Chain-of-Thought prompting benefit sparse MoEs more than dense models?
In Section 4, we observed that dense models fare marginally better than sparse MoEs on reading comprehension tasks,
potentially due to the higher inference-time compute of a dense model than a perplexity-matched sparse MoE. Then,
in Section 6, we hypothesized that alternative strategies to increase inference-time compute may reduce the gap between
sparse MoEs and dense models on such tasks. In this section, we test this hypothesis by leveraging a “length-controlled”
variant of few-shot Chain-of-Thought (CoT) prompting to indirectly control inference-time compute. We then use this to
study the effect of inference-time compute on downstream task performance of dense and MoE models.
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Figure 10. Downstream task performance vs. upstream pre-training loss. Each subplot shows the relationship between upstream
pre-training loss (x-axis) and downstream task performance (y-axis) for a specific task. Similar to our results in Section 4, we find that the
MoE sparsity level does not change the relationship between upstream pre-training loss and downstream task performance.
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Figure 11. Effect of MoE sparsity on pretraining loss across different training compute budgets. As sparsity increases, the validation
loss decreases for all compute budgets, with larger budgets (darker lines) achieving lower losses at each sparsity level. This trend is
consistent with the findings from Section 3, demonstrating that increasing sparsity reduces the optimal pretraining loss across all compute
budgets.

Experiment setup. We evaluate Qwen1.5 models (Bai et al., 2023) on the GSM8k dataset (Cobbe et al., 2021) to study the
effect of few-shot CoT prompting (Wei et al., 2022b) on downstream task performance. We look at the effect of increasing
inference-time compute (via CoT prompting) on GSM8k performance of dense models with sizes ranging from 0.5B to 14B
and a 5x2.7B sparse MoE. We also use 10 fixed examples from the GSM8k train split as few-shot examples for all runs.

Length-controlled CoT prompting enables control over inference-time compute. Given an instruction-tuned model
and a problem from the GSM8k dataset, we control the inference-time compute of the model by controlling the number
of tokens generated to output the final answer to the given problem. To do so, we observe that providing instructions
via system prompts (with few-shot CoT prompting) does not effectively control the number of generated tokens and, as
a result, inference-time compute. We also observe that the average number of tokens in the few-shot GSM8k answers
(provided in-context) strongly influences the number of tokens generated by the model to solve the given GSM8k question.
Therefore, similar to work on designing GSM8k variants to analyze language modeling phenomena (Mirzadeh et al., 2024;
Li et al., 2024; Zhang et al., 2024), we prompt an instruction-tuned model—Llama-3.1-70b (Dubey et al., 2024) in our
experiment—to rewrite GSM8k answers in approximately k ∈ {5, . . . , 100} words. Then, we use the paraphrased GSM8k
examples as few-shot examples to indirectly control the number of generated tokens. As shown in Figure 13(a), this approach
enables systematic control over the length of paraphrased answers. The strong correlation (ρ = 0.88) between few-shot and
generated answer lengths in Figure 13(b) validates that our approach effectively modulates inference-time compute.
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Figure 12. Effect of MoE sparsity on optimal total and active parameters across different training compute budgets. Each row
shows the change in total and active parameters as a function of sparsity level for fixed training budgets. Increasing sparsity leads to an
increase in the optimal total parameters while reducing the optimal active parameters, consistent with our findings in Section 2 (Figure 2).
Larger training compute budgets result in higher optimal (total and active) parameters across all sparsity levels.
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Figure 13. Varying inference-time compute via length-controlled Chain-of-Thought prompting. We can control inference-time
compute (number of generated tokens) via Chain-of-Thought prompting in two steps: (a) generating paraphrased GSM8k answers of
varying lengths (5-100 words) and (b) using paraphrased answers as few-shot examples in CoT prompts to influence the length of generated
answers determine the model’s output length (ρ = 0.88 correlation). The systematic shift in answer length distributions in subplot (a)
and the linear relationship between few-shot answer length and generated answer lenth (ρ = 0.88 correlation) in (b) validate that our
prompting approach effectively modulates inference-time compute, enabling controlled studies of its impact on model performance.

Effect of length-controlled CoT on downstream task performance. We investigate how inference-time compute affects
GSM8k performance across Qwen1.5 models using 10-shot length-controlled CoT prompting, varying target answer lengths
k from 1 to roughly 70 words on average. As shown in Figure 14, when we increase inference-time compute indirectly
through longer generated answers (x-axis), we observe a roughly linear improvement in GSM8k performance (y-axis) across
all model sizes. The linear fits for each model also indicate a pattern through their slopes m: larger dense models benefit
more from additional inference-time compute. This effect is particularly striking when comparing models at the extremes
(i.e., Qwen1.5-0.5B versus Qwen1.5-14B).

To analyze whether inference-time compute affects dense and sparse MoE models differently, we examine how the
“performance” slope m (i.e., accuracy gain per generated word) varies with model size. While the Qwen1.5-5x2.7B MoE
cannot be directly compared to dense models due to different active parameter counts, we can account for this by plotting m
against the number of active parameters for both architectures. As shown in Figure 15, when controlling for active parameter
count, the MoE model exhibits a higher slope than would be expected from interpolating between dense models. This
suggests that MoE models benefit more from dynamically increased inference-time compute compared to dense models
with equivalent active parameters.
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Figure 14. Effect of length-controlled CoT prompting on GSM8k performance across model scales. We evaluate the relationship
between inference-time compute (controlled via answer length) and GSM8k accuracy for dense Qwen1.5 models (0.5B-14B parameters)
and a 5x2.7B sparse MoE. For all models, increased inference-time compute improves accuracy roughly linearly, with slopes m
indicating the marginal effect. Larger dense models show steeper slopes, demonstrating they benefit more from additional inference-time
compute—for example, the 14B model’s performance improves from 20% to 70% as answer length increases, while the 0.5B model
improves only from 1% to 5%.
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Figure 15. Sparse MoEs benefit more from increased inference-time compute than dense models. We plot the marginal effect of
inference-time compute (accuracy gain per generated word) against model size for dense Qwen1.5 models and a 5x2.7B sparse Qwen1.5
MoE. When controlling for the number of active parameters, the MoE model (orange) shows a higher performance slope than would
be expected from interpolating between dense models (blue), suggesting that sparse MoEs benefit more from dynamically increased
inference-time compute via strategies like CoT prompting.
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F. Incorporating Sparsity into Scaling Laws
Table 2 shows the parameters used to initialize L-BFGS used to fit the proposed parametric scaling law given in Equation 6.
Table 3 shows the estimated parameters for the parameteric model. We use a held out dataset that consists of data points for
models with sparsity value S = 0.98 to validate the performance of the estimated model coefficients. The mean squared
error and the Huber loss error on the dataset used to fit the model is 0.00056 and 0.0036 respectively and 0.0058 and 0.0011
respectively on the out-of-sample validation set. The quality of the fit measured via the R2 metric is 99% on fitting data and
68% on the held out validation dataset.

Table 2. Initial values used to estimate coefficients in Equation 6.

Coefficients Initial Values

log(a), log(b), log(c), log(d) [0, 10, 20]
α, β, γ [0, 0.25, 0.5, 0.75, 1, 1.25]
λ, δ [−1,−0.5, 0, 0.5, 1]
log(e) 1.5

Table 3. Estimated values for coefficients in Equation 6.

Coefficient Estimate

α 0.5962
β 0.3954
λ -0.1666
δ 0.1603
γ 0.1595
a 16612.50
b 5455.67
c 0.4598
d 17.26
e 0.94
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