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ABSTRACT

We introduce a generalization of the Wasserstein metric, originally designed for
probability measures, to establish a novel distance between probability kernels of
Markov systems. We illustrate how this kernel metric may serve as the foundation
for an efficient approximation technique, enabling the replacement of the original
system’s kernel with a kernel with a discrete support of limited cardinality. To
facilitate practical implementation, we present a specialized dual algorithm ca-
pable of constructing these approximate kernels quickly and efficiently, without
requiring computationally expensive matrix operations. Finally, we demonstrate
the effectiveness of our method through several illustrative examples, showcasing
its utility in diverse practical scenarios, including dynamic risk estimation. This
advancement offers new possibilities for the streamlined analysis and manipulation
of Markov systems represented by kernels.

1 INTRODUCTION

Consider a discrete-time Markov system described by the relations:

Xt+1 ∼ Qt(Xt), t = 0,1, . . . ,T −1, (1)

where Xt ∈X is the state at time t, and Qt : X →P(X ), t = 0,1, . . . ,T −1, are stochastic kernels.
The symbol X represents a separable metric space (the state space), and P(X ) is the space of
probability measures on X . Formula (1) means that the conditional distribution of Xt+1, given Xt = x,
is Qt(x). The distribution of the initial state δx0 (the Dirac delta at x0) and the sequence of kernels Qt ,
t = 0, . . . ,T −1, define a probability measure P on the space of paths X T+1.

One of the challenges of dealing with models of the form (1) is the need to evaluate a backward
system (with a sequence of functions ct : X →R):

vt(x) = ct(x)+σt
(
x,Qt(x),vt+1(·)

)
, x ∈X , t = 0, . . . ,T −1;

vT (x) = cT (x), x ∈X .
(2)

Problems of this type arise in manifold applications, such as financial option pricing, risk evaluation,
and other dynamic programming problems.They are particularly difficult when the operators σt(·, ·, ·)
are nonlinear with respect to the probability measures Qt(x) involved.

In equation (2), the operator σt : X ×P(X )×V →R, where V is a space of Borel measurable
real functions on X , is a transition risk mapping. Its first argument is the present state x. The second
argument is the probability distribution Qt(x) of the state following x in the system (1). The last
argument, the function vt+1(·), is the next state’s value: the risk of running the system from the next
state in the time interval from t +1 to T .

A simple case of the transition risk mapping is the bilinear form,

σt
(
x,µ,vt+1(·)

)
=Eµ

[
vt+1(·)

]
. (3)

In this case, the scheme (2) evaluates the conditional expectation of the total cost from stage t to the
end of the horizon T :

vt(x) =E
[
ct(Xt)+ · · ·+ cT (XT )

∣∣Xt = x
]
, x ∈X , t = 0, . . . ,T.
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A more interesting application is the optimal stopping problem, in which ct(·)≡ 0, and

σt
(
x,µ,vt+1(·)

)
= max

(
rt(x) ; Eµ

[
vt+1(·)

])
. (4)

Here, rt : X →R, t = 0, . . . ,T , represent the rewards collected if the decision to stop at time t and
state x is made. Clearly, with the mappings (4) used in the scheme (2),

vt(x) = sup
τ−stopping time

t≤τ≤T

rτ(Xτ), x ∈X , t = 0, . . . ,T ;

see, e.g., Chow et al. (1971). The most important difference between (3) and (4) is that the latter is
nonlinear with respect to the probability measure µ .

One of the challenges associated with the backward system (2) is the numerical solution in the case
when the transition risk mappings are nonlinear with respect to the probability measures involved.
The objective of this paper is to present a computational method based on approximating the kernels
Qt(·) by simpler, easier-to-handle kernels Q̃t(·), and using them in the backward system (2).

The approximation of stochastic processes in discrete time has attracted the attention of researchers
for many decades. Fundamental in this respect is the concept of a scenario tree. Høyland & Wallace
(2001) uses statistical parameters, such as moments and correlations, to construct such a tree. Kaut &
Wallace (2011) involve copulas to capture the shape of the distributions. Heitsch & Römisch (2009)
were probably the first to use probability metrics for reducing large scenario trees. Pflug (2010)
introduced the concept of nested distance, using an extension of the Wasserstein metric for processes;
see also (Pflug & Pichler, 2015). All these approaches differ from our construction in the Markovian
case.

The Wasserstein distance has shown promising results in various applications such as Generative
Adversarial Networks (GAN) (Arjovsky et al., 2017), clustering (Ho et al., 2017), semi-supervised
learning (Solomon et al., 2014), and image retrievals (Rubner et al., 2000; Pele & Werman, 2009),
among others. Some recent contributions measure the distance of mixture distributions rather than
kernels. Bing et al. (2022) propose the sketched Wasserstein distance, a type of distance metric
dedicated to finite mixture models. Research on Wasserstein-based distances tailored to Gaussian
mixture models is reported in (Chen et al., 2020; Delon & Desolneux, 2020; Kolouri et al., 2018).

In parallel, we see continuous efforts to develop fast algorithms for computing the relevant trans-
portation distances. One notable contribution is the Sinkhorn algorithm, introduced by Cuturi (2013),
which incorporates an entropic regularization term to the mass transportation problem. Since then,
both the Sinkhorn algorithm and its variant Greenkhorn (Altschuler et al., 2017) have become the
baseline approaches for computing transportation distance and have triggered significant progress
(Genevay et al., 2016; Lin et al., 2019). Other relevant approaches include accelerated primal-dual
gradient descent (APDAGD) (Dvurechensky et al., 2018; Dvurechenskii et al., 2018; Kroshnin et al.,
2019) and semi-dual gradient descent (Cuturi & Peyré, 2018; 2016).

Contribution. This paper makes a threefold contribution. First, we introduce a kernel distance
based on the Wasserstein distance between distributions. Second, we propose a new particle selection
method that recursively approximates the forward system using the kernel distance. Third, we propose
a decomposable, parallelizable subgradient algorithm for particle selection, avoiding constraints and
matrix computations. We conduct extensive experiments and show that the subgradient algorithm
performs favorably in practice.

Organization. In section 2, we provide a brief overview of the distance metrics, including the
Wasserstein and kernel distances. We also introduce the problem of selecting representative particles
using a mixed-integer formulation based on distance metrics. In section 3, we present our subgradient
method, its relation to the dual problem, and the algorithm used for selecting particles. In section 4,
we present a numerical example. We use particles generated by the subgradient method to solve an
optimal stopping problem based on a multi-dimensional stochastic process. In section 5, we conclude
this paper.
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2 THE PROBLEM

2.1 WASSERSTEIN DISTANCE

Let d(·, ·) be the metric on X . For two probability measures µ,ν on X having finite moments up
to order p ∈ [1,∞), their Wasserstein distance of order p is defined by the following formula (see
(Rachev & Rüschendorf, 1998; Villani, 2009) for a detailed exposition and historical account):

Wp(µ,ν) =

(
inf

π∈Π(µ,ν)

∫
X ×X

d(x,y)p
π(dx,dy)

)1/p

, (5)

where Π(µ,ν) is the set of all probability measures in P(X ×X ) with the marginals µ and ν .

We restrict the space of probability measures to measures with finite moments up to order p. Formally,
we define the Wasserstein space:

Pp(X ) :=
{

µ ∈P(X ) :
∫

X
d (x0,x)

p
µ(dx)<+∞

}
.

For each p ∈ [1,∞), the function Wp(·, ·) defines a metric on Pp(X ). Furthermore, for all µ,ν ∈
Pp(X ) the optimal coupling realizing the infimum in (5) exists. From now on, Pp(X ) will be
always equipped with the distance Wp(·, ·).
For discrete measures, problem (5) has a linear programming representation. Let µ and ν be supported
at positions {x(i)}N

i=1 and {z(k)}M
k=1, respectively, with normalized (totaling 1) positive weight vectors

wx and wz: µ = ∑
N
i=1 w(i)

x δx(i) , ν = ∑
M
k=1 w(k)

z δz(k) . For p ≥ 1, let D ∈ RN×M
+ be the distance matrix

with elements dik = d
(
x(i),z(k)

)p. Then the pth power of the p-Wasserstein distance between the
measures µ and ν is the optimal value of the following transportation problem:

min
π∈RN×M

+

∑
N
i=1 ∑

M
k=1dikπik s.t. π⊤1N = wx, π1M = wz. (6)

The calculation of the distance is easy when the linear programming problem (6) can be solved.
For large instances, specialized algorithms such as (Cuturi, 2013; Genevay et al., 2016; Altschuler
et al., 2017; Lin et al., 2019; Dvurechensky et al., 2018; Dvurechenskii et al., 2018; Kroshnin et al.,
2019; Cuturi & Peyré, 2018; 2016) have been proposed. Our problem, in this special case, is more
complex: find ν supported on a set of the cardinality M such that Wp(µ,ν) is the smallest possible.
We elaborate on it in the next section.

2.2 KERNEL DISTANCE

To define a metric between kernels, we restrict the class of kernels under consideration to the set
Qp(X ) of kernels Q : X →Pp(X ) such that for each a constant C exists, with which∫

X
d(y,y0)

p Q(dy|x)≤C
(
1+d(x,x0)

p), ∀x ∈X .

The choice of the points x0 ∈X and y0 ∈ Y is irrelevant, because C may be adjusted.

Definition 2.1 The transportation distance of order p between two kernels Q and Q̃ in Qp(X ) with
a fixed marginal λ ∈Pp(X ) is defined as

W λ
p (Q, Q̃) =

(∫
X

[
Wp(Q(·|x), Q̃(·|x))

]p
λ (dx)

)1/p

.

For a fixed marginal λ ∈Pp(X ), we identify the kernels Q and Q̃ if Wp(Q(·|x), Q̃(·|x)) = 0 for λ -
almost all x ∈X . In this way, we define the space Qλ

p (X ,Y ) of equivalence classes of Qp(X ,Y ).

Theorem 2.1 For any p ∈ [1,∞) and any λ ∈Pp(X ), the function W λ
p (·, ·), defines a metric on

the space Qλ
p (X ,Y ).
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The proof is provided in Appendix A.1.1.

The kernel distance can be used to approximate the system (1) by a system with finitely supported
kernels. Suppose at stage t we already have for all τ = 0, . . . , t−1 approximate kernels Q̃τ : X →
P(X ). These kernels define the approximate marginal distribution

λ̃t = δx0 ◦ Q̃0 ◦ Q̃1 ◦ · · · ◦ Q̃t−1 = λ̃t−1 ◦ Q̃t−1.

We also have the finite subsets Xτ = supp(λ̃τ), τ = 0,1, . . . , t. For t = 0, λ̃0 = δx0 , and X0 = {x0}.

At the stage t, we construct a kernel Q̃t : Xt →Pp(X ) such that

W λ̃t
p (Qt , Q̃t)≤ ∆t . (6)

If t < T −1, we increase t by one, and continue; otherwise, we stop. Observe that the approximate
marginal distribution λ̃t is well-defined at each step of this abstract scheme.

We then solve the approximate version of the risk evaluation algorithm (2), with the true kernels Qt

replaced by the approximate kernels Q̃t , t = 0, . . . ,T −1:

ṽt(x) = ct(x)+σt
(
x, Q̃t(x), ṽt+1(·)

)
, x ∈Xt , t = 0,1, . . . ,T −1; (7)

we assume that ṽT (·)≡ vT (·)≡ cT (·).
To estimate the error of this evaluation in terms of the kernel errors ∆t , we make the following general
assumptions.

(A) For every t = 0,1, . . . ,T −1 and for every x ∈Xt , the operator σt(x, · ,vt+1) is Lipschitz contin-
uous with respect to the metric Wp(·, ·) with the constant Lt :∣∣σt

(
x,µ,vt+1(·)

)
−σt

(
x,ν ,vt+1(·)

)∣∣≤ Lt Wp(µ,ν), ∀µ,ν ∈Pp(X );

(B) For every x ∈ Xt and for every t = 0,1, . . . ,T − 1, the operator σt(x, Q̃t(x), ·) is Lipschitz
continuous with respect to the norm in the space Lp(X ,B(X ), Q̃t(x)) with the constant Kt :∣∣σt

(
x, Q̃t(x),v(·)

)
−σt

(
x, Q̃t(x),w(·)

)∣∣≤ Kt ∥v−w∥p, ∀v,w ∈Lp(X ,B(X ), Q̃t(x)).

Theorem 2.2 If the assumptions (A) and (B) are satisfied, then for all t = 0, . . . ,T −1 we have(∫
X

∣∣ṽt(x)− vt(x)
∣∣p

λ̃t(dx)
)1/p

≤
T−1

∑
τ=t

Lτ

(
τ−1

∏
j=t

K j

)
∆τ . (8)

The proof is provided in Appendix A.1.2.

In order to accomplish (6), at stage t, we construct a finite set Xt+1 ⊂X of cardinality Mt+1 and a
kernel Q̃t : Xt →P(Xt+1) by solving the following problem:

min
Xt+1,Q̃t

W λ̃t
p (Qt , Q̃t)

s.t. supp(λ̃t ◦ Q̃t) = Xt+1,∣∣Xt+1
∣∣≤Mt+1.

(9)

The cardinality Mt+1 has to be chosen experimentally, to achieve the desired accuracy in (6). After
(approximately) solving this problem, we increase t by one and continue.

Let us focus on effective ways for constructing an approximate solution to problem (9). We represent
the (unknown) support of λ̃t ◦ Q̃t by Xt+1 =

{
zℓt+1

}
ℓ=1,...,Mt+1

and the (unknown) transition probabil-

ities by Q̃t(zℓt+1|zs
t ), s = 1, . . . ,Mn, ℓ= 1, . . . ,Mn+1. With the use of the kernel distance, problem (9)

can be equivalently rewritten as:

min
Xt+1,Q̃t

Mn

∑
s=1

λ̃
s
t Wp

(
Qt(·|zs

t ), Q̃t(·|zs
t )
)p

s.t. supp
(
Q̃t(·|zs

t )
)
⊂Xt+1, s = 1, . . . ,Mn,∣∣Xt+1

∣∣≤Mt+1.

(10)
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In our approach, we represent each distribution Qt(·|zs
t ) by a finite number of particles

{
xs,i

t+1

}
i∈I s

t+1
drawn independently from Qt(·|zs

t ). The expected error of this approximation is well-investigated
by Dereich et al. (2013) and Fournier & Guillin (2015) in terms of the sample size

∣∣I s
t+1

∣∣, the state
space dimension, and the distribution’s moments. Assuming the error of this large-size discrete
approximation as fixed, we aim to construct a smaller support with as little error as possible to the
particle distribution. For this purpose, we introduce the sets Zt+1 =

{
ζ k

t+1
}

k=1,...,Kt+1
. Each consists

of pre-selected potential locations for the next-stage representative states z j
t+1, where j = 1, . . . ,Mt+1.

It may be the union of the sets of particles,
{

xs,i
t+1, i ∈I s

t+1, s = 1, . . . ,Mt
}

; often, computational
expediency requires that Kt+1 < ∑

Mt
s=1

∣∣I s
t+1

∣∣, we still have Mt+1≪ Kt+1, which makes the task of
finding the best representative points challenging.

If the next-stage representative points
{

z j
t+1

}
j=1,...,Mt+1

were known, the problem would have a

straightforward solution. For each particle xs,i
t+1 we would choose the closest representative point,

j∗(i) = argmin j=1,...,Mt+1
d
(
xs,i

t+1,z
j
t+1

)
, and set the transportation probabilities π

s,i, j∗(k)
t = 1

|I s
t+1|

; for

other j, we set them to 0. The implied approximate kernel is Q̃t(z
j
t+1|zs

t ) =∑i∈I s
t+1

π
s,i, j
t , s= 1, . . . ,Mt ,

j = 1, . . . ,Mt+1; it is the proportion of the particles from I s
t+1 assigned to z j

t+1.

To find the best representative points, we introduce the binary variables

γk =

{
1 if the point ζ k

t+1 has been selected to Xt+1,

0 otherwise,
k = 1, . . . ,Kt+1,

and we re-scale the transportation plans:

βsik = |I s
t+1|π

s,i,k
t , s = 1, . . . ,Mt , i ∈I s

t+1, k = 1, . . . ,Kt+1.

We obtain from (10) the following linear mixed-integer optimization problem (we omit the ranges of
the sums when they are evident):

min
γ,β

∑
s

ws ∑
i

∑
k

dsikβsik (11a)

s.t. βsik ∈ [0,1], γk ∈ {0,1}, s = 1, . . . ,Mt , i ∈I s
t+1, k = 1, . . . ,Kt+1, (11b)

βsik ≤ γk, s = 1, . . . ,Mt , i ∈I s
t+1, k = 1, . . . ,Kt+1, (11c)

∑
k

βsik = 1, s = 1, . . . ,Mt , i ∈I s
t+1, (11d)

∑
k

γk ≤Mt+1, (11e)

with ws =
λ̃ s

t
|I s

t+1|
and dsik = d

(
xs,i

t+1,ζ
k
t+1

)p. The implied approximate kernel is:

Q̃t(zk
t+1|zs

t ) =
1

|I s
t+1|

∑
i

βsik, s = 1, . . . ,Mt , k = 1, . . . ,Mt+1. (12)

Finally, λ̃t+1 = λ̃t ◦ Q̃t , and the iteration continues until t = T −1.

Since problem (11) involves binary variables, it is reasonable to employ an integer programming
solver, such as Gurobi, CPLEX, or SCIP. However, integer or even linear programming can become
computationally intractable for large-scale problems with many variables and constraints. Therefore,
in section 3, we propose a subgradient-based method to solve problem (11).

The particle selection problem using the Wasserstein distance is a simplified form of problem (11). In
the case of Mt = 1, we obtain the problem of finding the best ν in (6). Notably, the facility location
and clustering problems share similarities with our particle selection method as well.

3 DUAL SUBGRADIENT METHOD

In this section, we propose a subgradient algorithm to address the computational intractability of
large-scale instances of problem (11). While the subgradient method does not ensure convergence
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to the strictly optimal solution, it is faster than the mixed-integer linear programming approach
and it scales better. We use the fact that our primary objective is to determine the γ’s, which the
subgradient method can effectively accomplish. We present the dual problem in Section 3.1, and the
exact algorithm used for selecting particles in Section 3.2.

3.1 THE DUAL PROBLEM

Assigning Lagrange multipliers θsi and θ0 ≥ 0 to the constrains (11d) and (11e), respectively, we
obtain the Lagrangian function of problem (11):

L(γ,β ;θ) = ∑
s

∑
i

∑
k

wsdsikβsik +∑
s

∑
i

θsi
(
1−∑

k
βsik

)
+θ0

(
∑
k

γk−Mt+1
)
.

The dual variable θ0 has the interpretation of the marginal contribution of an additional point to
reducing the kernel distance. The variables θsi serve as thresholds in the assignment of the particles
xs,i

t+1 to the candidate points. They are needed for the algorithm but are not used in the final assignment,
which can be done easily once the γ’s are known. The corresponding dual function is

LD(θ) = min
γ,β∈Γ

L(γ,β ;θ)

=
Kt+1

∑
k=1

{
min

γk,β··k∈Γk

Mt

∑
s=1

∑
i∈I s

t+1

(wsdsik−θsi)βsik +θ0γk

}
+

Mt

∑
s=1

∑
i∈I s

t+1

θsi−Mt+1θ0,
(13)

where Γ is the feasible set of the primal variables given by the conditions (11b)–(11c), and Γk
is its projection on the subspace associated with the kth candidate point ζ k

t+1. The minimization
in (13) decomposes into Kt+1 subproblems, each having a closed-form solution. We can perform
these calculations in parallel, which provides a significant computational advantage and reduces the
optimization time. We see that βsik = 1, if γk = 1 and θsi > wsdsik; it may be arbitrary in [0,1], if
γk = 1 and exact equality is satisfied; and is 0, otherwise. Therefore, for all k = 1, . . . ,Kt+1,

γk = 1, if θ0 <
Mt

∑
s=1

∑
i∈I s

t+1

max(0,θsi−wsdsik);

γk ∈ {0,1}, if exact equality holds; and γk = 0, otherwise. We denote by Γ̂(θ) the set of solutions of
problem (13). It is worth stressing that in the algorithm below, we need only one solution for each θ .

The dual problem has the form
max

θ

LD(θ), s.t. θ0 ≥ 0. (14)

The optimal value of (14) may be strictly below the optimal value of (11); it is equal to the optimal
value of the linear programming relaxation, where the conditions γk ∈ {0,1} are replaced by γk ∈ [0,1].
However, if we replace Mt+1 by the number of γk’s equal to 1, the gap is zero. If we keep Mt+1
unchanged, we can construct a feasible solution by setting to 0 the γk’s for which the change in the
expression in the braces in (13) is the smallest. This allows for estimation of the gap.

The subdifferential of the dual function has the form

∂LD(θ) = conv


{1−∑

K
k=1 β̂sik

}
s=1,...,Mt , i∈I s

t+1

∑
K
k=1 γ̂k−Mt+1

 : (γ̂, β̂ ) ∈ Γ̂(θ)

 . (15)

At the optimal solution θ̂ we have 0 ∈ ∂LD(θ̂), because θ̂0 > 0 (the constraint (11e) must be active).

3.2 THE ALGORITHM

In Algorithm 1, we use j to denote the iteration number, starting from 0. The variable θ represents
the initial values of the dual variables, while M represents the number of desired grid points. The
parameter ε specifies the tolerance level. The value α(0) denotes the initial learning rate. The
variables κ1 and κ2 are exponential decay factors between 0 and 1, which determine the relative
contribution of the current gradient and earlier gradients to the direction. It is important to note that
the total number of γ’s selected by the subgradient method may not necessarily equal M, when the
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stopping criteria are met. However, for the particle selection method, the constraint ∑
K
k=1 γk ≤Mt+1

is not strictly enforced (it is a modeling issue). We end the iteration when ∑
K
k=1 γk is close to Mt+1.

For the (approximate) primal recovery, we choose J last values θ ( j) at which LD(θ
( j)) is near optimal,

and consider the convex hull of the observed subgradients of the dual function at these points
as an approximation of the subdifferential (15). The minimum norm element in this convex hull
corresponds to a convex combination of the corresponding dual points: (γ̄, β̄ ) = ∑ j∈J ω j(γ

( j),β ( j)),
with ∑ j∈J ω j = 1, ω j ≥ 0.

By the duality theory in convex optimization, if the subgradients were collected at the optimal
point, (γ̄, β̄ ) would be the solution of the convex relaxation of (11). So, if the norm of the convex
combination of the subgradients is small, then ∑

K
k=1 γ̄k ≈Mt+1, and we may regard γ̄ as an approximate

solution. We interpret it as the best “mixed strategy” and select each point k with probability γ̄k. In
our experiments, we simply use ω j =

(
∑i∈J α(i)

)−1
α( j) ≈ 1/|J|. This approach is well supported

theoretically by (Larsson et al., 1999). The O(1/
√

j+1) rate of convergence of the subgradient
method is well understood since (Zinkevich, 2003) (see also the review by Garrigos & Gower (2023)).

Algorithm 1: Dual subgradient method with momentum

Input : θ (0), M, ε , α(0),κ1,κ2 and j = 0.
Output : θ ,γ , and β .

1 while ∑
K
k=1 γk < (1−a)∗M or ∑

K
k=1 γk > (1+a)∗M or ∥LD(θ

( j))−LD(θ
( j−1))∥> ε do

2 for k = 1, . . . ,K do
3 if ∑

N
s=1 ∑i∈I s max(0,θsi−wsdsik)> θ0 then

4 γk← 1;
5 βsik← 1

{wsdsik<θ
( j)
si }

, s = 1, . . . ,N, i ∈I s;

6 else
7 γk← 0;
8 βsik← 0, s = 1, . . . ,N, i ∈I s;
9 end

10 end
11 α( j+1)← α(0)

√
j+1 ;

12 m( j+1)
0 ← (1−κ1)(∑

K
k=1 γk−M)+κ1m( j)

0 ;

13 θ
( j+1)
0 ← θ

( j)
0 +α( j+1)m( j+1)

0 ;

14 m( j+1)
si ← (1−κ2)(1−∑

K
k=1 βsik)+κ2m( j)

si ;

15 θ
( j+1)
si ← θ

( j)
si +α( j+1)m( j+1)

si s = 1, . . . ,N, i ∈I s;
16 j← j+1
17 end

In the stochastic version of the method, the loop over k in lines 2–10 is executed in a randomly selected
batch B( j) ⊂ {1, . . . ,K} of size B≪K. Then, in line 12, the subgradient component g( j)

0 = ∑
K
k=1 γk−

M is replaced by its stochastic estimate g̃( j)
0 = (K/B)∑k∈B( j) γk−M. In line 14, the subgradient

components g( j)
si = 1−∑

K
k=1 βsik are replaced by their estimates g̃( j)

si = 1− (K/B)∑k∈B( j) βsik. If
the batches are independently drawn at each iteration, the algorithm is a version of the stochastic
subgradient method with momentum (see (Yan et al., 2018; Liu et al., 2020) and the references
therein).

4 NUMERICAL ILLUSTRATION - THE OPTIMAL STOPPING PROBLEM

Consider an n-dimensional stochastic process
{

S(i)t
}

, i = 1, . . . ,n, following (under a probability
measureQ) a geometric Brownian motion:

dS(i)t

S(i)t

= r dt +σ
(i) dWQ

t , i = 1, . . . ,n, t ∈ [0,T ]. (16)

7
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Here, {WQ
t } is an n-dimensional Brownian motion under probability measure Q, r is a constant

coefficient, and σ (i) is the n dimensional (row) vector coefficients of S(i).

We examine an optimal stopping risk function associated with this stochastic process. If we stop the
process at time t, the reward is Φ(St), where Φ : Rn→ [0,+∞) is a known function. The problem is
to design a stopping strategy that maximizes the expected reward. The optimal value of this stopping
problem is:

Vt(x) = sup
τ−stopping time

t≤τ≤T

EQ
[
e−r(τ−t)

Φ(Sτ)
∣∣St = x

]
, x ∈Rn. (17)

To develop a numerical scheme for approximating this value, we first partition the time interval [0,T ]
into short intervals of length ∆ t = T/N, defining the set ΓN = {ti = i∆ t : i = 0,1, . . . ,N}. With the
exercise times restricted to ΓN , we approximate the value function by

V (N)
t (x) = sup

τ−stopping time
τ∈ΓN

EQ
[
e−r(τ−t)

Φ (Sτ)
∣∣St = x

]
, t ∈ ΓN , x ∈Rn. (18)

We view V (N)
t (x) as an approximation to the actual risk measure (17) when N is sufficiently large. It

satisfies the following dynamic programming equations:

V (N)
tN (x) = Φ(x), x ∈Rn,

V (N)
ti (x) = max

{
Φ(x),EQ

[
e−r∆ tV (N)

ti+1

(
Sti+1

)∣∣Sti = x
]}

, i = 0,1, . . . ,N−1,

which are a special case of the backward system (2).

We evaluated the performance of two methods for simulating the stochastic process’ movements
and estimating the values of the risk measure. The first method is the grid point selection method
which relies on the kernel distance. At each time step ti, we choose the representative point(s)
z j

i , j = 1, . . . ,Mi to represent the state space. The pre-selected potential locations of the representative
particles are simulated from the true distribution as well. Since we have set the total number of time
intervals to N = 30, the grid point selection algorithm needs to be executed 30 times. Due to the large
number of variables, with a size of 31727 selected grid points at N = 30 alone, the MIP solver is
extremely inefficient and takes several days to converge. In contrast, Algorithm 1 takes only a few
hours to select grid points, making it the only viable option.

We compared this method with the classical binomial tree approach in which the Brownian motion
is approximated by an n-dimensional random walk on a binomial tree. It may be complex and
computationally expensive, particularly for large numbers of time steps, since the total number of
nodes of the tree grows exponentially with the dimension n and time. Our method based on the kernel
distance reduces the number of nodes or grid points, especially at later stages, while still providing
accurate results. Additionally, it can accommodate a wide range of stochastic processes, whereas the
binomial tree method is limited to log-normal distributions.

Both methods were employed to evaluate two reward functions with n = 3, such that the as-
sumptions for Theorem (2.2) are satisfied. The first reward function is denoted by Φp(St) =

max
(
K−∑

n
i=1 wiS

(i)
t ,0

)
, while the second reward function is represented by Φmp(St) = max

(
K−

max
i=1,...,n

(S(i)t ),0
)
. Here, wi represents the percentage of variable i, and K is a constant coefficient. The

parameter values used were S0 = [5,10,8], r = 0.03, K = 8, w = ( 1
3 ,

1
3 ,

1
3 ), and T = 1. The σ were:

σ =

[ 0.5 −0.2 −0.1
−0.2 1 0.3
−0.1 0.3 0.8

]
.

In Table 1, the approximated values using the grid point selection method and the binomial tree
method are compared. Additionally, Figures 1a and 1b present the convergence of the reward
functions as the total number of time discretization steps increases.

8
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Table 1: The reward functions for different time discretization steps.

N Φp - grid Φp - binomial Φmp - grid Φmp - binomial

1 1.974 1.921 0.786 0.530
2 1.982 2.008 0.949 1.066
3 1.994 1.998 1.024 1.016
5 2.000 1.974 1.087 1.053
6 2.003 1.980 1.111 1.077

10 1.994 2.001 1.145 1.163
15 1.992 2.000 1.172 1.178
30 2.004 2.002 1.217 1.222

(a) The reward function Φp. (b) The reward function Φmp.

Figure 1: The approximate value of the reward functions vs. the number of time discretization steps

5 CONCLUSION

We introduced a kernel distance metric based on the Wasserstein distance between probability
distributions and considered a new problem of approximating a large-scale Markov system with a
simpler system and a finite state space. For this problem, we proposed a novel particle selection
method that iteratively approximates the forward system stage-by-stage by utilizing our kernel
distance. The heart of the method is a decomposable and parallelizable subgradient algorithm for
particle selection, designed to circumvent the complexities of dealing with constraints and matrix
computations.

To empirically validate our approach, we conducted extensive experiments and applied our method-
ology to the optimal stopping problem. We benchmarked our results against the binomial tree
method, recognized as the state-of-the-art technique for approximating geometric Brownian motion.
Furthermore, in Appendix A.2, we provide a straightforward example involving a 2-dimensional and
1-time-stage Gaussian distribution. We selected this simple case to aid in visualizing outcomes, en-
abling effective method comparisons and highlighting the limitations of Mixed Integer Programming
(MIP) solvers in more complicated scenarios.

Additionally, it’s worth noting that the kernel distance and the particle selection method hold signifi-
cant potential for various applications. One such application pertains to look-ahead risk assessment in
reinforcement learning, specifically in the context of Markov risk measures. Evaluating Markov risk
measures in dynamic systems can be achieved through the equation (2), offering superior performance
over one-step look-ahead methods. Our approach streamlines risk or reward evaluation across a range
of scenarios by substituting the approximate kernel in place of the original equation (2). We intend to
explore the full spectrum of potential applications for our work in future research endeavors.
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A APPENDIX

A.1 PROOFS OF THEOREMS

A.1.1 PROOF OF THEOREM 2.1

It is obvious that W λ
p (Q, Q̃)≥ 0 for any Q, Q̃ ∈Qλ

p (X ,Y ) and W λ
p (Q, Q̃) = 0 if and only if Q = Q̃

λ -a.s.. We next verify the triangle inequality. For all Q,Q′, Q̃∈Qλ
p (X ,Y ), by the triangle inequality

for Wp(·, ·) and then by the Minkowski inequality, we obtain

W λ
p (Q, Q̃)≤

(∫
X

[
Wp(Q(·|x),Q′(·|x))+Wp(Q′(·|x), Q̃(·|x))

]p
λ (dx)

)1/p

≤
(∫

X

[
Wp(Q(·|x),Q′(·|x))

]p
λ (dx)

)1/p

+

(∫
X

[
Wp(Q′(·|x), Q̃(·|x))

]p
λ (dx)

)1/p

= W λ
p (Q,Q′)+W λ

p (Q′, Q̃).

Furthermore, setting Q′(·|x) = δ{y0}(·), we get[
W λ

p (Q,δ{y0})
]p

=
∫

X

[
Wp(Q(·|x),δ{y0})

]p
λ (dx)

=
∫

X

∫
Y

d(y,y0)
p Q(dy|x) λ (dx)≤C(Q)

∫
X

(
1+d(x,x0)

p)
λ (dx)< ∞,

(19)

which proves the finiteness of W λ
p (Q, Q̃), if λ ∈Pp(X ).

A.1.2 PROOF OF THEOREM 2.2

First, we prove by induction backward in time that for all t = 0,1, . . . ,T −1 and all x ∈Xt we have∣∣ṽt(x)− vt(x)
∣∣≤ T−1

∑
τ=t

Lτ

(
τ−1

∏
j=t

K j

)
W

δx◦Q̃t◦···◦Q̃τ−1
p (Q̃τ ,Qτ). (20)

At the time t = T −1, assumption (A) yields the inequality∣∣ṽT−1(x)− vT−1(x)
∣∣≤ ∣∣∣σT−1

(
x, Q̃T−1(x),vT (·)

)
−σT−1

(
x,QT−1(x),vT (·)

)∣∣∣
≤ LT−1 Wp(Q̃T−1(x),QT−1(x)) = LT−1 W δx

p (Q̃T−1,QT−1),

which is the same as (20) for T − 1. Supposing (20) is true for t, we verify it for t − 1. Using
assumptions (A) and (B) we obtain:∣∣ṽt−1(x)− vt−1(x)

∣∣
≤
∣∣∣σt−1

(
x, Q̃t−1(x),vt(·)

)
−σt−1

(
x,Qt−1(x),vt(·)

)∣∣∣
+
∣∣∣σt−1

(
x, Q̃t−1(x), ṽt(·)

)
−σt−1

(
x, Q̃t−1(x),vt(·)

)∣∣∣
≤ Lt−1 Wp(Q̃t−1(x),Qt−1(x))+Kt−1

(∫
X

∣∣ṽt(y)− vt(y)
∣∣p Q̃t−1(dy|x)

)1/p

.

The substitution of (20) and the application of the Minkowski inequality yield∣∣ṽt−1(x)− vt−1(x)
∣∣≤ Lt−1 W δx

p (Q̃t−1,Qt−1)

+Kt−1

T−1

∑
τ=t

Lτ

(
τ−1

∏
j=t

K j

)(∫
X

[
W

δy◦Q̃t◦···◦Q̃τ−1
p (Q̃τ ,Qτ)

]p Q̃t−1(dy|x)
)1/p

.

Observing that∫
X

[
W

δy◦Q̃t◦···◦Q̃τ−1
p (Q̃τ ,Qτ)

]p Q̃t−1(dy|x) =
[
W

δx◦Q̃t−1◦Q̃t◦···◦Q̃τ−1
p (Q̃τ ,Qτ)

]p
, (21)
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we can write the preceding displayed inequality as

∣∣ṽt−1(x)− vt−1(x)
∣∣≤ Lt−1 W δx

p (Q̃t−1,Qt−1)+Kt−1

T−1

∑
τ=t

Lτ

(
τ−1

∏
j=t

K j

)
W

δx◦Q̃t−1◦Q̃t◦···◦Q̃τ−1
p (Q̃τ ,Qτ),

which is the same as (20) for t−1. By induction, (20) is true for all t.

The formula (8) follows now by integrating the right-hand side of (20) and using the identity

∫
X

[
W

δx◦Q̃t◦···◦Q̃τ−1
p (Q̃τ ,Qτ)

]p
λ̃t(dx) =

[
W λ̃τ

p (Q̃τ ,Qτ)
]p
, τ = t, . . . ,T −1. (22)

A.2 MIXTURE GAUSSIAN DISTRIBUTION

This experiment is with the mixture Gaussian distribution, which imitates one step of the method
(9). This simple example, working with a 2-dimensional and 1-time-stage Gaussian distribution,
demonstrates the advantage of the subgradient method over traditional state-of-the-art mixed-integer
solvers such as Gurobi. The marginal distribution λ̃t is supported on five points zs, and the conditional
distributions Qt(·|zs), s = 1, . . . ,5, are normal with the parameters:

µ1 =

[
0
0

]
, µ2 =

[
4
−1

]
, µ3 =

[
−3
3

]
, µ4 =

[
2.5
2.5

]
, µ5 =

[
−1
−2

]
.

σ1 =

[
0.5 −0.2
−0.2 0.5

]
,σ2 =

[
2 0
0 2

]
,σ3 =

[
1 −0.1
−0.1 1

]
,σ4 =

[
2 0.5

0.5 2

]
,σ5 =

[
1.6 −1.2
−1.2 1.6

]
.

We set α(0) = 0.01, ε = 10−7, κ1 = 0.35, and κ2 = 0.35. The potential representative points
{ζ k}k=1,...,K were Sobol lattice points. For illustration, we use the lattice points that cover the entire
graph, even if some are obviously not necessary. To find the optimal values of β and γ in problem
(11), we used the mixed integer programming (MIP) solver Gurobi and Algorithm 1. In Figures
2–4, the subfigures (a) show the sample points {xsi} in five colors corresponding to the five Gaussian
distributions and the potential locations of the representative particles. The subfigures (b) and (c)
display the sample points and the grid points {zk} (black dots) selected by the MIP solver and
the subgradient method, respectively. Table 2 provides the total numbers of the variables β and γ ,
the solution times of both methods (in seconds), and the values of the Wasserstein distance W1 of
the solutions obtained to the colored cloud of particles. As the number of variables increases, the
MIP solver takes an increasingly long time and becomes inapplicable. We further evaluated the
effectiveness of the subgradient method on the multivariate Gaussian distribution and reported the
results in Table 3, including the distribution’s dimension. We also provide duality gap estimates,
obtained as sketched below (14).

All numerical results were obtained using Python (Version 3.7) on a Macintosh HD laptop with a
2.9 GHz CPU and 16GB memory. In none of the experiments, the stochastic subgradient method
(sketched on p. 6) was competitive.

Table 2: Comparison of the MIP solver and the subgradient method

dim(β ) dim(γ) MIP (s) subgradient (s) MIP W1 subgradient W1

128000 256 5.17 0.96 0.654 0.644
512000 512 60.31 18.09 0.470 0.485

5120000 2048 556.26 346.57 0.246 0.272
20480000 4096 - 5130.23 - 0.222
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(a) 500 sample points and 256 po-
tential representative points

(b) Mixed-Integer Solver (Gurobi
with a Python extension)

(c) Subgradient method with mo-
mentum

Figure 2: dim(β ) = 128000, dim(γ) = 256, and 51 selected particles.

(a) 1000 sample points and 512
potential representative points

(b) Mixed-Integer Solver (Gurobi
with a Python extension)

(c) Subgradient method with mo-
mentum

Figure 3: dim(β ) = 512000, dim(γ) = 512, and 102 selected particles

(a) 2500 sample points and 2048
potential representative points

(b) Mixed-Integer Solver (Gurobi
with a Python extension)

(c) Subgradient method with mo-
mentum

Figure 4: dim(β ) = 5120000, dim(γ) = 2048, and 409 selected particles

Table 3: Grid point selection with the subgradient method on multivariate Gaussian distribution

dim dim(β ) dim(γ) subgradient (s) subgradient W1 duality gap

3 20000000 4000 2661 0.361 0.01208
4 31500000 4500 19493 0.564 0.00109
5 40000000 5000 11922 0.830 0.00388
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