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ABSTRACT

Reinforcement learning with verifiable rewards (RLVR) has proven effective in
eliciting complex reasoning in large language models (LLMs). However, standard
RLVR training often leads to excessively verbose processes (in reasoning tasks) and
inefficient exploration trajectories (in agentic settings), as outcome-only rewards
provide no incentive for efficiency and the high variance in response length within
relatively small rollout groups results in noisy optimization signals. To address
this, we propose Rollout Response Recomposition (RoRecomp), a plug-and-play
method that guides models toward concise reasoning by strategically recomposing
the training data. RoRecomp separates responses into two distinct batch types: 1)
priority batches, which combine the short-correct and long-incorrect responses
selected from online batches to provide a clear gradient signal for brevity, and 2)
compensation batches, which utilize the remaining responses stored in a replay
buffer to maintain training stability and prevent model collapse. To comprehen-
sively evaluate effectiveness, we test RoRecomp across three settings where results
demonstrate substantial efficiency gains: reducing reasoning length by 27.7% in
zero RL training, reducing unnecessary tool calls by 46.8% while improving ac-
curacy in agentic RL, and achieving up to 52.5% length reduction in thinking
compression, all with minimal performance impact.

1 INTRODUCTION

Reinforcement Learning with Verifiable Rewards (RLVR) has played a pivotal role in unlocking the
complex reasoning capabilities of Large Language Models (LLMs) Team et al. (2025). By leveraging
rule-based rewards, DeepSeek-R1 Guo et al. (2025) demonstrated that RL training from a base model
can elicit extended chain-of-thought (CoT) reasoning and enable sophisticated cognitive behaviors.
Similarly, in agentic scenarios, RLVR has enabled models to strategically employ tools multiple times
to solve problems Gao et al. (2025); Jin et al. (2025). However, RLVR’s reliance on outcome-based
supervision is both its greatest strength and its principal limitation when optimizing for efficiency.
The lack of oversight over intermediate steps may cause unnecessarily verbose thought processes
in reasoning tasks or lead to excessive and redundant tool calls in agentic settings. In RLVR, the
model is incentivized to explore extensively until it finds a solution, with no intrinsic penalty for
verbosity, as a result, models trained with standard RLVR often exhibit progressively longer outputs.
This trend is observed both when training base models to generate reasoning traces and in agentic
training where the number of tool-use steps increases unnecessarily.

In principle, one might expect models to autonomously converge to an optimal response length
solely from outcome reward signal, balancing the risk of “context rot” Liu et al. (2023) from overly
long context in CoT against the accuracy loss from overly short ones. That is a stable operating
point where the marginal utility of an extra token equals its implicit cost. However, this idealized
convergence is hindered in practice by fundamental limitations of the practical RL training setup.
The root cause is two-fold: a high-variance baseline estimation and an inherent algorithmic bias.
First, the common practice of using a small group of samples (e.g., 8 responses per question) to
estimate the reward baseline is unbiased but with high variance. The resulting noisy advantages
inject substantial gradient variance and mask the true credit assignment for efficient CoT. Second,
RL algorithms like GRPO Shao et al. (2024) have been shown to possess an inherent length bias in

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Zero RL Training Agentic RL Training Thinking compression

Figure 1: Comparison of RoRecomp and GRPO across three settings. (First row) Training dynamics
demonstrate that RoRecomp significantly enhances reasoning efficiency by consistently reducing
output length (Zero RL, Thinking Compression) or tool-use steps (Agentic RL). (Second row) This
efficiency gain is achieved while maintaining comparable performance. Zero/Agentic RL training
starts from Qwen2.5-7B; Thinking compression is trained on DeepSeek-R1-Distill-Qwen-7B.

optimization, where incorrect responses are also driven to become longer during training Liu et al.
(2025). These factors combine to create conflicting and noisy optimization signals, which prevent
the model from discerning truly efficient reasoning paths. Consequently, instead of converging to an
optimum, the training process systematically drifts towards verbosity.

Although algorithmic length bias can be corrected with straightforward fixes, the intrinsic high
variance of advantage estimation remains a fundamental challenge, as it obscures the direct credit
assignment necessary to reinforce efficient reasoning behaviors. To break this cycle, we propose
Rollout Response Recomposition (RoRecomp), a method that guides the model towards efficiency by
strategically recomposing the data used for policy updates. RoRecomp operates after the rollout phase
by reorganizing sampled responses into specialized batches. Crucially, instead of using randomly
mixed samples, it constructs priority batches comprised exclusively of the most informative responses
from across all questions, specifically, those that are both short and correct, or long and incorrect. This
composition does not alter the advantage calculation for individual responses but fundamentally shifts
the distribution of experiences presented to the optimizer in a single update step. By concentrating
gradient updates on these contrasting examples, RoRecomp steers the policy more directly toward
concise correctness and away from verbose errors. To maintain stability and prevent collapse, a replay
buffer stores the remaining responses for occasional training in compensation batches. A dynamic
learning schedule that gradually reduces the frequency of these compensation updates further refines
the model’s ability to balance brevity and accuracy.

Currently, reward shaping methods Hou et al. (2025); Aggarwal & Welleck (2025); Team et al. (2025)
have been proposed to improve reasoning efficiency. In contrast to explicit reward shaping approaches,
RoRecomp takes an orthogonal yet complementary direction. Theoretically, reward shaping methods
must strictly satisfy potential-based reward shaping rules to guarantee policy invariance with respect
to the original outcome objective Ng et al. (1999). In practice, however, modifying the reward
function often demands delicate calibration and may still introduce unintended effects, such as
oversensitivity to sequence length or deterioration in reasoning quality. RoRecomp sidesteps these
issues by intervening at the level of data composition rather than altering the reward itself. By
strategically recomposing the batches used for policy updates, RoRecomp implicitly guides the
model towards efficiency without altering the fundamental reward. We demonstrate our versatility by
combining it with a truncation penalty, where responses exceeding a length limit receive zero reward,
and show that it further reduces response length beyond what reward shaping alone achieves.

The proposed method is evaluated across three practical scenarios to demonstrate its broad applicabil-
ity. In the zero RL training setting, where RL is applied from base models to incentivize efficient
reasoning, we examine whether RoRecomp achieves an optimal balance between reasoning depth and
length, following the R1-zero paradigm Guo et al. (2025). In agentic RL training, which equips LLMs
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with strategic tool-use capabilities for long-horizon tasks, we assess whether RoRecomp enhances
search efficiency by reducing redundant or unproductive tool calls in information-seeking scenarios.
Finally, in RL for thinking compression, we investigate RoRecomp’s ability to effectively compress
the verbose reasoning processes of off-the-shelf reasoning models, further improving their token
efficiency. Experiments across three scenarios demonstrate RoRecomp’s effectiveness compared to
the GRPO baseline: in zero RL training, it reduces reasoning length by 27.7% with minimal accuracy
drop (45.5% vs 45.9%); in agentic RL, it improves F1 score (52.2% vs 51.5%) while cutting tool calls
by 46.8%; and in thinking compression, it achieves up to 52.5% length reduction while maintaining
competitive performance across model scales.

2 RELATED WORK

Reinforcement Learning for LLMs. Reinforcement learning (RL) has emerged as a powerful
fine-tuning method for enhancing the reasoning capacity of LLMs Jaech et al. (2024). DeepSeek-
R1 Guo et al. (2025) demonstrates that pure RL can directly incentivize strong reasoning capacities
in pre-trained models, underscoring the growing significance of RL in complex reasoning tasks.
Among RL algorithms, Proximal Policy Optimization (PPO) Schulman et al. (2017) is widely used
for reinforcement learning from human feedback, and several variants such as RLOO Ahmadian
et al. (2024), GRPO Shao et al. (2024) and Reinforce++ Hu (2025)) simplify PPO and reduce
computation overhead. Recently, the application of these RL algorithms to reasoning tasks has
advanced rapidly. For instance, DAPO Yu et al. (2025) accelerates model convergence by filtering
zero-gradient examples; VC-PPO Yuan et al. (2025b) investigates the causes of PPO collapse in
long CoT settings and proposes techniques to stabilize long CoT training; and VAPO Yuan et al.
(2025a) introduces length-adaptive GAE to optimize advantage estimation for long CoT responses;
While these methods primarily aim to enhance reasoning by encouraging longer responses, our work
instead leverages RL to compress the CoT of strong long-CoT models, seeking to maintain reasoning
performance while reducing response length.

Reasoning Compression in LLMs. Efficient reasoning compression aims to achieve System 1 speed
while retaining System 2 performance Snell et al. (2024). Existing methods fall into training-free
and optimization-based categories. Training-free approaches include prompt engineering Xu et al.
(2025), decoding-time interventions Muennighoff et al. (2025), and model merging Wu et al. (2025);
Team et al. (2025). While effective in reducing length, these methods are orthogonal to our RL-based
approach and can be combined for further gains.

Optimization-based methods are further divided into offline and online approaches. Offline meth-
ods Xia et al. (2025); Luo et al. (2025a); Shen et al. (2025) use concise CoT trajectories for SFT
or preference learning (e.g., DPO). Online RL methods directly optimize length during training:
Kimi-1.5 Team et al. (2025) adds length penalty rewards; ConciseRL Fatemi et al. (2025) selects
solvable data for PPO; ThinkPrune Hou et al. (2025) iteratively tightens length constraints in GRPO.
Our method belongs to this category and is compared with these approaches in Sec. 4.2.

3 METHOD: ROLLOUT RESPONSE RECOMPOSITION

In this section, we first introduce the background knowledge of standard RL frameworks. Then we
introduce how we recompose rollout responses into the priority batch and compensation batch.

3.1 PRELIMINARY

Reinforcement Learning (RL) for LLMs follows an iterative two-stage process comprising response
generation and policy optimization Ouyang et al. (2022). During the sampling phase, the actor
generates multiple diverse responses for each input prompt. The subsequent training phase leverages
the reward signals of each response to update policy model through gradient-based optimization,
employing mechanism like PPO Schulman et al. (2017) and GRPO Shao et al. (2024).

Verifiable Rewards. RL with verifiable rewards (RLVR) plays a vital role in incentivizing reasoning
capability Guo et al. (2025); Team et al. (2025). It offers precise reward signals, reducing the risk
of reward hacking. For math and coding questions, outputs from the policy model are evaluated by
a verifier V . Specifically, in the present study, we investigate both the maths and agent tasks. For
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Figure 2: (a) The overall framework of RoRecomp. After the response generation, we recompose
candidate responses into two types of batches: priority batches and compensation batches. (b) The
details of response selection. We select prioritized responses for each question by jointly considering
the response length and reward.

mathematics, we assign a reward of 1 only if both the answer and its wrapped format are correct via
exact match; otherwise, the reward is 0. In agentic RL, we consider the information seeking scenario
where LLMs are equipped with tools (e.g., search) to access external knowledge base for question
answering. The F1 score between the prediction and the reference answer is used as the reward signal.
A binary format reward is employed to ensure adherence to the ReAct Yao et al. (2023) paradigm.

Proximal Policy Optimization (PPO). PPO Schulman et al. (2017) is a classical actor-critic RL
algorithm, which uses a critic model to serve as value function to estimate the value for each token
in outputs. To ensure stable learning, token-wise KL divergence between the current policy and
reference model is calculated and integrated into the rewards. Combing the predicted rewards and
values, PPO uses the Generalized Advantage Estimation (GAE) to calculate advantages Ât for each
token. The policy model πθ is optimized by maximum the following objective:

JPPO = Eq∼D,o∼πθold

1

|o|

|o|∑
t=1

[
min

(
πθ(ot|q, o≤t)

πθold(ot|q, o≤t)
Ât, clip

(
πθ(ot|q, o≤t)

πθold(ot|q, o≤t)
, 1− ϵ, 1 + ϵ

)
Ât

)]
(1)

where ϵ is clipping ranging of the importance sampling ratio, q refers to the input question, and o is
the output sampled from the old policy model πθold .

Group Relative Policy Optimization (GRPO). To reduce computational overhead, GRPO Shao
et al. (2024) eliminates the critic model, which is typically comparable in size to the policy model
and requires separate updates during training. Instead, it approximates the value function using the
group mean reward as a baseline. Specifically, for a group of outputs ({oi}Gi=1) sampled from the
same question, their rewards r = {ri}Gi=1 are normalized within the group to obtain advantages:
Âi =

ri−mean(r)
std(r) . In this paper, we use PPO and GRPO as the default RL frameworks. For GRPO

implementation, we adopt the normalization term modification from Liu et al. (2025) to mitigate
inherent length bias in the objective function.

3.2 FORMATION OF PRIORITY AND COMPENSATION BATCHES

Empirical studies of large-scale RLVR training, both in zero RL and agentic RL settings, have
consistently observed a trend of increasing response length Zeng et al. (2025); Gao et al. (2025).
This extended thinking process often encompasses beneficial reasoning behaviors like self-reflection
and self-critique. However, guided solely by outcome reward models (ORM) without intermediate
efficiency supervision, the resulting reasoning processes can be highly suboptimal. The severity of
this issue is exemplified by the high variance in response length observed in practice. For instance,
when sampling from DeepSeek-R1 Guo et al. (2025) on AIME24 MAA (2024), we observe an
average discrepancy of 8.3k tokens between the longest and shortest responses for the same problem.
In standard RLVR frameworks, the advantage baseline is computed within relatively small rollout
groups (typically 8-16 responses per prompt) due to computational constraints. Such combination of
high length variance with a small group size results in noisy advantage estimates that fail to provide
a clear signal for distinguishing efficient from verbose reasoning paths. RoRecomp addresses this
core issue by recomposing the training data to provide a policy gradient signal that explicitly rewards
reasoning efficiency.
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Priority Batch as a Modulator. We depict the framework of RoRecomp in Fig. 2. By adjusting
sampling parameters such as temperature and top-p, randomness is introduced into response genera-
tion, allowing to produce multiple diverse outputs for each input prompt. This process of generating
responses is referred to as the rollout Shao et al. (2024). After generating a set of responses R for
each input, a rule-based reward model is employed to clarify each response as correct or incorrect,
formatting two subsets: Rcorrect and Rincorrect. Subsequently, advantages are computed using either
GAE Schulman et al. (2017) or group reward normalization Shao et al. (2024). The policy model is
then optimized to reinforce high-reward response patterns while suppressing low-scoring outputs.
The proposed RoRecomp method operates after response generation, recomposing responses for the
following policy optimization. To tile the gradient direction towards brevity, we elaborately select a
subset of prioritized responses for each input question. Specifically, we select the shortest α fraction
from Rcorrect and the longest α fraction from Rincorrect:

Bpriority = Top-α shortest in Rcorrect ∪ Top-α longest in Rincorrect, (2)

The prioritized responses are reorganized as priority batches Bpriority, which encourages concise cor-
rect reasoning while suppressing verbose errors. The remaining responses, which are of intermediate
length, are stored in an experience replay buffer for deferred training. Once the buffer is full, the
oldest experiences are popped to form a compensation batch Bcomp for an additional training step.

The choice of the selection ratio (e.g., α=80%) is a direct response to the high variance of ad-
vantage estimates in small rollout groups. RoRecomp reduces this variance by filtering out the
intermediate-length responses that contribute most to noisy and ambiguous learning signals. This
strategy intentionally introduces a beneficial bias, focusing updates on the most contrasting examples:
concise correctness and verbose errors. The value of α is selected to balance this variance reduction
against the need for a sufficient number of priority samples to ensure stable gradient estimates. A
smaller α value strengthens the emphasis on brevity but may lead to training instability due to limited
samples, while a larger α provides more stable updates at the cost of reduced compression effect.

Compensation Batch as a Regularizer. The alternating training between priority and compensation
batches implements an implicit curriculum learning strategy. The model first focuses on mastering the
core principle of efficiency by learning from the most informative samples in the priority batches. This
phase emphasizes the strong correlation between response length and reward outcomes. Subsequently,
the compensation batches provide a broader review of general reasoning patterns, ensuring the model
maintains its fundamental capabilities while refining its efficiency. This structured learning process,
ranging from focused efficiency optimization to comprehensive capability maintenance, facilitates a
balance between reasoning brevity and accuracy.

To better balance efficiency and performance, we implement a dynamic schedule for compensation
batches. Empirical results show that reducing the frequency of compensation batches after the model’s
reward stabilizes leads to shorter responses. We achieve this through a cosine decay schedule for the
compensation batch probability:

pcomp = max

(
plower,

1 + cos(π · Tt/Tmax)

2

)
, (3)

where plower = 0.2 denotes the lower bound, Tt is the current training step, and Tmax is the total
number of training steps. This ensures stable learning initially while increasingly prioritizing length
reduction as training progresses.

Discussion. RoRecomp’s effectiveness stems from recomposing the sample distribution for policy
gradient estimation. While standard RLVR uses Monte Carlo sampling over random responses,
RoRecomp constructs batches from distribution Ppriority that over-represents informative samples:

∇J(θ) ≈ Er∼Ppriority [A(r)∇θ log πθ(r)]

The priority batch creates a biased estimator that amplifies positive advantages from short-correct
responses and reinforces negative advantages from long-incorrect responses. This provides clearer
optimization signals than standard batches. Compensation batches from a replay buffer serve as
regularizers, maintaining reasoning capabilities while the gradual reduction of compensation updates
guides stable convergence toward efficient reasoning. By recomposing data rather than modifying
rewards, RoRecomp offers a more stable path to efficiency.
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Table 1: Results of zero RL training on Qwen2.5-7B base, reporting the mean@16 accuracy (“acc”)
and the average response token length (“len”).

Methods GSM8K MATH500 AIME24 AIME25 AMC23 Minerva Olympiad Avg.
acc len acc len acc len acc len acc len acc len acc len acc len

Qwen2.5-7B 87.7 - 60.5 - 10.0 - 3.3 - 32.8 - 19.5 - 27.8 - 34.5 -
GRPO Baseline 91.3 323 75.8 734 19.6 1361 3.3 1389 59.1 1187 32.7 957 39.4 1030 45.9 997
+ RoRecomp 91.2 245 73.0 604 17.9 1087 3.3 891 57.8 897 37.1 558 38.5 763 45.5 721

Table 2: Results of agentic RL trianing on Qwen2.5-7B base, reporting the averaged F1 score (“F1”)
and the number of tool calls (“# tool”) per trajectory.

Methods TriviaQA Bamboogle HotpotQA 2WikiMQA Musique Avg.
F1 # tool F1 # tool F1 # tool F1 # tool F1 # tool F1 # tool

Qwen2.5-7B 50.4 1.5 37.2 2.0 29.2 1.5 30.4 2.2 11.8 2.1 31.8 1.9
GRPO Baseline 61.5 6.2 51.4 6.2 54.8 6.2 61.3 6.3 28.4 6.3 51.5 6.2
+ RoRecomp 64.5 2.8 51.6 3.4 54.9 3.2 59.1 3.4 30.8 3.5 52.2 3.3

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Zero RL Training. In this setting, we perform RL training directly on the Qwen2.5-7B base
model Yang et al. (2024), following the same training protocol and dataset as SimpleRL-zoo Zeng
et al. (2025). The training configuration uses a batch size of 1024 for 130 training steps. We evaluate
on seven mathematical reasoning benchmarks: GSM8K Cobbe et al. (2021), AIME 2024, AIME
2025, AMC 2023, MATH-500 Lightman et al. (2023), Minerva Math Lewkowycz et al. (2022), and
OlympiadBench He et al. (2024). Performance is measured by pass@1 accuracy, averaged over 16
samples per question.

Agentic RL Training. We train search agents following Asearcher Gao et al. (2025) with the AReal
codebase Fu et al. (2025), equipping the model with a locally deployed RAG system that retrieves
information from a Wikipedia 2018 corpus. The agent has access to two tools: a search engine and a
web content fetcher. Training starts from the Qwen2.5-7B model on 35K training examples from
Asearcher, with a maximum of 32 interaction turns allowed per episode. The training runs for 350
steps with a batch size of 64. Evaluation covers one single-hop QA benchmark (TriviaQA Joshi et al.
(2017)) and four multi-hop QA benchmarks (HotpotQA Yang et al. (2018), 2WikiMultiHopQA Ho
et al. (2020), MuSiQue Trivedi et al. (2022), and Bamboogle Press et al. (2022)).

Thinking Compression on Reasoning Models. We use DeepSeek-R1-Distill-Qwen 1.5B and
7B models Guo et al. (2025) (abbreviated as DeepSeek-1.5B/7B) as base models for compression.
Both GRPO Shao et al. (2024) and PPO Schulman et al. (2017) are employed as RL frameworks,
implemented using the verl codebase Sheng et al. (2024). Training uses a learning rate of 1e-6 without
warmup, with a prompt batch size of 224 and 12 responses sampled per input prompt. The training
data consists of 40K competition-level math questions from DeepScaleR-Preview Luo et al. (2025b),
with a maximum response length of 8192 tokens. All experiments run for 720 steps. Evaluation
includes mathematical reasoning benchmarks as well as LiveCodeBench (2024.08-2025.01) Jain et al.
(2024) for coding and GPQA Diamond Rein et al. (2024) for scientific reasoning.

4.2 MAIN RESULTS

Zero RL Training. Table 1 presents the results of zero RL training starting from the Qwen2.5-
7B base model. RoRecomp demonstrates significant improvements in reasoning efficiency while
maintaining competitive accuracy across all mathematical benchmarks. Compared to the GRPO
baseline, our method reduces the average response length from 997 tokens to 721 tokens (a 27.7%
reduction), with only a marginal decrease in average accuracy (45.5% vs. 45.9%). Notably, on
Minerva Math, RoRecomp not only reduces length by 41.7% (from 957 to 558 tokens) but also
improves accuracy from 32.7% to 37.1%. These results indicate that RoRecomp effectively guides
the model toward more concise reasoning without sacrificing solution quality.

The training dynamics in Fig. 3 provide further insight into this behavior. While the GRPO baseline
exhibits a continuous increase in response length throughout training, which is often misinterpreted
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Table 3: Results of thinking compression on reasoning models DeepSeek-1.5B/7B, reporting the
mean@16 accuracy (“acc”) and the average response token length (“len”).

Methods MATH500 AIME24 AIME25 AMC23 Minerva Olympiad Avg.
acc len acc len acc len acc len acc len acc len acc len

DeepSeek-1.5B 83.0 5961 28.3 18082 25.8 17420 70.9 10295 31.2 7682 44.0 12518 47.0 11993
GRPO Baseline 86.2 2594 27.1 6519 22.5 6164 75.0 3919 34.6 3059 49.0 4196 49.1 4408
+ RoRecomp 84.6 1126 27.9 3473 23.3 2860 74.1 2100 33.1 1078 46.4 1935 48.2 2095
PPO Baseline 82.4 2016 27.1 4805 19.6 4399 71.9 3236 34.6 2058 46.5 3270 47.0 3297
+ RoRecomp 83.6 1435 28.8 3383 18.8 3003 74.4 1972 33.8 1256 46.5 2128 47.6 2196

DeepSeek-7B 92.8 4081 52.7 13432 40.4 14885 89.5 6575 42.6 5116 60.0 9322 63.0 8901
GRPO Baseline 92.6 2278 48.3 6241 36.2 6546 89.7 3423 42.6 2455 60.4 4024 61.6 4161
+ RoRecomp 91.4 1324 50.0 3591 33.3 3539 86.6 1966 44.5 1208 59.3 2197 60.8 2304

Qwen3-8B (non-thinking) 83.2 1242 23.7 6396 17.9 5491 68.1 2446 32.4 655 50.4 2976 46.0 3201
Qwen3-8B 95.1 5402 73.3 15383 66.2 18165 94.4 9311 48.3 7072 68.4 11373 74.3 11118
GRPO Baseline 95.1 4037 72.9 10999 59.2 13878 92.5 6667 49.1 4910 68.2 7855 72.8 8058
+ RoRecomp 94.9 3144 69.6 8274 56.2 9571 94.7 4983 60.2 3701 65.8 5843 73.6 5929

as the emergence of beneficial cognitive behaviors like self-reflection, RoRecomp demonstrates that
such length growth is not necessarily correlated with improved performance. Our method achieves
comparable final rewards while stabilizing output length at a significantly lower level. This indicates
that the lengthy exploration in standard RLVR is often inefficient. RoRecomp successfully steers the
exploration process itself toward more concise reasoning.

Agentic RL Training. The agentic RL training results in Table 2 show that RoRecomp achieves
a better balance between task performance and operational efficiency. Our method increases the
average F1 score from 51.5% to 52.2% while reducing the average number of tool calls per trajectory
from 6.2 to 3.3 (a 46.8% reduction). This efficiency improvement is consistent across both single-hop
and multi-hop QA benchmarks, demonstrating RoRecomp’s ability to adaptively adjust tool-usage
strategies based on task complexity. On the simpler single-hop task (TriviaQA), RoRecomp improves
the F1 score from 61.5% to 64.5% while significantly reducing the average number of tool calls from
6.2 to 2.8. For more complex multi-hop tasks (Bamboogle, HotpotQA), it maintains comparable F1
scores while cutting tool calls by nearly half. These results indicate that RoRecomp guides the model
toward more focused and efficient tool usage, eliminating unnecessary steps without compromising
answer quality.

Thinking Compression on Reasoning Models. The comprehensive results on thinking compression
are presented in Table 3. All methods are trained with a maximum generation length of 8k tokens,
which acts as an implicit reward shaping mechanism by truncating longer responses. This explains
why the GRPO baseline itself achieves significant compression compared to the original models.
Beyond this baseline effect, RoRecomp demonstrates remarkable effectiveness in further compressing
the verbose reasoning processes of off-the-shelf models across different scales and RL backbones,
consistently achieving drastic length reductions while preserving competitive performance.

For the DeepSeek-1.5B model, RoRecomp reduces the average response length by 52.5% (from
4,408 to 2,095 tokens) when applied with GRPO, with a minimal accuracy drop of 0.9 points (49.1%
to 48.2%). A similar trend is observed with PPO, where length is reduced by 33.4% with a slight
performance improvement. On the larger DeepSeek-7B model, based on GRPO, our RoRecomp cuts
the average length nearly in half (from 4,161 to 2,304 tokens, a 44.6% reduction) with an accuracy
drop of only 0.8 points. Most notably, on the strong Qwen3-8B model Yang et al. (2025) in thinking
mode, RoRecomp achieves a 26.4% length reduction (from 8,058 to 5,929 tokens) while marginally
improving the average accuracy from 72.8% to 73.6%. These results underscore the generality of
RoRecomp as a plug-and-play method for enhancing reasoning efficiency without compromising the
problem-solving capabilities of powerful reasoning models.

Generalization on out-of-domain benchmarks. Although our models are trained solely on mathe-
matical data, we further evaluate their generalization ability on coding (LiveCodeBench) and science
reasoning (GPQA) tasks, which represent out-of-domain scenarios. As shown in Tab. 4, RoRecomp
consistently reduces response length on these OOD test sets. For DeepSeek-1.5B models, RoRecomp
not only surpasses the vanilla GRPO/PPO baseline and original DeepSeek models in accuracy, but
also generates much shorter responses; for example, with GRPO, RoRecomp reduces the average
response length by 32% (from 7944 to 5416 tokens). For DeepSeek-7B models, RoRecomp continues
to effectively compress the output length, though with a slight drop in accuracy.
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Table 4: Evaluation on out-of-domain testsets.

Methods GPQA LiveCodeBench Avg.
acc len acc len acc len

DeepSeek-1.5B 36.4 18324 17.9 15057 27.2 16690
GRPO Baseline 38.4 6001 16.8 9886 27.6 7944
+ RoRecomp 39.9 4067 20.5 6766 30.2 5416
PPO Baseline 34.8 5501 17.5 8242 26.2 6872
+ RoRecomp 36.4 4396 16.8 6888 26.6 5642

DeepSeek-7B 53.5 7985 37.3 12978 45.4 10482
GRPO Baseline 51.5 4718 37.9 7721 44.7 6220
+ RoRecomp 48.5 3817 38.4 6070 43.4 4944

Table 5: Comparison with concurrent reasoning
compression methods: ThinkPrune Hou et al.
(2025), ConciseRL Fatemi et al. (2025), and
AdaR1 Luo et al. (2025a).

Method MATH500 AIME24 AIME25 AMC23 Olympiad Avg.
acc len acc len acc len acc len acc len acc len

DeepSeek-1.5B
ThinkPrune 83.2 1938 27.1 5631 - - 73.2 3039 - - 61.2 3536
ConciseRL 81.0 1965 30.0 6752 - - 69.4 2936 - - 60.1 3884
RoRecomp 84.6 1126 27.9 3473 - - 74.1 2100 - - 62.2 2233

AdaR1 80.8 2455 - - 23.0 9516 - - 42.1 5802 48.6 5924
RoRecomp 84.6 1126 - - 18.8 3003 - - 46.4 1935 49.9 2021

DeepSeek-7B
AdaR1 90.2 1468 - - 35.8 8426 - - 52.4 4889 59.5 4928
RoRecomp 91.4 1324 - - 33.3 3539 - - 59.3 2197 61.3 2353

Table 6: Response length and pass@1 scores across 5
MATH subsets with varying difficulty levels.

Methods Difficulty Level
Level 1 Level 2 Level 3 Level 4 Level 5

Response length (tokens)
DeepSeek-1.5B 2587 3130 3903 4903 7082
+ RoRecomp 495 (-81%) 647 (-79%) 825 (-79%) 1121 (-77%) 1606 (-77%)

Accuracy (mean@16)
DeepSeek-1.5B 93.7 92.0 88.6 84.6 71.9
+ RoRecomp 94.4 93.1 90.0 85.4 74.3

Table 7: Ablation study on the effect
of α across math and out-of-domain
benchmarks. Each entry shows “ac-
curacy [response length]”.

α Math (Avg) GPQA LiveCodeBench

0.5 40.1 [921] 35.1 [2582] 15.5 [4910]
0.7 48.0 [1711] 39.9 [3605] 18.3 [5922]
0.8 48.2 [2095] 39.9 [4067] 20.5 [6766]
0.9 49.3 [2979] 38.5 [4742] 19.2 [7262]

Comparison with concurrent works. Recently, severe works have been proposed to enhance reason-
ing efficiency, some of which also adopt DeepSeek models as their base, enabling fair comparisons
with our approach. Methods presented in Tab. 5 employ online reinforcement learning techniques.
Specifically, ThinkPrune Hou et al. (2025) iteratively reduces the generation limit from 4k to 2k
during the GRPO training; ConciseRL Fatemi et al. (2025) selects a limited set of problems that are
at least occasionally solvable as train data and uses PPO for optimization; While our RoRecomp
also utilizes GRPO. The results indicate that RoRecomp consistently surpasses these two methods
in both accuracy and response length. For example, RoRecomp achieves an average accuracy of
62.2%, surpassing ThinkPrune’s 61.2%, while reducing the average response length from 3536 to
2233 tokens. AdaR1 leverages collected preference pairs and DPO Rafailov et al. (2023) to improve
reasoning efficiency. RoRecomp consistently achieves higher accuracy and significantly shorter
responses than AdaR1. Furthermore, as an online RL method, RoRecomp is simpler to implement, as
it does not require meticulous offline data collection.

4.3 ABLATION STUDY

Ablation studies are conducted under the thinking compression setting using DeepSeek-R1-Distill-
Qwen-1.5B with GRPO. This setup provides a clear testbed for evaluating reasoning length reduction,
as it involves compressing the verbose reasoning traces of a off-the-shelf reasoning model.

RoRecomp’s Compression Effect across Difficulty Levels. To address whether RoRecomp truly
compresses reasoning length rather than simply distinguishing between easy and hard questions,
we report both response length and accuracy across the five difficulty levels in the MATH bench-
mark Lightman et al. (2023). As difficulty increases from level 1 to 5, RoRecomp consistently
reduces response length by around 80% at each level, while slightly improving pass@1 accuracy over
the original DeepSeek-R1-Distill-Qwen model. Results are depicted in Tab. 6.
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Figure 3: Dynamics of zero RL training.

Table 8: Results of pass@1 and pass@32 accuracy on
math benchmarks.

Methods MATH500 AIME24 AIME25 AMC23 Minerva Olympiad Avg.

DeepSeek-1.5B
Pass@1 82.2 26.7 19.6 68.1 30.1 44.4 45.2
+ RoRecomp 84.6 27.9 23.3 74.1 33.1 46.4 48.2 (+3.0)
Pass@32 96.4 73.3 53.3 92.5 55.1 72.4 74.1
+ RoRecomp 95.8 70.0 53.3 95.0 52.9 69.3 72.7 (-1.4)

DeepSeek-7B
Pass@1 92.0 51.7 38.3 88.7 41.9 58.2 61.8
+ RoRecomp 91.4 50.0 33.3 86.6 44.4 59.3 60.8 (-1.0)
Pass@32 98.0 80.0 70.0 97.5 62.9 76.1 80.8
+ RoRecomp 97.8 80.0 66.7 97.5 58.5 73.5 79.0 (-1.8)
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Table 9: Comparison of RoRecomp with length penalty methods under different training token budget.

Method Budget MATH500 AIME24 AIME25 AMC23 Minerva Olympiad Average
acc len acc len acc len acc len acc len acc len acc len

GRPO Baseline 16K 85.0 4260 28.8 9894 23.3 9710 77.2 6698 32.0 5091 46.9 7451 48.9 7184
Length Penalty (kimi) 16K 86.9 3039 30.4 8436 20.8 7909 76.2 5289 31.4 3454 47.8 5733 48.9 5643
RoRecomp (Ours) 16K 86.7 1894 28.3 5728 21.6 4800 73.8 3018 31.2 1705 48.4 3351 48.3 3416

GRPO Baseline 8K 92.6 2278 48.3 6241 36.2 6546 89.7 3423 42.6 2455 60.4 4024 61.6 4161
Length Penalty (kimi) 8K 86.0 2872 28.8 6892 22.5 6219 75.0 4641 32.4 3349 49.5 4728 49.0 4783
RoRecomp (Ours) 8K 84.6 1126 27.9 3473 23.3 2860 74.1 2100 33.1 1078 46.4 1935 48.2 2095

Sensitivity of Selection Ratio α. We analyze the impact of the selection ratio α, which determines the
fraction of responses included in the priority batch. As shown in Table 7, smaller α values (e.g., 0.5)
prioritize the most contrasting examples, yielding the shortest responses but lowest accuracy. Larger
values (e.g., 0.9) include more medium-length responses, improving accuracy at the cost of increased
length. The optimal balance is achieved at α = 0.8, maintaining competitive accuracy (48.2% on
math) while substantially reducing response length (2095 tokens). This setting also generalizes well
to out-of-domain tasks. The minimal performance variation between α = 0.7 and 0.8 demonstrates
robustness to parameter tuning.

Effect on Sampling Diversity. We analyze the impact of RoRecomp on sampling diversity by
comparing pass@1 and pass@32 performance in Table 8. RoRecomp improves or maintains pass@1
accuracy across model scales while achieving a minimal reduction in pass@32 scores (only -1.4
and -1.8 points for 1.5B and 7B models, respectively). This indicates that our method effectively
compresses reasoning length while marginally affecting the diversity of valid solutions. The pre-
served pass@1 performance demonstrates maintained problem-solving capability, and the negligible
pass@32 change confirms that compression primarily eliminates redundant paths without substantially
limiting the model’s ability to generate diverse reasoning trajectories.

Comparison with Length Penalty Reward Shaping. We conduct a comprehensive comparison
between RoRecomp and the competitive length penalty reward shaping approach Team et al. (2025)
under different training-time maximum generation length settings. As shown in Table 9, when trained
with a 16K token limit (where the truncation penalty is weaker), the explicit length penalty reduces
average response length by 1,541 tokens compared to the GRPO baseline (from 7,184 to 5,643
tokens), while RoRecomp achieves a more substantial reduction of 3,768 tokens. This demonstrates
that RoRecomp provides superior length compression even under relaxed constraints.

More importantly, when both methods are trained with an 8K token limit, which itself acts as an
implicit reward shaping mechanism by truncating responses exceeding this length and assigning
zero reward, RoRecomp achieves significantly shorter outputs (2,095 tokens) compared to the length
penalty approach (4,783 tokens). This performance gap arises because the explicit length penalty
functionally overlaps with this implicit reward shaping, diminishing its additional effect. In contrast,
RoRecomp operates orthogonally through data recomposition rather than reward modification, al-
lowing it to synergize effectively with the truncation-based reward shaping. The results confirm that
RoRecomp provides a fundamentally different and more effective approach to reasoning compression
compared to explicit reward shaping methods.

5 CONCLUSION

This work addresses the critical problem of verbose reasoning in RL with Verifiable Rewards (RLVR)
through Rollout Response Recomposition (RoRecomp), a plug-and-play method that guides models
toward efficiency via strategic data recomposition rather than reward modification. By separating
responses into priority batches (emphasizing concise correctness) and compensation batches (ensuring
stability), RoRecomp provides clearer optimization signals for efficient reasoning. Comprehensive
experiments across zero RL training, agentic RL, and thinking compression demonstrate RoRecomp’s
effectiveness: it reduces reasoning length by up to 74% and tool calls by 46.8% with minimal perfor-
mance impact, outperforming reward-shaping baselines. Our approach highlights data composition as
a powerful lever for efficiency optimization, offering a simpler and more stable alternative to reward
engineering for building concise yet capable reasoning models.
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Table 10: Comparing the number of steps and tokens in different reasoning phases before and after
applying RoRecomp.

Methods
Step Count Token Count

problem- problem- self- problem- problem- self-
understanding solving verification understanding solving verification

DeepSeek-R1-Distill-Qwen-1.5B 12 410 55 670 11738 1600
+ RoRecomp 7 (↓42%) 94 (↓77%) 10 (↓82%) 361 (↓46%) 2900 (↓75%) 309 (↓81%)

DeepSeek-R1-Distill-Qwen-7B 8 330 44 474 9876 1320
+ RoRecomp 5 (↓38%) 82 (↓75%) 5 (↓89%) 297 (↓37%) 2884 (↓71%) 217 (↓84%)
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Figure 4: Effectiveness of compensation batches, with response length and performance averaged
across six math test sets and reported at various training steps.

A APPENDIX

A.1 ABLATION STUDY

Analysis of reasoning behavior. We analyze the reasoning behavior of the models before and
after applying Rollout Response Recomposition (RoRecomp), as shown in Tab. 10. Inspired
by ThinkPrune Hou et al. (2025), we divide the reasoning process into three phases: problem-
understanding, problem-solving, and self-verification. Each phase may consist of multiple reasoning
steps, with each step separated by double newlines (“\n\n”). We use DeepSeek-V3-0324 Liu et al.
(2024) to assign each reasoning step to its corresponding phase, then count the number of steps and
tokens for each phase.

The results (Tab. 10) demonstrate that RoRecomp leads to a substantial reduction in both the number
of steps and tokens across all reasoning phases, with the most pronounced effect observed in the
self-verification phase. For example, on the DeepSeek-R1-7B model, RoRecomp reduces the number
of self-verification steps by 88.6% and the corresponding token count by 83.6%. Similar trends are
observed for the DeepSeek-R1-1.5B model. This suggests that lengthy self-verification is largely
redundant and can be significantly streamlined without compromising performance.

In contrast, the reduction in the problem-understanding phase is more modest, with the number
of steps decreasing by less than 42% for both model sizes. Notably, RoRecomp also changes the
distribution of steps and tokens among the three reasoning phases. In the original models, self-
verification consumed more tokens than problem-understanding (e.g., 1,320 vs. 474 tokens for
DeepSeek-R1-7B), whereas after applying RoRecomp, problem-understanding takes up more tokens.
This shift indicates that RoRecomp encourages the model to focus more on understanding the problem,
while reducing unnecessary elaboration during self-verification.

Ablation study on the compensation batch Bcomp. We investigate the effects and training strategy of
Bcomp separately. Specifically, Bcomp is used to preserve the model’s exploration capacity and prevent
the policy model from overfitting to a narrow subset of the response distribution. In our experiments
(Fig. 4), we compare a setting where compensation batches are discarded and only priority batches
are used for training (denoted as “wo/ Bcomp”) with RoRecomp, which leverages both priority and
compensation batches. As shown in the response length curves on the test set, “wo/ Bcomp” exhibits a
rapid decrease in response length during the initial training phase, whereas RoRecomp achieves a
smoother reduction. In terms of accuracy, “wo/ Bcomp” suffers a sharp drop after 80 steps, ultimately
reaching 42%, which is 6% lower than RoRecomp. These experimental results demonstrate that the
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compensation batch is indispensable; otherwise, the model’s exploration space would be damaged,
leading to a significant drop in performance.

A.2 THE USE OF LARGE LANGUAGE MODELS

We utilize an LLM to assist with paper editing and correcting grammatical errors.
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