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ABSTRACT

Foundation models have transformed language and vision through large-scale at-
tention over discrete tokens, yet progress on continuous-time dynamical signals
remains limited. A core challenge is the absence of a natural token-based rep-
resentation for ODE trajectories, which evolve continuously, span multiple tem-
poral resolutions, and are often partially observed. We introduce the Tokenized
ODE Representation (TOR), which maps trajectories into latent tokens governed
by local and linear Neural ODEs, leveraging their linearity for efficient scaling.
To capture both temporal context and shared structure across systems, we design
a hybrid attention architecture that alternates intra-system self-attention, modeling
dependencies within each trajectory, and inter-system cross-attention, supported
by a Dynamic ODE Hub (DOH) that serves as a shared repository for inter-system
knowledge exchange. These components form LASS-ODE (LArge-Scale Small
ODE), a foundation model with strong capacity for interpolation, extrapolation,
probabilistic inference, and zero-shot generalization across diverse ODE systems.

1 INTRODUCTION

Foundation models have achieved transformative progress across modalities such as text, vision,
time series, and graphs by leveraging large-scale attention-based architectures (Vaswani et al., 2017}
Devlin et al.l 2019 Brown et al.l 2020} Dosovitskiy et al.l 2020} Kaplan et al.l [2020; Das et al.,
20244a; [Xiaoming et al., 2025} [Liu et al., 2025b; Mao et al., [2024; [Liu et al., [2025a). At their core
is the attention mechanism, which enables global token interaction and flexible context aggregation,
supported by predictable scaling laws with model and data size (Kaplan et al., [2020). Yet a central
paradox remains: while foundation models thrive on discrete tokens, many scientific and engineering
domains are governed by continuous-time dynamics described by Ordinary Differential Equations
(ODEs). These dynamics underpin simulations, forecasting, digital twins, and control in engineered
systems (Vallado, 2001} |[Rasheed et al., 2019; |[Li et al.l 2025bj; [Mai et al.| 2025), Earth and envi-
ronmental processes (Lorenz, 2017), and life and health systems (Qian et al., 2021). Bridging the
discrete-token paradigm with continuous-time dynamical systems remains an open challenge.

Existing approaches extend Transformers to temporal data by discretizing trajectories into patches
and treating them as tokens. Recent time-series foundation models have advanced this strategy
by learning local short-term dynamics within each patch and using attention to capture long-range
dependencies (Nie et al.||2022} [Das et al.,2024a; |Ansari et al.| 2024a). While effective for regularly
sampled signals, these models remain tied to fixed-interval updates and cannot faithfully represent
the underlying ODEs. As a result, they lack guarantees of continuity, struggle with irregular or multi-
resolution data, and fail to expose the physical semantics of dynamical systems. Techniques such as
imputation and positional encoding can partially address irregularity (Wen et al.| [2022; Zeng et al.,
2023)), but they do not resolve the fundamental gap: patch tokenization does not provide a principled
way to encode continuous evolution.

Compared with patch-based foundation models, small-scale system-specific approaches can directly
model continuous-time dynamics within a single system. Symbolic regression methods infer explicit
governing equations from data, producing closed-form ODEs that can be integrated at arbitrary
temporal resolutions (Brunton et al.,[2016;Li et al.,2022). Physics-informed neural networks embed
physical constraints into coordinate-based neural fields, allowing the learned solution to be queried
at any time (Cuomo et al.l 2022). The Neural ODE family instead learns the underlying vector
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field and integrates it in continuous time (Chen et al., 2018b; [Rubanova et al.| 2019; Kidger et al.,
2020b; [Li et al.| 2025a). These approaches can achieve high accuracy on targeted systems, yet often
require case-specific tuning and lack scalability. More importantly, they do not generalize across
heterogeneous systems, even though many systems share recurring ODE structures such as energy-
conserving Hamiltonian forms (Greydanus et al., 2019), damping and forcing patterns, or oscillatory
dynamics (Krishnapriyan et al.l 20215 Rackauckas et al.| [2020). This tension highlights the need for
architectures that preserve the fidelity of continuous-time modeling while supporting transfer across
diverse dynamical domains.

To address this gap, we introduce a new philosophy, LASS (LArge-Scale Small), for scalable model-
ing of ODE-governed systems. In contrast to conventional strategies that focus solely on scaling up
large attention architectures, our philosophy emphasizes first scaling down to capture local physical
information in small, physics-aware tokens, and then scaling up with global attention to integrate
these tokens across trajectories and systems. Each token preserves physical constraints and provides
an efficient representation of local dynamics, often through simple linear forms, while attention lay-
ers support flexible long-range interactions. This dual design—small physics-aware representations
combined with large-scale token interaction—aims to achieve both fidelity to underlying physical
laws and scalability across diverse datasets.

Building on this philosophy, we propose LASS-ODE, a scalable architecture that unifies continuous-
time modeling with foundation-style generalization. Central to LASS-ODE is the Tokenized ODE
Representation (TOR), which encodes state trajectories as piecewise linear ODE flows in the latent
space. Unlike patch tokenizers, TOR preserves continuity and interpretable eigenstructure. More-
over, the linear format brings fast ODE integration, suitable for large-scale computation. To facilitate
cross-system generalization, we introduce the Dynamic ODE Hub (DOH), a shared, trainable matrix
that is dynamically updated from token messages and serves as a hub for inter-system knowledge
exchange. Finally, we propose a novel architecture that alternates between intra- and inter-attention,
enabling deep, dynamic mutual enhancement between local dynamics and shared global structures.

Our contributions are threefold:

* Continuous-time tokenization. We introduce the Tokenized ODE Representation (TOR),
which encodes latent flows into piecewise linear tokens with guaranteed continuity, inter-
pretable eigenstructure, and fast computations.

* Scalable cross-system modeling. We design LASS-ODE, a foundation model that blends
physics-aware tokenization with scalable intra- and inter-attention mechanisms.

* Empirical validation. Across chaotic physics, biological networks, and power systems,
LASS-ODE achieves consistent improvements over state-of-the-art time-series foundation
models and Neural ODE-based methods.

2 PRELIMINARIES

Problem Setup. We consider families of continuous-time dynamical systems governed by ordinary
differential equations (ODEs) or differential-algebraic equations (DAEs). For a given system with
state x € X, where X denotes the system’s state space, its evolution is described by a vector
field f : X — X as @ = f(x). Our setting includes sequential state observations {a;(t})}; ; from
multiple systems indexed by 4, each with distinct state spaces {X; }, potentially varying in dimension,
temporal resolution, and observability. For the i*" system, the timestamps of all observed points

= {t; }; are also available. Our goal is to build a foundation model that estimates f for each
system. The model supports the following downstream tasks:

* Interpolation: Reconstruct missing data at arbitrary times within the observed time span.
» Extrapolation: Predict system trajectories at future times beyond the observation interval.

* Probabilistic trajectory inference: Estimate distributions over trajectories to enable
uncertainty-aware predictions under partial observability, noise, etc.

» Zero-shot inference: The model reconstructs trajectories for previously unseen systems
by conditioning only on a short prefix of observed states, without access to any additional
input-output pairs from the same system or parameter fine-tuning (Liu et al.| [2025b)).
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In the following, we introduce the preliminaries for the learning models and omit the system index
for notational simplicity, as all models are applied independently to each system in practice.

Latent ODE for multi-dimensionality, partial-observability, and multi-resolution. Recall that
different ODE systems can be multi-dimensional, partially observed, and sampled at multiple reso-
lutions. We first replicate certain channels to enforce a fixed input dimensionality across systems,
but this alone does not address the underlying redundancy or missing information. We therefore
construct a latent space that captures the core dynamical factors to reduce redundancy (tackling
multi-dimensionality) and introduce a latent random variable to represent a distribution over tra-
jectories (tackling partial observability). We then evolve this latent state using a Neural ODE to
accommodate multi-resolution sampling. Together, these components motivate the use of Latent
ODE (Rubanova et al} 2019). Specifically, in latent ODE, an encoder f.,. processes IN observa-
tions {x(;)} ¥, and Tops := {t;}1¥, to infer an initial latent state z(¢y) € Z that summarizes past
information. The posterior distribution over this state is parameterized as:

z(to) ~ N (fene({x(t:)}, Tops))- (D

Choice of the encoder f,. for large-scale training. We adopt a GRU encoder (the orange box in
the left of Fig. |1) that processes the concatenated input [z (¢), At], where At denotes the sampling
interval of the specific ODE system. This design enables the encoder to handle multi-resolution
datasets by incorporating temporal resolution as an input. Specifically, we have:

ene({z(t:), Ati}L0) = g(h) . h = GRU, ({[z(t:); Ati]}}o), 2
where ¢ is a multilayer perceptron (MLP) to convert h into the mean and variance of z(ty). Other
options for irregularly sampled data, such as RNN-A; (Che et al.,[2018) and ODE-RNN (Rubanova
et al.l 2019), incur heavier computational costs and prevent the use of highly optimized batched
GRU kernels, which leads to significantly lower GPU throughput.

Given z(t(), the decoder evolves the latent trajectory via an ODE parameterized by a neural network
hg, and reconstructs/predicts the observed states using a likelihood model py:

Z(ti) = ODESO]VC(h97Z(to),to,ti), iL‘(ti) Npg(ll?(ti) | Z(ti», (3)

Here, ODESolve(hg, z(to), to, t;) solves the initial value problem (IVP) defined by the neural ODE
Z(t) = hg(z(t)) with initial condition z(¢y), and returns the integrated latent state at time ¢;. The
decoder thus consists of both the ODE function hy and the probabilistic head pg. Training maximizes
the variational lower bound:

ELBO = E. ) [log po ({2 (t:)})] = KL [N (fenc ({2 (t:) }, Tobs)) || (2(t0))] , )

where p(z(to)) is typically a standard Gaussian prior. In deterministic settings, the likelihood term
can be replaced with a squared-error loss.

Multi-head attention for scalable interactions. As the core computation underlying modern foun-
dation models, multi-head attention enables the contextual interaction between embedding vectors.
Given query ), key K, and value V, the attention output is computed as:

QWL (KW)T

MHA(Q, K, V) = Concat(heady, . .. ,headh)Wo, head; = softmax
Vi

) VWY, (5)

where dj, is the dimension of each query/key vector.

3 LASS-ODE: LARGE-SCALE SMALL ODE

3.1 TOKENIZED ODE REPRESENTATION TO SCALE DOWN LATENT ODES

Latent ODE:s provide a principled way to model continuous-time dynamics, but they remain compu-
tationally expensive due to the need for numerical ODE integration at every forward pass. Moreover,
the neural network hy that parameterizes the latent derivative in equation |3is typically unstructured
and difficult to interpret, which limits its scalability and generalizability across systems. In founda-
tion models, tokens are the essential elements that support large-scale representation learning and
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Figure 1: The architecture of LASS-ODE.

compositional reasoning. Hence, before scaling up latent ODEs to the foundation scale, we first
scale them down by converting continuous latent dynamics into a small set of discrete ODE tokens.
This Tokenized ODE Representation (TOR) reduces integration overhead and imposes structural
regularity on each token’s dynamics, making them both interpretable and reusable as fundamental
units for large-scale modeling.

Given the observations {z(t;)},, we define that the k‘" token is a small temporal segment of
the observed trajectory over the interval [t} £5"9]. The set of tokens forms a collection of non-
overlapping patches of the full time-series trajectory (Nie et al.l [2022) from ¢y to ty. We now
formally define the Tokenized ODE Representation (TOR), which models each trajectory patch
using a token-specific latent ODE flow.

Definition 1 (Tokenized ODE Representation (TOR)). Given tokenized segments, TOR models
each token’s latent evolution in a continuous space Z as:

TORy, := {2z (t) | t € 15, #5"]}, where 2 (t) = ODESolve(2y(t), zi(£52"), £ 1), (6)
with the token-specific linear dynamics defined by:
2, (t) = Agzi(t) + by, (7

where 2, (t§") € Z is the initial latent state, and 4, € R4, b, € R? are token-specific param-
eters. The latent segment TORy, can be decoded via py(Tokeny, | TORy) to accurately reconstruct
the original observation patch, where py and the decoding process is defined in equation 3]

The linear latent dynamics in equation |/| provide sufficient expressiveness over small token inter-
vals, particularly when composed with the nonlinear map py. TOR retains the key advantages of
latent ODE:s: it provides a unified representation that naturally supports multi-resolution sampling,
continuous evolution, and principled uncertainty modeling through the variational latent variable
framework. In addition, because of the linearity, TOR is highly efficient for large-scale computa-
tion. During decoding, the initial latent state z(tg) is encoded once using a GRU-based encoder,
as depicted in equation || and equation 2| Then, with the shared z(ty), off-the-shelf ODE solvers
such as torchdiffeq.odeint (Chen et al.,2018b) can efficiently solve the following piecewise
linear IVP, which guarantees the continuity of the ODE trajectories.

h(t) == A(t)z(t) + b(t), where A(t) := Ay, b(t) == by, ift € [£, ],
2(t) = ODESolve (h(t), z(to),to,t € (to,tNyl) s

where we define the piecewise linear function h(t) to take place of the nonlinear ODE function hy
in equation[3] Moreover, we utilize ¢y, rather than ¢y to denote the user-defined maximum ending
time across all ODE systems. The white box in the right part of Fig. [I]is the introduced ODE solver.
After obtaining the flow zﬁ), we can utilize an MLP decoder (see the blue box in the right of Fig.

[1), namely, py in equation[3] to draw samples of x(t).

®)

The introduced physical prior in TOR not only facilitates efficient modeling and computation, but
also naturally motivates the use of global attention in a foundation model: each token embedding
should attend to others to exchange and refine dynamic patterns, such as oscillatory modes and
damping behaviors, reflected in the eigenstructure of Ay and the offset by, (Callier & Desoer,2012).
To support TOR-based foundation models, two key questions naturally arise:

1. How can we construct an informative embedding for each token?
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2. How should we design intra- and inter-ODE system attention?

The first question is addressed below, while the second is discussed in Section 3.2}

To represent each token, we summarize its temporal evolution using the hidden state in equation [2}
Compared to the latent initial condition z(¢p), the hidden state h provides a richer and higher-
dimensional summary, as also noted in [Rubanova et al.| (2019). To further encode token-specific
dynamics such as A; and b;, we adopt a time modulation, inspired by (Perez et al.|[2018):

€; = 7(tftm) © fembed(h) + Ig(ﬁ/tarl% (9)

where e; € R ig the embedding vector for token ¢, and fempeq is an MLP applied to the global
summary vector h. The modulation functions ~(-) and 3(-) are two independent MLPs that take the
token’s starting time ¢ as input and output vectors in Rmoeel | The operator ® denotes Hadamard
multiplication. By modulating the shared representation fempea(h) with time-specific scaling and
shifting functions (") and B(¢{™"), the model can adaptively adjust the embedding for each
token to reflect its unique temporal context. The time modulation is presented as the pink box to the
left of Fig. [T}

Since the modulation is conditioned only on the token’s starting time ¢5", we can generate the full
trajectory of embedding vectors, spanning from the beginning ¢y to the defined maximum time ¢y, ,
which may extend beyond the end of the observational window ¢,;. As long as the local dynamics
Ay and by, can be accurately estimated from the token embedding (and the subsequent attention), the
entire trajectory can be reconstructed by equation 8| This design enables full trajectory reconstruc-
tion in a sequence-to-sequence (seq-to-seq) manner, eliminating the need for auto-regressive (AR)

next-token prediction (Rubanova et al.,[2019).

Remark: Seq-to-seq vs. AR. AR generation and next-token prediction have proven highly effec-
tive in LLMs. However, in the context of latent dynamics, applying AR introduces a significant
computational drawback. Specifically, if we predict the next token in an AR fashion and feed it back
as input to the GRU encoder, the latent initial condition z in equation [[| may change at each step.
As a result, the ODE in equation [§| must be re-integrated repeatedly from a new initial condition. In
contrast, our seq-to-seq design enables one-pass ODE integration in each forward round.

3.2 INTRA- AND INTER-SYSTEM ATTENTION TO SCALE UP TORS

Intra-system attention. We begin by modeling intra-system attention over the full trajectory of
tokens. Let K, denote the number of tokens spanning from the initial time ¢ to the extrapolated
horizon ¢y, . Let E € REmxXduu denote the matrix of token embeddings {e; }, constructed via
time modulation as described in equation[9] To further enrich temporal representations, we augment
each token embedding with a Fourier feature encoding of its starting time, denoted by FF(¢{*") (Tan-
cik et al., [2020). Let FF € R¥mxXdnoei denote the matrix formed by stacking these encodings for
all tokens. These Fourier features enable the model to capture both low- and high-frequency tempo-
ral patterns, which are essential for modeling complex and potentially oscillatory system dynamics.
The resulting embeddings are processed through a multi-head self-attention (MHA) mechanism, as
defined in equation [5] where each token attends to all others within the same trajectory to capture
intra-system dependencies. To improve training stability, we adopt the pre-normalization (pre-LN)
Transformer (Xiong et al.,|2020). Formally, the intra-system attention module is defined as:

EW = E + FF + MHA(LN(E + FF),LN(E + FF),LN(E + FF)), (10)
E = EY £ FEN(LN(EW)), (11)

where LN denotes layer normalization, and the FFN is a position-wise feedforward network. E e
R Kmax X dmoset jg the output. In general, the module is denoted as E = ISA(E).

Inter-system attention. Unlike intra-system attention, inter-system interaction lacks an inherent
sequential structure. To enable cross-trajectory communication in a permutation-invariant manner,
we draw inspiration from Set Attention (Lee et al.,[2019) and Slot Attention (Locatello et al.|[2020).
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Specifically, we introduce a Dynamic ODE Hub (DOH) as the central mechanism. The DOH serves
two key roles: (1) it interacts with token embeddings from all systems to extract shared structure and
dependencies, and (2) it provides a higher-level abstraction that dynamically responds to incoming
token information, enabling cross-system coordination.

Let H € RS*dmew denote a trainable parameter matrix (i.e., a hub) for DOH, where S is a hyper-
parameter to control the size of H. We perform cross-attention from tokens to the DOH: each token
embedding queries the hub to extract information. Formally, the inter-system attention module is
defined as:

EW = E + MHA(LN(E), LN(H), LN(H)), (12)
E =EW 4+ FEN(LN(E™M)), (13)

where LN(-) denotes layer normalization, MHA(-, -, -) is multi-head attention, and FFN(-) is a
position-wise feedforward network. We denote the overall module as: F = ESA(FE, H). While
the static /1 stores useful global patterns, its expressiveness becomes limited as the ISA and ESA
modules are stacked deeper. To capture higher-level abstractions, we promote dynamic updates to
H . Similar to (Locatello et al., 2020), we allow each hub to evolve based on interactions with token
embeddings via cross-attention, and update the hub using a GRU mechanism:

H = GRU (MHA(LN(H),LN(E),LN(E)), H), (14)

where the GRU treats H as the hidden state and updates it using the cross-attention output as input.
This cross-attention allows each hub to selectively aggregate information from all token embeddings.

We denote this GRU-based update as H = Update(H, E).

Alternating ISA, ESA, and Hub Update. With the intra-system attention module (ISA), inter-
system attention module (ESA), and the dynamic hub update mechanism (Update), we construct
the fundamental building block of our architecture. The core idea is to alternate between ISA and
ESA to enable bidirectional information flow between local temporal structures and global coordi-
nation. We then apply a gating mechanism G = Gate(FE, Eiy.;) to adaptively fuse the intra-attended
embeddings E with the DOH-modulated context i, enabling selective integration. Finally, the
DOH is updated via the Update operation to reflect higher-level abstractions and to better support
subsequent attention layers. This ISA-ESA-Update pattern forms the core iterative structure of our
model, as summarized in Algorithm [} The middle of Fig. [I] visualizes this process.

Algorithm 1 ISA-ESA-Update

Require: Token embeddings E € R X dmodet initial DOH H € RS dmoae
Require: Number of blocks L, number of attention layers per block D

1: for block £ = 1to L do

2: for layer d = 1 to D do

3: E + ISA(E) > Intra-system self-attention

4: end for

5: for layer d = 1 to D do

6: Eier < ESA(E, H) > Inter-system attention from DOH

7: end for

8: G + Gate(E, Einger) > Gating function over token and hub context

9: E +— FE+ G0 Eper > Gated fusion
10 H < Update(H, E) > Update hub via GRU
11: end for

12: return Final token features F < E

3.3 TRAINING WITH PREFIXES TO SUPPORT ZERO-SHOT INFERENCE

As discussed in the last paragraph of Section [3.1] we abandon the AR formulation due to the in-
tractability of repeatedly integrating large-scale ODEs from updated initial conditions. Instead, we
adopt a seq-to-seq approach. However, this design choice may compromise the model’s ability
to generalize in zero-shot settings, where only a limited temporal prefix is available at test time.
To address this, we introduce prefix-based training to explicitly teach the model to operate under
variable-length observation windows.
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Concretely, we simulate zero-shot scenarios during training by varying the prefix length of the input
trajectory. This affects only the encoder, i.e., the GRU-At module, which processes the sequence up
to the specified prefix endpoint. We extract the hidden state h at the final prefix time as the summary
representation. Since the GRU is causal and recurrent, we can compute all prefix representations in a
single forward pass, ensuring efficiency. Formally, let {tpmhx }M_ denote a set of prefix times, where
each 9™ € [to, t]. The encoder GRU-A processes the full input sequence {[z(;); At;]}Y. . and
we collect the hidden states at these prefix times as {h,, }}_,. Correspondingly, the initial latent
states for decoding are defined as {z(™ (to)}_,, computed through equation |1|and equation

Given the prefix-specific GRU hidden state h.,, and its corresponding latent initialization z(™) (t),
we generate token embeddings E using the time-modulated encoding defined in equation@} These
embeddings are then refined through intra- and inter-system attention using the core attention block
described in Algorlthml resulting in the final token representations E.

Next, we introduce a parameter decoder fparam that maps each refined token embedding €; to a local
linear dynamic operator (A;, b;), representing the parameters of a piecewise latent ODE:

(Aiabi) :fparam(éi)> fori = 17~--7Kmax~ (15)

The parameter decoder is shown as the blue box in Fig. The latent trajectory z(’”)(t) is then
obtained by integrating the piecewise TOR defined in equation|[8] generating the full latent evolution
over the interval [tg, ¢y ]. Finally, the latent trajectory is decoded into the observable space using
equation producing the reconstructed trajectory a(") (t). This process enables probabilistic inter-
polation and extrapolation, where the model generates full trajectory reconstructions conditioned on
latent dynamics. To train the model, we maximize ELBO defined in equationd] which is evaluated
over the complete time range from ¢( to ¢

max *

4 EXPERIMENTS

4.1 DATASETS

We evaluate LASS-ODE on a curated dataset across diverse real-world ODE systems, as summa-
rized in Figure 2] Representative training trajectories are provided in Appendix

For power systems, we study transient stabil-
ity by integrating swing-equation and higher-order
generator-network ODEs using ANDES for scripted
nonlinear dynamics under perturbations (Huang

et al., 2021), and Dynawo for utility-grade short- Power

and long-term studies (Guironnet et al., [2018)). To system

probe nonlinear control, we adopt benchmark tasks 16.3% General
from the neural_clbf library (Amos et al. nonlinear
2022), which emphasize stability and safety un- Nonlinear 40.3% | signals

der Lyapunov-Barrier constraints. Beyond engi-  control ~ 15.6%
neered systems, we source mechanistic models from

the BioModels repository (Malik-Sheriff et al. 6.5%
2020), a curated collection of literature-based ODE

. o,
models in systems biology, and run time-course Biology Hav
simulations for reproducibility. We also evaluate
on the “Datasets for learning of unknown charac- General nonlinear
teristics of dynamical systems” (Szczesna et al. dynamics

2023), which comprises 33,000 standardized time Figure 2: Ratios of data sources in our col-
series from 15 chaotic and non-chaotic systems with lected ODE benchmark.

randomized initial conditions. Finally, we include

general nonlinear signals from (Augustyn, 2020),

covering diverse dynamical systems with partially

known or unknown governing equations.
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4.2 IN-DOMAIN INTERPOLATION AND EXTRAPOLATION

To evaluate in-domain inference, we construct test prefixes from ODE trajectories generated using
the same underlying equations as the training data, but with different initial conditions and parameter
values. Each prefix randomly spans between 10% and 90% of the full trajectory duration, covering
a subinterval of [to, ¢y, |. The computed average Mean Square Error (MSE) is reported in Table|[1]
We compare our method with both foundation time-series models (TimeFM (Das et al., 2024a)),
TimeGPT (Garza et al.l [2023a), and Chronos (Ansari et al.| |2024a)) and Neural ODE-based small-
scale methods (Latent ODE (Rubanova et al., 2019) and ContiFomer (Chen et al., [2023)).

Across diverse datasets, LASS-ODE achieves a 50-90% reduction in error compared to competing
methods. Firstly, we observe that time-series foundation models are not suitable for inferring ODE
measurements since ODE trajectories often exhibit non-periodic behaviors, sharp spikes, oscillatory
trends, and irregular patterns (see Appendix [A.2] and [A.3) that cannot be captured by fixed patch-
based tokenization or discrete updates. Secondly, Neural ODE-based methods achieve relatively
strong performance within individual systems, highlighting the potential of latent spaces with con-
tinuous ODE flows, including our proposed TOR. However, strong in-domain accuracy does not
necessarily translate to inter-system generalization. In the next subsection, we therefore evaluate the
zero-shot generalization capacity of all methods.

Table 1: Test MSE (x 10~2) for in-domain systems.

TimesFM ‘ TimeGPT ‘ Chronos ‘ ContiFormer ‘ Latent ODE ‘ LASS-ODE
Data Interp  Extra | Interp  Extra | Interp  Extra | Interp  Extra | Interp  Extra | Interp  Extra
Synthetic Nonlinear ODE - 0.74 - 0.72 - 0.90 0.48 0.62 0.38 0.19 0.08 0.09
Power System Swing Equation - 7.45 - 6.70 - 8.94 1.45 1.63 1.81 1.90 0.67 0.74
Linear Fading System - 1.49 - 1.24 - 2.23 1.46 1.62 1.13 1.14 0.11 0.12
Harmonic Oscillator - 1.93 - 1.55 - 2.26 0.82 0.34 0.45 0.36 0.12 0.14
Ueda Oscillator - 2.53 - 1.92 - 2.88 0.91 0.47 0.71 0.43 0.14 0.16
Lorenz Attractor - 5.44 - 3.96 - 6.41 0.96 0.38 0.53 0.67 0.27 0.30
Rucklidge Attractor - 8.02 - 5.39 - 9.67 0.63 1.17 0.82 0.86 0.35 0.38
Rossler Attractor - 15.24 - 7.62 - 19.05 1.85 1.74 1.69 1.77 0.56 0.63

4.3 ZERO-SHOT GENERALIZATION TO UNSEEN SYSTEMS

Table 2: Test MSE (x10~2) for unseen systems.

TimesFM ‘ TimeGPT ‘ Chronos ‘ ContiFormer ‘ Latent ODE ‘ LASS-ODE
Data Interp Extra ‘ Interp Extra ‘ Interp Extra ‘ Interp Extra ‘ Interp Extra ‘ Interp Extra
Spiral - 0.38 - 0.17 - 0.29 0.35 0.47 0.17 0.16 0.03 0.05
Glycolytic - 15.77 - 23.34 - 2279 | 3639 4698 | 24.15  26.90 2.35 4.08
Lotka - 13.37 - 17.74 - 13.87 14.09 16.28 13.89 14.97 2.78 3.65
SIR Epidemic Model - 2.67 - 2.14 - 2.77 3.55 3.98 3.08 3.17 0.77 1.06
Double Pendulum - 57.98 - 55.09 - 62.89 | 97.82 9569 | 74.63 82.23 8.23 10.22
FitzZHugh—Nagumo Model - 23.96 - 25.55 - 28.63 31.77 3525 20.03 18.65 5.82 7.63

To evaluate zero-shot generalization, we use the first 30% of each trajectory as input for interpola-
tion and extrapolation tasks. Results are reported in Table [2| Under this setting, ContiFormer and
Latent ODE perform poorly on several complex systems, such as Glycolytic dynamics, the double
pendulum, and the FitzHugh—Nagumo model. This limitation arises from their lack of scale-down
capacity: they process trajectories sequentially with fixed patterns, making it difficult to adapt when
trajectory segments differ across systems. In contrast, LASS-ODE decomposes trajectories into
TORs and leverages attention-based interactions between them. This design allows LASS-ODE to
maintain low MSE even in few-shot scenarios.
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4.4 ABLATION STUDY

To assess the contribution of each component, we con-
duct an ablation study. We test the zero-shot results for
different systems and compute the average MSE. As
shown in Fig. |3| inter-attention plays a central role in
enabling information exchange across different ODE

w/o time modulation
w/o fourier feature
w/o inter attention

systems, while intra-attention is essential for token w/o intra attention
contextualization within a trajectory. In addition, re- LaSS-ODE

moving the time modulation layer leads to a notable 0.0 02
increase in MSE. This is because that time modulation MSE

in equation [9] creates proper embedding by effectively

integrating the temporal feature h with time. Figure 3: Results in ablation studies.

5 RELATED WORK

Foundation models for time series. Large-scale pretraining has recently enabled time-series
models with cross-domain generalization. TIMEGPT introduced a GPT-style decoder for zero-
shot forecasting across diverse corpora (Garza et al., 2023b)), and LAG-LLAMA scaled decoder-only
transformers with lagged covariates for probabilistic prediction (Rasul et al.| [2023)). MOIRAT uni-
fied training across frequencies and variables with any-variate attention (Liu et al,, [2024), while
sparse MoE extensions reduce reliance on handcrafted frequency heuristics. Tokenization-based ap-
proaches such as CHRONOS and TIMESFM leverage scaling-and-quantization or flexible horizon
objectives to achieve strong zero-shot accuracy across benchmarks (Ansari et al., [2024b; Das et al.,
2024b). Collectively, these models demonstrate the promise of foundation-style architectures for
time series, but they almost exclusively cast sequences into symbolic tokens, overlooking domain-
specific inductive biases such as ODE/DAE structure. Our work addresses this gap by developing
a foundation-style model that explicitly incorporates continuous-time ODE dynamics and enable
transfer across heterogeneous dynamical systems.

Neural ODE/CDE/SDE families for learning dynamics. Continuous-time neural architectures
offer a complementary line of work. Neural ODEs (Chen et al.,[2018al) introduced black-box differ-
ential solvers as network layers, enabling flexible vector-field learning. Extensions such as Latent
ODEs and ODE-RNNs (Rubanova et al.| 2019) infer latent initial states from irregular observa-
tions; Neural CDEs generalize recurrent networks to pathwise control signals (Kidger et al.| |2020a);
and Neural RDEs extend to rough paths (Morrill et al., 2021). These families establish the fea-
sibility of learning dynamics directly in continuous time, but they are typically trained as narrow,
system-specific models without cross-domain scalability. Our contribution is to integrate this ex-
pressivity into a foundation model for ODEs/DAEs, combining universal pretraining and retrieval
with continuous-time architectures to achieve systematic generalization across dynamical regimes
under partial observability and noise.

6 CONCLUSION, LIMITATION, AND FUTURE WORK

We introduced LASS-ODE, a new foundation model paradigm that unifies large-scale attention
with small-scale ODE representations. By tokenizing continuous-time trajectories into piecewise
linear latent ODEs, our Tokenized ODE Representation (TOR) enables efficient, interpretable, and
reusable modeling units. Together with intra-system self-attention and inter-system cross-attention
via a Dynamic ODE Hub, LASS-ODE achieves strong performance across interpolation, extrapo-
lation, probabilistic inference, and zero-shot generalization tasks. Experiments on diverse ODE and
DAE datasets demonstrate that our approach bridges the gap between task-specific continuous-time
models and general-purpose foundation models. Despite these advances, our work has limitations.
Currently, we focus on autonomous systems. On the application side, extending LASS-ODE to
digital twins, control-theoretic tasks, and multi-modal settings (e.g., coupling ODE dynamics with
text or sensor metadata) offers promising avenues. More broadly, we envision LASS-ODE as a
stepping stone toward foundation models that combine the universality of large-scale pretraining
with the fidelity of continuous-time physical modeling. For example, our next step is to provide
products of LASS-SDE or LASS-PDE.
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A APPENDIX

Al

Hyperparameters (default run).
figuration:

MODEL HYPERPARAMETERS AND LEARNABLE PARAMETERS

Unless otherwise stated, our experiments use the following con-

Table 3: Model and training hyperparameters.

Category Name Value
Architecture Latent dim 20
Embed dim 256
GRU hidden 256
GRU layers 2
Tokens per horizon 50
Primitives 30
Attention heads 8
Attention depth (per stack) 10
MLP ratio (FFN) 4
Blocks (interleaved) 2
ODE solver doprib
Training Optimizer AdamW
Learning rate 5x 1074
Betas (0.9, 0.95)
Weight decay 0.05
Batch size 32
Epochs 200
# Scenarios 15
Time points 100-400

Parameter count (by component).

For the default configuration above (and a small output di-

mension placeholder D=8 for the reconstruction MLP), the learnable parameter counts are:

Module # Params Share
Encoder (GRU-A®) 372,260 1.98%
Time modulation embedder 381,440 2.02%
Fourier positional encoding 0 0.00%
Intra token self-attention stack (depth 10) 9,871,360 52.38%
Inter token-primitive cross-attn stack (depth 10) 7,902,720 41.93%
Parameter decoder (to A, b) 173,732 0.92%
Reconstruction MLP (d — D) 3,760 0.02%
Total (LASS-ODE) 18,845,304 100%

Notes. (1) The total is dominated by the attention stacks; changing FE, heads, or depth has the largest
effect. (ii) The reconstruction MLP depends on D (data dimension). If D differs from 8, only that
row and the total change slightly. (iii) The primitive library H € R¥*¥ is learnable and contributes
linearly in K - E.

A.2 EXAMPLES OF TRAINING TRAJECTORIES

We present representative trajectories from three dynamical systems used in our experiments. These
examples highlight the diversity of behaviors in the dataset, spanning chaotic attractors, oscillatory
dynamics, and converging swing equations, and provide context for the types of signals on which
LASS-ODE is trained.
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Figure 4: Dataset of general nonlinear signals (Augustynl, 2020).
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Figure 5: Dataset of power system dynamics governed by swing equations (Huang et al., 2021).
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Figure 6: Dataset of general nonlinear dynamics [Szczesna et al.| (2023, comprising canonical ex-
amples such as the Lorenz attractor, Ueda oscillator, etc.

A.3 EXAMPLES OF FORECASTING RESULTS

To complement the training trajectories shown in Appendix [A.2] we present forecasting results for
the same three dynamical systems. These examples demonstrate how LASS-ODE captures distinct
dynamical behaviors ranging from chaotic to oscillatory and convergent regimes, highlighting its
effectiveness across diverse nonlinear ODE systems.
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Figure 8: Forecasting results on swing-equation dynamics (Huang et al., [2021), demonstrating ac-
curacy in convergent regimes of power systems.
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Figure 9: Forecasting results on general nonlinear dynamics (e.g., Lorenz attractor and Ueda oscil-

lator) (Szczesna et al} 2023} [Augustynl 2020).

A.4 FORECASTING COMPARISON ON SWING-EQUATION DATASET

To further evaluate forecasting performance, we compare LASS-ODE against recent time-series
models, including TimeGPT, TimeFM, and Chronos, on the swing-equation dataset. The models
are trained on system trajectories from 0-0.5s and evaluated on the forecasting horizon 0.5-1s.
This comparison highlights the advantages of physics-informed modeling in capturing power system
dynamics relative to general-purpose forecasting baselines.
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Figure 10: Forecasting comparison on the swing-equation dataset of 20 representative dimensions.
Each subplot corresponds to one dimension, with ground-truth trajectories shown as dashed lines,
and forecasts from LASS-ODE, TimeGPT, TimeFM, and Chronos shown as solid curves.
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