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ABSTRACT

We contribute to the growing body of knowledge on more powerful and adaptive
stepsizes for convex optimization, empowered by local curvature information. We
do not go the route of fully-fledged second-order methods which require the ex-
pensive computation of the Hessian. Instead, our key observation is that, for some
problems (e.g., when minimizing the sum of squares of absolutely convex func-
tions), certain local curvature information is readily available, and can be used to
obtain surprisingly powerful matrix-valued stepsizes, and meaningful theory. In
particular, we develop three new methods—LCD1, LCD2 and LCD3—where the
abbreviation stands for local curvature descent. While LCD1 generalizes gradient
descent with fixed stepsize, LCD2 generalizes gradient descent with Polyak step-
size. Our methods enhance these classical gradient descent baselines with local
curvature information, and our theory recovers the known rates in the special case
when no curvature information is used. Our last method, LCD3, is a variable-
metric version of LCD2; this feature leads to a closed-form expression for the
iterates. Our empirical results are encouraging, and show that the local curvature
descent improves upon gradient descent.

1 INTRODUCTION

In this work we revisit the standard optimization problem

min
x∈Rd

f(x), (1)

where f : Rd → R is a continuous convex function with a nonempty set of minimizers X⋆. Further,
we denote the optimal function value by f⋆ := f(x⋆), where x⋆ ∈ X⋆.

1.1 FIRST-ORDER METHODS

First-order methods of the Gradient Descent (GD) and Stochastic Gradient Descent (SGD) variety
have been widely adopted to solve problems of type (1) (Polyak, 1963; Robbins & Monro, 1951).
Due to their simplicity and relatively low computational cost, these methods have seen great success
across many machine learning applications, and beyond. Nonetheless, GD, performing iterations of
the form

xk+1 = xk − γk∇f(xk), (2)
where γk > 0 is a learning rate (stepsize), suffers from several well-known drawbacks. For example,
for convex and L-smooth objectives, GD converges provided that1

∞∑
k=0

γk = +∞ and γk ≤ 1
L ∀k ≥ 0 (3)

(Nesterov, 2004). For many problems, L is very large and/or unknown, and estimating its value is a
non-trivial task. Overestimation of the smoothness constant leads to unnecessarily small stepsizes,
which degrades performance, both in theory and in practice.

1It is theoretically possible to use slightly larger stepsizes, by at most a factor of 2, but this is does not play
a role in our narrative.
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Polyak stepsize. When the optimal value f⋆ is known, a very elegant solution to the above-
mentioned problems was provided by Polyak (1987), who proposed the use of what is now known
as the Polyak stepsize:

γk := f(xk)−f⋆
∥∇f(xk)∥2 . (4)

It is known that if f is convex and L-smooth, then γk ≥ 1
2L for all k ≥ 0 . So, unlike strategies

based on the recommendation provided by (3), Polyak stepsize can never be too small compared to
the upper bound from (3). In fact, it is possible for γk to be larger than 1

L , which leads to practical
benefits. Moreover, this is achieved without having to know or estimate L, which is a big advantage.
Since the function value f(xk) and the gradient ∇f(xk) are typically known, the only price for
these benefits is the knowledge of the optimal value f⋆. This may or may not be a large price to pay,
depending on the application.

Malitsky-Mishchenko stepsize. In the case of convex and locally smooth objectives, Malitsky &
Mishchenko (2020) recently proposed an ingenious adaptive stepsize rule that iteratively builds an
estimate of the inverse local smoothness constant from the information provided by the sequence
of iterates and gradients. Furthermore, they prove their methods achieve the same or better rate
of convergence as GD, without the need to assume global smoothness. For a review of further
approaches to adaptivity, we refer the reader to Malitsky & Mishchenko (2020), and for several
extensions of this line of work, we refer to Zhou et al. (2024).

Adaptive stepsizes in deep learning. When training neural networks and other machine learning
models, issues related to the appropriate selection of stepsizes are amplified even further. Optimiza-
tion problems appearing in deep learning are not convex and may not even be L-smooth, or L is
prohibitively large, and tuning the learning rate usually requires the use of schedulers or a costly
grid search. In this domain, adaptive stepsizes have played a pivotal role in the success of first-
order optimization algorithms. Adaptive methods such as Adam, RMSProp, AMSGrad, and Adagrad
scale the stepsize at each iteration based on the gradients (Kingma & Ba, 2017; Hinton, 2014; Reddi
et al., 2019; Duchi et al., 2011). Although Adam has seen great success empirically when training
deep learning models, there is very little theoretical understanding of why it works so well. On the
other hand, Adagrad converges at the desired rate for smooth and Lipschitz objectives but is not as
successful in practice as Adam (Duchi et al., 2011).

1.2 SECOND-ORDER METHODS

When f is twice differentiable and L-smooth, L can be seen as a global upper bound on the largest
eigenvalue of the Hessian of f . So, there are close connections between the way a learning rate
should be set in GD-type methods and the curvature of f .

Newton’s method. Perhaps the most well-known second-order algorithm is Newton’s method:

xk+1 = xk −
(
∇2f(xk)

)−1 ∇f(xk).
When it works, it converges in a few iterations only. However, it may fail to converge even on
convex objectives2. It needs to be modified in order to converge from any starting point, say by
adding a damping factor (Hanzely et al., 2022) or regularization (Mishchenko, 2023). However,
under suitable assumptions, Newton’s method converges quadratically when started close enough
to the solution. The key difficulty in performing a Newton’s step is the computation of the Hessian
and a performing a linear solve. In analogy with (2), it is possible to think of

(
∇2f(xk)

)−1
as a

matrix-valued stepsize.

Quasi-Newton methods. To reduce the computational cost, quasi-Newton methods such as L-BFGS
utilize an approximation of the inverse Hessian that can be computed from gradients and iterates
only, typically using the approximation ∇2f(xk+1)(xk+1 − xk) ≈ ∇f(xk+1) − ∇f(xk), which
makes sense under appropriate assumptions when ∥xk+1 − xk∥ is small Nocedal & Wright (2006);
Al-Baali et al. (2014); Al-Baali & Khalfan (2007); Dennis & Moré (1977). Until very recently,
quasi-Newton methods were merely efficient heuristics, with very weak theory beyond quadrat-
ics (Kovalev et al., 2021; Rodomanov & Nesterov, 2021).

Polyak stepsize with second-order information. Li et al. (2022) recently proposed extensions of
the Polyak stepsize, named SP2 and SP2+, that incorporate second-order information. SP2 can also

2A well-known example is the function f(x) = ln(e−x + ex) with x0 = 1.1.
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be derived similarly to the Polyak stepsize. While SP2 can be utilized in the non-convex stochastic
setting, it only has convergence theory for quadratic functions and can often be very unstable in
practice. Furthermore, the quadratic constraint defined for SP2 may not even be a localization set.
Instead, we propose an assumption similar to earlier works Karimireddy et al. (2018); Gower et al.
(2019), with the aim of using second-order information rigorously.

1.3 NOTATION

All vectors are in Rd unless explicitly stated otherwise. We use X⋆ to denote the set of minimizes
of f . Matrices are uppercase and bold (e.g., A,C), the d× d zero (resp. identity) matrix is denoted
by 0 (resp. I), and is the set of d× d positive semi-definite matrices. The standard Euclidean inner
product is denoted with ⟨·, ·⟩. For A ∈, we let ∥x∥2A := ⟨Ax, x⟩. By ∥x∥p := (

∑d
i=1 |xi|p)1/p we

denote the Lp norm in Rd. The Löwner order for positive semi-definite matrices is denoted with ⪯.

2 SUMMARY OF CONTRIBUTIONS

In this work we contribute to the growing body of knowledge on more powerful and adaptive step-
sizes, empowered by local curvature information. We do not go the route of fully-fledged second-
order methods which require the expensive computation of the Hessian.

Instead, our key observation is that, for some problems, certain local curvature
information is readily available, and can be used to obtain surprisingly powerful
matrix-valued stepsizes.

The examples mentioned above, and discussed in detail in Sections 6 and 7 lead to the following
abstract assumption, which at the same time defines what we mean by the term local curvature:
Assumption 2.1 (Convexity and smoothness with local curvature). There exists a curvature map-
ping/metric/matrix C : Rd → and a constant LC ≥ 0 such that the inequalities

f(y) + ⟨∇f(y), x− y⟩+ 1
2∥x− y∥2C(y)︸ ︷︷ ︸

M low
C (x;y)

≤ f(x), (5)

f(x) ≤ f(y) + ⟨∇f(y), x− y⟩+ 1
2∥x− y∥2C(y)+LC·I︸ ︷︷ ︸

Mup
C (x;y)

(6)

hold for all x, y ∈ Rd.

Assumption 2.1 defines a new class of functions. Note that with the specific choice C(y) ≡ 0,
(5) reduces to convexity, and (6) reduces to L-smoothness, with L = LC. Note that any function
satisfying (5) is necessarily convex, and similarly, any L-smooth function satisfies (6) with any
curvature mapping C and LC = L. However, the converse is not true: a function satisfying (6)
is not necessarily L-smooth for any finite L. Further, note that if f is µ-strongly convex, then it
satisfies (5) with curvature mapping C(y) ≡ µI. The class of convex and L-smooth functions is one
of the most studied functional classes in optimization. Our new class is a strict and, as we shall see,
useful generalization.

We now provide a brief overview of our theoretical and empirical contributions:

2.1 LOCAL CURVATURE AND A NEW FUNCTION CLASS

We define a new function class, described by Assumption 2.1, extending the classical class of convex
and L-smooth functions. Further, we show that there are problems which satisfy Assumption 2.1
with nontrivial and easy-to-compute curvature mapping C (see Section 6 and Section 7).

2.2 THREE NEW ALGORITHMS

We propose three novel algorithms for solving problem (1) for function f satisfying Assumption 2.1:
Local Curvature Descent 1 (LCD1), Local Curvature Descent 2 (LCD2) and Local Curvature Descent

3
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3 (LCD3). First, LCD1 generalizes GD with constant stepsize: one moves from point y to the point
obtained by minimizing the upper bound (6) on f in x. Indeed, if C(y) ≡ 0, this algorithmic design
strategy leads to gradient descent with stepsize 1/L, where L = LC. Second, LCD2 generalizes GD
with Polyak stepsize: one moves from point y to the Euclidean projection of y onto the ellipsoid

LC(y) := {x ∈ Rd | f(y) + ⟨∇f(y), x− y⟩+ 1
2∥x− y∥2C(y) ≤ f⋆}.

Indeed, if C(y) ≡ 0, this algorithmic design leads to GD with stepsize (4). Computing the pro-
jection involves finding the unique root of a scalar equation in variable, which can be executed
efficiently. Third, LCD3 is obtained from LCD2 by replacing the Euclidean projection with the pro-
jection defined by the local curvature matrix C. The projection problem then has a closed-form
solution.

2.3 THEORY

We prove convergence theorems for LCD1 (Theorem 4.1) and LCD2 (Theorem 4.1), with the same
O(1/k) worst case rate of GD with constant and Polyak stepsize, respectively. Previous work on
preconditioned Polyak stepsize (Abdukhakimov et al., 2023) fails to provide convergence theory and
uses matrix stepsizes based on heuristics. In contrast, LCD2 utilizes local curvature from Assump-
tion 2.1, and enjoys strong convergence guarantees.

2.4 EXPERIMENTS

We demonstrate superior empirical behavior of LCD2 over the GD with Polyak stepsize across sev-
eral standard machine learning problems to which our theory applies. The presence of local curva-
ture in our algorithms boosts their empirical performance when compared to their counterparts not
taking advantage of local curvature.

3 THREE FLAVORS OF LOCAL CURVATURE DESCENT

We now describe our methods.

3.1 LOCAL CURVATURE DESCENT 1

Our first method, LCD1 is obtained by minimizing the upper bound from Assumption 2.1 where
y = xk, and letting xk+1 be the minimizer:

xk+1 = xk − [C(xk) + LC · I]−1 ∇f(xk) (LCD1)

The derivation is routine; nevertheless, the detailed steps behind Equation (LCD1) can be found in
Appendix B.1. If C(x) ≡ 0 and we let L = LC, we recover GD with the constant stepsize γk = 1

L .
Note that just like GD, LCD1 is not adaptive to the smoothness parameter LC; this parameter is
needed to perform a step.

3.2 LOCAL CURVATURE DESCENT 2

Given any y ∈ Rd, let us define the localization set

LC(y) :=
{
x ∈ Rd : M low

C (x, y) ≤ f⋆
}
. (7)

Due to (5), we have X⋆ ⊂ LC(y), which justifies the use of the word “localization”. Furthermore,
y ∈ X⋆ if and only if y ∈ LC(y). Therefore, LC(xk) separates Rd in two regions: one containing
X⋆, the other the current iterate y = xk. This allows us to design our second algorithm, LCD2: we
simply project the current iterate xk into the localization set LC(xk), bringing it closer to the set of
optimal points X⋆:

xk+1 = argmin
x∈LC(xk)

1
2∥x− xk∥2 (LCD2)

4
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It turns out that this projection problem has an implicit parametric solution of the form

xk+1 = xk − [C(xk) + βk · I]−1 ∇f(xk), (LCD2)

where βk > 0. Importantly, we show in Appendix C.1 that the structure of the problem is easy:
the parameter 1/βk is the unique root of a scalar equation, solvable efficiently. Moreover, if C(xk)
is a rank-one matrix or a multiple of I, a closed-form solution exists. We present the details in
Appendix C.3.

Note that when C(x) ≡ 0, LCD2 becomes GD with Polyak stepsize. In general, LCD2 can be seen as
a variant of GD with Polyak stepsize, enhanced with local curvature. The method no longer points
in the negative gradient direction anymore, of course. We argue that one step of LCD2 improves on
one step of GD with Polyak stepsize. Indeed, since LC(xk) ⊆ L0(xk), with equality if and only if
C(xk) = 0, the point xk+1 obtained by LCD2 is closer to X⋆ than what is achieved by a single step
of GD with Polyak stepsize.

3.3 LOCAL CURVATURE DESCENT 3

Our last method, LCD3, was born out of the desire to remove the need for the univariate root-finding
subroutine in order to execute the projection defining LCD2. This can be achieved by projecting
using the norm given by the local curvature matrix C(xk) instead:

xk+1 = argmin
x∈LC(xk)

1
2∥x− xk∥2C(xk)

(LCD3)

If C is invertible3, this projection problem admits the closed-form solution

xk+1 = xk −

(
1−

√
1− 2(f(xk)−f⋆)

∥∇f(xk)∥2
C−1(xk)

)
C−1(xk)∇f(xk). (LCD3)

The full derivation of this fact can be found in Appendix D.1. Although LCD3 uses the same lo-
calization set as LCD2, we do not provide any convergence theorem for this method. The variable
metric nature of the projection makes it technically difficult to provide a meaningful analysis of this
method. Nevertheless, we justify the introduction of LCD3 via its promising experimental behavior
in Section 8 and Appendix G.

4 CONVERGENCE RATES

Having described the methods, this appears to be the right moment to present our main convergence
results for LCD1 and LCD2.

Theorem 4.1 (Convergence of LCD1). Let Assumption 2.1 be satisfied. For all k ≥ 1, the iterates
of LCD1 satisfy

f(xk)− f⋆ ≤ LC∥x0−x⋆∥2

2k .

Theorem 4.2 (Convergence of LCD2). Let Assumption 2.1 be satisfied. For all k ≥ 1, the iterates
of LCD2 satisfy

min
1≤t≤k

f(xt)− f⋆ ≤ LC∥x0−x⋆∥2

2k .

The proofs of these results can be found in Appendix B.2 and Appendix C.2, respectively. It is
possible to derive linear convergence results under the assumption that C(x) ⪰ µI for all x ∈ Rd

and some µ > 0; however, we refrain from listing these for brevity reasons.

If C(x) ≡ 0, and we let L = LC, these theorems recover the standard rates known for GD with
the stepsize 1/L and GD with Polyak stepsize, respectively. So, we generalize these earlier results.
However, it is possible for a function to satisfy Assumption 2.1 and not be L-smooth. In this sense,
our results extend the reach of the classical theorems beyond the class of convex and L-smooth
functions. On the other hand, if f is convex and L-smooth, it may be possible that it satisfies

3We assume this for simplicity only.
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Assumption 2.1 with some nonzero local curvature mapping C, in which case we can choose LC

such that LC ≤ L. Indeed,

inf
x∈Rd

λmin(C(x)) ≤ L− LC ≤ sup
x∈Rd

λmax(C(x)),

where λmin(·) (resp. λmax(·)) represents the smallest (resp. largest) eigenvalue of the argument,
confirming LC ≤ L. However, it may be that LC ≪ L, in which case our result leads to improved
complexity. Nevertheless, the main allure of our methods is their attractive empirical behavior.

Convex quadratics. For convex quadratics, Assumption 2.1 is satisfied with C(x) = ∇2f(x) and
LC = 0. In this case, both LCD1 and LCD2 reduce to Newton’s method, and converge in a single
step. Moreover, Theorem 4.1 and Theorem 4.2 predict this one-step convergence behavior.

To validate our theoretical setting, we will show that functions satisfying Assumption 2.1 are easy
to construct, well-behaved, and practically interesting.

5 LOCAL CURVATURE CALCULUS

We now mention a couple basic properties of functions that satisfy Inequalities (5) and (6).
Lemma 5.1. Let α, β ∈ R with β ≥ 0. Suppose functions f and g satisfy inequality (5) with
curvature mappings C1 and C2 respectively. Then:

f + α, βf, and f + g,

satisfy Inequality (5) with curvature mappings C1, βC1, and C1 +C2 respectively.

The proof of the lemma can be found in Appendix E.1. A particularly useful instantiation of
Lemma 5.1 is presented in the following corollary.
Corollary 5.1. If f satisfies (5) and g is convex, then h := f + g also satisfies (5).

Corollary 5.1 enables us to derive a variety of examples of functions satisfying inequality (5) by
summing convex functions with instances from our class. Moreover, we can also show that inequal-
ity (5) is preserved under pre-composition with linear functions. Additional results for functions
satisfying Assumption 2.1 can be found in Appendix E.

6 EXAMPLES OF FUNCTIONS SATISFYING ASSUMPTION 2.1

We first list three examples that satisfy both inequalities in Assumption 2.1. Firstly, observe that if
a function is L-smooth, then it satisfies inequality (6) since C(x) is assumed to be a positive semi-
definite matrix. We aim to find convex functions that satisfy our assumption in a non-trivial manner,
i.e., C(x) ̸≡ 0 and C(x) ̸≡ µI for some µ > 0.
Example 6.1 (Huber loss). Let δ > 0 and consider the Huber loss function h : R → R given by

h(x) =

{
1
2x

2 |x| ≤ δ

δ(|x| − 1
2δ) |x| > δ

.

Then f = h2 satisfies Assumption 2.1 with constant LC = 2δ2 and curvature mapping

C(x) =

{
x2 |x| ≤ δ

δ2 |x| > δ
.

Example 6.1 is particularly interesting because C(x) + 2δ2 ≤ 3δ2 for any x ∈ R. By computing
the second derivative of f , we can obtain the tightest L-smoothness constant; it is equal to 3δ2.
Therefore, the variable bound we derived is at least as good as the L-smoothness bound.
Example 6.2 (Squared p norm). Let p ≥ 2 and define f : Rd → R as f(x) = ∥x∥p. Then f2

satisfies Assumption 2.1 with either of the two curvature mappings,

C(x) = 2
∥x∥p−2

p

Diag (|x1|p−2
, . . . , |xd|p−2

), C(x) = 2∇f(x)∇f(x)⊤,

and constant LC = 2(p− 1).

6
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Example 6.3 (Lp regression). Suppose A ∈ Rn×d and b ∈ Rn. For p ≥ 2, the function f(x) =

∥Ax− b∥2p , satisfies Assumption 2.1 as a precomposition of Example 6.2 with an affine function.

Therefore, linear regression in the squared Lp norm satisfies our assumption. The Lp regression
problem has several applications in machine learning (Dasgupta et al., 2009; Musco et al., 2022;
Yang et al., 2018). This includes low-rank matrix approximation, sparse recovery, data clustering,
and learning tasks (Adil et al., 2023). In general, convex optimization in non-Euclidean geometries
is a well-studied and important research direction. This motivates us to study Lp norms further and
understand how they can fit within our assumptions.

We can perform other simple modifications of Lp norm that satisfy only inequality (5).
Example 6.4. Let p ≥ 2. Then f(x) = ∥x∥pp satisfies (5) with either of the curvature mappings

C1(x) =
1

p−1∇
2f(x), C2(x) =

1
pf(x)∇f(x)∇f(x)

⊤.

We postpone comments to Appendix E.3. Using Corollary 5.1 and the above examples, we can
construct regularized convex problems that satisfy our assumptions. For instance, we can add the
square of an Lp norm to the logistic loss function to obtain an objective function that satisfies (5),
with the mapping from the regularizer. The objective function will be L-smooth, so it also satisfies
inequality (6).

7 ABSOLUTELY CONVEX FUNCTIONS

In addition to the examples from Section 6, we now introduce the class of absolutely convex func-
tions, and the problem of minimizing the sum of squares of absolutely convex functions. In this
setting, as we shall show, the curvature mapping C satisfying Inequality (5) is readily available.

7.1 ABSOLUTE CONVEXITY

Absolutely convex functions are defined as follows.
Definition 7.1 (Absolute convexity). A function ϕ : Rd → R is absolutely convex if

ϕ(x) ≥ |ϕ(y) + ⟨∇ϕ(y), x− y⟩| ∀x, y ∈ Rd. (8)

Above, ∇ϕ(y) refers to a subgradient of ϕ at y. Geometrically, (8) means that linear approximations
of ϕ are always above the graph of −ϕ in addition to being below the graph of ϕ (same as convexity),

−ϕ(x) ≤ ϕ(y) + ⟨∇ϕ(y), x− y⟩ ≤ ϕ(x).

Thus, any absolutely convex function is necessarily convex and non-negative. A constant function is
absolutely convex if and only if it is non-negative. A linear function is absolutely convex if and only
if it is constant and non-negative. Moreover, the absolute value of any affine function is absolutely
convex; that is, ϕ(x) = | ⟨a, x⟩+ b| is absolutely convex. We avoid stating basic calculus rules as in
Lemma 5.1, and opt to present only one interesting property, and one notable example. Many others
can be found in Appendix F.
Lemma 7.1. Absolutely convex functions have bounded subgradients.
Example 7.1. If p ≥ 1, then ϕ(x) = ∥x∥p is absolutely convex.

7.2 MINIMIZING THE SUM OF SQUARES OF ABSOLUTELY CONVEX FUNCTIONS

To conclude, we present the derivation of the curvature mapping C for the sum of squares of abso-
lutely convex functions. Consider the optimization problem

x⋆ = argmin
x∈Rd

{
f(x) := 1

n

n∑
i=1

ϕ2i (x)

}
, (9)

where each ϕi is absolutely convex and a solution, x⋆, is assumed to exist. Let fi := ϕ2i , so that
∇fi(x) = 2ϕi(x)∇ϕi(x). The gradient of f is given by

∇f(x) = 1
n

n∑
i=1

∇fi(x) = 2
n

n∑
i=1

ϕi(x)∇ϕi(x).

7
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Since ϕi is absolutely convex, fi is necessarily convex. Indeed, by squaring both sides of the defining
inequality (8), we get

fi(y) + ⟨∇fi(y), x− y⟩+
〈
∇ϕi(y)∇ϕi(y)⊤(x− y), x− y

〉
≤ fi(x), ∀x, y ∈ Rd.

Summing these inequalities across i and taking the average, we find that the curvature mapping can
be set to

C(x) = 2
n

n∑
i=1

∇ϕi(x)∇ϕi(x)⊤.

In Appendix G, we provide experiments on objective functions that are in this class.

8 EXPERIMENTS

To illustrate practical performance of the presented methods, we run a series of experiments on
MacBook Pro with Apple M1 chip and 8GB of RAM. We use datasets from LibSVM (Chang &
Lin, 2011). We implemented all algorithms in Python.

Let us focus on solving

f(x) = 1
n

n∑
i=1

log(1 + e−biaix) + λ∥x∥pp,

where ai ∈ Rd and bi ∈ {−1, 1} are the data samples associated with a binary classification prob-
lem. The regularization weight λ is set proportionally to the L-smoothness constant of the logistic
regression instance.

In the first experiment, we use L2 regularization. Therefore, f is L-smooth and µ-strongly-convex,
so C(x) ≡ µI. As mentioned previously, in this setting, LCD1 recovers GD and LCD2 has a closed-
form solution coinciding with LCD3.

(a) λ = L · 10−4 (b) λ = L
3
· 10−3 (c) λ = L · 10−3

Figure 1: Logistic regression on a2a dataset with L2 regularization.

(a) λ = L · 10−4 (b) λ = L
3
· 10−3 (c) λ = L · 10−3

Figure 2: Logistic regression on mushrooms dataset with L2 regularization.

Figures 1–2 show that LCD2 consistently outperforms Polyak. As expected, the gap increases with
λ because C(x) only stores information about the regularizer. Thus, increasing λ shrinks the local-
ization set of LCD2 so its improvement over Polyak grows. Importantly, since LCD2 has a closed
form solution, its cost-per-iteration is the same as Polyak.
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In the next experiment, we use L3 regularization. In Example 6.4 we propose two C(x) matrix
candidates for ∥x∥pp. Here we decide on the diagonal variant C1(x). The objective function is no
longer L-smooth, due to the non-smooth regularizer. As a result, we run LCD1 with the smallest LC

such that the method converges. Additionally, LCD2 no longer has a closed form solution, so the
projection algorithm must be deployed. To perform a fair comparison of our algorithms, we show
both time and iteration plots.

(a) λ = L · 10−3 (b) λ = L
3
· 10−2 (c) λ = L · 10−2

Figure 3: Logistic regression on mushrooms dataset withL3 regularization - iteration convergence.

(a) λ = L · 10−3 (b) λ = L
3
· 10−2 (c) λ = L · 10−2

Figure 4: Logistic regression on mushrooms dataset with L3 regularization - time convergence.

Figure 3 displays similar to the L2 case improvement of LCD2 over Polyak, which grows with λ.
Our heuristic LCD3 can produce satisfying results, experimentally. However, its convergence cannot
be guaranteed. In fact, as λ increases it becomes unstable. LCD1 converges at comparable pace with
the other three methods at initial steps, yet the limited adaptiveness slows it down later on.

Figure 4 shows convergence of our methods in time. One may point that the plots look almost
identical to the iteration counterpart. The main reason is the cost of computing the gradient, which
is O(nd). All other operations performed by LCD3 and LCD1 are O(d). The method with the
most expensive update rule is LCD2. At every step it performs around 5 rounds of the projection
algorithm, each costing O(d). We conclude that all the methods have comparable computational
cost per iteration, as the main expense is the gradient evaluation. While the complexities discussed
above are for diagonal matrices, we remark that the general O(d3) cost is bearable when n ≫ d.
Moreover, our examples usually allow cheap diagonal matrix methods.

Further experiments with ridge regression and sum of squared Huber losses are in Appendix G.

9 CONCLUSION

We explored adaptive matrix-valued stepsizes under novel assumptions that reinforce convexity and
L-smoothness with extra curvature information. Under our assumptions, we proposed LCD1 and
LCD2, which generalize GD with constant stepsize and Polyak stepsize, respectively. Moreover,
we provided convergence theorems for both of these algorithms. We also proposed LCD3 which
displays promising experimental behavior. Our key insight is that, for some problems, we have
certain local curvature information that can be readily exploited. We tested the methods on these
problems using a variety of realistic datasets, demonstrating good empirical performance.

9
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The main limitation of our analysis is the restriction to a deterministic setting. We also acknowledge
that the assumption is yet to explore in its entirety. As a matter of fact, the most natural extension of
the present work is including stochasticity and understanding the full potential of Assumption 2.1.
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B LOCAL CURVATURE DESCENT 1 (LCD1)

B.1 DERIVATION

Suppose that the upper bound in (6) from Assumption 2.1) holds. Then, at a given point xk+1 ∈ Rd,
we have:

f(xk+1) ≤ f(xk) + ⟨∇f(xk), xk+1 − xk⟩+
1

2
∥xk+1 − xk∥2C(xk)+LCI ∀xk ∈ Rd.

Minimizing the right hand side with respect to xk+1 we find that:

xk+1 = xk − [C(xk) + LCI]
−1 ∇f(xk). (10)

In particular, the matrix that pre-multiplies the vector is always invertible, since C(x) is positive
semi-definite for each x ∈ Rd.

B.2 CONVERGENCE PROOF

Lemma B.1. Let Assumption 2.1 hold. For all k ≥ 0, the sequence (xk)k∈N of LCD1 is such that:

∥xk+1 − x⋆∥22 − ∥xk − x⋆∥22 ≤ − 2

LC
(f(xk+1)− f(x⋆)) , ∀k ∈ N. (11)

Proof. The proof is achieved by carefully bounding terms. For this reason, we split it into three
steps.

We seek a connection between the two distances in the geometry induced by C̃(xk) := C(xk) +
LCI:

∥xk − x⋆∥2C̃(xk)
= ∥xk − xk+1 + xk+1 − x⋆∥2C̃(xk)

= ∥xk − xk+1∥2C̃(xk)
+ 2

〈
[C̃(xk)](xk − xk+1), xk+1 − x⋆

〉
+ ∥xk+1 − x⋆∥2C̃(xk)

= ∥xk − xk+1∥2C̃(xk)
+ 2 ⟨∇f(xk), xk+1 − x⋆⟩+ ∥xk+1 − x⋆∥2C̃(xk)

= ∥xk+1 − xk∥2C̃(xk)
+ 2 ⟨∇f(xk), xk+1 − x⋆⟩+ ∥xk+1 − x⋆∥2C̃(xk)

.

Rearranging the terms we obtain

∥xk+1 − x⋆∥2C̃(xk)
− ∥xk − x⋆∥2C̃(xk)

= −∥xk+1 − xk∥2C̃(xk)
− 2 ⟨∇f(xk), xk+1 − x⋆⟩

= −∥xk+1 − xk∥2C̃(xk)

− 2 ⟨∇f(xk), xk+1 − xk + xk − x⋆⟩
= −∥xk+1 − xk∥2C̃(xk)

− 2 ⟨∇f(xk), xk+1 − xk⟩
+ 2 ⟨∇f(xk), x⋆ − xk⟩ .

In particular, we wish to bound the inner products.

Rearranging the lower bound (5) in Assumption 2.1 for the pair (xk, x⋆):

2 ⟨∇f(xk), x⋆ − xk⟩ ≤ 2(f(x⋆)− f(xk))− ∥xk − x⋆∥2C(xk)
.

In a similar way, massaging the upper bound (6) of Assumption 2.1 for the pair (xk+1, xk) one can
derive:

−2 ⟨∇f(xk), xk+1 − xk⟩ ≤ ∥xk+1 − xk∥2C̃(xk)
+ 2(f(xk)− f(xk+1)).

Combining two previous steps we find:

∥xk+1 − x⋆∥2C̃(xk)
− ∥xk − x⋆∥2C̃(xk)

≤ −∥xk+1 − xk∥2C̃(xk)
+ ∥xk+1 − xk∥2C̃(xk)

+ 2(f(xk)− f(xk+1)) + 2(f(x⋆)− f(xk))− ∥xk − x⋆∥2C(xk)

= 2(f(x⋆)− f(xk+1))− ∥xk − x⋆∥2C(xk)
.
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The term ∥xk − x⋆∥2C(xk)
is on both sides of the inequality, so we can cancel it out:

∥xk+1 − x⋆∥2C̃(xk)
− ∥xk − x⋆∥2LCI ≤ 2(f(x⋆)− f(xk+1)).

Having almost removed all the C(xk) norms, it suffices to apply the crude bound:

LC∥xk+1 − x⋆∥2 = ∥xk+1 − x⋆∥2LCI ≤ ∥xk+1 − x⋆∥2C̃(xk)
,

which holds since LCI ⪯ C(xk) + LCI = C̃(xk).

Therefore, we obtain

∥xk+1 − x⋆∥2LCI − ∥xk − x⋆∥2LCI ≤ 2(f(x⋆)− f(xk+1)) = −2(f(xk+1)− f(x⋆)).

Reordering gives the claim.

Lemma B.2. For any k ∈ N, the iterations of LCD1 satisfy:

f(xk+1)− f(xk) ≤ −1

2
∥∇f(xk)∥2(C(xk)+LCI)−1 ≤ 0. (12)

Proof. Let us remind the form of the updates for each k ∈ N

xk+1 = xk −
[
C̃(xk)

]−1

∇f(xk),

where C̃(xk) = C(xk) + LCI.

By Assumption 2.1, we know that

f(xk+1) ≤ f(xk)−
〈
∇f(xk), [C̃(xk)]

−1∇f(xk)
〉
+

1

2

〈
∇f(xk), [C̃(xk)]

−1∇f(xk)
〉

= f(xk)−
1

2
∥∇f(xk)∥2[C̃(xk)]−1 ,

and the claim follows by simple rearrangement.

Having the lemmas established, let us proceed to the proof of Theorem 4.1. We want to show that if
f : Rd → R satisfies Assumption 2.1 then for any k ∈ N, the iterates of LCD1 are such that:

f(xk)− f(x⋆) ≤
LC

2k
∥x0 − x⋆∥2. (13)

Proof. We use a standard Lyapunov function proof technique. For completeness, let us report it.

By Lemma B.2, function values get closer to f⋆ across iterations. Lemma B.1, the vectors get closer
in norm to an optimum.

Then, we can combine the two positive decreasing terms LC∥xk − x⋆∥2 and f(xk)− f(x⋆) into a
Lyapunov energy function:

Ek := LC∥xk − x⋆∥2 + 2k(f(xk)− f(x⋆)), ∀k ∈ N.

In particular, E0 = LC∥x0 − x⋆∥2, and we claim that Ek is a decreasing function. To see this, we
start by rewriting the difference:

Ek+1 − Ek = 2(k + 1)(f(xk+1)− f(x⋆))− 2k(f(xk)− f(x⋆))

+ LC∥xk+1 − x⋆∥2 − LC∥xk − x⋆∥2

= 2(f(xk+1)− f(x⋆)) + 2k(f(xk+1)− f(x⋆)− f(xk) + f(x⋆))

+ L∥xk+1 − x⋆∥2 − LC∥xk − x⋆∥2

= 2(f(xk+1)− f(x⋆)) + 2k(f(xk+1)− f(xk))

+ LC∥xk+1 − x⋆∥2 − LC∥xk − x⋆∥2.
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It is evident that we can apply our Lemmas as follows:

f(xk+1)− f(xk) ≤ 0 by Lemma B.2; (14)

LC∥xk+1 − x⋆∥2 − LC∥xk − x⋆∥2 ≤ f(xk+1)− f(x⋆) by Lemma B.1. (15)

Putting everything together:

Ek+1 − Ek ≤ 2(f(xk+1)− f(x⋆))− 2(f(xk+1)− f(x⋆)) = 0,

showing that Ek is decreasing. As a particular case, we then find:

2k(f(xk)− f(x⋆)) ≤ Ek ≤ E0 = LC∥x0 − x⋆∥2,

which reordered recovers the rate of GD with stepsize 1
LC

, i.e.

f(xk)− f(x⋆) ≤
LC∥x0 − x⋆∥2

2k
.

Remark. For quadratic functions Assumption 2.1 is satisfied with C(x) equal to the Hessian, and
LC = 0. Thus, LCD1 convergences in one step for this class of functions.
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C LOCAL CURVATURE DESCENT 2 (LCD2)

C.1 DERIVATION

Consider the minimization problem for the update step of LCD2:

min
x∈LC(xk)

1

2
∥x− xk∥2, (16)

where

LC(xk) =

{
x ∈ Rd | f(xk) + ⟨∇f(xk), x− xk⟩+

1

2
∥x− xk∥2C(xk)

≤ f⋆

}
. (17)

If C(xk) is the zero matrix, we know this problem has a closed-form solution. Therefore, we focus
on the case where C(xk) is a non-zero matrix. Moreover, we assume that xk ̸∈ X⋆. The Lagrangian
of this problem is:

L (x, β) =
1

2
∥x− xk∥2 + β

(
1

2
∥x− xk∥2C(xk)

+ ⟨∇f(xk), x− xk⟩+ f(xk)− f⋆

)
,

where β ≥ 0. For optimal x̄ and β̄ we have that ∇xL (x̄, β̄) = 0. Therefore,

x̄− xk + β̄
(
∥x̄− xk∥2C(xk)

+∇f(xk)
)
= 0.

Isolating for x̄, we find that:

x̄ = xk − β̄
[
I+ β̄C(xk)

]−1 ∇f(xk).

We can see β̄ ̸= 0 so the constraint is tight. The next step would be to substitute x̄ into the constraint
and solve for β̄:

1

2
∥x̄− xk∥2C(xk)

+ ⟨∇f(xk), x̄− xk⟩+ f(xk)− f⋆ = 0.

Despite the left-hand side being a scalar function of β̄, we cannot obtain a closed-form solution for
β̄. However, we can use an iterative root-finding sub-routine such as Newton’s method to get an
approximation of β̄ cheaply and effectively. By substituting in the value of x̄, we see that we need
to find the root of the following function:

H(β) :=
β2

2
g⊤k [I+ βC(xk)]

−⊤
C(xk) [I+ βC(xk)]

−1
gk (18)

− βg⊤k [I+ βC(xk)]
−1
gk +∆k.

To simplify notation, let C := C(xk), g := ∇f(xk) and ∆k := f(xk)− f⋆.

In the following proposition, we confirm that H has a root in the interval [0,∞). We also show
that H is convex and monotonically decreasing on that interval. Therefore, Newton’s method is
guaranteed to converge to the root of H at a quadratic rate. In particular, we do not need H to be
monotonically decreasing; nonetheless, it is an interesting property of the problem.

Proposition C.1 (Properties of H). Let H be defined as in Equation (18). Then, for β ≥ 0:

H(0) > 0, H ′(β) < 0, H ′′(β) > 0, lim
β→∞

H(β) < 0. (19)

Proof. W.l.o.g. assume that C is a symmetric matrix. As a result, C is orthogonally diagonalizable
so we let C = QDQ⊤ where D is a diagonal matrix, and Q is an orthogonal matrix such that
QQ⊤ = I. Manipulating the inverse matrix in the definition of H , we find:

[I+ βC(xk)]
−1

=
[
QQ⊤ + βQDQ⊤]−1

=
[
Q(I+ βD)Q⊤]−1

= Q [I+ βD]
−1

Q⊤.
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Let g̃ := Q⊤g. Let Di represent the ith entry of the diagonal of D and g̃i represent the ith entry in
g̃. We rewrite H as:

H(β) =
β2

2
g⊤Q [I+ βD]

−1
D [I+ βD]

−1
Q⊤g − βg⊤Q [I+ βD]

−1
Q⊤g +∆k

=
β2

2
g̃⊤ [I+ βD]

−1
D [I+ βD]

−1
g̃ − βg̃⊤ [I+ βD]

−1
g̃ +∆k

=
β2

2

d∑
i=1

g̃2iDi

(1 + βDi)2
− β

d∑
i=1

g̃2i
1 + βDi

+∆k.

By inspection, H is a rational function and the derivative is easily found;

H ′(β) = β

d∑
i=1

g̃2iDi

(1 + βDi)2
− β2

d∑
i=1

g̃2iD
2
i

(1 + βDi)3
−

d∑
i=1

g̃2i
1 + βDi

+ β

d∑
i=1

g̃2iDi

(1 + βDi)2

= −
d∑

i=1

g̃2i
(1 + βDi)3

.

Since C is a positive semi-definite matrix, Di ≥ 0 for all i. Thus for β ≥ 0, we have H ′(β) ≤ 0.
Since the null-space of an orthogonal matrix is the singleton of the zero vector, the product g̃ = Q⊤g
is different than zero when g ̸= 0, which holds by the assumption xk /∈ X⋆. Therefore, there is at
least one g̃i that is non-zero and thus, H ′(β) ̸= 0. The second derivative of H is,

H ′′(β) = 3

d∑
i=1

g̃2iDi

(1 + βDi)4
.

By similar arguments used for the first derivative, we can show that H ′′(β) > 0.
To conclude, we will show that limβ→∞H(β) < 0. We discuss two cases separately.
Suppose C is not invertible. Then, there exists an entry i of D such that Di = 0. Without loss of
generality, suppose that the last entry Dd, is equal to 0. The same reasoning will apply if more than
one entry is equal to 0. Taking the limit:

lim
β→∞

H(β) = lim
β→∞

β2

2

d∑
i=1

g̃2iDi

(1 + βDi)2
− β

d∑
i=1

g̃2i
1 + βDi

+∆k

= lim
β→∞

β2

2

d−1∑
i=1

g̃2iDi

(1 + βDi)2
− β

d−1∑
i=1

g̃2i
1 + βDi

− βg̃2i +∆k

=
1

2

d−1∑
i=1

g̃2i
Di

−
d−1∑
i=1

g̃2i
Di

+∆k + lim
β→∞

−βg̃2i

= −∞
< 0.

Now suppose that C is invertible. Then, Di > 0 for all i. Differently from before:

lim
β→∞

H(β) = lim
β→∞

β2

2

d∑
i=1

g̃2iDi

(1 + βDi)2
− β

d∑
i=1

g̃2i
1 + βDi

+∆k

=
1

2

d∑
i=1

g̃2i
Di

−
d∑

i=1

g̃2i
Di

+∆k

=
1

2
g̃⊤D−1g̃ − g̃⊤D−1g̃ +∆k

= −1

2
g⊤QD−1Q⊤g +∆k

= −1

2
g⊤C−1g +∆k.
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Recalling our definitions, the right hand side is:

lim
β→∞

H(β) = −1

2
∥∇f(xk)∥2[C(xk)]−1 + f(xk)− f⋆.

By Lemma E.5, limβ→∞H(β) ≤ 0. The inequality is strict when f(xk) − f⋆ ̸= 1
2∥∇f(xk)∥

2
C−1 .

In the case where equality holds, we have that limβ→∞H(β) = 0. Therefore, H does not have a
root in the interval [0,∞) but the solution to the optimization problem is obtain when β = ∞. This
corresponds to the following optimal solution x̄:

x̄ = xk −C−1(xk)∇f(xk). (20)

Interestingly, under the same condition, LCD3 takes a step in the form xk+1 = xk −
C−1(xk)∇f(xk). An example of a setting where the equality condition holds is when f is a con-
vex quadratic and C is the Hessian of f . One can see that the update step of LCD3 and LCD2 are
equivalent to Newton’s method for that case so they both converge in one iteration.

It may seem that using Newton’s root finding method is impractical because computing H defined
in Equation (18) for a given β requires performing a matrix inversion. However, this can be avoided
by computing the eigendecomposition of C(xk) at the beginning of each step of LCD2. Then each
subsequent evaluation of H done by Newton’s method sub-routine only requires inverting a diag-
onal matrix and not the full matrix. Thus, the main cost at each step of LCD2 is computing the
eigendecomposition of C(xk) once, which in practice is much faster than computing the inverse.
Furthermore, if C(xk) is a diagonal matrix, the eigendecomposition of C(xk) is itself so each step
of LCD2 becomes even cheaper. Also, in practice, Newton’s method for root-finding is terminated
when |H| < ϵ. Therefore, in the case where

f(xk)− f⋆ =
1

2
∥∇f(xk)∥2C−1(xk)

,

the method will run until a large enough β is obtained and the step will become numerically equiv-
alent to x̄ = xk −C−1(xk)∇f(xk).
On a related note, Newton’s method is used to solve a similar constrained optimization problem for
trust region methods, namely, the trust region sub-problem (Nocedal & Wright, 2006). Practical
versions of such algorithms do not iterate until convergence but are content with an approximate
solution that can be obtained in two or three iterations.

C.2 CONVERGENCE PROOF

Lemma C.1. Let Assumption 2.1 hold. For all k ≥ 0, the sequence (xk)k∈N of LCD2 obeys the
recursion:

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 − ∥xk+1 − xk∥2.
Hence, for any k ≥ 1, we have

min
0≤t≤k−1

∥xt+1 − xt∥2 ≤ ∥x0 − x⋆∥2

k
. (21)

Proof. Let us write down the first-order optimality conditions for the optimization problem at Step 3
of LCD2:

⟨xk − xk+1, xk+1 − y⟩ ≥ 0, ∀y ∈ LC(xk). (22)
Since x⋆ ∈ LC(xk), for any k ≥ 0 we have

∥xk+1 − x⋆∥2 = ∥xk − x⋆∥2 − 2 ⟨xk − xk+1, xk − x⋆⟩+ ∥xk+1 − xk∥2

= ∥xk − x⋆∥2 − 2 ⟨xk − xk+1, xk+1 − x⋆⟩
− 2 ⟨xk − xk+1, xk − xk+1⟩+ ∥xk+1 − xk∥2

= ∥xk − x⋆∥2 − 2 ⟨xk − xk+1, xk+1 − x⋆⟩ − ∥xk+1 − xk∥2

(22)
≤ ∥xk − x⋆∥2 − ∥xk+1 − xk∥2.

Summing up these inequalities for k = 0, . . . ,K − 1, we obtain (21).
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Let us proceed to the proof of Theorem 4.2 for LCD2. We show that any if f : Rd → R satisfies
Assumption 2.1 for any k ≥ 1 the iterates of LCD2 are such that:

min
1≤t≤k

f(xt)− f⋆ ≤ LC∥x0 − x⋆∥2

2k
.

Proof. Since xk+1 ∈ LC(xk), we have

f(xk+1)
(6)

≤ f(xk) + ⟨∇f(xk), xk+1 − xk⟩+
1

2
∥xk+1 − xk∥2C(xk)+LCI

= f(xk) + ⟨∇f(xk), xk+1 − xk⟩+
1

2
∥xk+1 − xk∥2C(xk)

− 1

2
∥xk+1 − xk∥2C(xk)

+
1

2
∥xk+1 − xk∥2C(xk)+LCI

= f(xk) + ⟨∇f(xk), xk+1 − xk⟩+
1

2
∥xk+1 − xk∥2C(xk)

+
1

2
∥xk+1 − xk∥2LCI

(17)

≤ f⋆ +
1

2
∥xk+1 − xk∥2LCI

= f⋆ +
LC∥xk+1 − xk∥2

2
.

By rearranging the above inequality and applying (21) from Lemma C.1, we get

min
0≤t≤k−1

f(xt+1)− f⋆
(6)

≤ min
0≤t≤k−1

LC∥xt+1 − xt∥2

2

(21)

≤ LC∥x0 − x⋆∥2

2k
.

Remark. For quadratic functions Assumption 2.1 is satisfied with C(x) equal to the Hessian, and
LC = 0. Thus, LCD2 convergences in one step for this class of functions.

C.3 CLOSED-FORM SOLUTIONS

In the main text, we argued that the update step of LCD2 has a closed-form solution in certain special
cases. One interesting case is when C(xk) is a rank one matrix. In the setting of minimizing the
sum of squares of absolutely convex functions, we present a special rank one matrix and the corre-
sponding update step of LCD2. For general rank one matrices, the update step is not as interpretable
or insightful so we leave out the computation.

Let f(x) =
∑d

i=1 ϕ
2
i (x) where ϕi : Rd → R is absolutely convex. Then f satisfies inequality (5)

with the following curvature mapping:

C(y) =
1

2f(y)
∇f(y)∇f(y)⊤.

If we use the localization set defined by this curvature mapping, we can obtain a closed-form solution
to the LCD2 update step. To simplify notation, let gk := ∇f(xk), fk := f(xk), ∆k := f(xk)− f⋆,
D := D(xk) and Q = Q(xk). Consider the orthogonal decomposition of C(xk):

D(xk) = Diag

(
g⊤k gk
2fk

, 0, . . . , 0

)
Q(xk) =

[
gk

∥gk∥2
ĝk,1 . . . ĝk,d−1

]
,

where ĝk,1, . . . , ĝk,d−1 are d− 1 orthogonal eigenvectors that are all also orthogonal to gk.

From Appendix C, we know that to obtain a closed-form solution of LCD2, we must find the positive
root of the following function:

H(α) =
α2

2
g⊤k Q(I+ αD)−1D(I+ αD)−1Q⊤gk − αg⊤k Q(I− αD)−1Q⊤gk +∆k

= α2 fk(g
⊤
k gk)

2

(2fk + αg⊤k gk)
2
− α

2fkg
⊤
k gk

2fk + αg⊤k gk
+∆k.
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The second equality comes from simplifying the matrix multiplications and observing that,

(I+ αD)−1 = Diag

(
2fk

2fk + αg⊤k gk
, 0, . . . , 0

)
Q⊤gk = [∥gk∥2 0 . . . 0]⊤

Let v = g⊤k gk. Since C is a rank-one matrix, we can simplify H and realize that it is a quadratic
function of α,

H(α) =
fkv

2

(2fk + αv)2
α2 − 2fkv

2fk + αv
α+∆k = 0.

Therefore, we will have at most two roots and there must exist a unique positive root that corresponds
to the solution of the problem (the optimalLagrange multiplier). We can solve this quadratic to obtain
an interpretable update step for LCD2. To start, we multiply the entire equation by (2fk + αv)2 and
simplify to get,

(v2∆k − fkv
2)α2 + α(4fkvα− 4f2kv) + 4f2kα = 0.

By observing that ∆k = fk − f⋆ we can simplify the expression further,

f⋆v
2α2 + 4fkf⋆vα− 4f2k∆k = 0.

Therefore,

α =
−4fkf⋆v ±

√
(4fkf⋆v)2 + 4(f⋆v)(4f2k∆k)

2f⋆v2
=

−2fkf⋆ ± 2fk
√
fkf⋆

f⋆v
.

To determine which root is positive we can rearrange the terms to see that,

α =
2fk

√
f⋆(−

√
f⋆ ±

√
fk)

f⋆v
.

For α to be positive we must select the positive sign. Now recall from Appendix C, that the update
step of LCD2 is defined as follows,

xk+1 = xk − α(I+ αC)−1gk

= xk − αQ(I+ αD)−1Q⊤gk

= xk − γkgk,

where γk = α 2fk
2fk+αv . We substitute

α =
−2fkf⋆ + 2fk

√
fkf⋆

f⋆v

into γk to get

γk =
2fk

(
−2fkf⋆+2fk

√
fkf⋆

f⋆v

)
2fk + v

(
−2fkf⋆+2fk

√
fkf⋆

f⋆v

) =
2fk

(
−2fkf⋆+2fk

√
fkf⋆

f⋆v

)
2fk

√
fkf⋆

f⋆

=
2fk − 2

√
fkf⋆

v
.

Therefore, we conclude that the update step has the following form:

xk+1 = xk −
2
(
f(xk)−

√
f(xk)f⋆

)
∥∇f(xk)∥22

∇f(xk).

The update step of LCD2 differs from the classic Polyak stepsize in that we have
√
f(xk)f⋆ instead

of f⋆ and we multiply by 2.

Remark. In case C(x) = cI, for c > 0, LCD2 reduces to LCD3. Thus, the closed-form solution
exists.
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D LOCAL CURVATURE DESCENT 3 (LCD3)

D.1 DERIVATION

Suppose the optimal value f⋆ is known. While the update step of LCD2 does not have a closed-form
solution, the following update step does:

xk+1 = arg min
x∈LC(xk)

1

2
∥x− xk∥2C(xk)

, (23)

where LC(xk) is the same localization set defined in (17). Instead of using the L2 norm, we can
use the norm induced by C(xk). Hence, this algorithm is referred to as LCD3. The benefit of
using a different norm is that we can obtain a closed-form solution to this constrained optimization
algorithm.

The Lagrangian of this problem is

L (x, α) :=
1

2
∥x− xk∥2C(xk)

+ α

(
f(xk) + ⟨∇f(xk), x− xk⟩+

1

2
∥x− xk∥2C(xk)

− f⋆

)
.

If α is the optimal multiplier, then for optimal x̄ we get ∇xL (x̄, ᾱ) = 0. The gradient is:

∇xL (x̄, ᾱ) = C(xk)(x̄− xk) + ᾱ (∇f(xk) +C(xk)(x̄− xk)) = 0.

Isolating x̄, we get:

x̄ = xk − ᾱ

1 + ᾱ
[C(xk)]

−1 ∇f(xk). (24)

Let t := ᾱ
1+ᾱ . If ᾱ = 0, xk ∈ LC(xk), which means that the algorithm converged since xk ∈

LC(xk) if and only if xk ∈ X⋆. Then, for a generic update, we will have ᾱ ̸= 0. Imposing
∇αL (x̄, ᾱ) = 0, which means that the constraint must be tight:

f(xk) + ⟨∇f(xk), x̄− xk⟩+
1

2
∥x− xk∥2C(xk)

− f⋆ = 0.

Plugging x̄ ≡ x̄(t) ≡ x̄(ᾱ) into the equation gives

−t
〈
∇f(xk), [C(xk)]

−1 ∇f(xk)
〉
+
t2

2

〈
∇f(xk), [C(xk)]

−1 ∇f(xk)
〉
= f⋆ − f(xk).

The two inner products are norms of the form ∥∇f(xk)∥2[C(xk)]−1 , and with more compact notation
we can write:

t2 − 2t+
2(f(xk)− f⋆)

∥∇f(xk)∥2[C(xk)]−1

= 0.

This equation has two roots summing up to 2, but only one of them can be of the form t = ᾱ
1+ᾱ

since only one of them can be smaller than 1, with expression:

t = 1−
√
1− 2(f(xk)− f⋆)

∥∇f(xk)∥2[C(xk)]−1

. (25)

Substituting back t = ᾱ
1+ᾱ into (24), where t is given by (25), leads to the method

xk+1 = xk −

(
1−

√
1− 2(f(xk)− f⋆)

∥∇f(xk)∥2[C(xk)]−1

)
[C(xk)]

−1 ∇f(xk).

To realize that the scalar component of the stepsize is well-defined, it suffices to show that:

1− 2(f(xk)− f⋆)

∥∇f(xk)∥2[C(xk)]−1

≥ 0, (26)

which follows by reordering the result of Lemma E.5 for the pair (xk, x⋆).

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Then the update rule has a closed-form solution:

xk+1 = xk − γLCD3
k [C(xk)]

−1 ∇f(xk), γLCD3
k :=

1−

√√√√1− 2(f(xk)− f⋆)

∥∇f(xk)∥2C−1
k

 . (27)

In particular, the argument of the square root is always positive, making LCD3 well-defined. Routine
(27) is promising: we apply a scalar stepsize γLCD3

k that is similar in spirit to Polyak’s in Equation (4),
and “reorient” the gradient according to C−1

k = [C(xk)]
−1.

Moreover, at each step, we aim to be as close as possible according to local upper-lower bounds on
f . Experiments in section 8 and G, show that the algorithm converges, but is slower than LCD2.

D.2 CONVERGENCE FOR QUADRATICS

Despite not converging in general, in special cases LCD3 reduces to Newton’s method. Below, we
show that the update rule (27) takes the form of Hessian times gradient.

Let ϕi(x) = |a⊤i x−bi|, where ai ∈ Rd and bi ∈ R, for i ∈ {1, . . . , n}. We know from Example 7.1
that ϕi is absolutely convex. Then problem (9) becomes

min
x∈Rd

{
f(x) :=

1

n

n∑
i=1

(
a⊤i x− bi

)2}
.

If x is such that ϕi(x) ̸= 0 for all i, then ∇ϕi(x) = a⊤
i x−bi
ϕi(x)

ai. Therefore, in view of the computation
in Section 7 we get

C(x) =
2

n

n∑
i=1

∇ϕi(x)∇ϕi(x)⊤ =
2

n

n∑
i=1

a⊤i x− bi
ϕi(x)

ai

(
a⊤i x− bi
ϕi(x)

ai

)⊤

=
2

n

n∑
i=1

(a⊤i x− bi)
2

ϕ2i (x)
aia

⊤
i =

2

n

n∑
i=1

aia
⊤
i = ∇2f(x).

Therefore, for least-squares problems, the LCD3 method of (27) moves in Newton’s direction. Fur-
thermore, γLCD3

k = 1 since for quadratics we have the identity

f(xk)− f⋆ =
1

2
∥∇f(xk)∥2[C(xk)]−1 .

Indeed, this follows from Lemma E.5 and the fact that for quadratics, equation (5) is an identity. So,
for least-squares problems, LCD3 reduces to Newton’s method, and converges in one step.
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E PROPERTIES & EXAMPLES

E.1 ON THE LOWER BOUND

For clarity, the statements are repeated, but correspond to Lemma 5.1 and Corollary 5.1.

Lemma E.1. Suppose f, f1, f2 : Rd → R satisfy Equation (5) with curvature mappings C,C1,C2 :
Rd →, respectively. Then, the following functions satisfy Equation (5):

(1) f + α for α ∈ R, with C(·);

(2) αf for α ≥ 0, with αC(·);

(3) f1 + f2, with C1(·) +C2(·).

Proof. We prove each statement separately.
(1) For any x, y ∈ Rd, it holds:

g(x) := f(x) + α ≥ f(y) + ⟨∇f(y), x− y⟩+ 1

2
∥x− y∥2C(y) + α

= g(y) + ⟨∇g(y), x− y⟩+ 1

2
∥x− y∥2C(y).

(2) Similarly, for all x, y ∈ Rd, one has:

g(x) := αf(x) ≥ α

(
f(y) + ⟨∇f(y), x− y⟩+ 1

2
∥x− y∥2C(y)

)
= αf(y) + ⟨α∇f(y), x− y⟩+ 1

2
∥α(x− y)∥2C(y)

= g(y) + ⟨∇g(y), x− y⟩+ 1

2
∥α(x− y)∥2C(y).

(3) Concluding, for arbitrary vectors:

g(x) := f1(x) + f2(x) ≥ f1(y) + ⟨∇f1(y), x− y⟩+ 1

2
∥x− y∥2C1(y)

+ f2(y) + ⟨∇f2(y), x− y⟩+ 1

2
∥x− y∥2C2(y)

= g(y) + ⟨∇g(y), x− y⟩+ 1

2
∥x− y∥2C1(y)+C2(y)

.

Corollary E.1. Suppose f : Rd → R satisfies the lower bound of Equation (5) with curvature
mapping C : Rd →. Let g : Rd → R be a convex function. Then, h(x) = f(x) + g(x) satisfies the
lower bound with matrix C(y).

Proof. Since g is convex it satisfies the lower bound with matrix C(y) ≡ 0. By Lemma E.1, h
satisfies the lower bound with C(y) + 0 = C(y).

Another lemma used to construct functions that satisfy the lower bound is the following.

Lemma E.2. Suppose f : Rd → R satisfies Equation (5) with the curvature mapping C : Rd →.
Let A ∈ Rd×m and b ∈ Rd. Then g : Rm → R where g(x) := f(Ax + b) satisfies Equation (5)
with curvature mapping C̃(y) = A⊤C(Ay + b)A.
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Proof. Without loss of generality, we can assume that C(y) is symmetric. Then,

g(x) := f(Ax+ b) ≥ f(Ay + b) + ⟨∇f(Ay + b),Ax+ b− (Ay + b)⟩

+
1

2
⟨C(Ay + b)(Ax+ b− (Ay + b)),Ax+ b− (Ay + b)⟩

= f(Ay + b) + ⟨∇f(Ay + b),A(x− y)⟩

+
1

2
⟨C(Ay + b)(A(x− y)),A(x− y)⟩

= f(Ay + b) +
〈
A⊤∇f(Ay + b), x− y

〉
+

1

2

〈
A⊤C(Ay + b)A(x− y), x− y

〉
= g(y) + ⟨∇g(y), x− y⟩+ 1

2

〈
C̃(y)(x− y), x− y

〉
.

Considering the right hand side and the left hand side, we have recovered the claimed expression.
The only missing detail is proving that C̃(·) is positive semi-definite. Let z ∈ Rm. Since C(y)

is symmetric and positive semi-definite then C(y) = C(y)
1
2C(y)

1
2 and C(y)

1
2 is also symmetric.

Therefore:

z⊤C̃(y)z = z⊤A⊤C(Ay + b)Az

= z⊤A⊤C(Ay + b)
1
2C(Ay + b)

1
2Az

= ((C(Ay + b)
1
2 )⊤Az)⊤(C(Ay + b)

1
2Az)

= (C(Ay + b)
1
2Az)⊤(C(Ay + b)

1
2Az)

=
∥∥∥C(Ay + b)

1
2Az

∥∥∥2 ≥ 0.

By the arbitrariness of z, the matrix is positive semi-definite.

Lemma E.3. Suppose f : Rd → R satisfies Equation (5) with curvature mapping C : Rd →. Then
the following inequalities hold for any x, y ∈ Rd,

(1) ⟨∇f(y)−∇f(x), x− y⟩ ≥ 1
2∥x− y∥2C(y)+C(x)

(2) ⟨∇f(y)−∇f(x), x− y⟩ ≥ 1
2∥x− y∥2C(y)

(3) ⟨∇f(y)−∇f(x), x− y⟩ ≥ 1
2∥x− y∥2C(x)

Proof. Let us present one proof in detail. The other two follow trivially.
(1) By the definition of Bregman divergence:

1

2
∥x− y∥2C(x)+C(y) =

1

2
∥x− y∥2C(y) +

1

2
∥y − x∥2C(x)

≤ Df (x, y) +Df (y, x)

= ⟨∇f(x)−∇f(y), x− y⟩ .

(2) Start with (1) and note that 1
2∥x− y∥2C(x)+C(y) ≥

1
2∥x− y∥2C(y).

(2) Same as above but use that 1
2∥x− y∥2C(x)+C(y) ≥

1
2∥x− y∥2C(x).

Lemma E.4. Suppose f : Rd → R satisfies

∥x− y∥2C(y) ≤ ⟨∇f(x)−∇f(y), x− y⟩

for all x, y ∈ Rd with curvature mapping C : Rd →. Then f satisfies Equation (5) with curvature
mapping C(·).
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Proof. By the fundamental theorem of calculus:

f(x)− f(y) =

∫ 1

0

⟨∇f(y + t(x− y)), x− y⟩ dt

= ⟨∇f(y), x− y⟩+
∫ 1

0

⟨∇f(y + t(x− y))−∇f(y), x− y⟩ dt

= ⟨∇f(y), x− y⟩+
∫ 1

0

1

t
⟨∇f(y + t(x− y))−∇f(y), t(x− y)⟩ dt

≥ ⟨∇f(y), x− y⟩+
∫ 1

0

1

t
∥t(x− y)∥2C(y)dt

= ⟨∇f(y), x− y⟩+ ∥x− y∥2C(y)

∫ 1

0

tdt

= ⟨∇f(y), x− y⟩+ 1

2
∥x− y∥2C(y).

Rearranging the terms we obtain that Df (x, y) ≥ 1
2∥x− y∥2C(y) as desired.

Lemma E.5. Suppose that f : Rd → R satisfies Equation (5) with curvature mapping C : Rd →.
Suppose that f is differentiable and C is non-singular. Then

1

2
∥∇f(x)−∇f(y)∥2C(x)−1 ≥ Df (x, y), ∀x, y ∈ Rd.

Proof. Fix x ∈ Rd. Suppose y ∈ Rd is arbitrary. Let φ(y) := f(y) − ⟨∇f(x), y⟩. By con-
struction, ∇φ(y) = ∇f(y) − ∇f(x). Using this fact, it can be shown that for any u, v ∈ Rd,
Df (u, v) ≥ 1

2∥u− v∥2C(v). Therefore, φ satisfies Equation (5) with curvature mapping C. Hence,
for v ∈ Rd we have that φ(y) ≥ G(y) where G(y) is defined as

G(y) := φ(v) + ⟨∇φ(v), y − v⟩+ 1

2
∥y − v∥2C(v).

Observe that ∇φ(x) = 0. Since φ is convex, x is a minimizer of φ, and we the inequality below
holds:

φ(x) = inf
y
φ(y) ≥ inf

y
G(y). (28)

By computing the gradient of G and setting it to zero, we find y = −C(v)−1∇φ(v) + v such that
∇G(y) = 0. Therefore,

f(x)− ⟨∇f(x), x⟩ = φ(x) ≥ G(y)

= φ(v)−
〈
∇φ(v),C(v)−1∇φ(v)

〉
+

1

2

∥∥C(v)−1∇φ(v)
∥∥2
C(v)

= φ(v)− ∥∇φ(v)∥C−1(v) +
1

2
∥∇φ(v)∥C−1(v)

= f(v)− ⟨∇f(x), v⟩ − 1

2
∥∇φ(v)∥C−1(v)

= f(v)− ⟨∇f(x), v⟩ − 1

2
∥∇f(v)−∇f(x)∥C−1(v).

By rearranging the terms, we find our result since x and v are arbitrary:

1

2
∥∇f(v)−∇f(x)∥C−1(v) ≥ f(v)− f(x) + ⟨∇f(x), x⟩ − ⟨∇f(x), v⟩

= f(v)− f(x) + ⟨∇f(x), x− v⟩
= f(v)− f(x)− ⟨∇f(x), v − x⟩
= Df (v, x).
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Lemma E.6. Suppose that f : Rd → R satisfies Equation (5) with curvature mapping C : Rd →.
If f is twice continuously differentiable, then

C(x) ⪯ ∇2f(x),

for all x ∈ Rd.

Proof. Let x, y′ ∈ Rd and λ > 0. Since f satisfies Equation (5) we can substitute x + λ(y′ − x)
and λ(y′ − x) into the first inequality described in Lemma E.3, to find:

⟨∇f(x+ λ(y′ − x))−∇f(x), λ(y′ − x)⟩ ≥ 1

2
∥λ(y′ − x)∥2C(x)+C(x+λ(y′−x))

=
λ2

2
∥y′ − x∥2C(x)+C(x+λ(y′−x)).

By the Fundamental Theorem of Calculus, we further have that:

⟨∇f(x+ λ(y′ − x))−∇f(x), y′ − x⟩ =
∫ 1

0

〈
∇2f(x+ tλ(y′ − x))(λ(y′ − x)), y′ − x

〉
dt.

Dividing the first inequality by λ2 on both sides we obtain an intermediate inequality:

1

2
∥y′ − x∥C(x)+C(x+λ(y′−x)) ≤

1

λ
⟨∇f(x+ λ(y′ − x))−∇f(x), y′ − x⟩

=
1

λ

∫ 1

0

〈
∇2f(x+ tλ(y′ − x))(λ(y′ − x)), y′ − x

〉
dt

=

∫ 1

0

〈
∇2f(x+ tλ(y′ − x))(y′ − x), y′ − x

〉
dt,

from which we take λ→ 0 of both sides to get an inequality between norms,

1

2
∥y′ − x∥22C(x) ≤

∫ 1

0

〈
∇2f(x)(y′ − x), y′ − x

〉
dt

=
〈
∇2f(x)(y′ − x), y′ − x

〉
.

Thus, ∥y′ − x∥2C(x) ≤
〈
∇2f(x)(y′ − x), y′ − x

〉
. Since x, y′ are arbitrary this implies that

C(x) ⪯ ∇2f(x).

E.2 ON THE UPPER BOUND

We provide analogous lemmas involving functions that satisfy Equation (6).
Lemma E.7. Suppose f : Rd → R satisfies Equation (6). Then for all x, y ∈ Rd we have,

⟨∇f(y)−∇f(x), y − x⟩ ≤ 1

2
∥x− y∥2C(x)+C(y) + LC∥x− y∥2.

Proof. Take the sum of the two Bregmann divergences:

⟨∇f(y)−∇f(x), y − x⟩ = Df (x, y) +Df (y, x)

≤ 1

2
∥x− y∥2C(x)+LCI +

1

2
∥x− y∥2C(y)+LCI

=
1

2
∥x− y∥2C(x)+C(y) + LC∥x− y∥2.

Lemma E.8. Suppose f : Rd → R satisfies the following inequality with constant LC > 0 and
curvature mapping C : Rd →,

⟨∇f(x)−∇f(y), x− y⟩ ≤ ∥x− y∥2C(y)+LCI ∀x, y ∈ Rd.

Then f satisfies Equation (6) with curvature mapping C and constant LC.
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Proof. We invoke the Fundamental Theorem of Calculus:

f(x)− f(y) =

∫ 1

0

⟨∇f(y + t(x− y)), x− y⟩dt

= ⟨∇f(y), x− y⟩+
∫ 1

0

⟨∇f(y + t(x− y))−∇f(y), x− y⟩dt

= ⟨∇f(y), x− y⟩+
∫ 1

0

1

t
⟨∇f(y + t(x− y))−∇f(y), t(x− y)⟩dt

≤ ⟨∇f(y), x− y⟩+
∫ 1

0

1

t
∥t(x− y)∥2C(y)+LCIdt

= ⟨∇f(y), x− y⟩+ ∥x− y∥2C(y)+LCI

∫ 1

0

tdt

= ⟨∇f(y), x− y⟩+ 1

2
∥x− y∥2C(y)+LCI.

Rearranging the inequality above we get our result, Df (x, y) ≤ 1
2∥x− y∥2C(y)+LI.

Lemma E.9. Suppose that f : Rd → R is convex and satisfies Equation (6). Also, assume that f is
differentiable. Then,

1

2
∥∇f(x)−∇f(y)∥2(C(x)+LCI)−1 ≤ Df (x, y)

Proof. Fix x ∈ Rd. Suppose y ∈ Rd. Let φ(y) := f(y) − ⟨∇f(x), y⟩. By construction,
∇φ(y) = ∇f(y)−∇f(x).
Using the above fact, we can show that φ is convex and that for any u, v ∈ Rd, we have
Dφ(u, v) ≤ 1

2∥u− v∥2C(v)+LCI. Therefore φ satisfies Equation (6). Now, let v ∈ Rd be arbitrary.
Since φ satisfies Equation (6), φ(y) ≤ G(y) where

G(y) := φ(v) + ⟨∇φ(v), y − v⟩+ 1

2
∥y − v∥2C(v)+LCI.

Moreover, x is a minimizer of φ because ∇φ(x) = 0 and φ is convex. Combining the last two facts,
φ(x) = inf

y
φ(y) ≥ inf

y
G(y).

We minimize G with respect to y by finding a ȳ ∈ Rd such that ∇G(ȳ) = 0. Since C(v) is positive
semi-definite, C(v) + LCI is non-singular. Then ȳ = v − (C(v) + LCI)

−1φ(v). Therefore,
f(x)− ⟨∇f(x), x⟩ = φ(x) ≤ G(ȳ)

= φ(v)−
〈
∇φ(v), (C(v) + LCI)

−1∇φ(v)
〉

+
1

2

∥∥(C(v) + LCI)
−1∇φ(v)

∥∥2
C(v)+LCI

= φ(v)− ∥∇φ(v)∥2(C(v)+LCI)−1 +
1

2
∥∇φ(v)∥2(C(v)+LCI)−1

= φ(v)− 1

2
∥∇φ(v)∥2(C(v)+LCI)−1

= f(v)− ⟨∇f(x), v⟩ − 1

2
∥∇f(v)−∇f(x)∥2(C(v)+LCI)−1 .

Rearranging the terms we obtain
1

2
∥∇f(v)−∇f(x)∥2(C(v)+LCI)−1 ≤ f(v)− f(x)− ⟨∇f(x), v⟩+ ⟨∇f(x), x⟩

= f(v)− f(x)− ⟨∇f(x), v⟩ − ⟨∇f(x),−x⟩
= f(v)− f(x)− ⟨∇f(x), v − x⟩
= Df (v, x).

Since v, x were arbitrary, the claim is true.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Lemma E.10. Suppose that f : Rd → R is convex and satisfies Equation (6). Also, assume that f
is twice differentiable. Then,

∇2f(x) ⪯ C(x) + LI.

Proof. Suppose x, y′ ∈ Rd and λ > 0. Since f satisfies Equation (6), we can substitute x+λ(y′−x)
and λ(y′ − x) into Lemma E.7,

⟨∇f(x+ λ(y′ − x))−∇f(x), λ(y′ − x)⟩ ≤ 1

2
∥λ(y′ − x)∥2C(x)+C(x+λ(y′−x))+2LCI

=
λ2

2
∥y′ − x∥2C(x)+C(x+λ(y′−x))+2LCI.

The following equality is a direct application of the fundamental theorem of calculus:

⟨∇f(x+ λ(y′ − x))−∇f(x), y′ − x⟩ =
∫ 1

0

〈
∇2f(x+ tλ(y′ − x))(λ(y′ − x)), y′ − x

〉
dt

=

∫ 1

0

λ
〈
∇2f(x+ tλ(y′ − x))(y′ − x), y′ − x

〉
dt

Dividing the inequality by λ2 on both sides:
1

2
∥y′ − x∥2C(x)+C(x+λ(y′−x))+2LCI ≥

1

λ2
⟨∇f(x+ λ(y′ − x))−∇f(x), λ(y′ − x)⟩

=
1

λ
⟨∇f(x+ λ(y′ − x))−∇f(x), y′ − x⟩

=
1

λ

∫ 1

0

λ
〈
∇2f(x+ tλ(y′ − x))(y′ − x), y′ − x

〉
dt

=

∫ 1

0

〈
∇2f(x+ tλ(y′ − x))(y′ − x), y′ − x

〉
dt.

It suffices to take limits λ→ 0 to get that:

1

2
∥y′ − x∥2C(x)+C(x)+2LCI ≥

∫ 1

0

〈
∇2f(x)(y′ − x), y′ − x

〉
dt

=
〈
∇2f(x)(y′ − x), y′ − x

〉
,

allowing us to conclude with:
1

2
∥y′ − x∥2C(x)+C(x)+2LCI =

1

2
∥y′ − x∥22C(x)+2LCI

= ⟨(C(x) + LCI)(y
′ − x), y′ − x⟩

≥
〈
∇2f(x)(y′ − x), y′ − x

〉
.

Since y′, x ∈ Rd are arbitrary, we proved the claim: ∇2f(x) ⪯ C(x) + LCI.

E.3 LOWER BOUND EXAMPLES

Lemma E.11. Suppose p ≥ 2. Let f : Rd → R where f(x) = ∥x∥pp. Then f satisfies Equation (5)
in Assumption 2.1 with curvature mapping

C(y) = pDiag (|y1|p−2
, . . . , |yd|p−2

) =
1

p− 1
∇2f(y).

Proof. When p = 2, we have that C(y) = 2I. Then f satisfies Equation (5) because ∥x∥2 is 2-
strongly-convex.
Now suppose p > 2. For arbitrary x, y ∈ Rd, an application of Young’s Inequality yields

(∥x∥2p)
p
2

p
2

+
(∥y∥p−2

p )
p

p−2

p
p−2

≥ ∥x∥2p∥y∥
p−2
p .

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Rearranging, we obtain:

∥x∥pp −
p

2
∥x∥2p∥y∥

p−2
p +

(p
2
− 1
)
∥y∥pp ≥ 0. (29)

By applying Hölder’s inequality, we get:
d∑

i=1

|xi|2 |yi|p−2 ≤ ∥x∥2p∥y∥
p−2
p , (30)

and thus,

−p
2
∥x∥2p∥y∥

p−2
p ≤ −p

2

d∑
i=1

|xi|2 |yi|p−2
.

By adding ∥x∥pp +
(
p
2 − 1

)
∥y∥pp to both sides of Equation (30) and using Equation (29) we get,

∥x∥pp −
p

2

d∑
i=1

|xi|2 |yi|p−2
+
(p
2
− 1
)
∥y∥pp ≥ 0.

To derive the result, we begin by rearranging the above inequality:

∥x∥pp ≥ p

2

d∑
i=1

|xi|2 |yi|p−2 −
(p
2
− 1
)
∥y∥pp

= ∥y∥pp − p∥y∥pp +
p

2
∥y∥pp +

p

2

d∑
i=1

|xi|2 |yi|p−2

= ∥y∥pp − p∥y∥pp + p

d∑
i=1

yi |yi|p−2
xi − p

d∑
i=1

yi |yi|p−2
xi +

p

2
∥y∥pp +

p

2

d∑
i=1

|xi|2 |yi|p−2
.

After reordering, we find:

∥x∥pp ≥∥y∥pp + p

d∑
i=1

yi |yi|p−2
xi − p

d∑
i=1

y2i |yi|
p−2

− p

d∑
i=1

yi |yi|p−2
xi +

p

2
∥y∥pp +

p

2

d∑
i=1

|xi|2 |yi|p−2
.

By performing some basic algebra and observing that ∂f
∂yi

= pyi |yi|p−2, we obtain our result:

∥x∥pp = ∥y∥pp +
d∑

i=1

pyi |yi|p−2
(xi − yi)− p

d∑
i=1

yi |yi|p−2
xi +

p

2
∥y∥pp +

p

2

d∑
i=1

|xi|2 |yi|p−2

= ∥y∥pp +
d∑

i=1

pyi |yi|p−2
(xi − yi) +

p

2

d∑
i=1

|yi|p − p

d∑
i=1

yi |yi|p−2
xi +

p

2

d∑
i=1

|xi|2 |yi|p−2

= ∥y∥pp +
d∑

i=1

pyi |yi|p−2
(xi − yi) +

1

2
⟨C(y)y, y⟩ − ⟨C(y)y, x⟩+ 1

2
⟨C(y)x, x⟩

= ∥y∥pp +
d∑

i=1

pyi |yi|p−2
(xi − yi) +

1

2
⟨C(y)(x− y), (x− y)⟩

= ∥y∥pp + ⟨∇f(y), x− y⟩+ 1

2
∥x− y∥2C(y).

Lemma E.12. Suppose p ≥ 2. Let f : Rd → R where f(x) = ∥x∥pp. Then f satisfies Equation (5)
in Assumption 2.1 with curvature mapping C(y) were the (i, j)th entry of C(y) is

Ci,j(y) =
p

∥y∥pp
yiyj |yi|p−2 |yj |p−2

,
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or alternatively, in matrix form:

C(y) =
1

p∥y∥pp
∇f(y)∇f(y)⊤.

Proof. When p = 2 we get that C(y) = 2
∥y∥2 yy⊤. Since ∥x∥2 is the square of ∥x∥ which is abso-

lutely convex, f(x) = ∥x∥2 satisfies Equation (5) because the curvature mapping C corresponds to
the mapping obtained from absolute convexity.
Now suppose p > 2. Again by Hölder’s Inequality, we have that

d∑
i=1

|xi| |yi|p−1 ≤ ∥x∥p∥y∥
p−1
p . (31)

We can lower bound the left-hand side in the following manner:
d∑

i=1

|xi| |yi|p−1
=

d∑
i=1

∣∣∣xiyp−1
i

∣∣∣ = d∑
i=1

∣∣∣xiyiyp−2
i

∣∣∣ = d∑
i=1

∣∣∣xiyi |yi|p−2
∣∣∣ ≥ ∣∣∣∣∣

d∑
i=1

xiyi |yi|p−2

∣∣∣∣∣ .
Combining this inequality with Inequality (31) and squaring both sides we get,

∥x∥2p∥y∥
2p−2
p ≥

(
d∑

i=1

|xi| |yi|p−1

)2

≥

(∣∣∣∣∣
d∑

i=1

xiyi |yi|p−2

∣∣∣∣∣
)2

=

(
d∑

i=1

xiyi |yi|p−2

)2

.

Then we multiply both sides by −p
2 ,

−p
2
∥x∥2p∥y∥

2p−2
p ≤ −p

2

(
d∑

i=1

xiyi |yi|p−2

)2

. (32)

From Lemma E.11, we know an application of Young’s Inequality with some rearranging yields the
following:

∥x∥pp +
(p
2
− 1
)
∥y∥pp −

p

2
∥x∥2p∥y∥

p−2
p ≥ 0.

Now multiply both sides by ∥y∥pp,

∥x∥pp∥y∥
p
p +

(p
2
− 1
)
∥y∥2pp − p

2
∥x∥2p∥y∥

2p−2
p ≥ 0. (33)

Adding ∥x∥pp∥y∥
p
p +

(
p
2 − 1

)
∥y∥2pp to both sides of Equation (32) and together with Equation (33)

we have that,

∥x∥pp∥y∥
p
p +

(p
2
− 1
)
∥y∥2pp − p

2
(

d∑
i=1

xiyi |yi|p−2
)2 ≥ 0.

Rearranging this inequality and proceeding with the following steps we obtain the claim.

∥x∥pp ≥
(
1− p

2

)
∥y∥pp +

p

2∥y∥pp

(
d∑

i=1

xiyi |yi|p−2

)2

= ∥y∥pp − p∥y∥pp +
p

2
∥y∥pp +

p

2∥y∥pp

(
d∑

i=1

xiyi |yi|p−2

) d∑
j=1

xjyj |yj |p−2


= ∥y∥pp − p∥y∥pp +

p

2
∥y∥pp +

p

2∥y∥pp

d∑
i=1

d∑
j=1

xiyi |yi|p−2
xjyj |yj |p−2

= ∥y∥pp − p∥y∥pp +
p

2
∥y∥pp +

p

2∥y∥pp

d∑
i=1

d∑
j=1

xiyiyj |yi|p−2 |yj |p−2
xj

= ∥y∥pp − p∥y∥pp +
p

2∥y∥pp
∥y∥2pp +

1

2
⟨C(y)x, x⟩ ,
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The last term seems complicated but can be expressed as a matrix inner product. Continuing,

∥x∥pp ≥ ∥y∥pp − p∥y∥pp +
p

2∥y∥pp

(
d∑

i=1

|yi|p
) d∑

j=1

|yj |p
+

1

2
⟨C(y)x, x⟩

= ∥y∥pp − p∥y∥pp +
p

2∥y∥pp

 d∑
i=1

d∑
j=1

|yi|p |yj |p
+

1

2
⟨C(y)x, x⟩

= ∥y∥pp − p∥y∥pp +
p

2∥y∥pp

 d∑
i=1

d∑
j=1

yiyiyj |yi|p−2 |yj |p−2
yj

+
1

2
⟨C(y)x, x⟩

= ∥y∥pp − p∥y∥pp +
1

2
⟨C(y)y, y⟩+ 1

2
⟨C(y)x, x⟩

= ∥y∥pp − p∥y∥pp + p

d∑
i=1

xiyi |yi|p−2 − p

d∑
i=1

xiyi |yi|p−2

+
1

2
⟨C(y)y, y⟩+ 1

2
⟨C(y)x, x⟩

= ∥y∥pp − p∥y∥pp + p

d∑
i=1

xiyi |yi|p−2 − p

∥y∥pp

(
d∑

i=1

xiyi |yi|p−2

) d∑
j=1

|yj |p


+
1

2
⟨C(y)y, y⟩+ 1

2
⟨C(y)x, x⟩ .

To finalize, we proceed with the last few equalities:

∥x∥pp ≥ ∥y∥pp − p∥y∥pp + p

d∑
i=1

xiyi |yi|p−2 − p

∥y∥pp

(
d∑

i=1

xiyi |yi|p−2

) d∑
j=1

yjyj |yj |p−2


+

1

2
⟨C(y)y, y⟩+ 1

2
⟨C(y)x, x⟩

= ∥y∥pp − p∥y∥pp + p

d∑
i=1

xiyi |yi|p−2 − p

∥y∥pp

d∑
i=1

d∑
j=1

xiyi |yi|p−2
yj |yj |p−2

yj

+
1

2
⟨C(y)y, y⟩+ 1

2
⟨C(y)x, x⟩

= ∥y∥pp − p∥y∥pp + p

d∑
i=1

xiyi |yi|p−2 − ⟨C(y)x, y⟩+ 1

2
⟨C(y)y, y⟩+ 1

2
⟨C(y)x, x⟩

= ∥y∥pp + p

d∑
i=1

xiyi |yi|p−2 − p

d∑
i=1

|yi|p +
1

2
⟨C(x− y), x− y⟩

= ∥y∥pp +
d∑

i=1

pyi |yi|p−2
(xi − yi) +

1

2
∥x− y∥2C(y)

= ∥y∥pp + ⟨∇f(y), x− y⟩+ 1

2
∥x− y∥2C(y).

Lemma E.13. Suppose p ≥ 2. The function f(x) = ∥x∥p satisfies Equation (5) with either of the
two curvature mappings:

(1) C(y) = p∥y∥p−2
2 I. (2) C(y) = p∥y∥p−4

2 yy⊤.

Proof. (1). When p = 2, we have C(y) = 2I. Therefore, f satisfies Equation (5) because ∥x∥2 is
2-strongly-convex.
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Now suppose p > 2. By applying Young’s Inequality we get that:

(∥x∥2)
p
2

p
2

+
(∥y∥p−2

)
p

p−2

p
p−2

≥ ∥x∥2∥y∥p−2
,

and rearranging

∥x∥p +
(p
2
− 1
)
∥y∥p ≥ p

2
∥y∥p−2∥x∥2.

We get our result from the above inequality and by observing that ∇f(y) = p∥y∥p−2
2 y.

∥x∥p2 ≥
(
1− p

2

)
∥y∥p2 +

p

2
∥y∥p−2

2 ∥x∥22

= ∥y∥p2 − p∥y∥p2 +
p

2
∥y∥p−2

2 ∥x∥22 +
p

2
∥y∥p2

= ∥y∥p2 + p∥y∥p−2
2 ⟨x, y⟩ − p∥y∥p−2

2 ⟨x, y⟩ − p∥y∥p2 +
p

2
∥y∥p−2

2 ∥x∥22 +
p

2
∥y∥p2

= ∥y∥p2 + p∥y∥p−2
2 ⟨x, y⟩ − p∥y∥p2 − p∥y∥p−2

2 ⟨x, y⟩+ p

2
∥y∥p−2

2 ⟨x, x⟩+ p

2
∥y∥p−2

2 ⟨y, y⟩

= ∥y∥p2 + p∥y∥p−2
2 ⟨x, y⟩ − p∥y∥p−2

2 ⟨y, y⟩ − ⟨C(y)x, y⟩+ 1

2
⟨C(y)x, x⟩+ 1

2
⟨C(y)y, y⟩

= ∥y∥p2 + p∥y∥p−2
2 ⟨x, y⟩ − p∥y∥p−2

2 ⟨y, y⟩+ 1

2
⟨C(y)(x− y), x− y⟩

= ∥y∥p2 +
〈
p∥y∥p−2

2 y, x− y
〉
+

1

2
∥x− y∥2C(y)

= ∥y∥p2 +
〈
p∥y∥p−2

2 y, x− y
〉
+

1

2
∥x− y∥2C(y)

= ∥y∥p2 + ⟨∇f(y), x− y⟩+ 1

2
∥x− y∥2C(y).

(2) When p = 2, we have C(y) = p
∥y∥2

2

yy⊤. Since ∥x∥2 is a square of an absolutely convex
function, it satisfies Equation (5) with curvature mapping C(y). For more details, refer to section 7
and F.
Suppose that p > 2. As done previously, we can use Young’s Inequality to obtain:

∥x∥p +
(p
2
− 1
)
∥y∥p ≥ p

2
∥y∥p−2∥x∥2. (34)

Moreover, by Cauchy-Schwarz:

∥x∥2∥y∥2 ≥ |⟨x, y⟩| =⇒ ∥x∥22∥y∥
2
2 ≥ (⟨x, y⟩)2.

Multiplying both sides by −p
2∥y∥

p−4 we get,

−p
2
∥x∥2∥y∥p−2 ≤ −p

2
∥y∥p−4

(⟨x, y⟩)2,

Adding ∥x∥p2 +
(
p
2 − 1

)
∥y∥p2 to both sides and by using Equation (34),

∥x∥p − p

2
∥y∥p−4

(⟨x, y⟩)2 +
(p
2
− 1
)
∥y∥p ≥ 0.
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We can reorder the terms to obtain the result:

∥x∥p2 ≥
(
1− p

2

)
∥y∥p2 +

p

2
∥y∥p−4

2 (⟨x, y⟩)2

= ∥y∥p2 − p∥y∥p2 +
p

2
∥y∥p−4

2 (⟨x, y⟩)2 + p

2
∥y∥p2

= ∥y∥p2 − p∥y∥p2 +
p

2
∥y∥p−4

2 x⊤yy⊤x+
p

2
∥y∥p−4

2 y⊤yy⊤y

= ∥y∥p2 − p∥y∥p2 +
1

2
⟨C(y)x, x⟩+ 1

2
⟨C(y)y, y⟩

= ∥y∥p2 − p∥y∥p2 + p∥y∥p−2
2 ⟨x, y⟩ − p∥y∥p−2

2 ⟨x, y⟩+ 1

2
⟨C(y)x, x⟩+ 1

2
⟨C(y)y, y⟩

= ∥y∥p2 − p∥y∥p2 + p∥y∥p−2
2 ⟨x, y⟩ − p∥y∥p−4

2 x⊤yy⊤y +
1

2
⟨C(y)x, x⟩+ 1

2
⟨C(y)y, y⟩

= ∥y∥p2 − p∥y∥p2 + p∥y∥p−2
2 ⟨x, y⟩ − ⟨C(y)x, y⟩+ 1

2
⟨C(y)x, x⟩+ 1

2
⟨C(y)y, y⟩

= ∥y∥p2 − p∥y∥p2 + p∥y∥p−2
2 ⟨x, y⟩+ ⟨C(y)(x− y), x− y⟩

= ∥y∥p2 − p∥y∥p−2
2 ⟨y, y⟩+ p∥y∥p−2

2 ⟨x, y⟩+ 1

2
∥x− y∥2C(y)

= ∥y∥p2 +
〈
p∥y∥p−2

2 y, x− y
〉
+

1

2
∥x− y∥2C(y)

= ∥y∥p2 + ⟨∇f(y), x− y⟩+ 1

2
∥x− y∥2C(y).

Lemma E.14. Suppose p ≥ 2 and let f : Rd → R be defined as f(x) = ∥x∥2p. Then f satisfies
Equation (5) with the following curvature mapping:

C(y) =
2

∥y∥p−2
p

Diag(|y1|p−2
, . . . , |yd|p−2

)

Proof. Using Holder’s inequality we can see that,(
d∑

i=1

|xi|2 |yi|p−2

)p

≤

(
d∑

i=1

|xi|p
)2( d∑

i=1

|yi|p−2

)p−2

= ∥x∥2pp ∥y∥p(p−2)
p

We raise both sides to the power of 1
p and proceed by rearranging some terms:

∥x∥2p ≥ 1

∥y∥p−2
p

d∑
i=1

|xi|2 |yi|p−2

= ∥y∥2p − ∥y∥2p +
1

∥y∥p−2
p

d∑
i=1

|xi|2 |yi|p−2

= ∥y∥2p −
1

∥y∥p−2
p

d∑
i=1

|yi|p +
1

∥y∥p−2
p

d∑
i=1

|xi|2 |yi|p−2

= ∥y∥2p −
2

∥y∥p−2
p

d∑
i=1

|yi|p +
1

∥y∥p−2
p

d∑
i=1

|xi|2 |yi|p−2
+

1

∥y∥p−2
p

d∑
i=1

|yi|p

= ∥y∥2p +
2

∥y∥p−2
p

d∑
i=1

yi |yi|p−2
xi −

2

∥y∥p−2
p

d∑
i=1

|yi|p +
1

∥y∥p−2
p

d∑
i=1

|xi|2 |yi|p−2

− 2

∥y∥p−2
p

d∑
i=1

yi |yi|p−2
xi +

1

∥y∥p−2
p

d∑
i=1

|yi|p
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We can arrive at our result by realizing that the last three terms are equal to ∥x− y∥2C(y) and the

middle two terms are equal to ⟨∇f(y), x− y⟩. Observe that ∂f
∂yi

= 2
∥y∥p−2

p

yi |yi|p−2. Therefore,

∥x∥2p ≥ ∥y∥2p +
d∑

i=1

2yi |yi|p−2

∥y∥p−2
p

(xi − yi) +
1

∥y∥p−2
p

d∑
i=1

|xi|2 |yi|p−2

− 2

∥y∥p−2
p

d∑
i=1

yi |yi|p−2
xi +

1

∥y∥p−2
p

d∑
i=1

|yi|p

= ∥y∥2p + ⟨∇f(y), x− y⟩+ 1

2
⟨C(y)x, x⟩ − ⟨C(y)x, y⟩+ 1

2
⟨C(y)y, y⟩

= ∥y∥2p + ⟨∇f(y), x− y⟩+ 1

2
⟨C(y)(x− y), x− y⟩

= ∥y∥2p + ⟨∇f(y), x− y⟩+ 1

2
∥x− y∥2C(y)

Lemma E.15. Suppose p ≥ 1. Let g : Rd → R be g(x) = ∥x∥p. Then f := g2 satisfies Equation (5)
with the following curvature mapping:

C(y) = 2∇g(y)∇g(y)⊤.

Proof. By Lemma F.2, g is absolutely convex for p ≥ 1. Therefore, g2 satisfies Equation (5) with
curvature mapping C.

E.4 LOWER AND UPPER BOUND EXAMPLES

Lemma E.16. Let G be a symmetric positive semi-definite matrix. Let f : Rd → R where
f(x) = ∥x∥2G. Then f satisfies Assumption 2.1 with curvature mapping C(y) ≡ 2G and constant
LC = 0.

Proof. We start by computing:

0 = ∥y∥2G − 2∥y∥2G + ∥y∥2G
= −∥x∥2G + ∥x∥2G + ∥y∥2G − 2∥y∥2G + ∥y∥2G
= −∥x∥2G + ∥y∥2G − 2 ⟨Gy, y⟩+ ⟨Gy, y⟩+ ⟨Gx, x⟩
= −∥x∥2G + ∥y∥2G − 2 ⟨Gy, y⟩+ ⟨Gy, y⟩+ ⟨Gx, x⟩
= −∥x∥2G + ∥y∥2G + 2 ⟨Gy, x⟩ − 2 ⟨Gy, y⟩+ ⟨Gy, y⟩ − 2 ⟨Gy, x⟩+ ⟨Gx, x⟩
= −∥x∥2G + ∥y∥2G + ⟨2Gy, x− y⟩+ ⟨Gy, y⟩ − 2 ⟨Gy, x⟩+ ⟨Gx, x⟩

= −∥x∥2G + ∥y∥2G + ⟨2Gy, x− y⟩+ 1

2
2∥x− y∥2G.

Rearranging the terms we get

∥x∥2G = ∥y∥2G + ⟨2Gy, x− y⟩+ 1

2
2∥x− y∥2G

= ∥y∥2G + ⟨∇f(y), x− y⟩+ 1

2
∥x− y∥22C(y).
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Lemma E.17. Let p ≥ 2. Suppose g : Rd → R with g(x) = ∥x∥2p. Let f := g2. Then f satisfies
Assumption 2.1 with constant LC = 2(p− 1) and either of the two curvature mappings:

B(y) =
2

∥y∥p−2
p

Diag(|y1|p−2
, . . . , |yd|p−2

) B(y) = 2∇g(y)∇g(y)⊤.

Proof. In Lemma E.14, we proved that f satisfies inequality (5) with the abovementioned curvature
mappings. Now we will show that f is smooth so it satisfies inequality (6). For p = 2. it is clear
that f is 2-smooth. We focus on the case where p > 2.

Since p > 2 we have that 1 < q < 2 where q = p
p−1 . Kakade et al. (2012) proved that h(x) =

1
2 ∥x∥

2
q is strongly-convex with respect to the Lq norm with µ = q−1. We also know that Lp norms

are a decreasing function of p. Therefore, h(x) = 1
2 ∥x∥

2
q is also strongly-convex with respect to the

L2 norm because ∥x− y∥22 ≤ ∥x− y∥2q:

1

2
∥x∥2q ≥ 1

2
∥y∥2q + ⟨∇h(y), x− y⟩+ 1

2
µ ∥x− y∥2q

≥ 1

2
∥y∥2q + ⟨∇h(y), x− y⟩+ 1

2
µ ∥x− y∥22

The Frenchel conjugate of 1
2 ∥·∥

2
q is 1

2 ∥·∥
2
p because the dual norm of ∥·∥q is ∥·∥p. Kakade et al.

(2012) showed that if h is µ-strongly-convex then the Frenchel conjugate of h is 1
µ -smooth. There-

fore, 1
2 ∥x∥

2
p is L-smooth with L = 1

q−1 = p − 1. Thus, f(x) = ∥x∥2p is smooth with constant
2(p− 1).

Lemma E.18. Suppose a, b ∈ R and a ̸= 0 and b > 0. The function f : R → R defined as

f(x) =
√
ax4 + b

satisfies the upper and lower bounds in Assumption 2.1 with C(y) = 2ay2

f(y) and LC =
√
8a.

Proof. Observe that x2 + y2 ≥ 2x2y2. Multiply both sides by ab we get ab(x2 + y2) ≥ 2abx2y2.
Then we add a2x4y4 + b2 to both sides,

a2x4y4 + abx2 + aby2 + b2 ≥ a2x4y4 + 2abx2y2 + b2.

We can write this equivalently as,

(ax4 + b)(ay4 + b) ≥ (b+ ax2y2)2.

Then taking the square root of both sides,√
(ax4 + b)(ay4 + b) ≥ b+ ax2y2 = ay4 + b− ay4 + ax2y2.

Rearranging the terms,√
ax4 + b

√
ay4 + b ≥ ay4 + b− ay4 + ax2y2

= ay4 + b− 2ay4 + ax2y2 + ay4

= ay4 + b+ 2axy3 − 2ay4 + ax2y2 − 2axy3 + ay4

= ay4 + b+ 2ay3(x− y) + ay2(x2 − 2xy + y2)

= ay4 + b+ 2ay3(x− y) +
1

2
2ay2(x− y)2.

Divide both sides by
√
ay4 + b to obtain our result,√

ax4 + b ≥
√
ay4 + b+

2ay3√
ay4 + b

(x− y) +
1

2

2ay2√
ax4 + b

(x− y)2.

To compute LC, note that f is L-smooth so we can find an upper bound on f ′′ which is given by
LC =

√
8a.
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Lemma E.19. Suppose δ > 0. Suppose h : R → R is such that:

h(x) =

{
1
2x

2 |x| ≤ δ

δ(|x| − 1
2δ) |x| > δ

.

Let f = h2. Then f satisfies (2.1) with constant LC = 2δ2 and curvature mapping

C(y) =

{
y2 |y| ≤ δ

δ2 |y| > δ

Notice that LC is less than the L-smoothness constant of f , which is 3δ2 (the tightest bound on the
second derivative of f ).

Proof. First, we will prove that f satisfies inequality (5). We will split the proof into four cases and
prove the inequality holds in each case.

Case |x| , |y| ≤ δ. We know x4 + y4 ≥ 2x2y2. We divide both sides by 4 and rearrange the terms,

1

4
x4 ≥ −1

4
y4 +

1

2
x2y2 =

1

4
y4 − y4 +

1

2
y4 +

1

2
x2y2

=
1

4
y4 − y4 +

1

2
y4 +

1

2
x2y2 + xy3 − xy3

=
1

4
y4 − y4 + xy3 +

1

2
y2(x2 − 2xy + y2)

=
1

4
y4 − y3(x− y) +

1

2
y2(x− y)2.

We have our result because f ′(y) = y3 for |y| ≤ δ.

Case |x| ≥ δ and |y| ≤ δ. For any |y| ≤ δ define r : R → R as the following,

r(x) =
y4

4
+
δ4

4
+ δ2x2 − δ3 |x| − x2y2

2

First, we need to show that r(x) ≥ 0. Suppose x ≥ δ. When x = δ,

r(x) =
y4

4
− y2δ2

2
+
δ4

4
=

1

4
(y2 − δ2) ≥ 0.

Therefore, for x > δ, if we show that r′(x) ≥ 0 then r(x) ≥ 0. By a simple computation, we get
that

r′(x) = 2δ2x− δ3 − xy2

2
.

Since x ≥ δ then obviously x ≥ 2
3δ so 3

2x − δ ≥ 0. Rearranging the terms and multiplying the
entire inequality by δ we get that

2δ2x− δ3 − xδ2

2
≥ 0.

It is easy to show that −y2 ≥ −δ2 because |y| ≤ δ. Therefore,

r′(x) = 2δ2x− δ3 − xy

2
≥ 2δ2x− δ3 − xδ2

2
≥ 0.

Now suppose x ≤ −δ. Observe that r(−δ) = r(δ) ≥ 0. Thus, if we show that for x ≤ −δ,
r′(x) ≤ 0 then r(x) ≥ 0. For x ≤ −δ, we have that

r′(x) = 2δ2x+ δ3 − xy2

2
.

Notice that y2 ≤ δ2 because |y| ≤ δ. Then we have that 2δ2 − y2

2 ≥ 3δ2

2 . Multiplying both sides of
this inequality by x we obtain,

x

(
2δ2 − y2

2

)
≤ 3δ2x

2
≤ 3δ3

2
≤ −δ3.
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The inequality was reversed because x ≤ −δ < 0 and the second inequality also follows from
x ≤ −δ. Rearranging the terms in this inequality we see that

r′(x) = 2δ2x− δ3 − xy2

2
≤ 0.

Therefore, we have shown that r(x) ≥ 0 for arbitrary absy ≤ δ. Then by rearranging the terms in
r, we have that

δ2x2 − δ3 |x|+ δ4

4
≥ −y

4

4
+
x2y2

2
.

The left-hand side is equal to δ2(|x| − 1
2δ) = f(x). In the previous case, we showed that the

right-hand side is equal to 1
4y

4 − y3(x− y) + 1
2y

2(x− y)2. Therefore, we have our result.

Case |x| , |y| ≥ δ. First, we show that the following inequality holds:

x2 − 2xy + y2 − 2δ

(
|x| − x

y

|y|

)
≥ 0. (35)

For x, y ≥ δ and x, y ≤ −δ it is easy to show because (x − y)2 ≥ 0. Now suppose x ≥ δ and
y ≤ −δ. Then we must show that

x2 − 2xy + y2 − 4δx ≥ 0.

Since y ≤ −δ we have that (x− y)2 ≥ (x+ δ)2. Therefore,

(x− y)2 − 4δx ≥ (x+ δ)2 − 4δx = (x− δ)2 ≥ 0.

Now suppose x ≤ −δ and y ≥ δ. Similar to before, we need to show

x2 − 2xy + y2 + 4δx ≥ 0.

Since y ≥ δ we obtain 4xy ≤ 4δx by multiplying both sides by 4x and reversing the inequality
because x ≤ −δ < 0. Therefore,

(x− y)2 + 4δx ≥ (x− y)2 + 4xy = (x+ y)2 ≥ 0.

As a result, we have shown inequality (35) holds. We can rewrite the inequality as

x2

2
− xy +

y2

2
− δ |x|+ δx

y

|y|
≥ 0.

Moving some terms to the right-hand side we get,

x2 − δ |x|+ δ2

4
≥ −−y2

2
+
δ2

4
+ xy +

x2

2
− δ

xy

|y|

=

(
|y| − 1

2
δ

)2

+ 2xy − δ
xy

|y|
− 2y2 + δ |y|+ x2

2
− xy +

y2

2
.

Recall, that f ′(y) = 2δ2
(
|y| − 1

2δ
)

y
|y| . Observe that we can factor the left-hand side of the inequal-

ity and after multiplying both sides by δ2 we get our result:

δ2
(
|x| − 1

2
δ

)2

≥ δ2
(
|y| − 1

2
δ

)2

+ 2δ2xy − δ2
xy

|y|
− 2δ2y2 + δ3 |y|+ δ2

2
x2 − δ2xy +

δ2

2
y2

= δ2
(
|y| − 1

2
δ

)2

+ 2δ2
(
|y| − 1

2
δ

)
y

|y|
(x− y) +

1

2
δ2(x− y)2

The case where |x| ≤ δ, |y| ≥ δ is similar to the previous cases. Using some elementary calculus,
one can show that

x4

4
+
δ2y2

2
− δ4

4
− δ2xy − δ2x2

2
+ δ3x ≥ 0.

Rearranging the terms above directly leads to the result.
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Now we show that f satisfies inequality (6) withLC = 2δ2. In the case where |y| ≥ δ, LC+C(y) =
3δ2 is the L-smoothness constant of f so the inequality holds. We consider the case where |y| ≤ δ.

Case |x| , |y| ≤ δ. Then xy ≤ |xy| ≤ δ2 so x2+xy ≤ 2δ2. Adding y2 to both sides and multiplying
by (x− y)2 we obtain,

(x− y)2(y2 + 2δ2) ≥ (x− y)2(x2 + xy + y2)

= (x3 − y3)(x− y).

By Lemma E.8 we have our result.

Case |x| ≥ δ, |y| ≤ δ. We must show that the following inequality holds:

y4

4
− x2y2

2
+ 2δ2xy − δ2y2 − δ3 |x|+ δ4

4
≤ 0.

We leave out the details of the calculations. The proof is similar to the same case for showing
the lower bound. We can define a polynomial in x for arbitrary |y| ≤ δ. Then we show that this
polynomial is less than 0 for x ≥ δ by computing the value at δ and show that the derivative is
negative for x ≥ δ We proceed similarly for x ≤ −δ. By rearranging and manipulating the terms in
the above inequality we can arrive at our result. These calculations are similar to the previous cases
so we exclude them for brevity.
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F ABSOLUTELY CONVEX FUNCTIONS

Discussing the theory constructions derived from Assumption 2.1, we introduced a stand-alone class
of functions, satisfying an absolute convexity condition. In this section, we derive more properties
and examples. Let us remind that a function ϕ : Rd → R is absolutely convex if and only if:

ϕ(y) ≥ |ϕ(x) + ⟨∇ϕ(x), y − x⟩ |, ∀x, y ∈ Rd. (36)

Our first statement is a Lemma that establishes calculus in the spirit of Lemma 5.1 in the main text.
Lemma F.1. Let ϕ, ϕ1, ϕ2 : Rd → R be absolutely convex, and let A ∈ Rd×m, b ∈ Rd and α ≥ 0.
Then

(i) ϕ+ α is absolutely convex.

(ii) αϕ is absolutely convex.

(iii) ϕ1 + ϕ2 is absolutely convex.

(iv) ϕ(Ax+ b) is absolutely convex.

Proof. We prove each statement:

(i) ψ(x) := ϕ(x) + α ≥ |ϕ(y) + ⟨∇ϕ(y), x− y⟩| + α ≥ |ϕ(y) + ⟨∇ϕ(y), x− y⟩+ α| =
|ψ(y) + ⟨∇ψ(y), x− y⟩| .

(ii) ψ(x) := αϕ(x) ≥ α (|ϕ(y) + ⟨∇ϕ(y), x− y⟩|) ≥ α |ϕ(y) + ⟨∇ϕ(y), x− y⟩| =
|αϕ(y) + ⟨α∇ϕ(y), x− y⟩| = |ψ(y) + ⟨∇ψ(y), x− y⟩| .

(iii) ψ(x) := ϕ1(x) + ϕ2(x) ≥ |ϕ1(y) + ⟨∇ϕ1(y), x− y⟩|+ |ϕ2(y) + ⟨∇ϕ2(y), x− y⟩|
≥ |ϕ1(y) + ⟨∇ϕ1(y), x− y⟩+ ϕ2(y) + ⟨∇ϕ2(y), x− y⟩| = |ψ(y) + ⟨∇ψ(y), x− y⟩|.

(iv) ψ(x) = ϕ(Ax + b) ≥ |ϕ(Ay + b) + ⟨∇ϕ(Ay + b),Ax+ b− (Ay + b)⟩ | = |ϕ(Ay +
b) +

〈
A⊤∇ϕ(Ay + b), x− y

〉
| = |ϕ(Ay + b) +

〈
A⊤∇ϕ(Ay + b), x− y

〉
| = |ψ(y) +

⟨∇ψ(y), x− y⟩ |.

F.1 EXAMPLES

Lemma F.2. Let p ≥ 1. Then ϕ : Rd → R where ϕ(x) = ∥x∥p is absolutely convex.

Proof. We already know that ϕ is convex so we show that

−ϕ(y)− ⟨∇ϕ(y), x− y⟩ ≤ ϕ(x),

where ∂ϕ(y)
∂yi

= yi|yi|p−2

∥y∥p−1
p

for x, y ∈ Rd.

Observe that

⟨ϕ(y), x− y⟩ =
d∑

i=1

yi|yi|p−2

∥y∥p−1
p

(xi − yi).

We make use of Holder’s inequality which is stated below for r, s ≥ 0,(
d∑

i=1

|xi|r|yi|s
)r+s

≤

(
d∑

i=1

|xi|r+s

)r ( d∑
i=1

|yi|r+s

)s

.

For any x, y ∈ Rd and with r = 1 and s = p− 1 we have that ,(
d∑

i=1

|xi||yi|p−1

)p

≤

(
d∑

i=1

|xi|p
)(

d∑
i=1

|yi|p
)p−1

.
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Simplifying this expression we obtain,

d∑
i=1

|xi||yi|p−1 ≤

(
d∑

i=1

|xi|p
) 1

p
(

d∑
i=1

|yi|p
) p−1

p

= ∥x∥p

( d∑
i=1

|yi|p
) 1

p

p−1

= ∥x∥p∥y∥
p−1
p .

We can obtain a lower bound on the term,

d∑
i=1

|xi||yi|p−1 =

d∑
i=1

|xi||yi||yi|p−2 =

d∑
i=1

|xiyi||yi|p−2

≥
d∑

i=1

−(xiyi)|yi|p−2

= −
d∑

i=1

xiyi|yi|p−2.

Therefore,

∥x∥p∥y∥
p−1
p ≥ −

d∑
i=1

xiyi|yi|p−2.

Now add ∥y∥pp =
∑d

i=1 |yi|p to both sides of the inequality we get

∥x∥p∥y∥
p−1
p + ∥y∥pp ≥

d∑
i=1

|yi|p −
d∑

i=1

xiyi|yi|p−2 =

d∑
i=1

y2i |yi|p−2 −
d∑

i=1

xiyi|yi|p−2

=

d∑
i=1

(
y2i |yi|p−2 − xiyi|yi|p−2

)
=

d∑
i=1

yi|yi|p−2(yi − xi)

= −
d∑

i=1

yi|yi|p−2(xi − yi).

Now divide both sides of this inequality by ∥y∥p−1
p ,

∥x∥p + ∥y∥p ≥ −
d∑

i=1

yi|yi|p−2

∥y∥p−1
p

(xi − yi).

By rearranging the terms we get our desired inequality

−∥y∥p −
d∑

i=1

yi|yi|p−2

∥y∥p−1
p

(xi − yi) ≤ ∥x∥p.

Lemma F.3. There exists an absolutely convex function ϕ : R → R such that the derivative of
f := ϕ2 is not Lipschitz continuous. Namely,

ϕ(x) =


3
2 |x|+

1
2 |x| ≥ 1

x
3
2 + 1 0 ≤ x < 1

(−x) 3
2 + 1 −1 < x < 0

.
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Proof. Firstly, by a simple computation we can show that ϕ′′ ≥ 0 so ϕ is convex. Observe that
|f ′| ≤ 3

2 and x⋆ = 0. Also notice that ϕ is bounded below by 3
2 |x|. Therefore, by Lemma F.16, ϕ

is absolutely convex.

From a brief computation, we can obtain,

f ′(x) =


3
2 (3 |x|+ 1) x

|x| |x| ≥ 1

3(x
3
2 + 1)x

1
2 0 ≤ x < 1

3((−x) 3
2 + 1)(−x) 1

2 −1 < x < 0

.

Now suppose by contradiction that h′ is Lipschitz continuous. Then there exists an L > 0 such that
for all x, y ∈ Rd,

|f ′(x)− f ′(y)|
|x− y|

≤ L.

Specifically, this holds for 0 < x < 1 and y = 0 so we have

|f ′(x)− f ′(y)|
|x− y|

=
|f ′(x)|
|x|

=

∣∣∣3x2 + 3x
1
2

∣∣∣
|x|

=
3x2 + 3x

1
2

x
= 3x+

3√
x
≤ L.

We can find an x small enough such that 3√
x
> L. Therefore, the inequality cannot hold. As a

consequence, f ′ is not Lipschitz continuous.

Lemma F.4. Let δ > 0. Then f, ϕ : R → R defined below are absolutely convex.

f(x) = δ

√
1 +

x2

δ2
, ϕ(x) =

{
1
2x

2 + δ2

2 |x| ≤ δ

δ(|x| − δ
2 ) +

δ2

2 x > δ
,

Note that f is the pseudo-Huber loss function and ϕ is the Huber loss function.

Proof. Both the Huber loss and pseudo-Huber loss functions are well-known examples of convex
loss functions. The minimizer of f and ϕ is x⋆ = 0.

From a simple computation we obtain that |f ′(x)| ≤ 1 for all x ∈ R,

f ′(x) =
x

δ
√

1 + x2

δ2

≤ x

δ x
δ

= 1.

Also, we know that for all x ∈ R,

f(x) = δ

√
1 +

x2

δ2
≥ δ

√
x2

δ2
=

√
x2 = |x| .

Therefore, by Lemma F.16, f is absolutely convex.

By computing the derivative of ϕ, we can show that |ϕ′(x)| ≤ δ for all x ∈ R. Now we show that
ϕ(x) ≥ δ |x|.
When x > δ, we can simply observe that ϕ(x) = δ |x|. Now consider the case where x ≤ δ. We
have that,

(|x| − δ)2 ≥ 0.

Expanding the square we get,
x2 − 2δ |x|+ δ2 ≥ 0.

Rearranging the terms and dividing by 2 we see that,

ϕ(x) =
1

2
x2 +

δ2

2
≥ δ |x| .

Hence, by Lemma F.16, ϕ is absolutely convex.
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Lemma F.5. Let a > 0 and b ≥ 0. Then ϕ : R → R where ϕ(x) =
√
ax2 + b is absolutely convex.

Proof. Notice that x⋆ = 0. Also by a simple computation we know can show that f is convex,

ϕ′′(x) =
ab

(ax2 + b)
3
2

≥ 0.

We can compute an upper bound on the derivative of f ,

ϕ′(x) =
ax√
ax2 + b

≤ ax√
ax2

=
√
a.

Then,
ϕ(x) =

√
ax2 + b ≥

√
ax2 =

√
a
√
x2 =

√
a |x| .

Since ϕ(x) ≥
√
a |x|, by Lemma F.16, f is absolutely convex.

Lemma F.6. The function ϕ : R → R, defined as follows

ϕ(x) =

{
x+ 1 + 1

x+1 x ≥ 0

1− x+ 1
1−x x < 0

is absolutely convex.

Proof. Observe that x⋆ = 0. By a simple computation, we can show that ϕ′′(x) ≥ 0 for all x ∈ R,

ϕ′′(x) =

{
2

(x+1)3 x ≥ 0
2

(1−x)3 x < 0
.

Similarly to the previous examples, we compute an upper bound on ϕ′,

ϕ′(x) =

{
1− 1

(x+1)2 x ≥ 0
1

(1−x)2 − 1 x < 0
.

It is clear that |ϕ′(x)| ≤ 1 for all x ∈ R. It is easy to shoiw ϕ(x) ≥ |x|. For x ≥ 0, we have

ϕ(x) = x+ 1 +
1

x+ 1
≥ x.

For x < 0, we have

ϕ(x) = 1− x+
1

1− x
≥ −x.

Therefore, by Lemma F.16, ϕ is absolutely convex.

F.2 FUNCTIONS WITH ZERO MINIMUM

Absolutely convex functions have some interesting properties when their minimum is 0.
Lemma F.7. If ϕ is absolutely convex, then the following statements are equivalent:

1. ϕ(0) = 0,

2. ϕ(x) = ⟨∇ϕ(x), x⟩,

3. ϕ is homogeneous of degree 1.

Proof. We establish three implications:

(i) ⇒ (ii) Pick any y. If ϕ(0) = 0, then using Equation (36) with x = 0 leads to
|ϕ(y) + ⟨∇ϕ(y),−y⟩| ≤ 0, which implies ϕ(y) = ⟨∇ϕ(y), y⟩.

(ii) ⇒ (iii) We start by substituting ϕ(y) = ⟨∇ϕ(y), y⟩ and ϕ(x) = ⟨∇ϕ(x), x⟩ into
ϕ(x) ≥ ϕ(y) + ⟨∇ϕ(y), x− y⟩ to get,

ϕ(x) = ⟨∇ϕ(x), x⟩ ≥ ⟨∇ϕ(y), y⟩+ ⟨∇ϕ(y), x− y⟩ = ⟨∇ϕ(y), x⟩ .
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This means that,
ϕ(x) = max

g∈Q
⟨g, x⟩ ,

where Q := {∇ϕ(y) : y ∈ Rd}. As a consequence, for any t ≥ 0 and x ∈ Rd we get

ϕ(tx) = max
g∈Q

⟨g, tx⟩ = tmax
g∈Q

⟨g, x⟩ = tϕ(x).

(iii) ⇒ (i) Choose any x ∈ Rd and t = 0. Then ϕ(0) = ϕ(tx) = tϕ(x) = 0ϕ(x) = 0.

Lemma F.8. Let ϕ : Rd → R be absolutely convex. Suppose there exists an x⋆ ∈ Rd such that
ϕ(x⋆) = 0. Then

ϕ(x) = ⟨∇ϕ(x), x− x⋆⟩ .

Proof. From absolute convexity, we have that

0 ≤ |ϕ(x) + ⟨∇ϕ(x), x⋆ − x⟩ | ≤ ϕ(x⋆) = 0.

So
ϕ(x) + ⟨∇ϕ(x), x⋆ − x⟩ = 0.

Simply rearranging we get our result,

ϕ(x) = −⟨∇ϕ(x), x⋆ − x⟩ = ⟨∇ϕ(x), x− x⋆⟩ .

Lemma F.9. Let ϕ : R → R be absolutely convex. Suppose there exists an x⋆ ∈ R such that
ϕ(x⋆) = 0. Also, suppose that ϕ is differentiable everywhere but at x⋆. Then it must be that

ϕ(x) = m |x− x⋆| =
{
−m(x− x⋆) x < x⋆
m(x− x⋆) x > x⋆

(37)

for some m ∈ R≥0.

Proof. We have that f(x) = ϕ(x+ x⋆) is absolutely convex. It is also homogeneous of degree one
since f(0) = 0. Define U1 = {x ∈ R | x > 0} and U2 = {x ∈ R | x < 0}.

By homogeneity, for any t > 0 and x ∈ U1 we have that f(tx) = tf(x). Differentiating both sides
with respect to x we get f ′(tx) = f ′(x). This means that for any x ∈ U1 we have that f ′(x) = m1

for some m1 ∈ R. Since U1 is a connected open set, we have that f(x) = m1x for x ∈ U1.

By similar reasoning, for x ∈ U2, f ′(x) = m2 for some m2 ∈ R. Also then, f(x) = m2x for
x ∈ U2.

Now consider x ∈ U1 and y ∈ U2. By absolute convexity we know that

m1x = f(x) ≥ |f(y) + f ′(y)(x− y)| = |m2y +m2(x− y)| = |m2x| ≥ |m2||x|.

Then m1 ≥ |m2| x
|x| = |m2| which comes from the fact that x ∈ U1 so x > 0 and thus x

|x| = 1.
Similarly,

m2y = f(y) ≥ |f(x) + f ′(x)(y − x)| = |m1x+m1(y − x)| = |m1y| ≥ |m1||y|.

Then |m1| ≤ m2
y
|y| = −m2 because y ∈ U2 so y < 0 and thus y

|y| = −1.

Since 0 ≤ |m1| ≤ −m2 we get m2 ≤ 0. Also because |m2| ≤ m1 it must be that m2 = −m1

where m1 ≥ 0.
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For brevity, we set m = m1 and so we have that

f(x) =

{
−mx x < 0

mx x > 0
.

By definition we have that ϕ(x) = f(x− x⋆). Therefore, we obtain our desired result

ϕ(x) =

{
−m(x− x⋆) x− x⋆ < 0

m(x− x⋆) x− x⋆ > 0
.

Lemma F.10. Suppose that ϕ : Rd → R is absolutely convex and ϕ(0) = 0. Then ϕ is sub-additive,

ϕ(x+ y) ≤ ϕ(x) + ϕ(y).

Proof. By Lemma F.7, we know ϕ is positively homogeneous of degree one. Also because ϕ is
convex we have that for any 0 ≤ α ≤ 1,

ϕ(αx+ (1− α)y) ≤ αϕ(x) + (1− α)ϕ(y).

Selecting α = 1
2 ,

ϕ

(
1

2
x+

1

2
y

)
≤ 1

2
ϕ(x) +

1

2
ϕ(y). (38)

By homogeneity of ϕ,
1

2
ϕ(x+ y) ≤ ϕ

(
1

2
x+

1

2
y

)
.

By combining the previous inequality with inequality (38) and multiplying by 2 we get our result.

Lemma F.11. Suppose that ϕ : Rd → R is absolutely convex and ϕ(0) = 0. Then the epigraph of
ϕ is a convex cone.

Proof. Now we show that epiϕ is a convex cone. Suppose (x, µ1) ∈ epiϕ and (y, µ2) ∈ epiϕ.
Suppose α ≥ 0 and β ≥ 0. Then

ϕ(αx+ βy) ≤ ϕ(αx) + ϕ(βy) = αϕ(x) + βϕ(y) ≤ αµ1 + βµ2.

The first inequality is from sub-additivity and the first equality is from homogeneity, Therefore,
(αx+ βy, αµ1 + βµ2) ∈ epiϕ so epiϕ is a convex cone.

Lemma F.12. Suppose that ϕ : Rd → R is absolutely convex and ϕ(0) = 0. Then ϕ is even, i.e.

ϕ(x) = ϕ(−x), ∀x ∈ Rd. (39)

Proof. By absolute convexity we have that for any x, y ∈ Rd

⟨∇ϕ(x), x⟩ = ϕ(x) ≥ |ϕ(y) + ⟨∇ϕ(y), x− y⟩|
= |ϕ(y) + ⟨∇ϕ(y), x⟩+ ⟨∇ϕ(y),−y⟩|
= |ϕ(y) + ⟨∇ϕ(y), x⟩ − ⟨∇ϕ(y), y⟩|
= |ϕ(y) + ⟨∇ϕ(y), x⟩ − ϕ(y)|
= |⟨∇ϕ(y), x⟩| . (40)

Similarly,
ϕ(y) = ⟨∇ϕ(y), y⟩ ≥ |⟨∇ϕ(x), y⟩| . (41)

Now subtitute y = −x into (40),

ϕ(x) ≥ |⟨∇ϕ(−x), x⟩| = |⟨∇ϕ(−x),−x⟩| = |ϕ(−x)| = ϕ(−x),
where the last equality is because absolutely convex functions are non-negative. Substituting
y = −x into (41),

ϕ(−x) ≥ |⟨∇ϕ(x),−x⟩| = |⟨∇ϕ(x), x⟩| = |ϕ(x)| = ϕ(x).

Therefore, ϕ(x) = ϕ(−x).
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F.3 REAL VALUED FUNCTIONS

Simple absolutely convex functions from the real numbers to the real numbers are an instructive
playground to understand how to finalize the generalized proofs. Below, we report some properties
of such sub-class. In particular, we prove bounded subgradients in Lemma F.15 and a useful result
for validating examples in Lemma F.16.

Lemma F.13. Let f : R → R defined as follows, f(x) = |a+ b(x− x0)| for some a, b, x0 ∈ R
with b ̸= 0. Then for any c > 0. There exists x1, x2 ∈ R with x2 ≥ x1, f(x1) = f(x2) = c,
|x2 − x1| = 2c

|b| and f ′(x2) ≥ 0 and f ′(x1) ≤ 0.

Proof. By simply solving the equation f(x) = c, we get that

x2 =
c− a

b
+ x0;

x1 =
−c− a

b
+ x0.

Thus,

|x2 − x1| =
∣∣∣∣c− a

b
+ x0 −

−c− a

b
− x0

∣∣∣∣ = ∣∣∣∣c− a+ c+ a

b

∣∣∣∣ = ∣∣∣∣2cb
∣∣∣∣ .

Suppose without loss of generality that b > 0. Then f ′(x2) = cb > 0 and f ′(x1) = −cb < 0.

Lemma F.14. Suppose ϕ : R → R is a convex function that is not constant with minimizer x⋆.
Suppose ϕ lower bounded by f(x) = |a+ b(x− x0)| for a, b, x0 ∈ R and b ̸= 0. For any c > ϕ(x⋆)
there exists an x′ such that ϕ(x′) = c and |x′ − x⋆| ≤ 2c

|b| .

Proof. By Lemma F.13, there exists x1, x2 ∈ R such that |x2 − x1| = 2c
|b| and f(x1) = f(x2) = c.

We also know that x2 > x1 and that f ′(x2) ≥ 0 and f ′(x1) ≤ 0. We will show that x1 < x⋆ < x2.
Suppose by contradiction that x⋆ ≥ x2. Since f is a linear function with slope f ′(x2) on the interval
[x2,∞) we get

f(x⋆) = f(x2) + f ′(x2)(x⋆ − x2) ≥ f(x2) = c > ϕ(x⋆),

which is a contradiction because f is supposed to be a lower bound on ϕ. The first inequality follows
from the fact that f ′(x2)(x⋆ − x2) ≥ 0. A similar argument follows if the assumption x⋆ ≤ x1 is
made.

So c = f(x1) ≤ ϕ(x1) and ϕ(x⋆) < c. By the Intermediate Value Theorem, there exists x′ ∈
(x1, x⋆) such that ϕ(x′) = c.

Thus x1 < x′ < x⋆ < x2. Therefore, |x′ − x⋆| ≤ |x2 − x1| = 2c
|b| with ϕ(x′) = c.

Lemma F.15. Suppose ϕ : R → R is absolutely convex and has a minimizer x⋆. Then there exists
an M ∈ R such that |ϕ′(x)| ≤M for all x ∈ R i.e. |ϕ′| is bounded.

Proof. If ϕ is constant then its derivative is bounded so we consider the case where ϕ is not constant.

We will do a proof by contradiction. Let c ∈ R such that c > ϕ(x⋆). Let ϵ = c−ϕ(x⋆)
2 . Note that

|ϕ(x⋆)− c| > ϵ.

By continuity of ϕ at x⋆ there must be a δ > 0 such that if |x− x⋆| ≤ δ then |ϕ(x)− ϕ(x⋆)| ≤ ϵ.

Suppose that |ϕ′| is unbounded. Therefore, there exists a sequence of numbers yn ∈ R such that

lim
n→∞

|ϕ′(yn)| = ∞

For any n, let fn(x) = |ϕ(yn) + ϕ′(yn)(x− yn)|. Since ϕ is absolutely convex, fn must be a lower
bound on ϕ. By Lemma F.14 there exists an xn such that ϕ(xn) = c and |xn − x⋆| ≤ 2c

|ϕ′(yn)| for
any yn.
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Since |ϕ′| is unbounded we can choose a N such that 2c
|ϕ′(yN )| ≤ δ. Thus |xN − x⋆| ≤ δ. Therefore,

|ϕ(x⋆)− ϕ(xN )| = |ϕ(x⋆)− c| ≤ ϵ.

But this contradicts the fact that |ϕ(x⋆)− c| > ϵ.

Lemma F.16. Suppose ϕ : R → R is convex and has a minimizer at x⋆ = 0. Suppose ϕ′ is bounded.
If ϕ can be lower bounded by h(x) = m |x| where |ϕ′(y)| ≤ m for all y ∈ R then ϕ is absolutely
convex.

Proof. Suppose without loss of generality y < x⋆ = 0. Since ϕ is convex we have that ϕ′(y) ≤ 0
by monotoncity of |ϕ′|. Since m is a bound on ϕ′ we get

m ≥ −ϕ′(y) ≥ 0. (42)

Since h is a lower bound on ϕ we also know that .

ϕ(y) ≥ −my ≥ 0. (43)

Now let f(x) = |ϕ(y) + ϕ′(y)(x− y)|. Denote xv as the point where f(xv) = 0. On the interval
(−∞, xv], f is equal to the line tangent to ϕ at point y. So by convexity, f is a lower bound on ϕ on
the interval (−∞, xv]. It remains to show that f lower bounds ϕ on the interval [xv,∞).

First, we show that xv = − ϕ(y)
ϕ′(y) + y ≥ x⋆ = 0. We can take the reciprocal of inequality (42) to

obtain, 1
m ≤ − 1

ϕ′(y) . Multiply this inequality by (43) to get, −y ≤ − ϕ(y)
ϕ′(y) . We can do this because

the terms on both sides of the inequalities are positive. Rearranging we can see that xv ≥ 0.

Suppose x ∈ [xv,∞). On this interval, f is a line with slope −ϕ′(y) passing through the point
(xv, 0). Thus we can rewrite f as f(x) = −ϕ′(y)(x−xv). Since xv ≥ 0 we know that x−xv ≤ x.
Multiply this inequality by m ≥ −ϕ′(y) ≥ 0 to get that −ϕ′(y)(x− xv) ≤ mx. Since h(x) = mx
is a lower bound on ϕ we have that −ϕ′(y)(x− xv) ≤ ϕ(x). Therefore, f is a lower bound on ϕ for
arbitrary y < 0 so we are done.

A similar argument can be made for y ≥ 0, the signs will be flipped at each step.

A direction of potential interest for future developments is how to “absolutely-convexify” a given
function. Below, we prove the propotypical case of functions from R to R. In words, any convex
function lifted high enough is absolutely convex.

Lemma F.17. Suppose f : R → R is a convex function. Then ϕ(x) = f(x) + β is non-negative for
x ∈ [a, b] with α = max{|f ′(a)|, |f ′(b)|} and β = α(b−a)

2 − f(a)+f(b)
2 .

Proof. It is sufficient to show that ϕ(x) ≥ 0 for x ∈ [a, b]:

ϕ(x) = f(x) +
α(b− a)

2
− f(a) + f(b)

2

=
f(x)− f(a) + α(x− a)

2
+
f(x)− f(b)− α(x− b)

2

≥ Df (x, a)

2
+
Df (x, b)

2
≥ 0.

Lemma F.18. Suppose f : R → R is a convex function. Then for any interval [a, b] there exists β,
such that ϕ(x) = f(x) + β is absolutely convex on [a, b].

Proof. As ϕ is convex by convexity of f , it is sufficient to show that for every x, y ∈ [a, b]:

−ϕ(x) ≤ ϕ(y) + ϕ′(y)(x− y).

From Lemma F.17 we have ϕ(x) ≥ 0, so it is sufficient to consider the case when ϕ′(y)(x− y) ≤ 0.
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Having α, β from Lemma F.17.

Case 1: ϕ′(y) ≤ 0 and x ≥ y.

From the convexity of ϕ it follows that:
ϕ(y) + ϕ′(y)(x− y)− (ϕ(a) + ϕ′(a)(x− a)) = Dϕ(y, a) + (ϕ′(y)− ϕ′(a))(x− y)

≥ Dϕ(y, a)

≥ 0.

Hence, −f ′(a) ≤ α by construction, implying:
ϕ(a)− α(x− a) ≤ ϕ(y) + ϕ′(y)(x− y).

It remains to show that:
ϕ(x) + ϕ(a)− α(x− a) = f(x) + f(a) + 2β − α(x− a)

= f(x)− f(b) + α(b− a)− α(x− a)

= f(x)− f(b)− α(x− b)

≥ Df (x, b)

≥ 0.

Case 2: ϕ′(y) ≥ 0 and x ≤ y.

In analogy with the previous case:
ϕ(b) + α(x− b) ≤ ϕ(y) + ϕ′(y)(x− y).

Therefore, it is sufficient to show that:
ϕ(x) + ϕ(b) + α(x− b) = f(x) + f(b) + 2β + α(x− b)

= f(x)− f(a) + α(b− a) + α(x− b)

= f(x)− f(a) + α(x− a)

≥ Df (x, a)

≥ 0.

It is useful to remind the fllowing standard result for sub-gradients. The proof is in the referenced
book.
Lemma F.19 (Lebourg Mean Value Theorem (Clarke, 1990)). Suppose ϕ : R → R is Lipschitz on
any open set containing the line segment [x, y]. Then there exists an a ∈ (x, y) such that

ϕ(x)− ϕ(y) ∈ ⟨∂ϕ(a), x− y⟩ .
Lemma F.20. Suppose ϕ : R → R is absolutely convex. LetM ∈ R be the bound on the subgradient
of ϕ, i.e. |ϕ′(x)| ≤M . Fix a y ∈ R. Then for any x ≥ y we have that

ϕ(y) +M(x− y) ≥ ϕ(x).

Similarly, for any x ≤ y,

ϕ(y)−M(x− y) ≥ ϕ(x).

Proof. We prove the first claim. Suppose x ≥ y.

Since ϕ is convex, it is locally Lipschitz i.e. Lipschitz on [y, x]. By Lebourg’s MVT we know there
exists a c ∈ (y, x) such that ϕ(x) − ϕ(y) = g(x − y) where g ∈ ∂ϕ(c). Note that g ≤ M . So,
g(x− y) ≤M(x− y) because x− y ≥ 0. Therefore,

ϕ(x)− ϕ(y) ≤M(x− y).

Rearranging this expression we obtain ϕ(x) ≤ ϕ(y) +M(x0 − y).

The proof of the second claim follows the same format and uses the fact that g ≥ −M instead.
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Lemma F.21. Suppose ϕ : R → R is absolutely convex. Let M ∈ R be such that |ϕ′| ≤ M . Then
the following limits exist and are equal

lim
x→∞

|ϕ′(x)| = lim
x→−∞

|ϕ′(x)| .

Proof. First, we show that limx→∞ |ϕ′(x)| exists.

Let {xn} be an arbitrary sequence such that xn → ∞. Since ϕ is convex the sequence {|ϕ′(xn)|}
is monotonically increasing. Also, it is bounded above. Therefore, by the Monotone Convergence
Theorem there exists an L1 ∈ R

lim
n→∞

|ϕ′(xn)| = L1 and L1 ≥ |ϕ′| .

Since xn is arbitrary it must be that limx→∞ |ϕ′(x)| = L1. A similar argument can demonstrate that
there exists an L2 ∈ R with |L2| ≥ |ϕ′| and limx→−∞ |ϕ′(x)| = |L2|.
Now we show that L1 = |L2|. We will do this by contradiction. Suppose without loss of generality
that L1 > |L2| and that L2 < 0.

There exists an ϵ > 0 such that L1 − ϵ > |L2|. Now there also exists an N such that for any y > N
we have that |ϕ′(y)− L1| < ϵ. So L1 − ϵ < ϕ′(y).

By absolutely convexity of ϕ, function f(x) = |ϕ(y) + ϕ′(y)(x− y)| is a lower bound on ϕ. Let
xv be the value where f(xv) = 0.

Define l(x) = −ϕ′(y)(x − xv), which is the line passing through the point (xv, 0) with slope
−ϕ′(y). Observe that for x ∈ (−∞, xv], l(x) = f(x) so l is a lower bound on ϕ in that interval.
Define h1(x) = −(L1 − ϵ)(x − xv) to be the line passing through (xv, 0) with slope −(L1 − ϵ).
For x ≤ xv , h1(x) < l(x) because L1 − ϵ < ϕ′(y). Therefore, h1(x) < ϕ(x) for x ∈ (−∞, xv].

Define h2(x) = ϕ(xv) + L2(x − xv). Since L2 < 0, by Lemma F.20, the function h2 is an upper
bound on ϕ for any x < xv .

By calculation we can determine an xi such that h1(xi) = h2(xi) where

xi =
xv(L2 + L1 − ϵ)− ϕ(xv)

L2 + L1 − ϵ
.

Now we show that xi ≤ xv . Note that ϕ is absolutely convex so −ϕ(x0) ≤ 0. By adding (L2 +
L1 − ϵ)xv to both sides of this inequality we obtain

xv(L2 + L1 − ϵ)− ϕ(x0) ≤ xv(L2 + L1 − ϵ).

Dividing by L2 + L1 − ϵ we get

xi =
xv(L2 + L1 − ϵ)− ϕ(xv)

L2 + L1 − ϵ
≤ xv.

Let x < xi. So h1(x) = h1(xi) − (L1 − ϵ)(x − xi) and h2(x) = h1(xi) + L2(x − xi). Observe
that −(L1 − ϵ) < L2 because L2 < 0 and L1 − ϵ > |L2|. Multiplying both sides of this inequality
by x−xi which is less than 0 and then adding h(xi) to both sides again we see that h1(x) > h2(x).

Therefore, for any x < xi < xv , we have that h1(x) > h2(x). This is a contradiction because
on the interval (−∞, xv), h1 is a lower bound so ϕ(x) ≥ h1(x) and h2 is an upper bound so
h2(x) ≥ ϕ(x).

Lemma F.22. Suppose ϕ : R → R is absolutely convex. Suppose it has a minimum point x⋆.
Suppose there exists a y1, y2 ∈ R such that y1 < x⋆ < y2 and for every y ≤ y1, ϕ′(y) = m1 and
for every y′ ≥ y2, ϕ′(y′) = m2. Then m1 = m2.

Proof. Note that since ϕ is convex it has monotonicly increasing derivative. Therefore, m1 < 0
since y < x⋆ and m2 > 0 since y′ > x⋆. Let f(x) = |ϕ(y1) +m1(x− y1)| be the tangent cone to
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y1. Then define line h(x) = |m1| (x+ ϕ(y1)
m1

− y1) which is a line that has the same slope as f and
intersects the vertex of f . Note that h is a lower bound on ϕ by absolute convexity.

Lemma F.23. Suppose ϕ : R → R be absolutely convex and assume ϕ∗ = infx ∈R ϕ(x) < ∞.
Then there exists an x⋆ ∈ R such that ϕ(x⋆) ≤ ϕ(x) for any x ∈ R.

Proof. Suppose x ∈ R is arbitrary. Choose a y ∈ R and by absolute convexity we have that
|ϕ′(y) + ϕ′(y)(x− y)| ≤ ϕ(x). We can rearrange the terms on the left side and take the limit to see
that

lim
|x|→∞

|ϕ(y)− ϕ′(y)y + ϕ′(y)x| = ∞.

since only the last term which is linear depends on x. Therefore, we have that lim|x|→∞ ϕ(x) = ∞.

This demonstrates that ϕ is coercive. Now let xn be a sequence such that ϕ(xn) → f∗. Suppose
that limn→∞ |xn| = ∞. Then by coercivity, we get that lim|xn|→∞ ϕ(xn) = infty which is
a contradiction with the fact that ϕ∗ ≤ ∞. Thus it must be that limn→∞ |xn| = r for some
r ∈ R. Let Br = {x ∈ R | |x| ≤ r} which is compact because it is closed and bounded.
Since xn ∈ Br and every sequence in a compact set has a convergent subsequence, so there exists
an x⋆ ∈ Br s.t. xnk

→ x⋆. By continuity of ϕ (because it is a convex function) we obtain
f∗ = limk→∞ f(xnk

) = f(x⋆).

F.4 MULTIVARIABLE FUNCTIONS

Having analyzed the easy case, we move to general instances of absolutely convex functions. In
particular, we prove that gradients of absolutely convex functions are bounded. The first statement
is a rewriting of Lemma 7.1 in the main text.

Lemma F.24. Suppose ϕ : Rd → R is absolutely convex and has a minimizer x⋆. Then there exists
a M ∈ R such that ∥∇ϕ(x)∥2 ≤M for all x ∈ Rd.

Proof. If ϕ is the constant function then its gradient is bounded so we consider the case where ϕ is
not constant.

We will do a proof by contradiction. Let c > ϕ(x⋆). Let ϵ = c−ϕ(x⋆)
2 . Note that |ϕ(x⋆)− c| > ϵ.

Suppose δ > 0. Observe that since ϕ is convex on Rd it is continuous on Rd and in particular it is
continuous at x⋆. Therefore, there exists a δ > 0 such that if |x⋆ − x| ≤ δ then |ϕ(x⋆)− ϕ(x)| ≤ ϵ.

Suppose that |∇ϕ| is unbounded. So, there exists a sequence of points yn ∈ Rd such that

lim
n→∞

∥∇ϕ(x)∥2 = ∞.

Let fn(x) = |ϕ(yn) + ⟨∇ϕ(yn), x− yn⟩|. Since ϕ is absolutely convex, fn must be a lower bound
on ϕ. We can proceed similarly to the proof of bounded gradients in R (Lemma F.15) by considering
the restriction of f and ϕ to specific lines. This allows us to find a sequence of points xn that lie on
those lines and xn → x⋆.

Define Ln to be the line that passes through x⋆ in the direction of ∇ϕ(yn). Let ϕ
∣∣
Ln

: R → R be
the restriction of ϕ to the line Ln and similarly, fn

∣∣
Ln

: R → R be the restriction of fn to Ln. Note

that the function fn
∣∣
Ln

is of the form |a+ b(x− x0)| where b = ∥∇ϕ(yn)∥2 for some a, x0 ∈ R.
Let x̄∗ ∈ R be the minimizer of ϕ

∣∣
Ln

. Then by Lemma, there exists a point, x̄n ∈ R such that
ϕ
∣∣
Ln

(x̄n) = c and |x̄∗ − x̄n| ≤ 2c
∥∇ϕ(yn)∥2 . Observe that x̄∗ corresponds to x⋆. Also, x̄n can be

mapped to a point xn ∈ Rd which lies on the line Ln and ϕ(xn) = c and |x⋆ − xn| ≤ 2c
∥∇ϕ(yn)∥2 .

This holds for each yn.

Since ∥∇ϕ(yn)∥2 is unbounded we can find an N such that |x⋆ − xN | < δ. Therefore,
|ϕ(x⋆)− ϕ(xn)| = |ϕ(x⋆)− c| ≤ ϵ. However, this contradicts the fact that |ϕ(x⋆)− c| > ϵ.

Lemma F.25. The maximum of a constant and an absolutely convex function is absolutely convex.
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Proof. Let α ∈ R and f be absolutely convex and g := max{f, α}. We split the argument in some
sub-steps.

(Trivial case) Since absolutely convex functions are always positive, it follows that if α ≤ 0 then
g(x) = max{f(x), α} ≡ f(x) and f = g is absolutely convex.

(Second case) Let α > 0. Since f is absolutely convex, it is convex and g is by construction.
Therefore, the positive side of the inequality in absolute convexity needs not to be verified. It
reamains to show that:

wts g(y) ≥ −g(x)− ⟨∇g(y), x− y⟩ ∀x, y ⇐⇒ g(y) + g(x) + ⟨∇g(y), x− y⟩ ≥ 0 ∀x, y.
(44)

For convenience, we will show the last version is positive for different choices of x, y. Recall that f
is always positive so for arbitrary (x, y)there are four regions identified by the strips [0, α); [α,∞)
iover which the values f(x), f(y) can fall.

Additionally, recognize that for z ∈ Rd we have ∇g(z) = ∇max{f(z), a} = 1f(z)>a∇f(z). Let
us treat all the cases in separate ways.4

If f(x) ≤ α and f(y) < α we have the expression 2α ≥ 0 by construction.

If f(x) > α and f(y) < α we have the expression:

f(x) + α > 0; (45)

again, by construction.

If f(x) < α and f(y) > αwe have a+f(y)+⟨∇f(y), x− y⟩ > f(x)+f(y)+⟨∇f(y), x− y⟩ ≥ 0
since we assumed f is absolutely convex.

If f(x) ≥ α and f(y) > α one has:

f(x) + f(y) + ⟨∇f(y), x− y⟩ ≥ 0, (46)

which follows by the assumed strong convexity of f .

remark Let x⋆ = argmin f , for an absolutely convex function f . Observe that one can always use,
for any y ̸= x⋆, x ̸= x⋆:

f(x) ≥ |f(y) + ⟨∇f(y), x⋆ − y⟩ |. (47)

Lemma F.26. Suppose v ∈ Rd. A function ϕ : Rd → R is absolutely convex if and only if the
function f : R → R defined as f(t) = ϕ(x+ tv) is absolutely convex for all x ∈ Rd.

Proof.

(⇒) Suppose f(t) is an absolutely convex function for any x, v ∈ Rd. We already know that ϕ will
be convex so we only need to show that for all y, z ∈ Rd,

−ϕ(x) ≤ ϕ(y) + ⟨∇ϕ(y), z − y⟩ .

Note that f ′(t) = ⟨∇ϕ(x+ tv), v⟩. Select x = y and v = z − y. Since f is absolutely convex, the
following inequality will hold,

−f(1) ≤ f(0) + f ′(0)(1− 0) = f(0) + f ′(0)

= ϕ(y) + ⟨∇ϕ(y), z − y⟩ .

We have our result because f(1) = ϕ(y + v) = ϕ(z)

(⇐) Suppose ϕ is absolutely convex. Let x, v ∈ Rd be arbitrary. We know already that f is convex.
So we just need to show that for any s, t ∈ R we have that

−f(t) ≤ f(s) + f ′(s)(t− s).

4In principle, at z = a there is a singularity, we avoid doing this computation since the non-differentiable
definition of absolute convexity is satisfied for the max function.

51



2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2025

By absolute convexity of ϕ we know that,

−ϕ(x+ tv) ≤ ϕ(x+ sv) + ⟨∇ϕ(x+ sv), x+ tv − (x+ sv)⟩
= ϕ(x+ sv) + ⟨∇ϕ(x+ sv), tv − sv)⟩
= ϕ(x+ sv) + ⟨∇ϕ(x+ sv), v⟩ (t− s)

= f(s) + f ′(s)(t− s).

Since f(t) = ϕ(x+ tv) we have our result.
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G EXTRA EXPERIMENTS

G.1 REGRESSION WITH SQUARED HUBER LOSS

In this experiment we optimize the function

f(x) =
1

n

n∑
i=1

h2δ(aix− bi),

where ai ∈ Rd, bi ∈ R are the data samples associated with a regression problem, and hδ is the
Huber loss function. We run the experiments with C(x) for absolutely convex functions 7.2.

(a) δ = 100 (b) δ = 101 (c) δ = 102

Figure 5: Regression on housing dataset.

(a) δ = 100· (b) δ = 101 (c) δ = 102

Figure 6: Regression on mpg dataset.

Figures 5–6 show that the algorithms using the C(x) matrix perform much better than the Polyak
method. We observe very fast convergence of both LCD3 and LCD2, regardless of δ. Contrary, as δ
increases LCD1 loses in comparison with the other two matrix methods. The most likely reason is
increasing part of the objective, which is quartic, as it requires extra adaptiveness on the smoothness
constant.

G.2 RIDGE REGRESSION

We consider the following objective function:

f(x) =
1

n

n∑
i=1

(aix− bi)
2 + λ∥x∥2

where ai ∈ Rd, bi ∈ R are the data samples associated with a regression problem. By L we
understand the smoothness constant of a linear regression instance, excluding the regularizer.

In Figures 7–8, C(x) is associated with the regularizer, and it becomes a multiple of I. As discussed
in the main text, in this case LCD2 has closed-form solution, which coincides with LCD3. The LCD1
algorithm becomes GD. We can see, similar behavior to logistic regression with L2 regularizer that
is consistent improvement of LCD2 over the Polyak’s method.

Figures 9–10 show the results with C(x) = 2
nA

⊤A, which is a lower bound on the main part of
the objective. In this circumstance, LCD1 becomes the Newton’s method, and converges in one step.
As anticipated in the main text, LCD3 can diverge. Finally, LCD2 performs in a very consistent way,
and converges in exactly 15 steps across all the setups.
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(a) λ = L · 10−3 (b) λ = L
3
· 10−2 (c) λ = L · 10−2

Figure 7: Ridge regression on housing dataset; C(x) = 2λ.

(a) λ = L · 10−3 (b) λ = L
3
· 10−2 (c) λ = L · 10−2

Figure 8: Ridge regression on mpg dataset; C(x) = 2λ.

(a) λ = L · 10−3 (b) λ = L
3
· 10−2 (c) λ = L · 10−2

Figure 9: Ridge regression on housing dataset; C(x) = 2
nA

⊤A.

(a) λ = L · 10−3 (b) λ = L
3
· 10−2 (c) λ = L · 10−2

Figure 10: Ridge regression on mpg dataset; C(x) = 2
nA

⊤A.
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