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ABSTRACT

Aligning large-scale text-to-image diffusion models with nuanced human pref-
erences remains a significant challenge. Direct preference optimization (DPO),
while efficient and effective, often suffers from generalization gap in large-scale
finetuning. We take inspiration from test-time guidance techniques and view pref-
erence alignment as a variant of classifier-free guidance (CFG), where a finetuned
preference model serves as an external control signal. This perspective yields
a simple and effective method that improves alignment with human preferences.
To further improve generalization, we decouple preference learning into two mod-
ules trained on positive and negative samples, whose combination at inference can
yield a more effective alignment signal. We quantitatively and qualitatively vali-
date our approach on Stable Diffusion 1.5 and Stable Diffusion XL using standard
image preference datasets such as Pick-a-Pic v2 and HPDv3.

1 INTRODUCTION

Diffusion models (Ho et al., 2020; Song & Ermonl 2019; [Song et al., 2021) are one of the most
prevalent generative models for high-fidelity text-to-image (T2I) synthesis (Podell et al., 2023} |Sa-
haria et al.,2022). These models are typically trained from Internet-scale datasets which, due to the
tremendous scale, are not carefully curated. A diffusion model pretrained on these datasets therefore
deviate from what humans (in the majority voting sense) truly prefer in aspects such as aesthetic and
instruction following (Kirstain et al., 2023).

The same issue is well studied in the field of large language model (LLM), in which naively pre-
trained LLMs without any post-training steps do not follow instructions and are not able to chat
naturally with human (Ouyang et al., 2022) . Typical approaches to align LLMs with human pref-
erence for LLMs include 1) reinforcement learning from human feedback (RLHF) (Ouyang et al.,
2022), which demands a reward model pretrained on a preference dataset and requires careful hyper-
parameter tuning, and 2) direct preference optimization (DPO) (Rafailov et al.,|2023b)), the simpler
alternative that bypasses reward modeling by essentially treating the alignment problem as a bi-
nary classification problem on positive-negative preference pairs. This simple solution of DPO can
be easily adapted for aligning diffusion models with human preference (Wallace et al., 2024) and
has been widely used in applications other than T2I synthesis (Wang et al.,|2023; [Blattmann et al.,
2023; [Wu et al.| 2023a; [Khachatryan et al., [2023) . Nevertheless, DPO is generally considered less
robust compared to RLHF: it is prone to overfitting, may produce non-smooth predictions on out-
of-distribution text prompts, and even exhibit catastrophic forgetting behaviors (Lin et al., [2024)).
While one may include in either the whole pretraining dataset or just the prompt set to regularize
models, access to these pretraining sets is typically infeasible for large-scale models.

Since direct preference with supervised learning is often prone to overfitting issues, we instead take
inspiration from inference-time techniques for diffusion model adaptation. Specifically, we observe
that classifier free guidance (CFG) (Dhariwal & Nicholl 2021)), the standard approach for sampling
from conditional diffusion models by linearly combining between unconditional and conditional
predictions, can be viewed as tempering the potentially overfitted conditional model with the more
generalizable unconditional prior. Since the posterior distribution obtained through CFG typically
exhibits strong performance, and the alignment objective from the control as inference perspec-
tive (Levine, |2018)) is likewise to obtain a posterior distribution (Rafailov et al.,|2023a)), we are led
to ask: can CFG be adopted to address the diffusion alignment problem?
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Motivated by this question, we view a finetuned diffusion model as the diffusion model conditioned
on a virtual control signal from the preference dataset, while the base model serves as the uncondi-
tional model. From this perspective, sampling from the aligned diffusion model naturally becomes
a CFG-style inference process, which gives rise to our first method, Preference-Guided Diffusion
(PGD). Adopting this CFG perspective further suggests that finetuning should resemble conditional
diffusion training, which does not rely on positive—negative pairs but instead uses the standard diffu-
sion loss. To implement this idea, we finetune two models independently, one that generates positive
samples and another that generates negative samples, and combine them at inference through CFG-
style composition. We refer to this variant as contrastive Preference-Guided Diffusion (cPGD). In
experiments, PGD and cPGD consistently outperform vanilla Diffusion-DPO. Notably, both meth-
ods achieve Pareto improvements, simultaneously yielding higher reward, lower FID, and greater
diversity in the generated samples. Moreover, the approach in principle produces a transferable
plug-and-play module that, once trained on a base diffusion model, can be reused to align others.

In summary, our contributions are

* We propose to alleviate the generalization issue in Diffusion-DPO by treating diffusion model
alignment as a special case of CFG-style inference.

* We introduce Preference-Guided Diffusion (PGD), which aligns the generated distribution with
human preference through CFG-style guidance at inference time.

* We extend this view by considering finetuning as conditional diffusion training and propose con-
trastive PGD (cPGD).

* We empirically demonstrate that both variants achieve Pareto improvements over the Diffusion-
DPO baseline.

2 RELATED WORK

Alignment with human preference. Preference optimization has become central to aligning large
generative models with human expectations. In large language models, reinforcement learning from
human feedback (RLHF) (Ouyang et al., [2022)) is the dominant framework, relying on a reward
model trained from pairwise human preferences (Christiano et al.l 2017} [Stiennon et al., [2020).
While effective, RLHF requires careful hyperparameter tuning in both the reward model and re-
inforcement learning stages. In contrast, direct preference optimization (DPO) (Rafailov et al.,
2023b), its diffusion-specific extension Diffusion-DPO, and several related alternatives (Azizzade-
nesheli et al.| 2023} |Xu et al.,|2024a; Lin et al.| 2024) offer a simpler approach: directly finetuning
the model with a logistic regression objective on preference pairs, thereby eliminating the need for
an explicit reward model. However, DPO methods are often less competitive than RLHF (Ouyang
et al., [2022), a limitation also observed in recent adaptations of preference optimization to text-to-
image diffusion models (Black et al., 2023} |Lee et al., 2023 Black et al., [2024; |Fan et al.| 2023} Xu
et al., [2024b; |Clark et al.,|2024; [Prabhudesai et al.| 2023; Wallace et al., [2024} |L1 et al., [2024} |Yang
et al., 2024} [Zhu et al., [2025). Building on this line of work, we propose a Diffusion-DPO variant
that reformulates preference alignment as inference-time guidance to improve generalization.

Guidance in diffusion models. Controlling diffusion models can be broadly categorized into fine-
tuning approaches and inference-time guidance approaches. Fine-tuning methods adapt model
parameters to inject conditioning signals or domain knowledge. Representative examples include
DreamBooth (Ruiz et al.|[2023)), which personalizes text-to-image models with subject-specific data,
and other adapter- or LoRA-style techniques (Hu et al., 2021} |Gal et al., [2022). While effective,
such methods require additional training and may incur overfitting or catastrophic forgetting when
data is limited. In contrast, inference-time guidance requires no additional training and modifies
the sampling process to incorporate conditioning. Classifier guidance (Dhariwal & Nichol, [2021)
uses the gradient of an external classifier, but can lead to distributional shifts. Classifier-free guid-
ance (CFG) (Ho & Salimans| [2022) avoids this by training with randomly dropped conditions and
linearly combining between unconditional and conditional predictions at inference, and has since
become the de facto standard for controllable text-to-image generation. Numerous extensions build
on this principle, e.g., language-model-based steering (Nichol et al.|[2021)), attention-based semantic
guidance (Chefer et al.l [2023)), or plug-and-play conditioning modules (Liu et al.l 2023)). Our work
draws direct inspiration from inference-time guidance. Instead of conditioning on textual prompts
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or class labels, we extend the CFG principle to preference alignment, treating human preference as
a conditioning signal that can be injected at inference to steer generation toward preferred outputs.

3 PRELIMINARIES

3.1 DIFFUSION MODELS

Diffusion models are a category of generative models that generate samples by sequentially denois-
ing noisy samples. Specifically, a diffusion model defines a noising (forward) process

q(x¢ | xe—1) = N(Varxi—1, (1 — ap)I). (D

where {8}, and oy = 1 — B, ay = Hi:l as are the noise schedule, typically set such that
q(zr|zo) = N(0,T). Sampling from this diffusion model is through the denoising (reverse) process:

1
po(Xe—1|%:) = Mpo(xe, 1), o71), Mo(X¢,t) = o (Xt - \/16%% 69(’%@) ;@)

. . . ~ 1—ay_
with o set to the posterior variance 3; = lf‘;t L5,.

Training a diffusion model amounts to simply minimize the diffusion loss

Lpppm(0) = Et xq,c [w(t)He —eo(Varxo+ V1 —aze, t) Hﬂ 3)

where w(t) is a weighting scalar with one of the common choices being w(t) = 1. Such as objective
is equivalent to matching the model output ey (z, ¢) with the ground-truth score function V log p; ()
and we therefore use V log 7(z, t; @) interchangeably with €y (z, t).

3.2 DIRECT PREFERENCE OPTIMIZATION

Given a preference dataset D = {(I’Sf), 29, ¢)}Y| where z; and x_ are positive and negative
samples (respectively) and c is the text prompt, direct preference optimization (DPO) (Rafailov
et al.,[2023a) aims to perform logistic regression with the relative log-odds:

mo(2+|c)

mo(z_|c
Lppo = — E {logo(ﬁlog Z07H _ Blog M)] @)
(4.2 c)~D Tret (21 ]) Trer(2—c)

where o (-) is the sigmoid function. Such an objective assumes the implicit reward model with the

probabilities 7y and 7 (with normalization constant Z): r(x,c) = [log :ef((mllcc)) + log Z and the

Bradley-Terry (BT) preference model (Bradley & Terry,|1952) given the optimal policy p*:

R
p(z4 = x_|c) —U(Blogm — Blog m) ®)

In diffusion models, x4 and x_ correspond to entire sample trajectories from ¢t = T to ¢t = 0 if
DPO is applied in the most naive way. This is computationally intractable, since evaluating the like-
lihood ratio of whole trajectories requires integrating over all intermediate noise steps. Diffusion-
DPO (Wallace et al., [2024) alleviates this by applying Jensen’s inequality to derive an upper bound
on the trajectory-level DPO loss. Specifically, the joint log-likelihood of a trajectory is decom-
posed into a sum of per-step transition log-likelihoods, leading to a simple transition-wise training
objective:

(=1 | (1) (t=1) | (1)
L=— E [logo(ﬁlog moley 74,0 B log molw_ 170 )}7 (6)

(ad sy c)~D Wref(.’EE:il) | :US:),C) Wref(x(_til) | JJ(_t),C)
t~U[1,T]

where g (x:_1 | x4, ¢) denotes the one-step reverse diffusion transition probability under model g.
With the log-likelihood approximated by diffusion losses, we obtain the final form:
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Base DPO PGD Base pSFT nSFT cPGD

Figure 1: Comparison of base, DPO, and PGD: PGD  Figure 2: Illustration of cPGD. pSFT and nSFT de-
retains base fidelity while leveraging DPO-learned  note inference with the model finetuned on positive
preferences. and negative samples, respectively.

3.3 CONDITIONAL GENERATION AND CLASSIFIER-FREE GUIDANCE

With a conditional diffusion model trained on the dataset {(x;, c;)}Y,, the inference process typ-
ically adopts classifier-free guidance (CFG) (Ho & Salimans| [2022)) that samples instead with the
composed score estimate:

E(xX¢,t,€) = €y +w - (€. — €4), (8)
where €, = €p(x¢,t,9),e. = €g(Xy,t,c) are the unconditional and conditional score estimate
(respectively), w is a positive guidance weight that is usually greater than 1, and & is the null
condition. In practice, ¢, is trained by setting the embedding of the condition input to zero. The
CFG inference process approximately generates samples from the posterier distribution p(z)p™ (c|x)
with p(x) being the prior distribution, or equivalently in log-likelihood, log p(x) + w log p(c|x).

4 METHOD

4.1 PREFERENCE-GUIDED INFERENCE

Let 7.t be a reference policy and mppo be a DPO-tuned policy. By treating the DPO-tuned policy
as 7(z|D) and the reference policy as 7(z|@) as in CFG, we immediately obtain the CFG-style
score function for inference, for which we term preference-guided diffusion (PGD):

Vlog mpgp () = V1og mer(z) + w (V log mppo(z) — Vlog ﬂref(x)) , 9)

where the guidance weight w determines the trade-off between our confidence on the reward and
other metrics such as prior preservation and sample diversity. Since 7.¢ can be understood as some
prior pretrained on unlabeled datasets, once we have trained V log mppo (), we are able to virtually

align any other base model 7/,;(x) by simply replacing m¢(x) with it.

4.2 CONTRASTIVE PGD AS DYNAMICALLY-REWEIGHTED GUIDANCE

The connection between CFG and diffusion model alignment prompts us to think whether finetun-
ing should also be done in a way similar to conditional diffusion model training, which directly
encourage the negative score functions to point towards the data points. However, our preference
dataset contains both positive samples and negative ones. These negative samples act as “repelling”
forces that pushes the negative score function away from them. Inspired by that much of alignment
can be turned into an inference-time manner, we propose to postpone this “repelling” behavior to
inference-time as well. Specifically, we finetune another copy of the base model so that it gener-
ates negative samples. Formally speaking, with D, representing the set of positive samples and
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D_ the set of negative ones, we independently finetune two models (with parameters 6, and 6_,
respectively) with diffusion losses:

2
Lpos(9+) = E 6_6(\/dtm0+\/1_dt7€7t;9+)H (10)
e~N(0,1),t~Uniform(0,1),zo~D4
2
Lneg (0_) = e~ e(Varmo+VI=anet0-)| b
e~N(0,1),t~Uniform(0,1),zo~D_

Intuitively, the difference between two models characterizes the implicit reward model. There-
fore we may write the residual parameterization V 10g Thpewned(2,t) = Vlogm(xz,t;04) —
Viognm(x,t;0_) + Vlog mer(z,t). It follows that the resulting PGD formulation, to which we
refer with contrastive PGD (cPGD), is

V log mpap(x, t) = Vlog me(2, 1) + w (V log(z,t;04) — Vlogm(x, t; 0,)>. (12)

Alternative perspective of cPGD. While it may seem a bit arbitrary to replace the DPO loss on
the preference dataset with two diffusion losses on positive-only and negative-only datasets respec-
tively, cPGD essentially performs dynamic reweighting of DPO loss gradients. For simplicity, let’s
consider the general DPO case (without Diffusion-DPO approximations). If we plug the residual
parametrization of the finetuned model into the DPO loss gradient, we observe (with § = (6,6_)):

Volppo =— E [ﬂa(log m(x;0_) — logm(x; 9+))
(x4 ,2_)~D

. (V9+ logm(x;04) — Vg_logm(x; 0_))] (13)

Suppose that, for each sample pair (x4 ,x_), we dynamically reweight the loss function by
1/ [BU( logm(x;0-) — log 7(x; 9+))] . The resulting dynamically-reweighted loss is

vHLreweigh[ = - E |:V0+ log '/T(l'; 9+) —Vy_ log 71'(1’; 9,)i|
(x4 ,x_)~D
= m_%)_ {V(L log 7 (x; 9,)} - m+LED+ {Vng log 7 (; 9+)} (14)

which is exactly the gradient of the cPGD training objectives once we take into consideration the fact
that log 7 is parameterized by a diffusion model. Wu et al.|(2025) show that such reweighting can be
seen as an interpolation between supervised finetuning gradients and vanilla policy gradients, and
that it can be helpful to alleviate the overfitting issue due to the small scale of finetuning datasets.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Training datasets. We consider consider two datasets: 1) Pick-a-Pic v2 (Kirstain et al., |2023),
which consists of approximately 900,000 image preference pairs derived from 58,000 unique
prompts, and 2) HPDv3 (Ma et al., 2025), which comprises 1.08M text-image pairs and 1.17M
annotated pairwise data. Our main experiments are done on Pick-a-Pic v2, while for ablation, we
create a high-image-quality subset of HPDv3 besides the full dataset of HPDv3.

Test prompts. We consider the following prompt datasets for testing: the test split of Pick-a-Pic
v2 (424 prompts), the HPDv2 test set (Wu et al., 2023b) (400 prompts), and the Parti-Prompts
benchmark (Yu et al.,[2022)) (1,632 prompts).

Baselines. We benchmark our approaches against the following baselines: (i) SFT-Pref, a supervised
fine-tuning baseline using only the preferred images; (ii) Diffusion-DPO (Wallace et al., 2024), an
adaptation of the DPO method to diffusion models; (iii) Diffusion-KTO (Li et al.| [2024), a vari-
ant that incorporates a Kullback—Leibler trade-off to Diffusion-DPO for unlocking the potential of
leveraging readily available per-image binary signals; (iv) MaPO (Hong et al., [2024)), which refines
preference optimization with margin-based pairwise consistency; (v) Diffusion-NPO (Wang et al.|
2025)), which explicitly models negative preferences to strengthen classifier-free guidance. Addi-
tionally, we consider SPO (Liang et al., [2024)), a hybrid method that trains auxiliary reward models
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SDXL DPO MaPO NPO PGD cPGD

Figure 3: Comparison of preference-optimization methods on SDXL. Columns show outputs from the base
model (SDXL), DPO, MaPO, NPO, PGD, and cPGD. PGD and cPGD achieves the highest rewards and is the
most effective in aligning with human preference implied in the Pick-a-Pic v2 dataset.

in an online fashion during DPO finetuning; due to its online nature, we exclude SPO from the direct
comparison between offline DPO variants.

Reward models. We evaluate generated images with these reward models: PickScore (PS)

et al [2023), HPSv2 (Wu et al., [2023b), HPSv3 (Ma et al) 2023), ImageReward (IR) (Xu et al.|
2024b), CLIP Score (Radford et al., [2021)), and Aesthetics Score (Aes) (Schuhmann| [2022).

Metrics. Besides the absolute reward values, we compute win rates for different methods, which is
the percentage of instances where the finetuned model outperforms the base model. Since win rates
are considerably more robust than absolute reward values (Wu et al., [2023b} [Kirstain et al., [2023)
, We use win rate as our primary metric. In addition, we compute FID score and diversity score
to measure the extent of prior preservation and sample diversity, respectively. Sample diversity is
computed by measuring the average pairwise distances between CLIP embeddings

of generated samples (details in Appendix [A-2).

Implementation Details. @ We experiment with two base models: Stable Diffusion v1.5
(SD1.5) (Rombach et all [2022) and Stable Diffusion XL base (SDXL) (Podell et all, 2023). An
effective batch size of 2048 image pairs is used for all experiments. Following common practices,
we set for each model a base learning rate and scale it linearly with the batch size. For SD1.5, we
use AdamW optimizer with a base learning rate of 3e-8; for the larger SDXL model, we employ
Adafactor optimizer with a base learning rate of 5e-9. Following [Wallace et al.| (2024), S is set to
3000 and 5000 for SD1.5 and SDXL, respectively. It is worth noting, however, that our effective
learning rate is smaller than that of Wallace et al| (2024). In their setting, the effective learning
rate is 2.048e-5, whereas ours is only 9.6e-7, an order of magnitude smaller. For PGD, we use the
finetuned model with training 2000 steps and for cPGD, we use models trained with 500 steps.

5.2 RESULTS

General results. As shown in Fig. ] Table[T]and Table[2] we find that our proposed method PGD
and cPGD generally outperform the baselines in achieving higher absolute reward values and win
rates for different test prompt sets and different base models. While our methods generally achieve
lower Aes scores, the behavior is less indicative because our training objective is to align with
the human preference implied by text-image paired datasets, while Aes is an unconditional reward
model that does not take text-image alignment into consideration.

Diversity and prior preservation. We further demonstrate the tradeoffs between reward, FID (mea-
suring prior preservation) and diversity scores in Fig. [8]and Fig.[7] The blue regions are the com-
binations that are strictly dominated by the performance of our methods, the boundary of which is
formed by the performance resulted from different choices of guidance weights.
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Baseline SDXL/SD1.5 PGD KTO NPO
cPGD DPO MaPO SFT-Pref

SDXL

0.370

SD1.5

Pic-a-Pic v2 test Parti-Prompts

Figure 4: Overall comparison on SDXL (top) and SD1.5 (bottom). Radar axes report mean scores (higher is
better): PickScore (PS), HPSv2, HPSv3, Aesthetics (Aes), CLIP, and ImageReward (IR). Polygons closer to
the outer rim indicate better aggregate performance across metrics.

Table 1: Win rates of preference optimization methods against the SDXL model on the Pick-a-Pic v2 test
set and the Parti-Prompts benchmark. Model checkpoints for other methods are provided by their respective
authors. The 1st-best results are bolded and the 2nd-best results are underlined.

Base Model Inference Pick-a-Pic v2 test (424 prompts) Parti-Prompts (1632 prompts)
Strategy | PST HPSv2t HPSv3t Aest CLIPT IRT | PST HPSv21t HPSv31T Aest CLIPT IR?
- 50.0 50.0 50.0 50.0 50.0 50.0 | 50.0 50.0 50.0 50.0 50.0 50.0
SDXL PGD 78.8 79.0 73.6 51.9 63.7 69.3 | 78.7 78.4 78.2 68.8 54.0 69.1
cPGD 80.0 80.2 771 50.9 64.9 69.8 | 75.8 80.3 77.8 57.2 62.0 74.0
NPO 58.7 59.2 69.1 521 375 535 | 55.0 56.4 62.1 55.1 39.0 51.5
- 71.7 77.6 67.9 533 61.6 65.8 | 64.0 70.3 64.0 57.5 58.5 69.7
DPO-SDXL PGD 83.3 85.4 85.6 59.7 62.3 73.6 | 80.8 83.9 81.7 67.6 57.5 76.1
; cPGD 80.9 77.6 84.7 63.9 58.7 649 | 739 79.2 72.8 59.4 64.1 74.4
NPO 76.9 81.8 81.4 53.8 57.8 70.8 | 70.6 78.4 77.5 63.4 56.3 70.8
- 55.9 65.3 61.8 68.2 50.2 68.2 | 52.0 64.4 58.5 724 48.2 65.0
MaPO-SDXL PGD 80.4 81.6 81.6 75.7 514 722 | 789 77.8 79.6 77.8 53.6 72.7
cPGD 774 78.8 72.9 69.1 59.4 724 | 725 81.1 76.9 70.1 58.2 74.4
- 89.4 83.0 96.0 81.8 333 78.8 | 87.8 855 92.2 88.1 31.7 74.9
SPO-SDXL PGD 922 86.1 96.5 82.1 42.5 814 | 914 87.7 93.9 88.4 48.0 71.3
cPGD 92.9 88.4 96.7 78.8 53.8 84.4 | 92.0 90.3 93.9 83.6 50.4 81.3

PGD vs. cPGD. We find that cPGD is generally better on SD1.5 but comparable on SDXL. We
hypothesize that such behavior is due to the distribution shift between the image distributions of the
preference datasets and that of the base model. As the images in the preference datasets we used are
generally better than those from SD1.5, the dynamic reweighting mechanism used in cPGD helps
generalization in this case.

Transfer to other base models. Inspired by the plug-and-play nature of our approach, we experi-
ment with aligning base models that are finetuned with alternative DPO variants on the same pref-
erence datasets using our PGD/cPGD-finetuned modules (e.g., the second mega-row “DPO-SDXL”
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Table 2: Win rates of preference optimization methods against the SD1.5 model on the Pick-a-Pic v2 test set and
the Parti-Prompts benchmark. Model checkpoints for other methods are provided by their respective authors.
The Ist-best results are bolded and the 2nd-best results are underlined.

Base Model Inference Pick-a-Pic v2 test (424 prompts) Parti-Prompts (1632 prompts)
Strategy | PST HPSv21t HPSv31 Aes?t CLIPT IRt | PST HPSv21T HPSv3{ Aest CLIPT IRT
- 50.0 50.0 50.0 50.0 50.0 50.0 | 50.0 50.0 50.0 50.0 50.0 50.0
SD1.5 PGD 78.3 71.2 67.9 62.3 585 63.7 | 68.0 65.0 59.6 58.1 55.0 56.9
c¢PGD 76.9 71.7 71.9 63.2 59.9 722 | 664 76.9 68.9 68.1 58.4 71.0
- 76.4 67.7 66.3 65.1 559 60.6 | 67.3 64.8 64.5 622 53.6 61.0
DPO-SD1.5 PGD 79.2 70.3 66.3 66.3 59.4 632 | 742 67.4 65.0 63.1 55.5 62.9
cPGD 79.0 81.8 75.5 71.7 62.3 762 | 73.8 74.1 69.6 69.0 59.0 67.3
- 72.6 78.1 76.2 68.6 585 75.0 | 66.6 783 71.9 68.8 533 71.3
KTO-SD1.5 PGD 81.6 83.3 80.2 70.3 61.1 774 | 721 80.3 72.8 724 55.1 73.8
c¢PGD 76.7 80.2 75.9 70.5 60.4 743 | 662 77.1 69.5 68.4 55.9 72.2
- 712 63.0 64.9 68.2 38.7 61.1 | 68.6 61.2 64.2 71.9 3717 61.6
SPO-SD1.5 PGD 79.7 70.3 69.6 69.8 443 679 | 742 66.5 66.2 722 46.7 67.0
cPGD 823 81.8 755 71.2 60.6 762 | 748 71.9 71.3 73.9 47.5 72.9
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Figure 5: Qualitative effect of increasing guidance weight w (left — right). Rows show text fidelity, semantic
binding, and aesthetic style. Stronger w improves alignment and legibility up to a mid range, after which
overshooting/rigidity appears.

in Table [T] demonstrate the performance when using DPO-tuned SDXL as the inference-time base
model). We find that there is nearly consistent improvement compared to any original base model,
which is made easy with the CFG-style inference rule in our PGD method.

Ablation on guidance weights. Qualitatively, increasing guidance weights generally yields better
reward following. as shown in Fig.[5] To comprehensively quantify the effect of guidance weights in
different hyperparameter settings, we measuring the performance metrics by varying the guidance
weights for models finetuned on Pick-a-Pic v2 from SDXL with 300, 500,1000 and 2000 steps.
As shown in Fig. [6] we observe that increasing guidance weights from 0 to some moderate value
(around 6) generally leads to better reward values for all tested models, but beyond that the model
performance drops. Models finetuned with less steps exhibit less amount of performance drop,
which is likely due to the regularization effect of early stopping. Furthermore, Fig. [8| and [7] shows
that 1) the increase of guidance weights leads to “less natural” images and 2) if the guidance weight
is beyond certain threshold, increasing the guidance weight leads to more chaotic predictions.

Dataset quality. Since the image distribution in the preference datasets can differ from the image
distribution of the base models, here we investigate how methods are robust to different preference
datasets, especially when the image quality differs a lot. In Table[3] we show the results of finetuning
on the full HPDv3 dataset, in which the variance of image quality is great, and on a high-quality
subset. We find that our methods generally performs better in both cases, but on the high-quality
subset our methods unanimously outperform the baselines. In addition, in the high-quality subset
case, cPGD is unanimously better than PGD. We hypothesize that this is likely due to that cPGD
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Figure 6: Effect of guidance weight w on automatic metrics (SDXL). Left: PickScore; Right: CLIP score.
“Step” denotes the training steps of the guidance module. Curves rise quickly for small w,

Table 3: Impact of preference data variance on alignment performance. “Subset” refers to training on a high-
quality curated subset (low variance), while “Fullset” uses the full HPDv3 dataset (high variance). The 1st-best
results are in bold and the 2nd-best are underlined. All methods are applied to the base SDXL model.

Set | Method | PST HPSv2t HPSv31 Aes? CLIPT IR%

SDXL | 0.2226 0.2777 7.0795 6.0521 0.3631  0.6583
DPO 0.2253 0.2828 8.0327 6.1124 03619  0.8231

Subset | pop | 00257 02854 94588 62029 03637  0.8741
cPGD | 02276 02889  10.0454 62670 03646 1.0312
SDXL | 02226 02777 70795 60521 03631 0.6583
Fule | PPO | 02266 02847 82610 61658 03659 09179

PGD 0.2285 0.2871 10.0649  6.5050 0.3644  1.0625
cPGD 0.2273 0.2902 9.2426 6.1791  0.3734  1.1433

imposes weaker assumptions on preference pairs as 7 and 6~ are trained in an independent way.
Despite that the high-quality subset yields more consistent observations, using the full dataset gen-
erally leads to better reward values, in part simply due to the increased number of data points.

6 DISCUSSIONS

PGD as kernel method. As shown in our experiments, PGD inference with slightly finetuned
models consistently outperforms DPO methods. This behavior can be understood through the theory
of neural tangent kernels (NTK) (Jacot et all [2018). In the lazy training regime, i.e. when the
finetuned model remains close to the reference model, we can write €ef + W(Efinetuncd — Eref) =~
€ret + WK epax Where Kier is known as the NTK matrix of €.r and « is the vector of regression
coefficients, which shows that PGD is essentially kernel regression in the NTK feature space of the
reference model. Because this feature space is an intrinsic and stable property of €.¢, PGD inference
leverages reliable features. In contrast, extended finetuning with large learning rates can push the
model out of the lazy regime, causing the NTK approximation to break down and increasing the risk
of overfitting on small datasets.

Inference cost. While the inference time is doubled with PGD due to the need to compute outputs
with the reference model, we note that it is possible to perform distillation so that one single model
learns to predict the PGD outputs, as demonstrated by many other works on diffusion model distil-
lation (Salimans & Hol 2022; |Song et al.l [2023; Meng et al., [2023)). To verify this, we present our
attempts in distilling a single model out of PGD in Appendix

7 CONCLUSION

We introduced preference-guided diffusion (PGD), a simple yet effective method that better aligns
diffusion models with human preference through the lens of classifier-free guidance: the finetuned
model is the guidance signal of the dataset. By further take inspiration from the training of condi-
tional diffusion models, we propose a variant called contrastive PGD (cPGD) which parameterize
the finetuned module with two models independently trained on positive and negative samples, re-
spectively. We empirically verify the effectiveness of the proposed methods on different datasets
and base models.
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ETHICS STATEMENT

This work investigates preference-guided generation for text-to-image diffusion models. We did
not collect new human subjects data; all experiments use publicly available datasets and prompt
suites (e.g., Pick-a-Pic v2, HPDv2/3, Parti-Prompts) under their respective licenses and intended-
use policies. No personally identifiable information (PII) was processed to our knowledge. Where
dataset curators provide safety filters or content flags, we follow them and do not intentionally
prompt for unsafe content.

Preference signals and reward models may reflect societal biases (e.g., aesthetics tied to culture,
gender, or geography). Such biases can be amplified by guidance at inference time. We there-
fore (i) report multiple metrics, including diversity and base-model fidelity, (ii) encourage down-
stream deployers to pair our method with content filters, auditing on representative user groups,
and opt-out mechanisms, and (iii) commit to releasing prompts, seeds, and code sufficient for re-
producibility while avoiding lists or examples that facilitate misuse (e.g., targeted impersonation or
non-consensual content).

Finally, we oppose harmful uses of generative models (e.g., harassment, disinformation, infringe-
ment) and will abide by takedown requests from dataset owners within their policies.
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