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Abstract001

Traditional supervised fine-tuning (SFT) strate-002
gies for sequence-to-sequence tasks often train003
models to directly generate the target output.004
Recent work has shown that guiding models005
with intermediate steps—such as keywords,006
outlines, or reasoning chains—can significantly007
improve performance, coherence, and inter-008
pretability. However, these methods often de-009
pend on predefined intermediate formats and010
annotated data, limiting their scalability and011
generalizability. In this work, we introduce a012
task-agnostic framework that enables models013
to generate intermediate “warmup” sequences.014
These warmup sequences, serving as an initial015
state for subsequent generation, are optimized016
to enhance the probability of generating the tar-017
get sequence without relying on external super-018
vision or human-designed structures. Drawing019
inspiration from reinforcement learning princi-020
ples, our method iteratively refines these inter-021
mediate steps to maximize their contribution to022
the final output, similar to reward-driven opti-023
mization in reinforcement learning with human024
feedback. Experimental results across tasks025
such as translation, summarization, and multi-026
choice question answering for logical reasoning027
show that our approach outperforms traditional028
SFT methods, and offers a scalable and flexible029
solution for sequence-to-sequence tasks1.030

1 Introduction031

Recent advancements in large-scale pre-trained lan-032

guage models (LLMs), such as T5 (Raffel et al.,033

2019), GPT (Brown et al., 2020), and LLaMA034

(Touvron et al., 2023), have significantly improved035

performance on both predictive tasks (e.g., multi-036

choice question answering) and generative tasks037

(e.g., machine translation and summarization).038

These models have demonstrated exceptional ca-039

pabilities in generating coherent and contextually040

relevant outputs by modelling dependencies across041

1We will release our code after the paper is published.

Figure 1: High-level workflow of Warmup Genera-
tions. The input is first used to generate an intermediate
“warmup” sequence, which acts as a guiding context to
improve the generation of the final target output for
sequence-to-sequence tasks.

long sequences of data. Despite their successes, 042

traditional supervised fine-tuning (SFT) methods 043

for such models often focus on directly generating 044

the target output without leveraging the benefits of 045

intermediate steps or initial guidance (Sutskever 046

et al., 2014). 047

Research has shown that guiding models with 048

intermediate steps, such as outlines, keywords, or 049

reasoning chains, can significantly improve per- 050

formance, coherence, and interpretability across 051

tasks (Wang et al., 2022; Creswell and Shanahan, 052

2022). For instance, hierarchical frameworks for 053

tasks such as story generation (Fan et al., 2019) and 054

summarization (Amplayo et al., 2020) often first 055

generate high-level structures, such as outlines or 056

reasoning steps, before producing detailed outputs. 057

These approaches highlight the utility of interme- 058

diate guidance in organizing complex tasks. Sim- 059

ilarly, chain-of-thought (COT) (Wei et al., 2023) 060

reasoning for predictive tasks extends this concept 061

by demonstrating the value of logical steps by de- 062

composing complex predictive tasks into explicit 063

logical steps, demonstrating how structured reason- 064

ing between inputs and outputs can improve model 065

performance. However, these approaches heavily 066

rely on predefined intermediate formats and anno- 067

tated data, which are costly to create due to human 068

annotation efforts and often task-specific, thus lim- 069

iting their scalability and adaptability to broader 070
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applications.071

In this work, we address these limitations by072

introducing a framework that enables models to073

generate an initial state, which we refer to as074

“warmup sequence.” These warmup sequences act075

as preparatory steps, priming the model for the076

main generation task. Drawing inspiration from re-077

inforcement learning (RL) principles, our method078

treats these steps as actions within a reward-driven079

framework, optimizing them to maximize their util-080

ity in improving the quality and coherence of the fi-081

nal target output. Importantly, this process operates082

without relying on predefined formats or external083

annotations, making it adaptable to a wide range084

of tasks and model architectures. This approach085

eliminates dependence on annotated data for inter-086

mediate steps, achieves generalization across tasks,087

and unifies the optimization of intermediate and fi-088

nal outputs, leading to improved final performance089

of the models.090

Through experiments, we demonstrate that our091

method improves output quality across translation,092

summarization, and multi-choice question answer-093

ing for logical reasoning, and is compatible with094

various model architectures, including encoder-095

decoder models like T5 (Raffel et al., 2020) and096

mT5 (Xue et al., 2021), as well as decoder-only097

models like Llama (Touvron et al., 2023). In addi-098

tion, our method is simple to implement, requiring099

only about 10 additional lines of codes, without100

modifications to existing model architectures or re-101

liance on task-specific annotations, and is grounded102

in a solid theoretical framework. These contribu-103

tions establish an approach where models can au-104

tonomously discover and leverage a helpful initial105

state that increases the probability of the target se-106

quence across diverse tasks to enhance the quality107

of the final generation.108

2 Related work109

Guiding generative models with intermediate steps110

has been widely explored to enhance coherence,111

interpretability, and task performance. Existing112

approaches can be categorized into explicit human-113

readable intermediate steps, and structured weakly114

supervised intermediate steps.115

Human readable intermediate steps Plan-and-116

Write (Yao et al., 2019) introduces storyline-based117

planning, where a model first generates a structured118

sequence of key events before expanding them into119

a full story, improving coherence and creativity.120

Amplayo et al. (2020) employ content planning, 121

explicitly modelling aspect and sentiment distribu- 122

tions to guide summary generation, thereby enhanc- 123

ing readability and informativeness. 124

Similarly, Wolfson et al. (2022) propose 125

Question Decomposition Meaning Representations 126

(QDMR), which break down complex questions 127

into sequences of reasoning steps. These decom- 128

positions serve as an explicit intermediate rep- 129

resentation, improving interpretability and guid- 130

ing Text-to-SQL parsing by systematically map- 131

ping natural language queries to SQL. Baziotis 132

et al. (2019) introduce a sequence-to-sequence- 133

to-sequence model (SEQ³), where the intermediate 134

step is a compressed version of the input sentence, 135

explicitly represented in natural language. 136

Structured intermediate steps Some models in- 137

troduce structured but weakly supervised interme- 138

diate steps, where the intermediate representations 139

are partially interpretable but not explicitly labelled 140

during training. Cheng et al. (2017) generate 141

predicate-argument structures, which serve as an in- 142

termediate step in semantic parsing. Unlike explicit 143

intermediate representations, these structures are 144

learned through optimization-based search rather 145

than direct supervision. Similarly, Jambor and 146

Bahdanau (2022) propose Label Aligned Graphs 147

(LAGr), where models predict node and edge la- 148

bels to construct structured meaning representa- 149

tions aligned with input text, improving systematic 150

generalization in semantic parsing. These repre- 151

sentations enhance compositional generalization 152

but still depend on predefined structural mappings. 153

Herzig et al. (2021) introduce intermediate repre- 154

sentations that transform meaning representations 155

(e.g., SPARQL or SQL queries) into structured 156

forms that improve compositional generalization 157

while maintaining reversibility. While these meth- 158

ods balance interpretability and generalization, they 159

still rely on task-specific constraints rather than 160

fully flexible intermediate representations. 161

Reinforcement learning in NLP RL has also 162

been applied in NLP to optimize model generation 163

beyond traditional supervised learning for text sum- 164

marization (Paulus et al., 2018), dialogue genera- 165

tion (Li et al., 2016) and machine translation (Wu 166

et al., 2018). More recently, Reinforcement Learn- 167

ing from Human Feedback (RLHF) (Christiano 168

et al., 2017) has been instrumental in aligning large- 169

scale language models with human preferences, 170

demonstrating the effectiveness of RL-based fine- 171

2



Figure 2: Comparison of the traditional supervised fine-tuning methods (left) and our proposed method
(right). The traditional method directly optimizes the mapping from input to output using annotated data, while our
method dynamically generates and optimizes warmup sequences to guide the final output.

tuning. While RL provides a strong optimization172

framework, it does not inherently generate struc-173

tured intermediate representations, instead refining174

model behaviour through reward-based learning.175

In this paper, we learn intermediate steps freely,176

without predefined formats, constraints, search pro-177

cedures, external supervision, annotated datasets178

or task-specific designs. Inspired by RL principles,179

our method integrates intermediate step/initial state180

generation and final output optimization into a uni-181

fied framework. Our approach generalizes across182

tasks such as translation, summarization, and multi-183

choice question answering logical reasoning, and184

architectures, providing a flexible, scalable, and185

theoretically grounded solution for improving the186

quality of generation.187

3 Formulation and Derivation188

We reformulate the process of text generation by189

assuming that given a specific input x and the190

target text ytarget, there exists an intermediate se-191

quence, or the initial state cinit preceding ytarget,192

where length(cinit) ≥ 0. To be more specific,193

cinit = {c1, c2, . . . , ck} is a sequence of tokens,194

where k ≥ 0. The intermediate sequence cinit195

serves as a latent variable that conditions the gen-196

eration of ytarget. When k = 0, cinit is an empty197

sequence, reducing the framework to the traditional198

sequence-to-sequence paradigm:199

P (ytarget|x) =
∑
cinit

P (cinit, ytarget|x)200

Using the chain rule, this can be decomposed as:201

202
P (ytarget|x) =

∑
cinit

P (ytarget|cinit, x)P (cinit|x)203

Which can be rewritten in the form:204

P (ytarget|x) = Ecinit∼P (cinit|x)[P (ytarget|cinit, x)]205

Our objective is to maximize the probability of206

the target sequence ytarget given the input x. Tradi-207

tionally, the loss for maximizing P (ytarget|x) is:208

Lytarget = − log(P (ytarget|x)) 209

Which is equivalent to: 210

Lytarget = − log(Ecinit∼P (cinit|x)[P (ytarget|cinit, x)]) 211

where cinit represents any possible initial state con- 212

ditioning ytarget. This expectation implies maximiz- 213

ing P (ytarget) across all initial states, weighted by 214

their probability P (cinit|x). 215

Reward-Based Initial State Optimization 216

Since we lack labels for cinit, we train the model 217

to generate cinit using reward-based optimization. 218

A good initial state cinit increases the probability 219

of ytarget, while a poor cinit reduces it. The reward 220

R(cinit) quantifies the quality of cinit in terms of its 221

contribution to generating ytarget given x: 222

R(cinit) = P (ytarget|cinit, x) 223

Under a RL framework, we aim to maximize: 224

Ecinit∼P (cinit|x)[R(cinit)] 225

which is equivalent to: 226

Ecinit∼P (cinit|x)[P (ytarget|cinit, x)] 227

The loss for training cinit generation is defined 228

as the negative log of the expected reward: 229

Lcinit = − log
(
Ecinit∼P (cinit|x)[R(cinit)]

)
230

= − log
(
Ecinit∼P (cinit|x)[P (ytarget|cinit, x)]

)
231

As we can observe, this formulation aligns the 232

optimization of ytarget and cinit under the same loss 233

function. 234
Lcinit = Lytarget 235

Directly minimizing Lcinit or Lytarget is computa- 236

tionally infeasible due to numerical underflow for 237

long sequences. Instead, we minimize the expected 238

cross-entropy loss based on Jensen’s inequality: 239
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Algorithm 1: Warmup Generations
Input: Training Data, Maximum Epochs E,

Number of Samples n, Model
Parameters θ

Output: Trained θ
1 Initialize:
2 Model θ with pretrained weights;

3 for epoch t = 1 to E do
4 for each input x in Training Data do
5 Initialize total loss Ltotal ← 0;
6 for i = 1 to n do
7 Sample c

(i)
init ∼ P (cinit|x; θ) ;

8 Compute loss L(i) for y(i)target

conditioned on c
(i)
init and x;

9 Ltotal ← Ltotal + L(i);
10 Lavg ← Ltotal/n;
11 Update θ using gradient descent;

12 return Trained θ

− log
(
Ecinit∼P (cinit|x)[P (ytarget|cinit, x)]

)
240

≤ Ecinit∼P (cinit|x)[− log(P (ytarget|cinit, x))]241

Minimizing the expected cross-entropy242

loss indirectly minimizes an upper bound243

on − log(P (ytarget|x)), bringing us closer to244

maximizing P (ytarget|x).245

To approximate the expected value, we use246

Monte Carlo sampling with n samples of cinit:247

Lfinal = Ecinit∼P (cinit|x)[− log(P (ytarget|cinit, x))]248

≈ 1

n

n∑
i=1

− log(P (ytarget|cinit,i, x))249

Thus, minimizing the expected cross-entropy250

loss over sampled contexts is an effective approach251

to optimize text generation tasks.252

4 Warmup Generations Approach253

A general overview of our method is illustrated in254

Figure 2. Unlike traditional SFT methods, where255

the loss is computed solely based on the input,256

our approach introduces an intermediate genera-257

tion step. After receiving the input, the model first258

generates n warmup sequences. The final loss is259

then computed as the average of n individual losses,260

each conditioned on both the input and one of the 261

generated warmup sequences. The pseudo-code 262

outlining the implementation of our method is pro- 263

vided in algorithm 1. 264

4.1 Implementation for Encoder-Decoder 265

Models 266

Encoder-decoder structured models have a clear 267

separation between input and output. For this type 268

of model, the input is processed through the en- 269

coder, and then n cinit are generated using beam 270

search with sampling. Each generated cinit is fol- 271

lowed by a separator and fed into the decoder. Sub- 272

sequently, the cross-entropy loss of ytarget is calcu- 273

lated n times, conditioned on the input and each of 274

the n generated cinit. Finally, the average of these 275

n losses is taken as the final loss. 276

The inference process follows the same logic 277

shown in Figure Figure 2, given an input sequence, 278

the model first generates a warmup sequence. This 279

sequence is then concatenated with a separator and 280

fed back into the beginning of the decoder. The 281

model then generates the target sequence condi- 282

tioning on both the original input and the generated 283

warmup sequence. The final output consists of the 284

tokens generated after the concatenated separator. 285

4.2 Implementation for Decoder-Only Models 286

Similar to encoder-decoder models, the input is 287

first fed into the model, and n cinit are sampled 288

using beam search. The input is then concatenated 289

with n cinit sequences, followed by a separator, 290

and fed back into the model. The final loss is the 291

average cross-entropy loss of ytarget conditioned 292

on the n cinit sequences and the input. 293

During inference, similar to encoder-decoder 294

models, the warmup sequence is first generated 295

and then appended to the input sequence, followed 296

by a separator. The combined sequence is then fed 297

back into the model to generate the target sequence. 298

The final output consists of the tokens produced 299

after the concatenated separator. 300

4.3 Rationale Behind Using a Separator 301

Between cinit and ytarget 302

The inclusion of separators helps the model to dis- 303

tinguish the boundary between cinit and ytarget, 304

preventing ytarget from being treated as a contin- 305

uation of cinit. This enhances both the stability 306

and efficiency of training. Since the separators 307

are deterministically appended to the end of each 308

cinit, the probability distributions of cinit and cinit 309
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Model Warmup Macro F1 Accuracy

T5-base
✓ 50.00 50.06
× 49.16 49.19

T5-large
✓ 55.50 55.62
× 54.46 54.54

Llama-3.2-1B
✓ 32.63 33.55
× 30.12 31.70

Table 1: Performance of each model on LogiQA2 for
Macro F1 and Accuracy.

followed by the separator remain the same. Addi-310

tionally, since the model is rewarded based on the311

generation of cinit, the inclusion of separators does312

not disrupt this training process.313

5 Experiments314

In this section, we present the tasks and correspond-315

ing datasets used, the models selected for the ex-316

periments and the results obtained.317

5.1 Tasks and Datasets318

We evaluated our approach on three datasets span-319

ning three tasks: FLORES (Team et al., 2022) for320

testing, WMT for training for the translation task;321

LogiQA2 (Liu et al., 2023) for logical reasoning322

multi-choice QA; and XSum (Narayan et al., 2018)323

for summarization; Specifically, we used WMT19324

datasets (Barrault et al., 2019) for the fine-tuning325

of de-en (en-de), ru-en (en-ru), and zh-en (en-zh)326

and the fr-en (en-fr) data from the WMT14 dataset327

(Bojar et al., 2014).328

5.2 Models329

We used T5-base (223M) and T5-large (738M) for330

summarization, T5-base, T5-large, and Llama-3.2-331

1B (1.24B) for multiple-choice logical reasoning,332

and mT5-base (582M) and mT5-large (1.23B) for333

translation. These models, covering both encoder-334

decoder and decoder-only architectures, serve as335

well-established benchmarks in their respective cat-336

egories and are widely recognized for their effec-337

tiveness.338

5.3 Metrics339

We used the BLEU score (Papineni et al., 2002),340

COMET score 2 (Rei et al., 2020), and ChrF++341

score (Popović, 2015) for translation. For logical342

reasoning multiple-choice, we used macro F1 and343

accuracy, and for summarization, we employed344

2The implementation of COMET was from huggingface.

ROUGE score (1, 2, L) (Lin, 2004) and BERTScore 345
3 (Zhang* et al., 2020). 346

5.4 Experimental Settings 347

For fine-tuning all tasks, we used a learning rate 348

of 2e-5, with the warmup sequence’s maximum 349

sampled length capped at 8 tokens. Models were 350

trained for 10 epochs. Due to computational con- 351

straints, we randomly selected 50,000 samples 352

from the training set for fine-tuning in transla- 353

tion and summarization tasks. During fine-tuning, 354

warmup sequences were generated using a beam 355

size of 4, with 4 warmup sequences sampled per 356

training sample for each loss calculation. 357

For each task, we selected the checkpoint that 358

achieved the highest metric score on the validation 359

set and reported its performance on the test set. 360

Specifically, for translation, checkpoints were se- 361

lected based on the COMET score; for summariza- 362

tion, based on BERTScore; and for logical reason- 363

ing multiple-choice, based on the macro F1 score. 364

For LogiQA2, each model was fine-tuned 3 times 365

with different random seeds, and we report the av- 366

erage performance of the selected checkpoints. 367

5.5 Results and Discussions 368

We put our experiment results in Table 1, 2, and 3. 369

Warmup generations consistently enhance per- 370

formance across tasks Across all three tasks, 371

models utilizing warmup generations outperform 372

those employing traditional SFT methods. The 373

most significant gains are observed in transla- 374

tion tasks, where mT5-base achieves an average 375

improvement of 1.57 BLEU, 1.32 COMET, and 376

1.60 ChrF++ scores across 8 language pairs. For 377

multiple-choice logical reasoning, the T5-base 378

model trained with warmup generations achieves 379

0.84 higher macro F1 and 0.87 higher accuracy 380

compared to models using traditional SFT. A simi- 381

lar trend is observed in summarization, where the 382

T5-base model with warmup generations yields 383

gains of 0.45 ROUGE-1, 0.32 R2, 0.36 RL, and 0.1 384

BERTScore. 385

Performance gains are robust to increases in 386

model size When scaling the models from base 387

to large, we observe similar or even greater perfor- 388

mance gains. In translation, mT5-large exhibits a 389

greater average improvement than mT5-base, with 390

a higher BLEU gain of 1.69, a COMET increase 391

3The implementation of BERTScore was from hugging-
face, with the model type set to “roberta-large”.
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Model Warmup Metric de-en ru-en zh-en fr-en en-de en-ru en-zh en-fr Avg

mt5-base

✓
BLEU

29.64 20.78 13.31 30.64 20.43 11.72 22.64 27.95 22.14
× 27.89 19.41 12.66 28.73 18.10 10.64 20.95 26.14 20.57
✓

COMET
83.12 78.19 77.05 82.99 75.11 69.64 75.89 76.89 77.36

× 82.21 77.60 75.50 81.95 72.88 68.13 74.45 75.60 76.04
✓

ChrF++
55.15 46.48 39.48 55.64 47.78 32.09 25.05 52.66 44.29

× 53.63 45.57 38.01 53.84 45.43 30.71 23.44 50.87 42.69

mt5-large

✓
BLEU

34.71 25.76 18.66 35.63 26.84 16.30 27.89 36.29 27.76
× 34.12 24.93 17.76 34.84 24.91 14.29 27.29 30.39 26.07
✓

COMET
86.74 82.51 82.54 86.37 82.67 77.43 82.19 83.50 82.99

× 86.28 82.30 81.83 86.12 81.47 74.43 82.18 80.91 81.94
✓

ChrF++
59.65 51.15 45.45 59.39 53.19 38.34 29.72 59.28 49.52

× 58.75 50.80 44.21 58.87 51.44 34.47 29.17 54.33 47.75

Table 2: Performance on translation tasks with the comparison of the BLEU score, COMET score and ChrF++
score across different language pairs. For example, “de-en” denotes the source language to be German, and the
target language to be English.

Rouge BERT
Model Warmup R1 R2 RL Score

T5-base
✓ 37.63 15.51 30.32 90.50
× 37.18 15.19 29.96 90.40

T5-large
✓ 40.67 18.23 33.21 91.11
× 40.21 17.84 32.75 91.05

Table 3: Performance on summarization tasks for Rouge
(R1, R2 and RL) and BERTScore.

of 1.05 (slightly lower but still comparable), and392

a greater ChrF++ gain of 1.77. For logical reason-393

ing, T5-large benefits more from warmup genera-394

tions than T5-base, achieving performance gains395

of 1.04 in Macro F1 and 1.08 in Accuracy. Simi-396

larly, in summarization, T5-large outperforms its397

counterpart without warmup generations, with im-398

provements of 0.46, 0.39, and 0.46 in ROUGE-1,399

ROUGE-2, and ROUGE-L scores, respectively.400

Performance gain extends to decoder-only archi-401

tecture The decoder-only model, Llama-3.2-1B,402

gains from warmup generations in multiple-choice403

logical reasoning, achieving performance improve-404

ments of 2.51 in Macro F1 and 1.85 in Accuracy.405

Warmup generations improve lexical alignment406

more than semantic richness in summariza-407

tion For summarization, using warmup genera-408

tions achieves BERTScore increases by 0.06–0.1409

points on a scale of 100, indicating that while410

warmup sequences enhance word selection and411

fluency, they do not significantly impact seman-412

tic richness. This suggests that, for summarization,413

warmup sequences help the model better mimic414

the word choices made in the reference summaries,415

leading to higher word-level alignment (ROUGE 416

scores). However, they do not push the model to 417

generate additional semantic content beyond what 418

it would traditionally learn to extract through stan- 419

dard training, which explains the smaller improve- 420

ment in BERTScore. 421

Overall, warmup sequences consistently im- 422

prove performance across tasks, models, and archi- 423

tectures, but their effectiveness is task-dependent. 424

For encoder-decoder models, logical reasoning 425

benefits more in larger models, while translation 426

shows variable gains depending on the language 427

pair. Summarization, in contrast, benefits uni- 428

formly across scales. While the decoder-only 429

model, LLaMA-3.2-1B can leverage warmup se- 430

quences effectively, its relative performance re- 431

mains lower than encoder-decoder models like T5. 432

5.6 Ablation Studies 433

5.6.1 Number of Samples 434

To assess the impact of the number of sampled 435

warmup sequences during training, we analyze 436

both training loss trends and test set performance 437

across different sample numbers. 438

As shown in Figure 3, increasing the number of 439

sampled warmup sequences generally accelerates 440

convergence and reduces final training loss. How- 441

ever, the differences between 4 and 6 sequences 442

for LogiQA2, and 4, 6, and 8 sequences for de-en 443

translation are relatively small, suggesting that be- 444

yond a certain threshold, additional samples do not 445

significantly reduce training loss further. 446

The results for LogiQA2 in Table 6 indicate that 447

increasing the number of samples does not lead 448

to strictly monotonic improvements. The default 449
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Lang Pair Warmup Sequence Content

Direct Core Phrases

de-en “pyramid is the only one
of”

T: The Cheops pyramid is the only one of the seven world wonders ...

G: The Great Pyramid at Giza is the only one of the seven wonders ...

fr-en “a British traveller in”
T: Similarly, a British traveller in Spain could confuse ...

G: Similarly, a British traveller in Spain may mistake ...

zh-en “a search on the Internet
for”

T: Search on the Internet for a response to hostile environment courses ...

G: A search of the Internet for ‘Hostile environment course’ ...

ru-en “because there was no na-
tional”

T: ... and because there was no national executive or judicial power, ...

G: ... and, because there was no national executive or judiciary, ...

Similar Phrases

de-en “female travelers are rec-
ommended”

T: Women: It is recommended that all women travelling claim to be married, ...

G: Women: It is recommended that any women travellers say that they are ...

fr-en “Please contact us di-
rectly”

T: In all cases, you must reserve by telephone directly from the aircompany.

G: In all cases, you must book by phone directly with the airline.

zh-en “shows a changing temper-
ature”

T: The ultraviolet image shows that the changes in the night temperature ...

G: Infrared images show that the temperature variations from night and day ...

ru-en “According to the
Japanese nuclear”

T: According to the nuclear authority of Japan, radioactive cezai and ...

G: According to Japan’s nuclear agency, radioactive caesium and iodine ...

Table 4: Examples of Direct Core Phrases and Similar Phrases for different language pairs. “T” indicates translations
that are model-generate, and “G” indicates the golden label.

Figure 3: Models’ training loss after each epoch of fine-tuning. The left figure represents T5-base on the
LogiQA2 dataset, while the right graph represents mT5-base on the WMT19 dataset for the de-en language pair.

setting of 4 samples achieves 50.00 Macro F1 and450

50.06 Accuracy while increasing to 6 samples pro-451

vides only a slight improvement (50.19 Macro F1452

and 50.19 Accuracy). However, moving from 6 to453

8 samples results in the largest jump, with Macro454

F1 increasing to 50.99 and Accuracy to 50.95. No-455

tably, reducing the number of samples to 2 still456

achieves 50.09 Macro F1 and 50.17 accuracy, this457

suggests that even a small number of warmup sam-458

ples can provide meaningful improvements.459

The results for de-en translation exhibit a simi-460

lar trend. While increasing the number of samples461

improves translation quality up to 6 sequences, be-462

yond this point, the gains become marginal or even463

slightly decrease. Specifically, BLEU improves 464

from 28.51 (2 samples) to 29.70 (6 samples) but 465

slightly drops to 29.62 with 8 samples. COMET 466

score follows a similar pattern, increasing from 467

82.45 to 83.24 before slightly decreasing to 83.06, 468

while ChrF++ continues improving slightly, though 469

the changes are minimal beyond 6 samples. 470

These findings suggest that while increasing the 471

number of warmup sequences reduces training loss 472

and improves test-time performance, there exists 473

an optimal range—such as 6 to 8 samples for de-en 474

translation—beyond which the benefits diminish. 475

The initial improvements stem from better approxi- 476

mations of the probability distribution of warmup 477
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Lang Pair Devtest (%) Dev (%)
de-en 55.05 56.57
en-de 32.71 33.41
fr-en 40.94 42.75
en-fr 34.42 32.97

zh-en 43.91 42.90
en-zh 63.03 63.54
ru-en 46.13 48.80
en-ru 33.51 33.48

Table 5: Overlap rates of the warmup sequence for
different language pairs on Flores200 devtest and dev
datasets, generated by the mT5-base model.

de-en translation LogiQA2
Sample BLEU COMET ChrF++ Macro F1 Accuracy

4 29.64 83.12 55.15 50.00 50.06
2 28.51 82.45 54.07 50.09 50.17
6 29.70 83.24 55.26 50.19 50.19
8 29.62 83.06 55.38 50.99 50.95

Table 6: Performance of mT5-base (de-en translation)
and T5-base (LogiQA2) models trained with varying
numbers of warmup sequences sampled during training.

sequences, leading to more effective learning. How-478

ever, adding too many samples can introduce re-479

dundancy or increased variance, limiting further480

performance gains.481

5.7 Qualitative Analysis482

We performed a qualitative analysis of the trans-483

lation task to investigate the role of warmup se-484

quences. As the results shown in Table 4, we found485

that these warmup sequences can be primarily cate-486

gorized into two types:487

• Direct Core Phrases: These warmup se-488

quences can be directly identified in both the489

labels and the generated outputs.490

• Similar Phrases: Expressions that are seman-491

tically similar to important components in the492

labels and outputs.493

For example, “a British traveller in” and “a se-494

ries of events that” can be directly found in both495

the output and ground-truth labels. This indicates496

that for certain scenarios, initial states function as497

core-information extractors, guiding the model to498

generate outputs focusing on these core concepts.499

Meanwhile, in other cases, the warmup se-500

quences are more semantically related rather than501

exact phrase matches. For instance, “when they502

are in danger” is semantically related to “they per-503

ceive a threat” in the label, and “Please contact us504

directly” aligns with “book by phone directly with 505

the airline.” In such scenarios, the initial states 506

serve as semantic guides, enabling the model to 507

generate outputs that capture the intended meaning 508

without relying on exact phrase matching. 509

To further evaluate this dual role, we calculated 510

the overlapping rate of the words in the initial states 511

that also appear in the labels in Table 5. As we can 512

see, “X-eng” all achieve a overlapping rate over 513

40%, with “de-en” reaching 56.57% at the most. 514

On “Eng-X”, the overlapping rate also reach at 515

least 32.71% on “en-de”, and get to the highest on 516

“en-zh” with the rate of 63.53%. This means that 517

generally, over 40% of the words in the warmup 518

sequence could be found in the ground-truth, indi- 519

cating a strong alignment between the initial states 520

and the ground-truth data. By acting as both di- 521

rect extractors and semantic interpreters, the initial 522

states ensure the generated outputs remain closely 523

aligned with the intended semantics and structure 524

of the target language. 525

6 Conclusions 526

In this work, we introduced a task-agnostic frame- 527

work with theoretical proof and derivation, for 528

improving sequence-to-sequence learning through 529

warmup generations, where models learn to gener- 530

ate intermediate sequences to enhance final output 531

quality. Unlike traditional approaches, our method 532

learns intermediate steps in an unsupervised man- 533

ner, improving performance across diverse tasks 534

without requiring task-specific annotations. Exper- 535

iments demonstrate that warmup sequences consis- 536

tently benefit both encoder-decoder and decoder- 537

only models across different sizes. Analysis reveals 538

that warmup sequences aid generation by extract- 539

ing key phrases and providing semantically related 540

guidance, resulting in more fluent and contextu- 541

ally accurate outputs. Additionally, increasing the 542

number of sampled warmup sequences accelerates 543

convergence and enhances test-time performance, 544

though gains diminish beyond a certain threshold. 545

However, the performance gains vary across tasks 546

and architectures, highlighting the need for fur- 547

ther investigation into how different task types and 548

model structures influence warmup effectiveness. 549

Overall, by introducing and demonstrating the ef- 550

fectiveness of warmup sequences across multiple 551

seq2seq tasks, this work lays the groundwork for 552

further research into leveraging intermediate gener- 553

ations to enhance model training and generation. 554
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Limitations555

While our proposed framework demonstrates im-556

provements across various tasks, there are sev-557

eral limitations to address. The first is increased558

training time. The framework relies on sampling559

multiple initial states during training, introducing560

computational overhead compared to traditional561

supervised fine-tuning methods. This can make562

training more resource-intensive, particularly for563

large-scale datasets or deployment in constrained564

environments. Future work could explore more565

efficient sampling strategies or adaptive selection566

methods to mitigate this cost. Another limita-567

tion is that warmup sequences primarily enhance568

the model’s lexical-level understanding rather than569

deeper reasoning or structural-level improvements.570

As shown in our experiments, warmup generation571

aids the model in selecting key phrases and im-572

proving word choice, but it does not explicitly in-573

troduce or infer new knowledge beyond what is574

present in the input. Future research could ex-575

plore how warmup sequences might be adapted576

to facilitate higher-level abstraction or knowledge577

augmentation, potentially bridging gaps in implicit578

reasoning. Finally, our framework has not been579

tested on decoder-only models for generative tasks.580

While experiments on LogiQA2 demonstrate im-581

provements for decoder-only architectures, the ap-582

plication of warmup sequences to open-ended text583

generation (e.g., summarization or translation) in584

decoder-only models remains unexplored. This585

poses potential challenges, as decoder-only mod-586

els lack explicit input-output alignments found587

in sequence-to-sequence tasks, making it unclear588

whether warmup sequences would be equally ef-589

fective. Investigating warmup generation within590

causal language models is an important direction591

for future work.592
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A Selection of Seperator786

The separator token for T5 and mT5 was set to “787

|| ”, as this symbol is rarely used in natural text,788

making it an ideal choice for separating different789

parts of the sequence.790

B Warmup Sequence for Summarization791

and Logical Reasoning792

The warmup sequences for summarization follow793

a similar pattern to those in translation, predomi-794

nantly consisting of either Direct Core Phrases or795

Similar Phrases. For logical reasoning, the warmup796

sequence is identical to the target sequence, rep-797

resenting only the final letter choice that indicates798

the predicted answer.799
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