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ABSTRACT

The widespread deployment of large language models (LLMs) has made the re-
liable detection of Al-generated text a crucial task. However, existing zero-shot
detectors typically rely on proxy models to approximate probability distributions
of unknown source models at a single token level. Such approaches limit detection
effectiveness and make the results highly sensitive to the choice of proxy models.
In contrast, supervised classifiers are often detected as black boxes, sacrificing in-
terpretability in the detection process. To address these limitations, we propose
a novel detection framework that identifies LLM-generated text by approximat-
ing Hierarchical Linguistic Distributions—HLD-Detector. Specifically, we lever-
age n-grams to capture the feature distribution of human-written and machine-
generated text across the word, syntactic, and semantic levels, and perform LLM-
generated text detection by comparing these distributions under the Bayesian the-
ory. By progressively modeling the linguistic distribution from shallow-level
(token/word), then medium-level (syntactic), and ultimately high-level (semantic
representations), our method mitigates the shortcomings of previous single feature
level detection, improving both robustness and overall performance. Additionally,
HLD-Detector requires only a small amount of offline corpus for distribution es-
timation, instead of relying on online approximation with large proxy models,
resulting in significantly lower computational overhead. Extensive experiments
have verified the superiority of our method in detection tasks such as multi-llm
and multi-domain scenarios, achieving the current SOTA performance.

1 INTRODUCTION

Large language models (LLMs) have achieved remarkable breakthroughs in recent years (Guo et al.,
2025} |Achiam et al., [2023). Their powerful text generation capabilities are transforming content
creation, yet they also introduce serious risks: automatically fabricated news (Hu et all [2025),
academic misconduct (Perkins, 2023), and other forms of misuse threaten the stability of social
trust systems and information ecosystems (Weidinger et al.l 2021} |Lee et al.| [2024). Against this
backdrop, developing accurate, efficient, and reliable Al-generated text detection technologies has
become a critical and urgent task (Wu et al., 2025; |Abdali et al., 2024).

To address this challenge, the community has explored diverse detection methods (as illustrated in
Fig.[T). An effective approach involves fine-tuning pretrained models for detection (Abassy et al.,
2024} Bahad et al., 2024; |Hee Lee & Jang, [2024)). Under this paradigm, input text is transformed
to high-dimensional neural representations and subjected to classification. While this strategy can
achieve strong performance on specific datasets, it fundamentally relies on learning neural represen-
tations to fit the training data distribution. Therefore, when the test data distribution deviates from
the training data, detection performance will deteriorate significantly. Moreover, as the detector’s
decisions entirely depend on the model’s internal hidden states, which are difficult to interpret as
concrete features, the resulting predictions offer limited interpretability.

Another line of research focuses on zero-shot detection (Mitchell et al.l 2023} Bao et al.l 2023}
Hans et al.| [2024; Bao et al., [2025)), which exploits the tendency of LLMs to prefer high-probability
tokens over the greater variability of human writing. While interpretable, this framework depends
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on shallow token-level distributions that are easily disrupted by synonym perturbations, limiting the
robustness of the detector. In addition, it also typically relies on surrogate models to approximate the
token probability distribution of the source model. However, the popular commercial models such
as GPT (Achiam et al.}|2023)) and Gemini (Team et al.| 2023)) are black-box, making it difficult for
proxy models to capture their true distributions, which in turn degrade the detection performance.
Moreover, surrogate inference is often computationally costly, adding significant latency.

In our view, LLMs exhibit remarkable text genera-

tion capabilities, producing outputs that are highly
similar to human. As a result, distinguishing be-
tween machine-generated text (MGT) and human-
written text (HWT) based on a single feature is chal-
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Figure 1: Comparison of different methods
for Al-generated text detection.

Motivated by this insight, we propose a novel
LLM-generated text detection framework (HLD-
Detector) that captures the differences between hi-
erarchical linguistic distributions of MGT and HWT.
Specifically, HLD progressively models the feature distributions from shallow word level to medium
syntactic level (including part-of-speech and dependency) and ultimately to high semantic level. At
the word level, it captures the basic distribution differences to achieve effective classification. At the
syntactic level, it reveals more general distributional patterns through deeper structures, strength-
ening the detector’s generalization ability. Finally, at the highest semantic level, it encodes content
into embedding representations, and compare the distribution differences in representations to fur-
ther enhance detection robustness under adversarial scenarios. As shown in Fig. [2] the hierarchical
linguistic features demonstrate a clear distributional divergence between the two sources, validating
the efficacy of our HLD design.
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Figure 2: Density distributions of the Hierarchical Linguistic feature Log-Likelihood Ratios (zyorq,
Zpos» Zdep» Zsemantic) 10T Al-generated (yellow) and Human-written (blue) text.

To estimate hierarchical linguistic feature distributions between MGT and HWT, we employ an
n-gram model (Shannon, |1948), which aims to avoid the challenges of aligning distributions from
black-box generators and allow efficient inference. Estimating the full probability distribution for ei-
ther source is computationally intractable, as required data grows exponentially with content length.
Focusing on distributional differences, we assume a Markovian property and truncate the context
to length k. Although this approximation does not capture the full-context distribution, it suffices
for comparing the distributions of the two sources, and can be reliably estimated from only a few
samples.

Eventually, supported by Bayesian theory, HLD calculates the log-likelihood ratios between MGT
and HWT across the above hierarchical linguistic distributions, obtained via n-grams and inputs
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these ratios into a classifier for Al-generated content detection. In summary, our contributions are
as follows:

1. We propose HLD-Detector, a framework that systematically models the hierarchical lin-
guistic distribution differences between MGT and HWT. By progressively capturing fea-
tures from shallow lexical, to medium syntactic, and high-level semantic representations,
our method substantially improves detection performance, generalization, and robustness.

2. To avoid distribution alignment challenges from black-box models and the high cost of
proxy-model-based inference, we leverage n-grams with a Markov assumption to estimate
MGT and HWT distributions from limited samples and significantly speeding up inference.

3. We conduct comprehensive Al-generated text detection tasks on the DetectRL (Wu et al.}
2024) dataset. Our HLD significantly outperforms existing baselines, demonstrating the
effectiveness of hierarchical linguistic distribution modeling and n-gram based distribution
estimation.

2  METHOD

Task Definition. This task aims to determine whether a given text is machine-generated (MGT)
or human-written (HWT), which we formulate as a binary classification problem. Our approach
is founded on the observation that LLMs generate text via maximum likelihood sampling, their
outputs follow distinct distributions from HWT across hierarchical linguistic features, including
word, syntactic, and semantic aspects(Munoz-Ortiz et al., [2024). Motivated by this observation,
HLD is designed to characterize input text through a diverse set of hierarchical linguistic features,
and modeling the distributional discrepancies between HWT and MGT along these dimensions to
achieve reliable classification. Formally, let X = (x1, x2, ..., x,) denotes a text sequence of length
n, Y € {0,1} be the class label (HWT vs. MGT). We first transform the X into feature sequences
at different linguistic levels, formulated as

Fy = ¢;(X) = (fo, f1, f2s- -+ fn), (1)

where {¢;(-) ;*:1 denotes a linguistic transformation function, corresponding respectively to word-
level, syntactic-level (part-of-speech, dependency), and semantic-level.

Then, for each linguistic sequence I (Vj € 4), the classification rule is defined as:
. P(Y=1|F}) T
Vv — Lif PY=0F) = T-7°
0, otherwise.

where 7 € (0, 1) is decision threshold. By Bayes’ theorem and the chain rule, the likelihood ratio
can be decomposed into conditional probability ratio over the feature tokens f; under the distribution
of different classes Y.

PY=1|F) PF;|Y=)PY=1) [l P(filY=1/f1,....fi-1)

= 2
PY=0(F)  PE Y =0PY =0 "I, PUi Y =0, firor fia) O

Markov Approximation. Equation [2|indicates that LLM-generated text can be identified by com-
paring the likelihood ratio (LR) of feature distributions between MGT and HWT. Instead of relying
on surrogate models to acquire the distributions typically employed by zero-shot detectors (Mitchell
et al., 2023} |Bao et al., 2023)), we derive them directly from the text samples through n-gram statis-
tics (Shannon, [1948)). This reduces the complexity of aligning distributions from black-box LLMs
and supporting efficient inference. However, evaluating P(f; | Y, f<;) over the full context is com-
putationally expensive for n-grams. Based on the Markov chain assumption, distant linguistic tokens
(f1,..., fi—x—1) are expected to have limited influence on f;. Therefore, we approximate

P(fi|Y =1, f<) ~ P(fi|Y =1, fi—gi-1)
P(fi|Y=0,fci) P(fi|Y=0,fi—k:i-1)

which allows n-grams to be learned more easily via only a small amount of training data. Further-
more, to keep numerical stability and eliminate length effects of LR, we take the logarithm and
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Figure 3: Architecture of our HLD method. The input text is segmented with a sliding window, and
for each context—token pair, a log-likelihood ratio (LLR) is computed by contrasting probabilities
under Al- and human-authored databases. This comparison is performed at hierarchical levels:
word, syntactic, and semantic. Finally, the resulting LLRs are aggregated by an XGBoost classifier
for the final decision.

normalize by sequence length n, and the decision rule becomes:

’ RS Pawr(fi | fizri-1)
V=1 - ) log— =z >, 3)
(n ; * Pyuar(fi | fimkeio1) i 6)

where [(+) is the indicator function, z denotes the log likelihood ratio and e is the decision threshold.

2.1 HIERARCHICAL LINGUISTIC DISTRIBUTION MODELING

In this subsection, we present the modeling process of HLD across hierarchical linguistic feature
levels. Fig.|3|shows the architecture of HLD.

Word Distribution Modeling. Fast-DetectGPT (Bao et al., 2023)) posits that human and LLM
differs in word selection based on preceding context and it uses a conditional probability curvature
to estimate this discrepancy. Motivated by this idea, we begin by distinguishing MGT and HWT
through modeling the word-level distribution differences of the two sources. Specifically, we first
transform the samples via @yorq into word sequences Fyora = Pwora(X). We then tokenize these
words and build n-gram language models for both MGT and HWT sources. In detection phase,
HLD leverages these distributions and applies smoothing and back-off strategies to quantify the

discrepancy between ﬁtg%( fi| fi—kwi—1) and PI“{V\‘}\E%( fi | fi—kwi—1) for the evaluated text:

Oy fimkim1,fi)+0 if Oy (figsio1) > 0
C ki 5- ) Yy (Ji—k:i—1) > U,

Py (fi| fi—kiim1) = AY('f wim) oIV _ (4)
Py (fi | fi—k+1:i—1), otherwise,

where Cy (fi—k.i—1, ;) denotes the occurrence that sequence f;_.;—1 is followed by f; under word
distribution of Y, Cy (f;—x.s—1) denotes the total occurrences of f;_j.;—1 in Y’s word-level distri-
bution, § is the smoothing factor, and |V'| represents the vocabulary size. The resulting word-level
conditional probabilities are subsequently converted into the log ratio zyq according to Eq[3|for the
final classification.

Syntactic Distribution Modeling. As prior work reveals that Al-generated text exhibits character-
istic patterns at deeper syntactic levels (Frohling & Zubiagal 2021), we further incorporate syntactic
features to capture more general structural regularities and improve the generalization of HLD. We
map the training sequences X into part-of-speech (POS) tag sequences Fpos = ¢pos(X) mand de-
pendency (Dep) relation sequences Fpep = ¢pep(X) ﬂ We then model the distributions over these

ISee details at https: //spacy.io/usage/linguistic-features#pos—tagging
2See details at https://spacy.io/usage/linguistic—-features#dependency—-parse
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”POS” and "Dep” sequences analogously to the word distribution, using separate n-gram models for
each feature type. During inference, we estimate the conditional probabilities P}gos (fi | fickeiz=1)

and P}?ep( f}' | fi._k:.i_l)' under. the respective syntactic distributiops for an input text, and derive the
corresponding distributional differences z,os and zpep at syntactic-level.

Semantic Distribution Modeling. Considering the vulnerability of word- and syntactic-level fea-
tures to adversarial paraphrasing, we draw inspiration from Dipper (Krishna et al., 2023)), which
constructs a semantic retrieval database for attack defense. Accordingly, We transcend token se-
quences and formalize the conditional probability distribution P(f; | fi—x.s—1) in the continuous
semantic space. A direct parametric estimation of this distribution P(-|f;_x.;—1) is intractable due
to the high dimensionality. Inspired by Kernel Density Estimation (KDE)Terrell & Scott| (1992), we
propose a non-parametric approach to estimate these probabilities. Specifically, we first transform
text samples X into sequences of context-target embedding pairs via a pre-trained encoder, denoted
as Fiemantic = @Psemantic(X ). Each pair consists of a contextual embedding f;_j.;—1 and a corre-
sponding target embedding f;. The database D™ is constructed offline by processing a corpus
for each class Y and storing the resulting context-target embedding pairs. In the detection phase,
given a query pair (f;—x:i—1, fi), we retrieve M nearest context neighbors { f;_x.i—1,m,y } and their
associated average target embeddings { f; Vng%y} from the database D™, The conditional prob-
ability is estimated via probabilistic interpolation over these neighbors, following the law of total
probability:

M

Bt (fi| fikin) = > P(fi | fimkeimimy) - POm| figeicn) ®)
m=1

In this formulation, both the neighbor weight distribution P (m | fi—k.i—1) and the conditional target

probability 15( fi | fi—k:i—1,m,y) are distributions estimated from cosine similarities using softmax
kernels. For instance, the neighbor weight distribution is calculated as:

N exp(sim( fi—g.i—1, fi—ki—1.m. Tetx
Plm | fiopiot) = —SREM ittty fiiitmy)/Tow)
21 XP(SIM(fimkii1, fikiio1,5,)/Tetr)

(6)

where sim(+, -) denotes the cosine similarity and 7 is a temperature parameter. The conditional
target probability is computed analogously, based on the cosine similarity between the query target
embedding f; and the retrieved average target embedding f; > ,- for each neighbor.

2.2  CLASSIFICATION VIA XGBOOST

To fully utilize the hierarchical linguistic distribution differences of MGT and HWT, we addi-
tionally train an XGBoost |(Chen & Guestrin| (2016) classifier on these differences. Let Z =
[Ziexical Zposs ZDeps Zsemantic] | € R* denote the differences, the classifier fp(Z) = Zle Ts(Z) is
then learned using XGBoost:

P(Y =1|2Z)=0(fo(Z)), 6= argmeian(y,P(Y | Z)) +Q(6),

where o (-) is the logistic function, T are regression trees, £ is the binary cross-entropy loss, and {2
regularizes tree complexity.

3  EXPERIMENTS

3.1 SETTINGS

Benchmark and Evaluation. To ensure a comprehensive and fair evaluation, we conducted the
experiments on DetectRL benchmark (Wu et al.| 2024)). DetectRL is specifically designed for eval-
uating LLM-generated text detectors in real-world scenarios, featuring diverse high-risk domains
(e.g., arXiv abstracts, XSum news), mainstream LLMs (e.g., GPT-3.5-turbo, Claude), and well-
designed adversarial attacks (e.g., paraphrase, perturbation). This makes it an ideal platform for
assessing the overall capabilities of our method. We strictly adhere to its established evaluation pro-
tocol. In each domain, we evaluate on a predefined balanced test set of 1,000 human-written and
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Table 1: Performance comparison of all detectors in multi-LLM and multi-domain assessment, with
results reported as AUROC (%). The best and second-best scores in each column are highlighted in
bold and underlined, respectively. Results for other metric are provided in Appendix

Multi-LLM Multi-Domain
Detector | GPT-3.5 Claude PalLM-2 Llama-2 Avg. \ Arxiv. XSum Writing Review Avg.
LRR 61.61 43.30 71.17 83.65 64.93 | 70.54  50.09 64.65 76.61  65.47
DetectGPT 43.46 32.86 26.72 36.71 34.94 | 22.15 12.21 58.95 4443 3444
Binoculars 88.14 55.15 93.30 96.64 83.31 | 84.03 77.39 94.38 90.00  86.45
Fast-DetectGPT 65.56 30.01 65.99 76.79 59.59 | 43.69 39.19 74.21 77.02  58.53
DNA-GPT 61.87 48.88 71.48 75.22 64.36 | 55.85 72.18 66.27 69.84  66.04
Lastde++ 69.21 41.51 73.75 80.18 66.16 | 67.07 57.73 69.32 7240  66.63
RADAR 94.58 81.15 95.10 96.80 9191 | 95.04 99.78 79.34 89.63  90.95
Ghostbuster 91.81 84.99 81.77 89.57 87.04 | 91.74 9334 83.88 86.06  88.76
RAIDAR 86.58 87.71 90.43 89.19 88.48 | 94.94  96.11 85.45 93.94 9261
DPIC 99.39 93.99 95.53 98.08 96.75 | 99.02  98.81 94.69 97.65 97.54
Roberta-base 99.47 98.52 96.61 98.36 98.24 | 100.00 99.75 96.94 99.05  98.94
HLD(Ours) 99.74 99.48 97.87 99.38 99.12 | 9945  99.41 99.68 99.84  99.60

1,000 machine-generated texts. For supervised training, we construct a balanced training set from
the DetectRL training corpus, consisting of 1,800 human-written and 1,800 Al-generated texts. We
adopt AUROC and F1-score as our evaluation metrics. AUROC measures the overall ranking capa-
bility independent of a specific threshold, while the F1-score reflects the practical balance between
precision and recall.

Baselines. For a extensive evaluation, we compare our method against two categories of repre-
sentative baselines: (i) Zero-shot Methods: including LRR (Su et al., 2023), DetectGPT (Mitchell
et al.l [2023)), Binoculars (Hans et al., 2024), Fast-DetectGPT (Bao et al.| [2023), DNA-GPT (Yang
et al., |2024), and Lastde++ (Xu et all |2025); (ii) Supervised Methods: including RADAR (Hu
et al.,|2023)), GhostBuster (Verma et al.,[2024), RAIDAR (Mao et al., [2024), DPIC (Yu et al.| 2024),
and RoBERTa Classifier (Liu et al.l 2019). More details about the baselines are provided in the

AppendiNA.2]

3.2 MAIN RESULT

Overall Performance. As shown in Table |1} our proposed HLD achieves state-of-the-art perfor-
mance on both multi-LLM and multi-domain detection tasks. In the multi-LLM settings, HLD
obtains an average AUROC of 99.12%, surpassing the second-best method (RoBERTa-base) by
an absolute margin of 0.88 percentage points. In contrast, zero-shot methods achieve an average
AUROC around 60% and exhibit significant fluctuations across different source models, exempli-
fied by DetectGPT’s poor performance on PaLM-2 (26.72% AUROC). Our method avoids these
inconsistencies by directly analyzing the output text, leading to more reliable results across differ-
ent generators. In the multi-domain evaluation, HLD remains either the best or very close to the
best in all domains. While RoBERTa-base shows a slight advantage on ”Arxiv” and "Xsum”, HLD
achieves the highest average AUROC of 99.60%, outperforming all baselines overall.

Generalization Analysis. Table [2| reports results under two transfer settings. In the cross-domain
setting (trained on Arxiv and tested on XSum, Writing, and Review), all detectors are affected by
domain shift; however, our method consistently achieves the best or second-best AUROC across
datasets, with an average of 86.61%, significantly outperforming the next best baseline ROBERTa-
base (81.38%). In the cross-model setting (trained on GPT-3.5 and tested on Claude, PaLM-2, and
LLaMA-2), our method again ranks first with an average AUROC of 92.46%. Cross-domain evalu-
ation is particularly challenging due to large discrepancies in vocabulary distributions. Leveraging
both syntactic and semantic layer distribution, our approach moves beyond shallow text patterns and
captures machine-generated signals that transfer across domains. For cross-model generalization,
since different LLMs share common generation mechanisms, their outputs are more similar to each
other than to human writing. Our framework explicitly measures whether a text aligns more with
the shared statistical distribution of Al generations or with the distribution of human writing, en-
abling robust capture of Al-specific regularities. The complete results in the Appendix demonstrate
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Table 2: Generalization results of detectors. The left block reports cross-domain generalization, and
the right block reports cross-model generalization. Best and second-best results in each column are
marked in bold and underlined. Complete results across all domains and models are provided in the

AppendixB.]

Train on Arxiv Train on GPT-3.5
Detector| Eval—»XSum Writing Review  Avg. \ Claude PalLM-2 Llama-2 Avg.
LRR 40.88 38.44 55.81 45.04 | 24.70 61.79 75.34 53.94

Fast-DetectGPT 23.71 59.67 60.17 47.85 | 12.96 59.56 69.93 47.48
GhostBuster 85.81 75.18 69.70 7690 | 61.83 77.43 83.66 74.31
RAIDAR 87.96 72.38 8272  81.02 | 76.73 69.38 71.57 74.56
DPIC 75.99 72.77 83.51 77.42 | 87.01 83.21 95.60 88.61
Roberta-base 89.43 72.89 81.81  81.38 | 90.90 88.43 96.46 91.93

HLD(Ours) 88.89 79.40 91.54  86.61 | 90.42 89.31 97.65 92.46

Table 3: Adversarial robustness of all detectors. We report performance on original data (Direct)
and against three attack scenarios. Best and second-best results in each column are marked in bold
and underlined.

Direct Paraphrase Perturbation Data Mixing Avg.

Detector | AUROC F1 AUROC Fl AUROC Fl AUROC F1 AUROC Fl1

LRR 8583 7740 6399 5520 4591 29.27  66.12  53.81 65.46 5492
DetectGPT 52.84 4090  31.79 16.89 18.21 00.00  26.28  00.00 32.28 14.45
Binoculars 94.87 89.73 88.34 81.56 7689 6934  89.12  83.67 87.31 81.08
Fast-DetectGPT  79.56 7245  70.12  62.89 4956  41.23 67.23 59.78  66.62  59.09
DNA-GPT 88.01 80.78 65.61 5494 4045 02.73 62.14  50.89 64.05 4734
RADAR 92.19  76.01 57.87 59.98 90.24 7626  96.31 80.31 84.15  73.14
Ghostbuster 88.48 80.22 62770  66.69 87.05 79.30  88.77 80.69 81.75  76.73
RAIDAR 91.15 82.72 6640  59.97 9140  83.37 88.35 80.08 84.33 76.54
DPIC 98.02 89.69  76.84  55.25 99.65 96.82 97.62 88.04 93.03 82.45
Roberta-base 95.68 90.06 73.00 73.35 98.40  94.23 93.82 87.19  90.23 86.21
HLD(Ours) 98.91 96.39 97.04 93.05 9877 9580 96.69 91.89 97.85 94.28

that our method maintains strong generalization across all domain and model combinations, with
smaller performance drops compared to baselines.

Robustness Analysis. In real-world applications, users may employ various strategies to evade
detection. We conduct experiments under three attack scenarios to evaluate the robustness of our
method, with results reported in Table 3] For baselines that require training, models are trained on
the Direct dataset before being evaluated on the attack test sets. Our method again ranks first in
average performance with an AUROC of 97.85%, outperforming the second-best method (DPIC)
by an absolute margin of 4.82 percentage points. Crucially, under the most challenging paraphrase
attacks, where the performance of all baselines drops significantly, HLD maintains a high AUROC of
97.04%, demonstrating HLD’s stability and reliability in adversarial environments. This outstanding
robustness stems from the inherent advantages of our hierarchical distribution design, which proves
highly robust against shallow modifications by modeling deeper linguistic structures that remain
stable even when surface-level words are altered. Moreover, by integrating evidence from every
single token across the entire text, our method’s final judgment is inherently resilient to localized
modifications.

Ablation Study. To investigate the contribution of each feature component (Word, POS, Dep, Se-
mantic), we conducted an ablation study, training on the Arxiv dataset and testing across all domains,
with results shown in Table |4, We can notice that removing any single feature dimension leads to
a performance drop. Notably, removing word features (-Word) causes the most significant harm to
out-of-domain generalization, with the AUROC on the "Review” domain dropping from 91.45%
to 84.43%. Similarly, removing syntactic (-POS, -Dependency) or semantic (-Semantic) features
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Table 4: Ablation study on the contribution of each component. The model is trained on the Arxiv
dataset and evaluated across all four domains.

Arxiv XSum Writing Review
Configuration AUROC F1 AUROC F1 AUROC F1 AUROC F1
HLD (all) 9945 9731 88.89 8147 7940 7190 91.54  83.90
- Word 08.89  95.80  87.57  79.61 77.80  69.34 8443  79.68
- POS 99.15 96.63 8545 7891 75.21 7299  88.10 8141
- Dep 99.19  96.89  87.16 80.87 7558  68.30  90.05 81.49
- Semantic 99.10  96.41 88.29  80.98 76.24  68.11 87.31 80.26
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Figure 4: Word-level attribution visualization for an Al-generated abstract from the Arxiv test set.
Tokens are colored by their log-likelihood ratio (LLR): yellow for Al-like and blue for human-like.
See AppendixB.T|for analyses at other feature granularities.

also results in a general performance decline. This clearly demonstrates that our designed word,
syntactic, and semantic feature dimensions are all effective and complementary.

Interpretability. We conducted a qualitative case study by visualizing the log-likelihood ratio
(LLR) of each token as a heatmap. As shown in Figure [ for an abstract from the Arxiv test set, a
yellow background indicates the model deems a token more Al-like, while blue suggests it is more
human-like. The analysis reveals that our method identifies “formulaic” academic phrases such as
“valuable insights,” “findings contribute to,” and “demonstrate the reliability” as Al-like. This case
study provides visual evidence that our model’s decision-making process is transparent and relies
on discernible linguistic patterns rather than running as an unexplainable “black box.”

Impact of N-gram Context Length. Figure [5a] presents our analysis of the n-gram context length
k, revealing that near-optimal performance is attained with remarkably short context lengths, specif-
ically for k between 3 and 5. The figure clearly contrasts the robustness of our hierarchical features.
While the performance at the word-level deteriorates sharply as k increases, underscoring its vul-
nerability to data sparsity, the syntactic and semantic level exhibit exceptional stability. Notably,
the syntactic feature sustains a near-perfect AUROC across a wide range of k (from 2 to 10). This
result strongly validates our hierarchical design, demonstrating that abstract linguistic signals are
not only more robust but also significantly more efficient for discriminating between human-written
and machine-generated text than volatile shallow-level patterns.

Impact of Text Length. The length of a text critically affects detection performance, with longer
texts yielding richer reliable signals to differentiate human-written and machine-generated content.
Figure [5b|shows that all methods benefit from increased text length. Remarkably, our method HLD
significantly outperforms both the supervised (RoBERTa-base) and zero-shot (Fast-DetectGPT)
baselines on short texts (<50 words), achieving over 80% AUC, which is critical for real-world
application like social media analysis. Moreover, the performance of HLD saturates at a high level
(around 99% AUROC) once the text length exceeds approximately 150 words. These results bene-
fits from hierarchical token-by-token distribution analysis, making HLD exhibit strong adaptability
and superior performance across texts of varying lengths.

Impact of Data Scale. The relationship between model performance and the library size used to
construct the databases are presented in Figure The experiment indicates that model perfor-
mance improves rapidly with increasing data, achieving over 95% AUROC with only 20k words
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and plateauing at roughly 100k words. This demonstrates that our model is highly data-efficient
and attains strong performance without massive data, which is an important advantage for rapid
deployment in specific domains.

Impact of N-gram Context Length (k) on AUROC Text Length vs AUROC Library Size vs AUROC and Accuracy
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Figure 5: Analysis of the impact of key hyperparameters and data conditions on detector perfor-
mance. (a) Discriminative signals are effectively captured with k£ < 5. (b) HLD consistently outper-
forms baselines across all text lengths. (¢) HLD demonstrates high data efficiency, achieving strong
performance with a relatively small library size.

Evaluation on Non-English Dataset. To demonstrate effectiveness of HLD beyond English, we test
our approach and the baselines on the Chinese dataset from the M4 benchmark Wang et al.| (2024).
As shown in Figure[6] our approach achieves a SOTA AUROC of

98.41% and an F1-score of 94. 17%, signiﬁcantly Outperforming Performance Comparison on Chinese Dataset
the RoBERTa-base baseline by 4.32 percentage points in AU- | - Auroc %)
ROC and 9.55 percentage points in Fl-score. This strong per- ® = =

formance demonstrates that our feature-based approach success- ®

fully captures fundamental statistical differences between human
and machine-generated text that persist across languages, vali-
dating its effectiveness for multilingual applications. o Robert FastDetecterT

Methods
Figure 6: Performance of our
method on the Chinese dataset.
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Efficiency Analysis. Beyond detection accuracy, efficiency is
important for practical use. We evaluate inference latency and
peak GPU memory on 100 test samples using a single NVIDIA A800(80GB). As summarized in
Table [5} Our framework achieves an inference time of 5.24 seconds and a memory footprint of
2644 MiB, while Fast-DetectGPT and RAIDAR incur significantly higher costs, as they rely on
proxy models for inference. Importantly, HLD preserves the SOTA performance reported in ear-
lier sections, but requiring a lower computational budget, making it more practical for real-world
deployment.

Table 5: Efficiency comparison of different detection methods. We report the average inference time
(per document) and peak GPU memory usage on the test set.

Metric Ours RoBERTa-base Fast-DetectGPT RAIDAR
Total Time (s) 5.24 2.14 35.13 3264.8
GPU Memory Usage (MiB) 2644 1056 36154 23594

4 CONCLUSION

We presented HLD, a hierarchical linguistic distribution framework for detecting LLM-generated
text. By modeling word, syntactic, and semantic distributions with log likelihood ratios, HLD
achieves strong performance across domains, models, and adversarial settings, while offering inter-
pretability and efficiency advantages over large-model-based detectors. The method shows particu-
lar strength on short texts, requires modest data and computational resources, and provides intuitive
visual explanations.
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EHICS STATEMENT

This work explores hierarchical linguistic distribution modeling for detecting LLM-generated text.
While effective in our experiments, the method is not foolproof and may be circumvented by para-
phrasing or more advanced models. Its outputs should be regarded as probabilistic signals rather
than conclusive proof, and never as the sole basis for high-stakes decisions; careful human oversight
remains essential. We further caution against misuse for surveillance or censorship, and recommend
responsible deployment that respects privacy and academic freedom.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our study, we provide implementation details and specific parameter
settings of our method in Section Moreover, all datasets used in this research are publicly
available and have been employed in prior work in the field.
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A

A.1 RELATED WORK

Machine Text Generation. Modern large language models (LLMs) are predominantly autoregres-
sive Transformers trained with next-token prediction on large text corpora (Vaswani et al., 2017;
Radford et al., 2019; Brown et al., |2020). Given a tokenized sequence 1.7, the model parameter-
ized by 0 learns the conditional distribution pg(z; | <) by minimizing the cross-entropy (negative
log-likelihood)
T
Lim(0) = — ZInga(xt | T<t).

t=1

Scaling data, parameters, and compute follows well-documented scaling laws, which guide
compute-optimal training and early-stopping strategies (Kaplan et al.,[2020; Hoffmann et al.} [2022).
Decoder-only models (e.g., GPT-2/3)(Radford et al., 2019} Brown et al.,2020) and their open coun-
terparts (e.g., LLaMA, Deepseek)(Touvron et al., [2023} [Liu et al., [2024b) have therefore become
the dominant architecture for open-ended text generation (Achiam et al.,[2023). At generation time,
decoding strategy shapes the output distribution and style: while beam search can induce repetition
and degeneration, stochastic methods such as top-k (Fan et al., [2018)) and nucleus (top-p) sampling
(Holtzman et al.,|2020) improve diversity and fluency. Beyond maximum-likelihood pretraining, in-
struction tuning and reinforcement learning from human feedback (RLHF) further align the model’s
conditional distribution with human preferences, improving helpfulness and safety while altering
likelihood patterns later exploited by detectors (Wei et al., 2021} [Ouyang et al.| 2022).

Detect Machine-Generated Text. We categorize prior work on LLM-generated text detection into
watermarking, supervised classifiers, and zero/low-shot statistical methods.

Model-time watermarking perturbs decoding to embed a verifiable statistical signal. The green-list
scheme of (Kirchenbauer et al.||2023) biases a keyed token subset and enables a simple hypothesis
test without model access, establishing a widely used baseline. (Hou et al.,[2024)) proposed a robust
sentence-level semantic watermarking algorithm and (Liu et al., [2024a) proposed unforgeable pub-
licly verifiable watermark. However, recent work (Cheng et al., 2025) achieves successful attacks
across various watermarking algorithms. Beyond specific attacks, watermarks also face challenges
such as reduced text quality and barriers to practical deployment.

Supervised classifiers formulate detection as a binary classification problem, training models on
extensive datasets of both human and machine-generated text. A common strategy is to fine-
tune pre-trained language models such as RoBERTa(Liu et al) [2019)) with an added classifica-
tion head. Some methods focus on engineering linguistic features (e.g., sentence length, repetition
patterns)(Gallé et al., 2021; |Yadagiri et al., [2024)). Additionally, Ghostbuster (Verma et al., 2024)
extracts features from models and trains a classifier to identify Al-generated content. DPIC(Yu et al.,
2024) and RAIDAR(Mao et al., 2024) use large models to regenerate the text and analyze features
for detection. As a result, these detectors typically achieve strong performance when the source of
machine-generated text is represented in training data. However, a critical and widely acknowledged
limitation of supervised methods is their lack of generalizability (Li et al.,[2024)) and interpretability.

Zero-shot detectors avoid task-specific training. GLTR(Gehrmann et al.| 2019) visualizes token-
rank statistics to aid detection. DetectGPT(Mitchell et al.l [2023)) proposes a curvature test over
a model’s log-probability surface; Fast-DetectGPT(Bao et al.l |2023)) replaces perturbation sam-
pling with conditional-probability curvature, cutting cost dramatically. Binoculars(Hans et al., 2024))
scores passages via paired-model contrast. More recently, (Bao et al.l [2025) aims to estimate full
distributions based on partial observations from API-based models, and Lastde++ (Xu et al., [2025))
identifies MGT by mining token probability sequences. Despite these advances, zero-shot methods
continue to face challenges of low accuracy and unstable performance in certain scenarios.

A.2 DETAILS OF THE BASELINES
LRR (Su et al., |2023) leverages log-rank information to distinguish between human and machine-

generated text. The core idea is that the distribution of word ranks in a text produced by a large
language model (LLM) will have different statistical properties than a text written by a human.
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DetectGPT (Mitchell et al.l 2023) is a zero-shot method based on the hypothesis that LLM-
generated text lies in areas of negative curvature in the model’s log-probability function. It com-
pares the log probability of original text with perturbations, using significant differences to indicate
machine generation. The T5-small model is used as the perturbation model, with the number of
perturbations set to 10.

Fast-DetectGPT (Bao et al., 2023)) optimizes DetectGPT by replacing multiple perturbations with
a more efficient sampling strategy, improving speed and detection accuracy. We directly adopt
the settings from DetectRL, using GPT-Neo-2.7B as the scoring model and GPT-J-6B as reference
model.

Binoculars (Hans et al., [2024) is a zero-shot detector with a low false positive rate, using two pre-
trained models: an observer and a performer. It compares the perplexity of the text evaluated by
the observer and the cross-perplexity of the performer’s predictions to identify Al-generated text.
GPT-Neo-2.7B is used for computing perplexity, while GPT-J-6B is employed for calculating cross-
perplexity.

DNA-GPT (Divergent N-Gram Analysis) (Yang et al., [2024) truncates text and uses an LLM to
regenerate the remainder. It analyzes the divergence between the original and generated text using
n-gram analysis, revealing differences between human and machine-generated text. We use GPT-
4o-mini as a continuation tool. The default settings are a truncation rate of 7 = 0.5 and 10 rewrites.

Lastde++ (Xu et al.}[2025) treats Token Probability Sequences (TPS) as time series, analyzing local
dynamics. It finds that human text exhibits abrupt fluctuations in token probabilities, while LLM-
generated text is smoother and more predictable. By default, we use GPT-J-6B as the scoring model.

RADAR (Robust Al-text Detection via Adversarial leaRning) (Hu et al.,2023) trains a paraphraser
and a detector in an adversarial setup, making the detector robust to paraphrasing attacks and more
effective in identifying Al-generated text. We directly use the official RADAR-Vicuna-7B model.

Ghostbuster (Verma et al., 2024) detects text from black-box LLMs by passing the document
through weaker, publicly available models. It extracts features and trains a classifier to identify
Al-generated content, making it practical for real-world scenarios. Following the original work, we
extract token probabilities from four models: a unigram and a trigram model trained on the Brown
Corpus, alongside GPT-3 ada and davinci. Features are generated by a structured search combining
these probability vectors with predefined operations. A Logistic Regression classifier is then trained
on the selected features to make the final prediction.

RAIDAR (geneRative Al Detection viA Rewriting) (Mao et al., [2024) detects Al text by comparing
its edit distance after being rewritten by an LLM. Al text shows a smaller edit distance compared to
human text. The details of our implementation are shown in the Table]

Table 6: Implementation details for the Raidar baseline (Mao et al., 2024).

Component Specification

Feature Generation

Rewriting LLM GPT-3.5-Turbo
Distance Metric Normalized Levenshtein Score
Invariance Prompts 1. ‘Help me polish this:*

2. ‘Rewrite this for me:*
3. ‘Refine this for me please:*
Equivariance T-Prompts 1. “Write this in the opposite meaning:*
2. ‘Rewrite to Expand this:*
Equivariance T-'-Prompts 1. “Write this in the opposite meaning: ¢
2

. ‘Rewrite to Concise this:*

Classifier Logistic Regression or XGBoost

DPIC (Decoupling Prompt and Intrinsic Characteristics) (Yu et al., 2024) detects black-box model
text by reconstructing the prompt and comparing the original text with new text generated from it.
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This isolates the generative model’s "fingerprint”. The full replication details are provided in Table

]

Table 7: Replication details for the DPIC baseline, following the original work (Yu et al.,[2024).

Parameter Specification
Model Architecture
Encoder RoBERTa (weights frozen)(Liu et al.,[2019)
Classifier 3-layer MLP
Training Strategy
Optimizer Adam
Learning Rate 1x1073
Epochs 10

Loss Function Binary Cross-Entropy (BCE)
Model Selection Highest AUROC on validation set

Roberta-base (Liu et al.,[2019)) serves as a baseline for supervised Al text detectors. Fine-tuned on
human and Al-generated text, it provides a strong benchmark for evaluating detection methods. The
training parameters are as follows: the learning rate is set to 1e~% with the AdamW optimizer and a
weight decay of 1e*; the number of training epochs is 5, with an early stopping strategy that halts
training when the F1 score on the validation set decreases.

B
B.1 SUPPLEMENTARY TO MAIN RESULTS

Table 8: Performance comparison of all evaluated detectors across four large language models and
four distinct text domains. We report F1 scores (in %). The best and second-best scores in each
column are highlighted in bold and underlined, respectively.

Large Language Models Text Domains
Detector GPT-3.5 Claude PalLM-2 Llama-2 Avg. \ Arxiv XSum Writing Review Avg.
LRR 52.12 18.91 65.51 75.51 53.01 | 61.34  38.38 53.09 68.99 5545
DetectGPT 26.27 12.56 00.00 20.40 14.81 | 00.00  00.00 50.83 3525  21.52
Binoculars 82.50 39.35 88.20 92.30 7559 | 7677  72.18 79.73 8432  78.25
Fast-DetectGPT 59.55 00.00 57.58 69.08 46.55 | 2446  28.39 67.84 71.62  48.08
DNA-GPT 55.04 25.67 60.77 62.89 51.09 | 22.07 65.30 65.05 62.06 53.62
Lastde++ 77.07 67.45 77.72 81.33 75.89 | 75.84  72.35 75.94 77.87  75.50
RADAR 68.94 49.42 82.67 81.26 70.57 | 61.59  91.68 54.19 7528  70.69
Ghostbuster 83.70 75.37 73.59 81.26 78.48 | 84.14  86.60 76.70 78.10  81.39
RAIDAR 82.36 80.36 82.69 81.45 81.72 | 87.98  88.89 80.37 88.06  86.33
DPIC 96.61 86.27 87.58 87.81 89.57 | 9431 9539 85.52 91.79  91.75
Roberta-base 97.11 93.54 90.34 94.08 93.77 | 100.00 98.80 90.78 9593  96.38
HLD(Ours) 98.40 97.01 93.06 97.09 96.39 | 9731  97.29 98.11 98.70  97.85

Overall Performance (f1 score). Table [§| reports the F1 scores (%) of twelve detectors evaluated
on four LLMs (GPT-3.5, Claude, PaLM-2, Llama-2) and four text domains (ArXiv, XSum, Writing,
Review). Our proposed method, HLD, achieves the highest mean F1 both across models (96.39%)
and across domains (97.85%). Relative to the strongest non-HLD baseline (RoBERTa-base), HLD
improves the averages by +2.62 points across models (96.39 vs. 93.77) and +1.47 points across
domains (97.85 vs. 96.38). Importantly, HLD is the only detector that consistently exceeds 93%
F1 across all four models (98.40/97.01/93.06/97.09), demonstrating stable performance under vary-
ing model sources. On the domain side, while ROBERTa-base achieves strong results on ArXiv
and XSum, it degrades substantially on Writing (90.78%). In contrast, HLD maintains balanced
performance across domains, obtaining the best scores on Writing (98.11%) and Review (98.70%)
while remaining competitive on ArXiv and XSum. Overall, HLD attains the strongest average per-
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formance with reduced variance, highlighting its robustness across heterogeneous models and text
domains.

Table 9: Cross-domain generalization performance of all detectors, measured by AUROC (in %).
Each block shows results for a model trained on a specific source domain and evaluated on the
others. For readability, the table is in two parts. The best and second-best scores are highlighted in
bold and underlined, respectively.

Train on Arxiv Train on XSum

Detector| Eval— XSum  Writing Review  Avg.  Arxiv  Writing Review  Avg.

LRR 40.88 38.44 55.81 45.04 5745 39.08 55.81 50.78
Fast-DetectGPT  23.71 59.67 60.17  47.85 28.43 62.99 63.08 51.50
GhostBuster 85.81 75.18 69.70 7690 86.32 63.27 68.57 72.72
RAIDAR 87.96 72.38 8272 81.02 85.06 60.24 64.73 70.01
DPIC 75.99 12.77 83.51 7742  89.36 87.03 88.54 88.31
Roberta-base 89.43 72.89 81.81 81.38 89.56 78.08 76.28 81.31

HLD(Ours) 88.89 79.40 91.54  86.61 90.34 86.86 89.92 89.04

Train on Writing Train on Review

Detector| Eval— Arxiv XSum  Review Avg. Arxiv XSum = Writing  Avg.

LRR 61.14 46.31 67.98 5848 6149 47.02 57.12 55.21
Fast-DetectGPT  34.81 33.06 68.30 4539 40.70 37.66 68.25 48.87
GhostBuster 85.12 87.26 75.71 82.70  79.23 85.23 84.47 82.98
RAIDAR 77.09 62.08 86.73 75.30 7741 69.90 78.81 75.37
DPIC 87.87 83.11 94.55 88.51 88.44 80.60 94.04 87.69

Roberta-base 86.69 78.95 95.41 87.02 77.60 79.03 95.50 84.04
HLD(Ours) 87.94 93.82 95.79 9252 89.42 93.65 96.42 93.16

Complete generalization results. Tables OHIO| report the full AUROC (%) results under cross-
domain and cross-model transfer settings. In the cross-domain case, detectors are trained on one
source domain (ArXiv/XSum/Writing/Review) and evaluated on the remaining domains, while in
the cross-model case, training is performed on one source LLM (GPT-3.5/Claude/PalLM-2/Llama-2)
and evaluation on the others. The results show that although all methods are affected by distribu-
tion shifts, HLD consistently achieves the highest averages across all source domains, for instance
reaching 86.61% when trained on ArXiv compared to 81.31% for RoBERTa-base, and delivering
particularly strong gains when trained on Writing and Review, with averages of 92.52% and 93.16%.
Similarly, in the cross-model setting HLD again outperforms all baselines for every source LLM,
achieving 92.46% (GPT-3.5), 95.14% (Claude), 97.28% (PaLM-2), and 96.72% (Llama-2). Overall,
the complete tables corroborate the main-text findings: HLD maintains consistently strong detection
ability across diverse source—target combinations and exhibits smaller performance drops than the
strongest baseline, underscoring its robustness in both cross-domain and cross-model transfer sce-
narios.

Additional visualizations. In the main text we presented one representative visualization of token-
level log-likelihood ratios (LLR). For completeness, Figures provide additional examples
using different hierarchy views, including POS n-gram, dependency n-gram, and semantic repre-
sentations. The color scheme follows the same convention: yellow indicates tokens judged as more
Al-like, whereas blue denotes more human-like tokens. These supplementary figures further illus-
trate that our method consistently highlights formulaic expressions and structural patterns charac-
teristic of machine-generated text, while assigning more human-like scores to contextually varied
or domain-specific tokens. Together, these results reinforce the interpretability of our detector and
demonstrate that its predictions are grounded in observable linguistic cues across multiple represen-
tational layers.
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Table 10: Cross-model generalization performance of all detectors, measured by AUROC (in %).
Each block shows results for a model trained on a specific source model and evaluated on the others.
For readability, the table is in two parts. The best and second-best scores are highlighted in bold and
underlined, respectively.

Train on GPT-3.5 Train on Claude
Detector| Eval—» Claude @ PalLM-2 Llama-2 Avg. GPT-3.5 PaLM-2 Llama-2 Avg.
LRR 24.70 61.79 7534 5394  45.73 57.66 72.67 58.69
Fast-DetectGPT ~ 12.96 59.56 69.93 47.48 00.19 00.00 01.18  00.46
GhostBuster 61.83 77.43 83.66 74.31 71.39 79.99 78.00  76.46
RAIDAR 76.73 69.38 7757 7456  78.75 76.71 76.80 7742
DPIC 87.01 83.21 95.60  88.61 98.80 84.51 93.84  92.38
Roberta-base 90.90 88.43 96.46  91.93 98.33 91.63 95.20  95.05
HLD(Ours) 90.42 89.31 97.65 9246  98.86 90.80 95.77  95.14

Train on PaL.M-2 Train on Llama-2
Detector| Eval-GPT-3.5 Claude Llama-2 Avg. GPT-3.5 Claude PalLM-2 Avg.
LRR 52.36 26.23 75.58 51.39  52.14 25.25 62.23 46.54
Fast-DetectGPT  55.77 08.20 68.43 44.13 56.28 08.65 57.74  40.89
GhostBuster 79.48 79.49 8530 81.42 84.51 76.78 81.73 81.01
RAIDAR 75.26 76.19 8349 7831 86.86 77.46 86.43 83.58
DPIC 99.28 89.17 98.54  95.66  99.24 86.61 90.33 92.06
Roberta-base 98.76 93.39 98.26  96.80  98.39 91.69 93.06  94.38
HLD(Ours) 99.61 93.64 98.60 97.28 99.71 94.78 95.66  96.72

B.2 RESULTS ON THE OTHER BENCHMARK.

To provide a comprehensive and impartial evaluation of our proposed HLD (Ours) method, we fur-
ther conduct extensive experiments on the MGTBench |[He et al.[(2024) framework. MGTBench is
a holistic benchmark designed specifically for assessing the performance of machine-generated text
(MGT) detectors against a wide array of powerful Large Language Models (LLMs) and diverse text
corpora. Our experimental setup strictly follows the protocol established in the MGTBench paper.
We perform our evaluation on its three core datasets: Essay, WP (WritingPrompts), and Reuters. On
these datasets, we assess HLD’s capability to detect text generated by six distinct LLMs—namely
ChatGLM, Dolly, ChatGPT-turbo, GPT4All, StableLM, and Claude. The performance is directly
compared against the extensive suite of baseline methods included in MGTBench, such as Log-
Likelihood, GLTR, and DetectGPT. The detailed results are presented in Tabl The data clearly
demonstrates that our HLD method achieves remarkably consistent and superior performance across
all datasets and LLMs. In the vast majority of test scenarios, the scores for HLD (highlighted in
bold) significantly outperform those of all other baseline methods. This underscores the effective-
ness, robustness, and strong generalization capability of our approach across various text styles and
underlying model architectures.

B.3 ANALYSIS OF N-GRAM DATABASE.

To quantitatively analyze the statistical differences between Al and human text generation, we first
constructed conditional probability distributions for next-token prediction from our words,gram
databases, representing both Al and human corpora. We then computed the Kullback-Leibler (KL)
Divergence for all shared contexts to measure the dissimilarity between these two sets of distribu-
tions. The resulting analysis, visualized in the figure, reveals a distinctly bimodal distribution of KL
Divergence values. This structure is characterized by a peak near zero, indicating a large number
of contexts where Al and human predictions show high agreement, and a second, prominent peak
at a high KL value ( 20 nats), which signifies frequent and drastic disagreements between the two
models. We conclude that these moments of high divergence are the core statistical phenomenon
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sophisticated reconstruction algorithms and statistical techniques to evaluate the performance of reconstruction in - fully
contained and partially contained events . results demonstrate the reliability of the methodology , providing valuable insights
into the accuracy of neutrino direction determination in different types of events and enhancing our understanding of neutrino
properties ‘and interactions . These findings contribute to the field of neutrino astronomy and have for the detection

and characterization of astrophysical neutrino sources

(b) Attributions using dependency n-gram (depngram ) features.
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of neutrino direction determination in different types of enhancing our neutrino properties and interactions these findings
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(c) Attributions using semantic features.

Figure 7: Visualization of feature attributions for text detection. The model highlights text portions it
identifies as more human-like (blue) or Al-like (orange) based on (a) part-of-speech, (b) dependency,
and (c) semantic features.

that our detection model leverages; while Al can often mimic human-like predictions, it is these
systematic points of disagreement that provide a robust and unambiguous signal, making reliable
detection possible. This finding was consistently observed across all feature databases, confirming
its robustness. [§]
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Table 11: Comparison of HLD (Ours) with baseline methods from the MGTBench evaluation suite.
We report Fl1-scores for each detector. The best and second-best performing methods for each model
and dataset are highlighted in bold and underlined, respectively.

Dataset Method ChatGLM Dolly ChatGPT-turbo GPT4All StableLM Claude
Log-Likelihood 0.970 0.866 0.968 0.923 0.665 0.834
Rank 0.740 0.737 0915 0.843 0.667 0.772
Log-Rank 0.983 0.865 0.966 0.923 0.692 0.814
Entropy 0.806 0.683 0.874 0.699 0.566 0.771
GLTR 0.988 0.848 0.954 0.925 0.756 0.806
LRR 0.982 0.810 0.925 0.904 0.748 0.746
Essay NPR 0.956 0.865 0.218 0.927 0.740 0.238
DetectGPT 0.891 0.844 0.227 0.908 0.704 0.236
GPTZero* 0.923 0.880 0.980 0.943 0.486 0.870
ConDA 0.668 0.069 0.000 0.260 0.663 0.664
OpenAI-D 0.921 0.724 0.353 0.863 0.774 0.009
ChatGPT-D 0.923 0.630 0.742 0.815 0.491 0.057
HLD(Ours) 0.982 0.914 0.978 0.955 0.934 0.988
Log-Likelihood 0.980 0.794 0.841 0.934 0.786 0.773
Rank 0.840 0.760 0.797 0.891 0.781 0.709
Log-Rank 0.985 0.807 0.819 0.929 0.832 0.751
Entropy 0.800 0.662 0.770 0.766 0.644 0.731
GLTR 0.983 0.766 0.800 0.935 0.861 0.733
LRR 0.980 0.774 0.728 0.930 0.875 0.656
WP NPR 0.970 0.801 0.352 0.905 0.764 0.521
DetectGPT 0.812 0.719 0.608 0.308 0.695 0.517
GPTZero* 0.980 0.732 0.980 1.000 0.148 0.818
ConDA 0.585 0.039 0.075 0.674 0.667 0.000
OpenAl-D 0.980 0.776 0.093 0.948 0.937 0.029
ChatGPT-D 0.880 0.528 0.352 0.795 0.616 0.044
HLD(Ours) 0.997 0.847 0.988 0.974 0.892 0.958
Log-Likelihood 0.972 0.381 0.926 0.697 0.659 0.798
Rank 0.650 0.413 0.847 0.665 0.635 0.648
Log-Rank 0.990 0.373 0.944 0.735 0.701 0.785
Entropy 0.477 0.553 0.703 0.668 0.620 0.694
GLTR 0.987 0.556 0.946 0.742 0.750 0.772
LRR 0.992 0.590 0.948 0.796 0.766 0.715
Reuters NPR 0.950 0.790 0.284 0.843 0.751 0.560
DetectGPT 0.866 0.782 0.270 0.821 0.756 0.558
GPTZero* 0.980 0.485 0.936 0.980 0.611 0.750
ConDA 0.664 0.137 0.000 0.667 0.000 0.667
OpenAl-D 0.985 0.713 0.954 0.900 0.903 0.000
ChatGPT-D 0.968 0.650 0.931 0.898 0.617 0.019
HLD(Ours) 0.997 0.951 0.992 1.000 0.977 0.995
C

C.1 IMPLEMENTATION DETAILS OF HLD
C.1.1 ALGORITHM OF HLD
We formalize our proposed HLD framework in Algorithm[I] The method first builds hierarchical lin-

guistic distribution databases and then trains a classifier on features derived from the log-likelihood
ratios between human and Al text.

C.1.2 HYPERPARAMETERS AND CONFIGURATION OF HLD

At the word and syntactic levels, we employ n-gram models, setting the context order to k& = 5.
At the semantic level, we estimate the probability of a 2-word target vector given a 4-word context
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vector encoded by SBERT(all—MiniLM—L6-V2f], interpolating from the M = 4 nearest neighbors.
The neighbor search and indexing are accelerated using faiss-gp The specific components and

hyperparameters for each level are detailed in Table[12]

The training pipeline uses a 50/50 data split: the first half for distribution estimation (building the
statistical databases for MGT and HWT), and the second half for classifier training. We train an
XGBoost classifier, optimizing its hyperparameters with Optumﬂ
trials, as summarized in Table All experiments were conducted on a single NVIDIA A800 GPU

(80GB).

Table 12: Key hyperparameters for HLD’s feature streams.

Hierarchical Level Hyperparameters & Components

Word k = 5; Tokenizer: al1-MiniLM-L6-v2
Syntactic k = 5; Parser: spaCy (en_core_web_sm)
Semantic Context: 4 words, Target: 2 words

Neighbors (M): 4; Encoder: a11-MinilM-L6-v2

Indexing: faiss—gpu with nprobe=8

Table 13: XGBoost classifier hyperparameter tuning configuration.

Hyperparameter Search Space

n_estimators Integer in [400, 1200]
learning_rate Log-uniform in [1073, 0.15]
max_depth Integer in [4, 10]
min_child_weight ~ Log-uniform in [0.1, 8.0]
subsample Uniform in [0.6, 1.0]

colsample_bytree  Uniform in [0.6, 1.0]

3See details athttps: //www.sbert .net,
4See details at https: //github.com/facebookresearch/faissl
SSee details athttps: //optuna.org,

22

to maximize AUROC over 60


https://www.sbert.net
https://github.com/facebookresearch/faiss
https://optuna.org

Under review as a conference paper at ICLR 2026

Algorithm 1 Hierarchical Linguistic Distribution Modeling (HLD)

Require: Human text corpus Dy, Al text corpus D 45.
Require: Set of linguistic levels 7 = {word, pos, dep, semantic}.
Require: Context length parameter (n-gram order) k.
Ensure: Trained XGBoost classifier M.
1: procedure BUILDDATABASES(Dy,Day, J, k)
2: B+« 0 > Initialize set of distribution databases

3 for each linguistic level j € J do
4 B; u < EstimateDistribution(Dy, j,k) > e.g., N-gram tables or Semantic DataStore
5: B; ar < EstimateDistribution(Day, 7, k
6: B(—BU{BJ‘,H,BJ‘)AI}
7 end for
8 return B
9: end procedure
10: function EXTRACTFEATUREVECTOR(X, B, 7)
11: Z + | > Vector for aggregated log-likelihood ratios
12: for each linguistic level j € J do
13: F; « ¢;(X) > Transform text X to feature sequence for level j
14: n + |F;|
15: LLR; + |] > Sequence of Log-Likelihood Ratios (LLRs)
16: fori =k — ndo
17: ci + (ficky--+» fiz1) > Context for feature f;
18: pu < P(filci,Y = H,B; i)
19: par < P(filc;,Y = AILBj ar)
20: Append log(pas) — log(py) to LLR;
21: end for
22: zj +— mean(LLR;) > Calculate the final feature for level j
23: 77Oz > Concatenate to the final feature vector
24: end for
25: return Z

26: end function

27: procedure TRAINANDPREDICT(X new, Dirains Virain)

28: B < BuildDatabases(Dyain, i , Dirain, a1, J , k)

29: Xteares < {ExtractFeatureVector(X, B, J) | X € Dyain}
30: My + XGBoost.fit( Xiearures; Virain)

31:
32: Z e < ExtractFeatureVector( X ew, B, J)
33: P(Y = Al|Zey) < 0(Mg(Zipew)) > Predict probability for new text

34: return P(Y = Al|Z,.y)
35: end procedure

C.2 DETAILS OF DATA

The DetectRL(Wu et al.| [2024) benchmark is constructed using a combination of human-written
texts from high-risk domains and texts generated by powerful, commonly-used Large Language
Models (LLMs).

Human-Written Text. To ensure real-world relevance, the human-written texts were collected
from four distinct domains where LLMs are prone to be misused. A critical aspect of the data
collection process was to avoid potential contamination from LLM-generated content. Therefore,
all selected human-written data was published before the public release of ChatGPT. The domains
are: (i) Academic Writing: Scientific abstracts were sourced from the arXiv Archive (specifically,
data from 2002-2017). (ii) News Writing: News articles were taken from the XSum dataset. (iii)
Creative Writing: Fictional stories were collected from the Writing Prompts dataset. (iiii) Social
Media: User reviews were sourced from the Yelp Reviews dataset.
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LLM-Generated Text. To create text that closely resembles what is found in real-world applica-
tions, the benchmark employed four powerful and widely-used LLMs for text generation: GPT-3.5-
turbo, PaLM-2-bison, Claude-instant, Llama-2-70b. The text generation was performed through
interactive chat sessions with each model. The prompts were designed to align with the human-
written data from each domain, such as providing a paper title to generate an academic abstract or
using the first sentence of a human review to have the LLM continue the text.

Adversarial Attack Methods. To move beyond simple classification and assess the true resilience
of detectors, DetectRL incorporates a multi-faceted adversarial attack framework. These attacks
simulate the real-world tactics that a malicious or privacy-conscious user might employ to evade
detection. The framework is designed to probe for weaknesses across a spectrum of potential vul-
nerabilities, from prompt-level manipulation to post-generation text alterations.

Table[I4] provides a detailed summary of the adversarial methods used to challenge the detectors.

Table 14: Adversarial Attack Methods in the DetectRL Benchmark

Attack Category Specific Method Description
DIPPER Paraphraser (Krishna et al.|{[2023)  Rewrites text using an advanced paraphrasing
Paraphrase Attacks model to alter phrasing while preserving meaning.
Back-translation Translates text to another language and back to
English (e.g., using an API) to change sentence
structure.
Polishing using LLMs Uses a second LLM to refine or "’polish” the initial
LLM-generated text, simulating a common edit-
ing process.
Character-level (DeepWordBug) Introduces small, adversarial typos and mis-
Perturbation Attacks spellings into the text.
Word-level (TextFooler) Replaces key words with synonyms that are se-

mantically similar but can confuse detectors.

Sentence-level (TextBugger) Implements subtle modifications at the sentence
level to disrupt linguistic patterns.

Multi-LLM Mixing Creates a single document by combining sen-

Data Mixing tences generated from multiple different LLMs.

LLM-Centered Mixing Simulates Al-assisted writing by replacing a quar-
ter of the sentences in an LLM-generated text with
sentences from a human-written text.

C.3 USE OF LARGE LANGUAGE MODELS

We employed large language models (LLMs) solely as general-purpose writing assistants to refine
the manuscript. Specifically, LLMs were used to correct grammar, enhance clarity, and improve
phrasing in certain sentences. The models did not contribute to the research design, problem for-
mulation, method development, experimentation, analysis, or overall scientific contributions. Their
role was strictly limited to surface-level editing and presentation improvements of the paper.
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