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Abstract

Hyperspectral imaging (HSI) enables
detailed land cover classification, but
low spatial resolution and sparse an-
notations pose significant challenges.
We present a label-efficient framework
that leverages spatial features from
a frozen diffusion model pretrained
on natural images. Specifically, we
extract low-level representations from
high-resolution decoder layers at early
denoising timesteps, which transfer well
to the low-texture setting of HSI. To
combine spectral and spatial informa-
tion, we introduce a lightweight FiLM-
based fusion module that adaptively in-
tegrates spectral cues into frozen spa-
tial features, enabling effective multi-
modal learning under sparse supervi-
sion. Experiments on two recent hyper-
spectral datasets show that our method
outperforms state-of-the-art approaches
using only the sparse training labels
provided. Ablation studies further val-
idate the benefit of diffusion-based fea-
tures and spectral-aware fusion. Our re-
sults suggest that pretrained diffusion
models can support domain-agnostic,
label-efficient representation learning in
remote sensing and scientific imaging
tasks.
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1. Introduction

Land cover mapping is a fundamental task
in remote sensing, supporting applications
such as environmental monitoring, agricul-
ture, and resource management. Hyperspec-
tral images (HSIs), with their dense spectral
reflectance information, provide detailed in-
sights into material properties and are well-
suited for this purpose.

Despite their rich spectral content, HSIs
pose several challenges. Their high dimen-
sionality increases computational cost and
overfitting risk, especially under limited su-
pervision. Moreover, the trade-off between
spectral fidelity and spatial resolution often
leads to poor spatial detail, limiting segmen-
tation accuracy.

Additional challenges arise from the spec-
tral and spatial variability of land cover
types across regions. Subtle intra-class vari-
ations—due to differences in vegetation, soil,
or human activity—make generalization dif-
ficult Akiva et al. (2022); Liu et al. (2024);
Prasad et al. (2024); Kumar et al. (2023);
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Li et al. (2023). Finally, acquiring high-
quality labeled data is expensive and time-
consuming, as pixel-level annotation requires
domain expertise. These limitations high-
light the need for approaches that can ex-
tract robust features without heavy reliance
on labels. Unsupervised and self-supervised
learning methods address this by learning di-
rectly from the data.

Generative models—particularly diffusion
models Ho et al. (2020); Song et al. (2020);
Sohl-Dickstein et al. (2015); Dhariwal and
Nichol (2021); Pang et al. (2024)—have re-
cently shown state-of-the-art performance in
image synthesis, restoration, and manipu-
lation tasks. Through unsupervised train-
ing and iterative denoising, diffusion models
learn the underlying data distribution, en-
abling them to capture rich spatial struc-
tures and pixel-wise contextual dependen-
cies—traits especially valuable for segmenta-
tion and representation learning under data
scarcity.

Unlike deterministic self-supervised meth-
ods such as masked autoencoders He et al.
(2022), diffusion models operate in a prob-
abilistic framework that better handles un-
certainty and degraded inputs. This makes
them well-suited for low-resolution, low-
texture hyperspectral imagery Chen et al.
(2020); Zhang et al. (2023a). Notably,
Baranchuk et al. (2021) demonstrated that
pre-trained diffusion models can provide
strong pixel-level representations, outper-
forming earlier self-supervised methods un-
der limited supervision and maintaining ro-
bustness under corrupted inputs. Pre-
trained diffusion models have shown im-
pressive performance in natural image do-
mains Xu et al. (2023); Zhang et al. (2023a),
yet their application to geospatial imagery
remains underexplored. This is due in part
to significant domain shifts—differences in
spatial scale, viewing geometry, and spec-
tral coverage (e.g., near and short-wave in-

frared)—which challenge cross-domain gen-
eralization Wang et al. (2021); Zhang et al.
(2023b).

Beyond domain shift, hyperspectral im-
agery introduces a unique modality chal-
lenge: each pixel contains a high-dimensional
spectral signature critical for land cover anal-
ysis. Effectively leveraging both spectral and
spatial information—especially under lim-
ited supervision—requires models capable of
adaptive fusion conditioned on spectral fea-
tures. To address this, we adopt FiLM-
based modulation Perez et al. (2018) ,
a lightweight and parameter-efficient condi-
tioning method that remains largely unex-
plored in hyperspectral settings.

This work addresses two key challenges
in hyperspectral land cover mapping: (1)
transferring pre-trained diffusion models to
geospatial domains, and (2) enabling adap-
tive fusion of spatial and spectral modali-
ties under sparse supervision. We introduce
GeoDiffNet-F, a label-efficient framework
that reuses a diffusion model pre-trained on
natural images to extract transferable spa-
tial features, which are fused with spectral
embeddings using FiLM-based modulation.
Our contributions are as follows:
(1) We propose GeoDiffNet, a lightweight
framework that repurposes frozen decoder
layers of pre-trained diffusion models to ex-
tract low-level spatial features that general-
ize well to geospatial imagery with weak tex-
ture and low resolution;
(2) we demonstrate strong cross-domain
transferability of diffusion features without
requiring domain-specific finetuning;
(3) we introduce GeoDiffNet-F, which
fuses spectral and spatial features using
FiLM-based modulation, enabling dynamic,
feature-wise conditioning from spectral in-
put;
(4) we perform a detailed transferability
analysis across decoder layers and denoising
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timesteps, showing that early diffusion fea-
tures are robust to significant domain shift.

2. Related work

Feature Transferability in Deep Learn-
ing has been extensively studied, partic-
ularly with convolutional neural networks
(CNNs). Early layers in CNNs capture low-
level features, such as edges and textures,
which are highly transferable across differ-
ent tasks and datasets Yosinski et al. (2014);
Long et al. (2016). This principle has been
foundational in the success of transfer learn-
ing, enabling models pre-trained on large-
scale datasets to be fine-tuned for specific
tasks with smaller datasets.

Diffusion Models as a new class of gen-
erative models, have shown remarkable per-
formance in generating high-fidelity images.
These models learn to generate data by
reversing a diffusion process, progressively
transforming noise into structured data. Re-
cent advancements Ho et al. (2020); Song
et al. (2020); Dhariwal and Nichol (2021)
have positioned diffusion models as state-of-
the-art in image generation tasks.

Diffusion Models for Feature Extrac-
tion. The potential of diffusion models
for feature extraction has attracted grow-
ing interest. Prior studies Baranchuk et al.
(2021); Xu et al. (2023); Zhang et al. (2023a);
Luo et al. (2023) extract features from var-
ious layers of the U-Net architecture and
timesteps in the diffusion process, leveraging
multi-scale and multi-timestep information
for robust pixel-level descriptors in tasks like
image segmentation. However, these works
assume a well-aligned source and target do-
main. To date, no studies have investigated
the use of diffusion-based features in cross-
domain settings, leaving their generalizabil-
ity underexplored.

Diffusion Models in Remote Sensing.
Diffusion models have recently gained atten-

tion in remote sensing Bandara et al. (2022);
Ayala et al. (2023); Bai et al. (2022); Chen
et al. (2023); Pang et al. (2024). Most prior
work trains models from scratch or tailors
them to specific datasets—e.g., Chen et al.
(2023) proposes a 3D diffusion model for hy-
perspectral data that demands substantial
computation and large training sets. In con-
trast, we are the first to evaluate a univer-
sal pre-trained diffusion model for geospatial
analysis, assessing its feature transferability
to hyperspectral imagery without additional
training.

Hyperspectral Images (HSI) Land-
Cover Mapping. Hyperspectral imagery
(HSI) enables fine-grained land-cover classifi-
cation by capturing rich spectral information
across hundreds of contiguous bands Prasad
et al. (2014); Wu and Prasad (2016); Li et al.
(2012). Recent methods adopt multimodal
fusion (e.g., HSI with RGB or SAR) Wang
et al. (2022) and transformer-based architec-
tures Hong et al. (2021a), but rely heavily
on full supervision, where performance de-
pends on the availability of labeled data. In
contrast, we are the first to leverage a uni-
versal pre-trained diffusion model for HSI
land-cover mapping, extracting strong trans-
ferable features without task-specific train-
ing and significantly reducing label require-
ments.

3. Proposed Methodology

3.1. Overview of GeoDiffNet and
GeoDiffNet-F

Our framework consists of two complemen-
tary branches, as illustrated in Figure 1. The
GeoDiffNet branch focuses on spatial fea-
ture extraction by leveraging a frozen diffu-
sion model pretrained on natural RGB im-
ages. Specifically, we extract per-pixel fea-
tures from low-level decoder layers at low de-
noising timesteps (e.g., T=0, 50, 100), which
are shown to capture meaningful local struc-
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Figure 1: Workflow of GeoDiffNet and GeoDiffNet-F. GeoDiffNet extracts low-
level spatial features from RGB-like patches using a frozen pretrained diffusion model. A
lightweight MLP is applied to each pixel for classification. GeoDiffNet-F further incorpo-
rates spectral context by encoding per-pixel reflectance signals into spectral embeddings,
which are used to regress scaling (γ) and shifting (β) vectors through an MLP. These vec-
tors condition the spatial features via a FiLM layer, enabling adaptive cross-modal fusion
for land-cover classification.

ture even under resolution constraints. Each
hyperspectral image is divided into overlap-
ping pseudo-RGB patches (e.g., 64×64 with
stride 32), and the extracted features are
passed through a lightweight MLP for adap-
tation.

In parallel, the spectral branch encodes
each pixel’s full spectral signature using a
dedicated spectral encoder, followed by an
MLP that predicts FiLM parameters (scaling
γ and shifting β). These modulation parame-
ters are used to condition the spatial features
through a FiLM layer, enabling dynamic fea-
ture adaptation across modalities.

Finally, the GeoDiffNet-F module per-
forms adaptive multimodal fusion. The mod-
ulated spatial features are passed to a 2-layer
MLP for final pixel-wise land-cover classifica-
tion. This design allows the model to benefit
from both local spatial cues captured by the
diffusion model and detailed spectral infor-
mation unique to hyperspectral imagery.

3.2. Diffusion Model for Spatial
Feature Extraction

To extract spatial features from hyperspec-
tral images (HSI), we first select three spec-
tral bands corresponding to the red, green,
and blue wavelengths to construct a pseudo-
RGB image. We then employ a pre-
trained diffusion model (trained on Ima-
geNet) Dhariwal and Nichol (2021); Nichol
et al. (2021); Ranftl et al. (2021). This
model is based on a U-Net architecture, con-
sisting of an encoder and a decoder. The
decoder integrates information from the en-
coder through skip connections and contains
12 layers with varying resolutions and chan-
nel sizes, including attention mechanisms
at specific scales to capture both local and
global dependencies. We choose a 64 × 64
input resolution to align with the patch-
based nature of land-cover mapping, where
large images are divided into small patches
for dense classification. This resolution not
only reduces computational cost, but also
matches the training scale of the diffusion
model, which is optimized to reconstruct lo-
cal spatial structures—making it particularly
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effective in low-texture or homogeneous re-
gions common in HSI data. Additional im-
plementation details about the pre-trained
diffusion model are provided in Appendix D.
A diffusion model involves two process: in-

version (forward) and reversion (generation).
At t = 0, we extract the feature representa-
tion of the clean image x0. Using the forward
process, we can directly compute the noisy
image xt at timestep t as follows:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, 1), (1)

with the corresponding conditional distribu-
tion:

q(xt|x0) := N (xt;
√
ᾱtx0, (1− ᾱt)I). (2)

Here, ᾱt represents the cumulative noise
schedule up to timestep t.

The forward process is used because the
equation allows us to calculate xt and its dis-
tribution q(xt|x0) from x0 in a single step.
This contrasts with the progressive genera-
tion process, which requires iterative com-
putation of intermediate states, making the
forward process more efficient for feature ex-
traction in large-scale image processing.
Choosing the appropriate timestep t is

crucial. Some studies suggest that early
timesteps balance the original image and
noise, providing richer feature representa-
tions Baranchuk et al. (2021). However, the
optimal timestep is still under exploration.
While t = 0 may retain original features best
Xu et al. (2023), adding a bit of noise might
enhance feature extraction Luo et al. (2023).
We will first experiment with t = 0, 50, and
100 in Section 4.3 and then conduct an ab-
lation study to evaluate its efficacy on trans-
ferability of different timestep in Section 4.5.

3.3. Pre-trained Diffusion Model for
Geospatial Imagery

Given that geospatial images exhibit signifi-
cant disparities from the natural images typ-
ically used to pre-train diffusion models, a

key question arises: can these pre-trained dif-
fusion models effectively extract the spatial
features needed from geospatial imagery?

Low-Level Features: These are cap-
tured by the initial layers of the network
and typically include basic patterns such as
edges, textures, and simple shapes. In the
context of the U-Net decoder, this would cor-
respond to a layer close to the output (e.g.
layer 9-11, with layer numbered from bottom
to up).

High-Level Features: These are cap-
tured by the deeper layers of the network
and involve more complex and abstract rep-
resentations, such as parts of objects or en-
tire objects. In the context of the U-Net de-
coder,this would generally correspond to de-
coder layers closer to the bottom of the UNet
(e.g., layers 2-5)

According to Long et al. (2015), deep mod-
els’ lower-level features have high transfer-
ability in domain adaptation. In the diffu-
sion model U-Net architecture context, it’s
reasonable to conclude that the diffusion
model’s U-Net decoder, with its upper side
(layer 9-11) corresponding to low-level fea-
tures, can still effectively capture spatial fea-
tures for geospatial image analysis tasks, de-
spite the significant domain discrepancy.

3.4. Efficacy of Low-Level Features

Our goal is to evaluate the transferability
of features extracted from a pre-trained dif-
fusion model in the context of hyperspec-
tral land-cover mapping. Specifically, we in-
vestigate whether spatial features obtained
from shallow decoder layers and low-noise
timesteps generalize better across domains.

Features extracted from a pre-trained dif-
fusion model exhibit a dual hierarchy formed
by both the model architecture and the de-
noising process. The spatial hierarchy is re-
flected across U-Net decoder layers: deeper
layers encode high-level semantic features
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Figure 2: Both dataset performance metrics
peak at higher layers, capturing low-level
features. (a) Augsburg: performance
peaks at layer 10 (timestep 0). (b) Berlin:
performance peaks at layer 11 (timestep 50).

aligned with the pre-training domain, while
shallower layers retain low-level spatial de-
tail that is often more general and transfer-
able. The temporal hierarchy arises across
denoising timesteps: features at high-noise
timesteps capture coarse, global structure,
whereas those at low-noise timesteps recover
finer, local details. Given the domain dis-
crepancy between natural images used for
pre-training and the target geospatial im-
agery, we hypothesize that low-level fea-
tures (extracted from shallow decoder lay-
ers and low-noise timesteps) remain effective
and transferable, as visualized in Appendix
A.

To examine spatial transferability, we ex-
tract pixel-level features from decoder lay-
ers 2 to 11, where lower layers (2–5) are
known to encode high-level abstractions and
upper layers (9–11) retain low-level spa-
tial patterns. These features are obtained
from pseudo-RGB input patches (64 × 64,
stride 32), passed through the frozen diffu-
sion model. A lightweight two-layer MLP is
applied to classify each pixel based on the
extracted feature vector.
This setup enables a systematic evaluation

of feature transferability across both spatial
and temporal axes of the diffusion model. We
use overall accuracy (OA), average accuracy
(AA), and kappa coefficient (KC) to assess
which layer–timestep combinations yield the
most transferable features. Full results and
analysis are presented in Section 4.5.

3.5. Spectrally-Conditioned Spatial
Modulation

We propose a spectrally-conditioned spatial
modulation mechanism using Feature-wise
Linear Modulation (FiLM) to adapt spatial
features based on per-pixel spectral input. A
frozen pretrained diffusion model is used to
extract spatial feature vectors f spatial

i ∈ Rd

from pseudo-RGB image patches. These spa-
tial features capture structural and contex-
tual patterns but lack detailed spectral in-
formation.
To incorporate spectral context, each

pixel’s hyperspectral signature si ∈ Rb,
where b denotes the number of spectral
bands, is passed through a lightweight spec-
tral encoder to produce a compact embed-
ding. This embedding is then processed by a
separate MLP to regress the FiLM modula-
tion parameters: a scaling vector γ(si) ∈ Rd

and a shifting vector β(si) ∈ Rd. These pa-
rameters are applied to the corresponding
spatial feature vector as follows:

f̂i = γ(si) · f spatial
i + β(si). (3)
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This pixel-wise conditioning enables the
model to dynamically adapt spatial repre-
sentations using the spectral characteristics
of each pixel. Compared to traditional fu-
sion methods such as concatenation or sum-
mation, FiLM allows for more flexible and
learnable cross-modal interaction, leading to
improved performance in land-cover classifi-
cation tasks under limited supervision. An
overview of this fusion strategy is illustrated
in Figure 1.

GeoDiffNet-F: Extending Diffusion
Features with Spectral Reflectance
Information. Building on the spectrally-
conditioned spatial modulation framework
described above, we define GeoDiffNet-F
as our final architecture for pixel-wise
land-cover classification. Each pixel’s hyper-
spectral signature is first encoded through a
shallow MLP network, followed by an MLP
that regresses FiLM modulation parameters.
These parameters adapt the spatial features
extracted from a frozen diffusion model,
enabling spectral-to-spatial conditioning.
The modulated features are passed to a
lightweight classifier for prediction. As
shown in Figure 1, this formulation en-
hances spatial representations using spectral
context, resulting in improved performance
under domain shift and low-label regimes.

4. Experimental Setup and Results

4.1. Dataset

To validate the proposed method, we
use two publicly available hyperspectral
datasets,Augsburg and Berlin,capturing ur-
ban and rural regions in Germany Hong et al.
(2021b).

The Augsburg dataset was collected using
the HySpex sensor and contains 180 spectral
bands covering wavelengths from 0.4–2.5 µm.
It has a spatial resolution of 30m GSD and
an image size of 332× 485 pixels.

Table 1: Training and testing samples for the
Augsburg dataset.

Class Train Count Test Count

Forest 146 13,361
Residential Area 264 30,065
Industrial Area 21 3,830
Low Plants 248 26,609
Allotment 52 523
Commercial Area 7 1,638
Water 23 1,507

Total 761 77,533

Table 2: Training and testing samples for the
Berlin dataset.

Class Train Count Test Count

Forest 443 54,511
Residential Area 423 268,219
Industrial Area 499 19,067
Low Plants 376 58,906
Soil 331 17,095
Allotment 280 13,025
Commercial Area 298 24,526
Water 170 6,502

Total 2,820 461,851

The Berlin dataset, synthesized from
HyMap HSI data to resemble EnMAP spec-
tral characteristics, contains 244 bands over
the same spectral range, with a resolution of
30m GSD and dimensions of 797×220 pixels.

We adopt the original train/test splits
from Hong et al. (2021b), summarized in Ta-
ble 1 and Table 2, to ensure consistency and
enable direct comparison with prior work
Wang et al. (2022).

4.2. Implementation Details

Pre-trained Diffusion Model. We use the
pre-trained diffusion model from Dhariwal
and Nichol (2021) with a 64× 64 patch size.
This choice leverages the pretrained back-
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bone without introducing additional train-
able parameters, while providing abundant
spatial context—over 30× larger than the
typical 11 × 11 HSI patches used in geospa-
tial tasks Ahmad et al. (2020)—allowing the
model to capture long-range dependencies
more effectively.

To utilize a pre-trained diffusion model,
two decisions must be made: selecting be-
tween the encoder or decoder, and choos-
ing between the forward or reverse process.
We opt for the decoder, as in the U-Net
architecture, the decoder integrates feature
maps from the encoder via skip connections
Baranchuk et al. (2021). Forward pro-
cess is opted for feature extraction because
it operates in a single timestep, making it
more efficient than the progressive reverse
process while achieving comparable perfor-
mance Zhong et al. (2024); Luo et al. (2023).

Data Preparation. To prepare pseudo-
RGB inputs for GeoDiffNet, we selected
three representative spectral bands —- bands
40, 30, and 15 for Berlin, and bands 21, 11,
and 6 for Augsburg —-since they approxi-
mately correspond to red, green, and blue
wavelengths in the visible spectrum. This
choice facilitates intuitive visualization and
aligns with the RGB distribution seen during
diffusion model pretraining. Hyperspectral
images were divided into overlapping 64×64
patches with a stride of 32. Padding was ap-
plied to preserve spatial coverage and mini-
mize edge artifacts.

GeoDiffNet. Each 64 × 64 pseudo-RGB
patch was processed using a frozen pre-
trained diffusion model. Decoder activations
from layers 2 to 11 were resized to patch res-
olution for pixel-level alignment. For each la-
beled pixel, the corresponding spatial feature
was used to train a two-layer MLP classi-
fier, enabling evaluation across different lay-
ers and timesteps.

Spectral Branch. Each labeled pixel’s
spectral reflectance vector (180 bands for
Augsburg, 244 for Berlin) was passed
through a shallow MLP encoder. The out-
put was used to regress FiLM parame-
ters—scaling (γ) and shifting (β)—for fea-
ture modulation.

GeoDiffNet-F. We applied FiLM mod-
ulation to the frozen spatial features using
the spectral FiLM parameters. The mod-
ulated features were passed through a two-
layer MLP for final pixel-wise classification.
Only the spectral branch and classifier were
trained; the diffusion model remained frozen.

Training and Inference GeoDiffNet
was trained to evaluate the effectiveness of
frozen diffusion features, while GeoDiffNet-
F was trained by optimizing the spectral
branch—including the encoder and FiLM pa-
rameter regressor—and the classification lay-
ers, while keeping the diffusion-based spatial
backbone frozen. We used a learning rate of
0.003, batch size of 64, and trained for up to
10 epochs with early stopping if no valida-
tion improvement occurred within 1000 iter-
ations.

During inference, large geospatial images
were divided into 64 × 64 patches with a
stride of 32, creating overlapping regions.
Pixel-wise predictions in overlapping areas
were aggregated using max-voting to ensure
smooth and accurate classification.

4.3. Evaluating the Efficacy of
Low-Level Features

Qualitatively, as demonstrated in Figure 3
and Figure 4, using low-level feature lay-
ers, such as layer 11 for Berlin and layer 10
for Augsburg, GeoDiffNet’s segmentation re-
sults are highly effective.

Compared to the ground truth maps,
using pre-trained diffusion model-extracted
low-level features only, GeoDiffNet produces
sharp and well-defined boundaries between
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(a) RGB (b) Train Label (c) Ground Truth (d) GeoDiffNet (e) GeoDiffNet-F

Unlabeled Forest Residential Industrial Low Plants Soil Allotment Commercial Water

Figure 3: Visualization on Berlin HSI: (a) RGB image, (b) Training label map, (c) Ground
truth, (d) GeoDiffNet, and (e) GeoDiffNet-F.

different land cover classes, accurately cap-
turing intricate details. This highlights
GeoDiffNet’s capability to enhance spatial
resolution and classification precision. More
visualizations across different layers of com-
parison can be found in Appendix B.

Quantitively, from Table 4 and Table 3 ,
GeoDiffNet’s low-level features, extracted us-
ing only HSI RGB 3 bands at higher layers,
outperform several SOTA models that even
rely on additional modalities in conjunction
with HSI. For the Augsburg dataset, GeoD-
iffNet achieves an overall accuracy (OA) of
90.98% and an average accuracy (AA) of
65.05%, surpassing MIFNet and DFINet.
For the Berlin dataset, GeoDiffNet records

an OA of 72.15% and an AA of 60.74%,
exceeding ContextCNN and comparable to
DFINet.

Despite the significant disparity presented
by geospatial imagery compared to the im-
ages that the pre-trained model has seen, as
shown in GeoDiffNet’s low-level features are
highly effective. This proves our hypothesis
that extracted low-level features have great
transferability.

These results underscore the superior per-
formance of GeoDiffNet’s higher-layer low-
level features, highlighting the model’s abil-
ity to achieve high classification accuracy
and distinguish between similar land cover
classes only using a subset of available chan-

9



Hu Banerjee Prasad

Table 3: Performance comparison on the Berlin dataset. TBCNN Xu et al. (2018),
S2FL Hong et al. (2021b), ContextCNN Lee and Kwon (2017), DFINet Gao et al. (2021),
and MIFNet Wang et al. (2022) are prior methods. GeoDiffNet uses spatial features from
diffusion layer 11 of pseudo-RGB HSI; GeoDiffNet-F incorporates fused HSI spectral and
spatial features.

Method Modality Forest Res. Indust. L.Plants Soil Allot. Comm. Water OA (%) AA (%) KC

TBCNN HSI 71.52 60.80 69.58 68.57 80.39 97.55 35.25 82.77 63.85 69.55 0.3994
S2FL HSI+SAR+DSM 83.30 57.39 48.53 77.16 83.84 57.05 31.02 61.57 62.23 62.48 0.4877
ContextCNN HSI+SAR 77.22 63.69 61.44 73.77 87.22 82.88 31.13 74.24 66.31 68.95 0.5403
DFINet HSI+SAR 68.95 67.52 43.42 81.77 75.58 80.05 40.94 79.87 67.93 67.26 0.5522
MIFNet HSI+SAR 68.77 76.90 50.75 81.10 65.59 75.69 29.96 82.96 72.54 66.47 0.5981
GeoDiffNet HSI 75.35 77.82 53.41 71.50 75.12 36.86 40.41 54.74 72.15 60.65 0.5850
GeoDiffNet-F HSI 80.21 79.33 26.01 84.80 82.15 28.68 41.53 67.99 74.44 61.34 0.6132

Table 4: Performance comparison on the Augsburg dataset. TBCNN Xu et al. (2018),
S2FL Hong et al. (2021b), ContextCNN Lee and Kwon (2017), DFINet Gao et al. (2021),
and MIFNet Wang et al. (2022) are prior methods. GeoDiffNet uses spatial features from
diffusion layer 10 of pseudo-RGB HSI; GeoDiffNet-F incorporates fused HSI spectral and
spatial features.

Method Modality Forest Res. Indust. L.Plants Allot. Comm. Water OA (%) AA (%) KC

TBCNN HSI 94.71 96.37 69.30 81.58 62.52 12.70 16.39 86.12 61.94 0.8024
S2FL HSI+SAR+DSM 88.80 86.36 38.90 90.53 68.64 8.97 47.45 83.36 61.38 0.7626
ContextCNN HSI+SAR 94.57 97.25 51.46 86.25 56.02 13.68 21.57 87.24 60.11 0.8182
DFINet HSI+SAR 95.38 95.84 69.79 86.65 64.05 13.86 28.47 88.06 64.86 0.8298
MIFNet HSI+SAR 92.28 96.53 59.53 90.79 59.46 17.58 51.43 89.21 66.80 0.8453
GeoDiffNet HSI 92.78 98.04 61.46 95.98 86.42 6.35 14.33 90.98 65.05 0.8682
GeoDiffNet-F HSI 91.77 98.02 64.18 95.67 86.42 12.33 28.80 91.23 68.17 0.8726

nels in HSI, in contrast to other models that
utilize the full spectrum and some that even
require multiple modalities in addition to
HSI.

4.4. Efficacy of GeoDiffNet-F

Qualitatively, as shown in Figure 4 and
Figure 3, GeoDiffNet-F exhibits clear im-
provements over GeoDiffNet for both Augs-
burg and Berlin datasets.

Quantitatively, as shown in Table 4
and Table 3, GeoDiffNet-F with FiLM-based
spectral fusion achieves the highest overall
accuracy (OA) and Kappa coefficient (KC)
on both datasets. Although its AA on Berlin
is slightly lower than MIFNet, OA and KC
provide a more balanced evaluation under
class imbalance, highlighting the robustness
of our method.

The strong performance of the
GeoDiffNet-F fusion model is largely
attributable to the spatial features extracted
by GeoDiffNet. By effectively exploiting
the spatial features inherent in HSI data,
GeoDiffNet-F not only surpasses other
SOTA fusion methods that depend on mul-
tiple data sources but also demonstrates the
significant potential of GeoDiffNet-extracted
spatial features in advancing hyperspectral
image analysis.

4.5. Ablation Study: Timestep and
Decoder Layer

To investigate critical design choices, we con-
ducted a detailed ablation study on GeoD-
iffNet, focusing specifically on how timestep
selection (noise levels) and decoder layer
depth (spatial resolution) affect the quality
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(a) Pseudo-RGB (b) Train label (c) Ground-truth (d) GeoDiffNet (e) GeoDiffNet-F

Unlabeled Forest Residential Area Industrial Area Low Plants Allotment Commercial Area Water

Figure 4: Visualization on Augsburg HSI: (a) Pseudo-RGB image, (b) Training label map,
(c) Ground-truth, (d) GeoDiffNet, and (e) GeoDiffNet-F.

and transferability of extracted spatial fea-
tures.

Impact of Timestep (Noise Level) Dif-
fusion models introduce varying noise lev-
els at different timesteps during the for-
ward process. Lower timesteps correspond to
cleaner images, whereas higher timesteps in-
troduce progressively more noise. Our anal-
ysis as illustrated clearly in Appendix C in-
dicates that early timesteps generally exhibit
higher feature transferability due to proxim-
ity to the original data distribution, consis-
tent with the Chain of Forgetting theorem
Zhong et al. (2024).

However, our empirical findings highlight
a nuanced observation: while clean images
at timestep 0 yield optimal performance for
Augsburg, a small amount of added noise
at timestep 50 enhances feature extraction
for Berlin. This aligns with previous stud-
ies Xu et al. (2023); Luo et al. (2023), which
suggest that minimal noise can help retain
critical spatial details, effectively balancing
high-frequency information and smoothness
for improved classification accuracy. Thus,
while early timestep,low noise has more
transferability, optimal timestep selection is
not universally minimal and depends heavily
on dataset-specific characteristics, reinforc-

ing the necessity of carefully tuning this pa-
rameter.

Impact of Decoder Layer (Spatial Res-
olution) As diffusion models decode from
lower to higher resolutions through progres-
sive layers, deeper decoder layers yield more
spatially detailed and accurate features. Our
experiments demonstrate that higher layers
consistently provide more informative rep-
resentations, resulting in improved classi-
fication accuracy and better generalization
to geospatial imagery. Specifically, optimal
spatial feature extraction was achieved at
layer 10 for Augsburg and layer 11 for
Berlin (see detailed quantitative and quali-
tative analyses in Appendix B).

5. Conclusion

We demonstrate that pre-trained diffusion
models can effectively transfer spatial rep-
resentations to hyperspectral imagery with-
out domain-specific fine-tuning. GeoD-
iffNet achieves strong pixel-level classifi-
cation performance using only lightweight
classifiers and minimal labeled data. By
introducing FiLM-based spectral modula-
tion, GeoDiffNet-F further improves perfor-
mance through dynamic spatial–spectral fu-
sion. Our analysis highlights that early de-

11
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coder layers and lower noise timesteps yield
the most transferable features, underscor-
ing the potential of diffusion features as ro-
bust, label-efficient representations for re-
mote sensing.

References

Muhammad Ahmad, Adil Mehmood Khan,
Manuel Mazzara, Salvatore Distefano,
Mohsin Ali, and Muhammad Shahzad Sar-
fraz. A fast and compact 3-d cnn for hyper-
spectral image classification. IEEE Geo-
science and Remote Sensing Letters, 19:
1–5, 2020.

Peri Akiva, Matthew Purri, and Matthew
Leotta. Self-supervised material and tex-
ture representation learning for remote
sensing tasks. In Proceedings of the
IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR),
pages 8203–8215, June 2022.

C. Ayala, R. Sesma, C. Aranda, and
M. Galar. Diffusion models for re-
mote sensing imagery semantic segmen-
tation. In Proceedings of the Confer-
ence on Remote Sensing and Imaging,
Pamplona, Spain, 2023. Tracasa Instru-
mental, Institute of Smart Cities (ISC),
Public University of Navarre. Email:
{cayala, rsesma, caranda}@itracasa.es,
mikel.galar@unavarra.es.

Wei Bai, Xinyu Zhang, Long Ma, Wei Hong,
and Jian Yang. Conditional diffusion for
sar to optical image translation. Remote
Sensing, 14(10):2380, 2022.

Wele Gedara Chaminda Bandara,
Nithin Gopalakrishnan Nair, and
Vishal M Patel. Ddpm-cd: Denois-
ing diffusion probabilistic models as
feature extractors for change detection.
arXiv preprint arXiv:2206.11892, 2022.

Dmitry Baranchuk, Ivan Rubachev, Andrey
Voynov, Valentin Khrulkov, and Artem
Babenko. Label-efficient semantic seg-
mentation with diffusion models. arXiv
preprint arXiv:2112.03126, 2021.

Mark Chen, Alec Radford, Rewon Child,
Jeffrey Wu, Heewoo Jun, David Luan,
and Ilya Sutskever. Generative pretrain-
ing from pixels. In International confer-
ence on machine learning, pages 1691–
1703. PMLR, 2020.

Ning Chen, Jun Yue, Leyuan Fang, and
Shaobo Xia. Spectraldiff: A generative
framework for hyperspectral image classifi-
cation with diffusion models. IEEE Trans-
actions on Geoscience and Remote Sens-
ing, 61:1–16, 2023.

Prafulla Dhariwal and Alexander Nichol.
Diffusion models beat gans on image syn-
thesis. Advances in neural information
processing systems, 34:8780–8794, 2021.

Yunhao Gao, Wei Li, Mengmeng Zhang,
Jianbu Wang, Weiwei Sun, Ran Tao, and
Qian Du. Hyperspectral and multispec-
tral classification for coastal wetland us-
ing depthwise feature interaction network.
IEEE Transactions on Geoscience and Re-
mote Sensing, 60:1–15, 2021.

Kaiming He, Xinlei Chen, Saining Xie, Yang-
hao Li, Piotr Dollár, and Ross Girshick.
Masked autoencoders are scalable vision
learners. In Proceedings of the IEEE/CVF
conference on computer vision and pattern
recognition, pages 16000–16009, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel.
Denoising diffusion probabilistic models.
Advances in neural information processing
systems, 33:6840–6851, 2020.

Danfeng Hong, Zhu Han, Jing Yao, Lianru
Gao, Bing Zhang, Antonio Plaza, and Jo-
celyn Chanussot. Spectralformer: Re-

12



Label-Efficient Hyperspectral Image Classification using Diffusion Features

thinking hyperspectral image classification
with transformers. IEEE Transactions on
Geoscience and Remote Sensing, 60:1–15,
2021a.

Danfeng Hong, Naoto Yokoya, Jocelyn
Chanussot, and Xiao Xiang Zhu. Multi-
modal remote sensing benchmark datasets
for land cover classification with a shared
and specific feature learning model. IS-
PRS Journal of Photogrammetry and Re-
mote Sensing, 178:137–150, 2021b.

Satish Kumar, Ivan Arevalo, ASM Iftekhar,
and B S Manjunath. Methanemapper:
Spectral absorption aware hyperspectral
transformer for methane detection. In Pro-
ceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition
(CVPR), pages 17609–17618, June 2023.

H. Lee and H. Kwon. Going deeper with
contextual cnn for hyperspectral image
classification. IEEE Transactions on Im-
age Processing, 26(10):4843–4855, October
2017.

Miaoyu Li, Ji Liu, Ying Fu, Yulun Zhang,
and Dejing Dou. Spectral enhanced rect-
angle transformer for hyperspectral im-
age denoising. In Proceedings of the
IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR),
pages 5805–5814, June 2023.

Wei Li, Saurabh Prasad, James E Fowler,
and Lori Mann Bruce. Locality-preserving
discriminant analysis in kernel-induced
feature spaces for hyperspectral image
classification. IEEE Journal of Selected
Topics in Applied Earth Observations and
Remote Sensing, 5(1):153–166, 2012.

Sihan Liu, Yiwei Ma, Xiaoqing Zhang,
Haowei Wang, Jiayi Ji, Xiaoshuai Sun, and
Rongrong Ji. Rotated multi-scale inter-
action network for referring remote sens-
ing image segmentation. In Proceedings of

the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages
26658–26668, 2024.

Mingsheng Long, Yue Cao, Jianmin Wang,
and Michael I Jordan. Learning transfer-
able features with deep adaptation net-
works. International conference on ma-
chine learning, pages 97–105, 2015.

Mingsheng Long, Han Zhu, Jianmin Wang,
and Michael I Jordan. Unsupervised do-
main adaptation with residual transfer
networks. Advances in neural information
processing systems, 29, 2016.

Grace Luo, Lisa Dunlap, Dong Huk Park,
Aleksander Holynski, and Trevor Dar-
rell. Diffusion hyperfeatures: Searching
through time and space for semantic corre-
spondence. Advances in Neural Informa-
tion Processing Systems, 36:47500–47510,
2023.

Alexander Q Nichol, Prafulla Dhariwal,
Aditya Ramesh, Pranav Shyam, Pamela
Mishkin, Bob McGrew, Ilya Sutskever,
and Mark Chen. Glide: Towards pho-
torealistic image generation and editing
with text-guided diffusion models. arXiv
preprint arXiv:2112.10741, 2021.

Li Pang, Xiangyu Rui, Long Cui, Hongzhong
Wang, Deyu Meng, and Xiangyong Cao.
Hir-diff: Unsupervised hyperspectral im-
age restoration via improved diffusion
models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pat-
tern Recognition, pages 3005–3014, 2024.

Ethan Perez, Florian Strub, Harm De Vries,
Vincent Dumoulin, and Aaron Courville.
Film: Visual reasoning with a general
conditioning layer. In Proceedings of the
AAAI conference on artificial intelligence,
volume 32, 2018.

13



Hu Banerjee Prasad

Saurabh Prasad, Ming Cui, Wei Li, and
James E Fowler. Segmented mixture-
of-gaussian classification for hyperspectral
image analysis. IEEE Geoscience and Re-
mote Sensing Letters, 11(1):138–142, 2014.

Saurabh Prasad, Jocelyn Chanussot, and
Jun Li. Advances in Machine Learning and
Image Analysis for GeoAI. Elsevier, Am-
sterdam, 2024. ISBN 9780443190773.
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Appendix

In Appendix A, we provide visualizations of
the spatial features extracted by the diffusion
model.
In Appendix B, We provide a detailed

analysis of model performance over different
layers of the diffusion model.
In Appendix C, we provide an analysis of

model performance as a function of different
timesteps in the diffusion model.
In Appendix D, we summarize the pre-

trained model used for feature extraction,
detailing the resolution, channels, and atten-
tion at each decoder layer.
Code Availability. Our code is

publicly available at https://github.com/

hutuhehe/diffusion_hyperspectral.

Appendix A. Diffusion Spatial
Feature Visualization

We present k-means clustering results (k =
6) on decoder features extracted from Layers
6–11 of a pretrained diffusion model, across
timesteps from T = 0 to T = 200. Clus-
tering is performed on a 64×64 pseudo-RGB
patch sampled from the Berlin hyperspectral
dataset, centered on the Messe Berlin con-
vention center. Due to the low spatial reso-
lution and limited texture in the input, ob-
ject boundaries are not clearly visible. For
reference, we include a high-resolution satel-
lite image from Google Earth (circa 2009) to
provide context on the actual scene layout.

Despite the degraded input quality, the
diffusion-derived features produce semanti-
cally coherent clusters. Lower and intermedi-
ate decoder layers (e.g., Layers 6–7) tend to
segment broad, coarse regions, while higher
layers (e.g., Layers 9–11) better delineate ob-
ject boundaries and suppress noise. This pro-
gression illustrates a shift from high-level ab-
straction in earlier layers to more detailed,
spatially localized information in later lay-
ers.

Appendix B. Detailed Analysis for
Dataset Augsburg
and Berlin Over
Layers

B.1. Augsburg Dataset

B.1.1. Visualization

In this experiment, we extract spatial fea-
tures using the diffusion model at different
layers and a fixed time-step 0, and evaluate
layer informativeness based on performance.
As shown in Figure 6, the figure illustrates
the test labels and the inference (prediction)
from the key informative layers (Layers 2, 5,
8, and 10) from the GeoDiffNet model for
the Augsburg dataset. By comparing across
different layers, we observe that as the lay-
ers progress higher, they become more in-
formative. The progression through the lay-
ers demonstrates an increasing level of de-
tail and accuracy in feature capture. Specif-
ically, higher layers (Layer 10) exhibit more
refined and precise feature representations,
resulting in clearer delineations and more ac-
curate classifications compared to the coarser
and less detailed representations in the lower
layers.

B.1.2. Performance as a function of
diffusion model layers at
time-steps 0, 50 and 100

Quantitatively, as shown in Table 5, Table 6
and Table 7, the analysis of U-Net layer per-
formance in the diffusion model for the Augs-
burg dataset across timesteps 0, 50, and 100
demonstrates a clear trend: both overall and
per-class performance metrics improve for
higher layers, peaking around Layer 10/layer
11. Per class metrics all show significant
gains at higher layers, indicating enhanced
classification precision and agreement.
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Reference Layer T=0 T=50 T=100 T=200

RGB patch

(64×64)

Layer 6

Layer 7

Layer 8

HS Reference

(Google Earth)

Layer 9

Layer 10

Layer 11

Figure 5: Feature clustering across decoder layers and timesteps. K-means cluster-
ing (k=6) is applied to decoder features from layers 6–11 across timesteps T=0 to T=200.
The input is a 64×64 pseudo-RGB patch from Berlin HSI. Left: original pseudo-RGB patch
and a Google Earth reference are shown for context. Cluster colors are not consistent across
images.

Test label Layer 2 Layer 5 Layer 8 Layer 10

Unlabeled Forest Residential Area Industrial Area Low Plants Allotment Commercial Area Water

Figure 6: Visualization of the test label and informative layers (Layer 2, Layer 5, Layer 8,
Layer 10) from GeoDiffNet with a fixed timestep of 50 for the Augsburg dataset. Higher
layers capture more detailed and accurate features.

16



Label-Efficient Hyperspectral Image Classification using Diffusion Features

Table 5: Performance across U-Net decoder layers using spatial features at timestep 0 on
the Augsburg dataset.

Layer

1 2 3 4 5 6 7 8 9 10 11 12

Forest 78.29 83.17 80.12 83.47 80.52 89.14 83.23 90.49 91.62 92.78 92.70 91.98
Residential 95.36 96.69 97.16 98.49 89.51 98.39 98.92 98.59 98.25 98.04 98.12 91.00
Industrial 14.78 15.46 16.89 18.33 79.06 25.64 12.53 15.74 35.69 61.46 46.06 73.13
Low Plants 73.70 79.94 86.42 83.54 74.97 86.72 91.01 91.12 93.80 95.98 93.25 91.52
Allotment 28.30 26.00 29.45 36.71 57.17 57.17 47.23 70.36 75.72 86.42 78.97 55.64
Commercial 1.71 2.08 1.28 0.98 0.98 4.21 2.93 8.30 8.85 6.35 4.27 3.60
Water 10.35 10.22 11.15 16.39 11.41 16.39 15.66 17.85 18.91 14.33 14.80 13.07

OA (%) 76.92 80.44 82.42 82.74 78.85 85.34 85.24 86.87 88.91 90.98 89.21 86.86
AA (%) 43.21 44.79 46.07 48.27 56.23 53.95 50.22 56.06 60.41 65.05 61.17 59.99
Kappa 0.6552 0.7096 0.7381 0.7434 0.7023 0.7836 0.7792 0.8059 0.8368 0.8682 0.8424 0.8125

Table 6: Performance across U-Net decoder layers using spatial features at timestep 50
on the Augsburg dataset.

Layer

1 2 3 4 5 6 7 8 9 10 11 12

Forest 72.01 71.51 79.22 78.01 81.18 68.75 86.63 91.53 90.40 90.88 89.84 89.41
Residential 91.73 94.53 95.77 95.42 96.27 95.99 97.79 97.36 97.00 97.16 92.93 97.44
Industrial 6.76 4.23 12.09 5.27 10.23 7.18 9.95 16.53 26.34 25.56 49.19 31.70
Low Plants 58.86 67.56 70.32 74.74 74.21 79.45 77.61 78.42 82.91 81.85 76.92 75.49
Allotment 10.71 6.50 13.96 21.99 26.58 23.90 18.16 24.67 30.40 39.77 46.08 24.47
Commercial 0.12 0.00 0.73 0.98 0.92 1.04 0.73 3.17 4.27 4.33 4.40 2.56
Water 4.58 10.29 9.29 13.87 15.20 9.22 16.99 12.08 14.73 14.47 9.36 10.22

OA (%) 68.68 72.62 75.81 76.79 77.79 77.05 80.44 81.72 83.53 83.33 80.93 81.08
AA (%) 34.97 36.37 40.20 41.47 43.51 40.79 43.98 46.25 49.44 50.58 52.67 47.33
Kappa 0.526 0.585 0.639 0.651 0.667 0.653 0.708 0.730 0.757 0.755 0.727 0.723

Table 7: Performance across U-Net decoder layers using spatial features at timestep 100
on the Augsburg dataset.

Layer

1 2 3 4 5 6 7 8 9 10 11 12

Forest 68.48 72.04 81.40 66.32 80.56 87.77 91.22 91.39 92.15 88.45 90.21 83.80
Residential 94.22 92.78 94.63 90.25 94.20 93.99 79.94 95.45 94.78 96.05 94.90 94.77
Industrial 2.66 3.16 5.17 4.80 6.03 13.89 47.68 19.19 19.95 26.61 42.56 36.53
Low Plants 46.79 50.92 56.24 58.36 61.84 71.91 60.70 67.32 76.30 77.09 75.70 70.79
Allotment 8.80 5.93 3.63 19.69 19.31 21.41 20.08 25.24 26.58 26.96 22.18 23.71
Commercial 0.55 0.00 0.06 2.75 0.98 1.40 0.67 0.67 1.53 3.72 4.82 4.15
Water 1.66 4.11 8.10 6.04 6.50 12.08 11.75 12.21 10.82 11.94 11.15 9.82

OA (%) 64.63 66.14 70.47 67.00 72.21 77.35 70.28 77.24 80.23 80.75 80.90 77.73
AA (%) 31.88 32.71 35.61 35.46 38.49 43.21 44.58 44.50 46.01 47.26 48.79 46.22
Kappa 0.4600 0.4875 0.5578 0.5047 0.5830 0.6644 0.5823 0.6665 0.7085 0.7165 0.7211 0.6749
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(a) RGB Image (b) Train Label (c) Test Label (d) Layer 2 (e) Layer 5 (f) Layer 8 (g) Layer 11

Unlabeled Forest Residential Industrial Low Plants Soil Allotment Commercial Water

Figure 7: Visualization of informative layers from GeoDiffNet with a fixed timestep of 50
for the Berlin dataset. (a) RGB bands from HSI data, (b) training labels, (c) test labels
for comparison. (d)–(g): Outputs from Layer 2, 5, 8, and 11 of GeoDiffNet, with Layer 11
yielding the clearest spatial features.

Table 8: Performance across U-Net decoder layers using spatial features at timestep 0 on
the Berlin dataset.

Decoder Layer

1 2 3 4 5 6 7 8 9 10 11 12

Forest 38.56 52.75 64.47 55.10 58.41 65.10 66.25 69.62 64.92 68.34 63.12 62.90
Residential Area 59.11 53.90 50.57 64.03 62.27 68.87 66.76 57.65 64.44 66.86 60.65 43.53
Industrial Area 52.76 50.15 53.30 47.72 50.50 51.01 58.71 46.42 42.80 31.76 45.54 42.29
Low Plants 30.74 23.27 32.32 35.19 47.49 51.82 50.42 56.65 62.45 61.25 73.47 72.55
Soil 58.19 69.31 75.92 71.57 68.91 81.53 70.89 80.98 72.42 60.24 81.88 72.24
Allotment 23.13 36.28 43.72 33.67 46.69 43.95 46.32 55.62 54.58 43.20 59.08 63.15
Commercial Area 38.93 43.87 49.03 38.02 37.31 33.12 42.19 38.40 38.04 36.92 41.76 42.94
Water 26.87 30.02 36.43 38.45 48.28 57.97 46.74 55.28 44.05 33.51 65.24 56.75

OA (%) 50.23 48.91 50.46 56.30 57.73 63.22 62.27 58.22 61.68 61.89 61.76 51.24
AA (%) 41.04 44.94 50.72 47.97 52.48 56.67 56.03 57.58 55.46 50.26 61.34 57.05
Kappa 0.3246 0.3275 0.3584 0.3964 0.4218 0.4813 0.4735 0.4405 0.4684 0.4604 0.4807 0.3854
Mean IoU 0.2275 0.2372 0.2659 0.2786 0.3097 0.3434 0.3469 0.3413 0.3412 0.3227 0.3669 0.3203
Mean F1 Score 0.3493 0.3642 0.4002 0.4126 0.4515 0.4855 0.4906 0.4838 0.4815 0.4555 0.5090 0.4619

Table 9: Performance across U-Net decoder layers using spatial features at timestep 0 on
the Berlin dataset.
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Table 10: Performance across U-Net decoder layers using spatial features at timestep 50
on the Berlin dataset.

Decoder Layer

1 2 3 4 5 6 7 8 9 10 11 12

Forest 41.61 46.89 51.29 57.51 55.62 67.41 63.74 68.91 62.08 70.53 75.35 72.16
Residential 64.12 59.10 61.82 51.17 60.95 68.47 63.88 63.92 63.06 68.57 77.82 52.94
Industrial 46.45 51.75 50.74 36.78 43.42 47.00 46.77 43.74 24.27 40.98 53.41 47.86
Low Plants 22.13 31.78 26.54 31.97 37.30 39.35 35.64 46.82 61.76 53.11 71.50 62.40
Soil 52.64 71.20 68.97 70.70 67.28 70.45 73.14 74.44 61.76 79.67 75.12 65.28
Allotment 25.63 23.17 18.35 21.66 27.56 33.00 45.34 34.60 32.56 47.99 36.86 48.98
Commercial 25.30 33.70 32.83 45.36 31.65 39.32 45.81 46.20 61.74 45.94 40.41 64.45
Water 8.67 17.04 14.24 33.80 29.11 41.14 50.29 53.18 50.09 50.58 54.74 47.02

OA (%) 51.02 51.37 52.45 48.21 53.87 60.89 58.23 59.97 60.02 64.06 72.15 57.08
AA (%) 35.82 41.83 40.60 43.62 44.11 50.77 53.08 53.98 52.17 57.17 60.65 57.63
Kappa 0.3072 0.3358 0.3443 0.3228 0.3662 0.4438 0.4241 0.4462 0.4495 0.4917 0.5850 0.4360
Mean IoU 0.2054 0.2294 0.2331 0.2375 0.2522 0.3126 0.3102 0.3270 0.3341 0.3586 0.4218 0.3634
Mean F1 Score 0.3151 0.3509 0.3497 0.3632 0.3783 0.4487 0.4504 0.4677 0.4708 0.5025 0.5629 0.5077

Table 11: Performance across U-Net decoder layers using spatial features at timestep 100
on the Berlin dataset.

Decoder Layer

1 2 3 4 5 6 7 8 9 10 11 12

Forest 34.93 43.26 44.97 52.28 52.38 57.18 59.66 57.65 58.18 66.15 62.33 55.82
Residential 54.48 55.39 57.23 57.96 57.43 63.49 53.49 59.29 60.49 60.29 52.80 46.99
Industrial 42.27 32.49 28.64 18.05 30.75 37.95 38.93 41.17 36.93 39.07 40.88 40.72
Low Plants 18.32 19.48 17.04 24.92 25.01 29.01 28.15 42.90 46.14 46.99 57.17 61.16
Soil 56.90 44.43 66.18 65.56 74.41 75.75 79.67 73.89 74.60 81.11 75.01 74.26
Allotment 16.05 18.63 19.60 18.60 14.51 16.43 37.44 37.69 42.66 38.87 64.45 51.58
Commercial 26.39 36.43 44.55 47.10 49.73 51.25 53.76 55.04 52.16 51.43 47.82 65.08
Water 5.40 10.72 7.37 22.15 31.01 25.90 36.51 45.63 46.82 43.76 45.32 52.55

OA (%) 43.88 45.36 47.37 49.52 50.23 55.24 50.68 55.77 56.80 57.87 54.77 51.76
AA (%) 31.84 32.60 35.70 38.33 41.90 44.62 48.45 51.66 52.25 53.46 55.72 56.02
Kappa 0.2368 0.2631 0.2820 0.3088 0.3210 0.3748 0.3496 0.3994 0.4106 0.4260 0.4092 0.3835
Mean IoU 0.1683 0.1831 0.2005 0.2126 0.2357 0.2605 0.2611 0.3080 0.3174 0.3209 0.3434 0.3137
Mean F1 Score 0.2662 0.2860 0.3086 0.3272 0.3576 0.3851 0.3929 0.4490 0.4581 0.4609 0.4897 0.4584
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B.2. Berlin Dataset

B.2.1. Visualization

Using the same method, we test on the Berlin
dataset with a fixed timestep of 50 and eval-
uate layer informativeness based on perfor-
mance. As shown in Figure 7, it presents the
different layers (Layers 2, 5, 8, and 11) from
the GeoDiffNet model for the Berlin dataset,
comparing with the test label. higher lay-
ers provide more detailed and accurate fea-
ture representations. Specifically, higher lay-
ers (Layer 11) demonstrate more refined and
precise feature delineations and improved
classification accuracy compared to the lower
layers.

B.2.2. Peformance over layer at
timestep 0, 50, 100

Quantitatively, as shown in Table 9, Ta-
ble 10, and Table 11 , we conducted the
same experiment for the Berlin dataset, ana-
lyzing different layers across timesteps 0, 50,
and 100. The results demonstrate a consis-
tent trend: both overall and per-class perfor-
mance metrics improve with increasing layer
depth, peaking around Layer 11.

Appendix C. The Impact of Time
Steps(noise)

C.1. Initial timesteps has more
transferbilty

t = 0, we extract the feature representation
of the clean image x0. As t increases, more
noise is added, transforming the image to xt.
In this ablation study, we investigate the im-
pact of different timesteps on feature extrac-
tion in diffusion models.

There are varying perspectives on the op-
timal timestep selection, largely depending
on the dataset. According to Xu et al.
(2023), clean images, devoid of noise, ex-
tract the most optimal features. Conversely,
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Figure 8: Overall accuracy across diffu-
sion timesteps t for the Augsburg and Berlin
datasets. Accuracy is highest when features are
extracted at early timesteps, indicating stronger
transferability. Optimal performance occurs at
t=0 for Augsburg and t=50 for Berlin.

Luo et al. (2023) posits that the choice of
timestep acts as a control mechanism, de-
termining the level of high-frequency detail
retained in the images. This selection helps
to implicitly map noisy inputs to smoother
outputs, thereby enhancing classification ac-
curacy and overall model performance.

Zhong et al. (2024), in their Chain of For-
getting theorem, elucidates how a diffusion
model manages the denoising (generation)
process over time. As t → 0, the model ze-
roes in on the closest sample in the training
dataset, executing a general denoising pro-
cess with higher transferability. However, as
t → T , the model’s output aligns with the
mean of the training data distribution, ne-
cessitating domain adaptation.

Although the Chain of Forgetting theorem
primarily addresses the generation process,
Luo et al. (2023) observes that inversion (for-
ward) processes contain information analo-
gous to the generation process at the same
timestep. Based on their insights, we infer
that during the forward (inversion) process
of feature extraction, initial stages exhibit
higher transferability, although the exact op-
timal timestep remains uncertain.
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Table 12: Performance metrics for GeoDiffNet at different timesteps (0–900) using Layer
11 for spatial features extracted from the Augsburg dataset.

Class Timesteps

TS 0 TS 50 TS 100 TS 200 TS 300 TS 400 TS 500 TS 600 TS 700 TS 800 TS 900

Forest 92.78 90.88 88.45 88.35 86.03 79.46 78.62 68.71 76.38 69.34 58.06
Residential 98.04 97.16 96.05 91.66 89.92 71.60 82.82 81.19 68.07 64.68 80.77
Industrial 61.46 25.56 26.61 14.70 10.68 5.85 7.08 8.02 1.15 0.99 1.20
Low Plants 95.98 81.85 77.09 66.20 57.05 59.72 42.10 29.75 41.82 46.89 24.66
Allotment 86.42 39.77 26.96 14.53 4.97 5.54 2.29 6.12 0.76 0.96 0.00
Commercial 6.35 4.33 3.72 3.36 3.48 0.73 1.65 0.49 0.24 0.00 0.12
Water 14.33 14.47 11.94 6.44 6.17 2.46 1.99 15.13 1.59 1.46 1.33

Overall Accuracy (%) 90.98 83.33 80.75 74.51 70.03 62.35 60.55 54.28 54.01 53.21 49.88
AA (%) 65.05 50.58 47.26 40.75 36.90 32.20 30.94 29.92 27.15 26.33 23.73
Kappa Coefficient 0.8682 0.7549 0.7165 0.6216 0.5542 0.4414 0.4116 0.3359 0.3166 0.3037 0.2398
Mean IoU 0.5482 0.4124 0.3857 0.3285 0.2883 0.2396 0.2290 0.2028 0.1912 0.1854 0.1584
Mean F1 Score 0.6400 0.5092 0.4813 0.4228 0.3756 0.3211 0.3088 0.2869 0.2637 0.3023 0.2669

Table 13: Performance metrics for GeoDiffNet at different timesteps (0–900) using Layer
10 for spatial features extracted from the Berlin dataset.

Class Timesteps

TS 0 TS 50 TS 100 TS 200 TS 300 TS 400 TS 500 TS 600 TS 700 TS 800 TS 900

Forest 63.12 75.35 62.33 63.86 62.45 65.33 48.14 45.50 27.81 35.20 28.52
Residential 60.65 77.82 52.80 53.92 50.82 36.84 51.86 63.90 48.55 31.63 32.98
Industrial 45.54 53.41 40.88 34.64 50.94 49.57 59.36 64.58 50.61 33.82 18.55
Low Plants 73.47 71.50 57.17 59.39 45.71 29.62 47.40 23.84 16.94 16.56 18.83
Soil 81.88 75.12 75.01 70.45 64.22 74.76 74.21 81.00 68.87 59.61 39.60
Allotment 59.08 36.86 64.45 44.97 32.78 35.62 14.20 5.87 14.87 21.50 9.98
Commercial 41.76 40.41 47.82 41.67 31.89 35.39 22.76 10.98 19.53 14.51 21.11
Water 65.24 54.74 45.32 59.54 26.51 25.52 9.70 6.60 8.17 5.35 4.14

Overall Accuracy (%) 61.76 72.15 54.77 54.79 50.18 40.94 48.79 52.03 39.85 29.69 28.62
AA (%) 61.34 60.65 55.72 53.56 45.66 44.08 40.95 37.78 31.92 27.27 21.71
Kappa Coefficient 0.4807 0.5850 0.4092 0.4009 0.3428 0.2689 0.3032 0.2960 0.1863 0.1234 0.0912
Mean IoU 0.3669 0.4218 0.3434 0.3274 0.2930 0.2450 0.2331 0.2078 0.1595 0.1252 0.1028
Mean F1 Score 0.5090 0.5629 0.4897 0.4694 0.4254 0.3228 0.3547 0.3143 0.2573 0.2110 0.1772

C.2. Experiment amd results

We conducted experiments at initial
timesteps (0, 50, 100) and continued with
increments of 100 timesteps, with a fixed
best layer: Layer 10 for the Augsburg
dataset and Layer 11 for the Berlin dataset.
Our objective was to evaluate the trans-
ferability of features extracted during the
forward (inversion) process with different
timesteps. The evaluation result can be
seen from Table 12 and Table 13. From
Figure 8, we can see that the best timesteps
differ, with optimal performance observed at
timestep 0 for Augsburg and timestep 50 for
Berlin. However, the common observation is

that performance decreases after the initial
stages as noise increases, which matches our
initial inference.

Appendix D. Pre-trained Diffusion
Model Architecture

The pre-trained model uses OpenAI’s pre-
trained 64×64 diffusion model Dhariwal and
Nichol (2021), which can find its detailed in-
formation and be downloaded from the fol-
lowing repository:

https://github.com/openai/

guided-diffusion?tab=readme-ov-file.
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Table 14: Decoder architecture: resolution,
channels, and attention usage.

Layer Resolution Channels Attn.

1 8× 8 768 ✓
2 8× 8 768 ✓
3 16× 16 768 ✓
4 16× 16 576 ✓
5 16× 16 576 ✓
6 16× 16 576 ✓
7 32× 32 576 ✓
8 32× 32 384 ✓
9 32× 32 384 ✓
10 32× 32 384 ✓
11 64× 64 384
12 64× 64 192

In the context of geospatial images, the
64 × 64 patch size provide extensive spatial
context compared to conventional 11 × 11
patches used in fully-supervised HSI meth-
ods. Unlike traditional approaches that are
constrained to small patches due to overfit-
ting and training stability issues with limited
supervision, our pre-trained diffusion back-
bone enables effective utilization of larger
spatial contexts without data efficiency lim-
itations.
Table 14 lists the pre-trained model’s de-

coder activation dimensions at different lay-
ers. Layers are numbered from bottom to
top, including feature map resolution and
channel dimension which facilitate extracting
diffusion features at each layer. The design
choices (i.e., the resolution and the number
of channels) were determined experimentally.
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