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Abstract

Efficient sorting of plastic waste remains a critical bottleneck in recycling systems,1

with current approaches relying on manual labor or semi-automated solutions that2

contribute to large amounts of plastics ending up in landfills. Despite the rapid3

growth of the global plastic recycling market, projected to reach $120 billion by4

2030, existing sorting technologies struggle to meet demands for accuracy and5

throughput [14]. While recent ML breakthroughs show promise in waste sorting, a6

complete industrial-scale pipeline has been overlooked. We propose a novel, low-7

cost machine learning system that addresses real-world challenges in plastic sorting:8

varying material types, inconsistent lighting conditions, and contaminated surfaces.9

Our key contributions include: (1) a scalable deep learning architecture featuring10

two adaptive pipelines - one for data collection and another for classification,11

optimized for industrial deployment, (2) curation of the world’s first comprehensive12

industrial dataset of 40,000 plastic samples, and (3) an interpretable approach13

leveraging Grad-CAM and t-SNE visualizations to tackle challenging cases like14

dark and distorted plastics. The proposed sorting system demonstrates commercial15

viability by processing 200 samples per hour across five plastic types common in16

municipal solid waste (MSW), with potential earnings of $30 per ton.17

1 Introduction18

The growing crisis in plastic waste mismanagement directly impacts human health, ecosystems, and19

the climate, driven by rising levels of microplastics and nanoplastics [20, 4, 23, 11]. As recycling20

expands globally and stricter regulations limit plastic exports to developing countries [5, 6, 18],21

these limitations, alongside sustainability demands, present an excellent opportunity for a deep-22

learning solution tailored to this unique situation. Current Material Recovery Facilities (MRFs) face23

significant challenges with accurately sorting mixed plastics, black plastic films, and various polymer24

types, with studies indicating misclassification rates as high as 35% for colored plastics and a 5%25

rejection rate of sorted bales due to contamination [12]. Existing sorting approaches broadly fall26

into three major categories: manual, semi-automated systems, and automated. While manual sorting27

offers high accuracy for complex materials, it suffers from low throughput and poses health risks28

to workers. Semi-automated sorting combines manual labor with machine processing improves29

efficiency compared to manual methods but still needs workers to handle contaminated materials30

missed by machines. Conversely, automated sorting systems like NIR, XRF, vision, and AI sorters31

process large volumes efficiently at a high initial cost but struggles with contaminated and deformed32

materials. The technical challenges in existing approaches sorting present several unique machine33

learning problems as shown in Table 134

Building upon successful computer vision applications in metal sorting [8, 10, 9], we present35

EcoSorter (Figure 1). Our system uses the hypothesis that there is a fundamental relationship between36
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Table 1: Challenges in material classification and our proposed solution
Challenges Proposed solution

High-intra-class variation due to deforma-
tion and contamination

Robust dataset curation that addresses these
cases, and experiments on evaluation of the
model in these cases

Complex feature extraction requirements
for visually similar materials

Deep learning architecture tuned to effec-
tively process irregular and deformed inputs

Need for robust performance under varying
industrial conditions

Integration of high frame camera with
YOLO-based segmentation to improve ob-
ject isolation for feeding the classifier

Particular difficulty with dark plastics that
absorb light and provide limited visual fea-
tures

A systematic approach to dark plastic classi-
fication through targeted data augmentation
and feature extraction

plastics’ visual and chemical properties to achieve accurate classification through specialized deep37

learning architectures. By focusing on practical deployment considerations, we maintain system38

simplicity through a basic setup of a conveyor belt, camera, and moderate computing power while39

ensuring scalability for additional sensors or computational resources. Our evaluation methodology40

employs Grad-CAM and t-SNE analysis to provide interpretability and insight into the model’s41

decision-making process, which is crucial for industrial applications where understanding failure42

modes is as important as overall accuracy.43

2 Related Work44

The Trashnet, TACO, and ZeroWaste are publicly available datasets, each offering unique advantages45

[24, 22, 1]. Trashnet provides 2,527 images across 6 categories, TACO covers a broader spectrum46

with 1,500 images in 60 categories, and ZeroWaste has 10,715 images divided into 7 classes.47

However, none of these datasets classify plastics by type, a critical factor in recycling, as even trace48

contamination (50 ppm of PVC) can render a batch of PET unusable [3]. In technical implementations,49

NIR technology has become prominent, often relying on statistical approaches or shallow ML models50

that analyze hyperspectral data [26, 13]. Although NIR is trustworthy, it struggles with multi-layer,51

dark, and contaminated plastics, and has high implementation costs. Computer vision approaches52

are emerging to address these issues, employing architectures like YOLO [19] and N-BEATS [16],53

offering promising results of 0.67% recall for black plastics and 91.7% mAP [21, 2]. Yet, these models54

focus on specific plastics under controlled conditions, overlooking the complexity of real-world MSW55

streams, where diverse plastics, contamination, and variability pose an unresolved challenge.56

3 Dataset Creation and Curation57

Our dataset includes 40,000 high-resolution images (640x465 pixels) representing five classes of58

plastics commonly found in municipal solid waste (MSW): Type 1 (PETE), Type 2 (HDPE), Type59

5 (PP), and Type 7 (Other). We emphasize challenging cases, including deformed, contaminated,60

and dark plastics. The data collection process involved MSW bales sourced from the Solid Waste61

Authority in Palm Beach, Florida. These bales were initially sorted by hand, then refined by our62

automated system, and finally validated by our team of plastic sorting researchers. Ambiguous63

cases were evaluated using a hyperspectral NIR camera at Idaho National Lab. Each object was64

imaged three times from different angles using a custom dual-lane conveyor system equipped with a65

calibrated Basler camera (acA2040-120um) featuring the Sony IMX252 CMOS sensor. The camera,66

combined with 1200 lumen lighting, delivers 120 frames per second at 3.2 MP resolution. A basic67

segmentation method ensured well-centered objects within the image frame. We curated three dataset68

variants: normal (centered on uniform background), contextual (with 15-pixel margin), and isolated69

(segmented object only). The dataset has only 35 unique Type 3 plastics due to real-world challenges.70

We addressed class imbalance through targeted augmentation and class weighting during training.71

For robust evaluation, we created a test set from a separate bale using single-shot capture per object.72

Automated outlier detection and manual verification filtered approximately 20% of initial captures,73

ensuring dataset quality while maintaining real-world applicability. This approach eliminates data74

leakage, simulates real-world deployment, and prepares the data for classifier training pipeline.75
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4 Methodology76

EcoSorter comprises of two integrated pipelines: data collection and classification as in Figure 1).77

Designed with modularity and scalability in mind, each component can be modified or enhanced78

independently, enabling continuous system improvement. The classification pipeline was devel-79

oped after evaluating various deep learning architectures, including ResNet [7] variants (18, 34, 50)80

and EfficientNetV2M [15], optimizing for both accuracy and inference speed given our hardware81

constraints (single 1080Ti GPU in the EcoSorter system). To enhance processing efficiency, we82

implemented a dual-model approach: a YOLOv5-based segmentation model for precise object iso-83

lation (particularly effective with dark plastics), followed by our classification model. This setup84

enables real-time processing while continuously expanding our dataset during operation. To ensure85

robust classification, we employed targeted data collection for underrepresented categories along86

with optimized data augmentation that preserves real-world characteristics. After experimentation,87

we selected ResNet-50 as our primary classifier, with customizations including two linear layers with88

batch normalization, LeakyReLU activation functions, and a 0.7 dropout rate. Selectively unfreezing89

the last two layers yielded 11,287,045 trainable parameters, enabling the capture of fine-grained90

material-specific features while maintaining computational efficiency. We conducted a systematic in-91

vestigation into model robustness against object deformation, focusing particularly on Type 7 plastics92

(98% Arizona tea jugs in our dataset). This analysis addresses a critical challenge in industrial plastic93

sorting: the impact of physical deformation on classification accuracy, where traditional computer94

vision approaches often fail despite unchanged chemical composition. To quantify the relationship95

between deformation variability and model robustness, we implemented a progressive training regime96

using three datasets of increasing size: T50, T75, and T100, representing training on 50%, 75%,97

and full data respectively. We analyzed predictions with confidence below 0.5 on our test set to98

create a hierarchical understanding of model behavior under increasing data exposure. The model’s99

generalization limit on deformed plastics was quantified by measuring accuracy improvements as100

more diverse samples were added, with the confidence threshold empirically determined to capture101

significant deformation effects while minimizing false positives.102

Figure 1: Complete Pipeline of the EcoSorter

5 Results and Discussion103

To establish a reliable benchmark, we evaluated all models on a distinct test set of 6,613 images104

sourced from a completely separate bale. For model interpretability, we employed t-SNE [25]105

visualization for class separation analysis and Grad-CAM [17] to verify the model’s attention to106

relevant features, critical for industrial deployment transparency. Table 1 shows the performance107

metrics across architectures.108

For industrial deployment analysis, we established key operational parameters: ResNet-50 achieved109

the highest accuracy of 87.19% with optimal dataset utilization at 75% (3,331 images) while main-110

taining real-time performance at 0.181 ms inference time. These findings were verified through111

5-fold cross-validation (p < 0.01). The t-SNE analysis revealed ResNet-50’s superior feature co-112

hesion across deformation levels, particularly evident in our controlled study with Type 7 plastics113

(Arizona tea jugs). Using Grad-CAM visualizations, we observed that pristine objects generated114
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Table 2: Performance metrics across architectures
Model Accuracy F1-Score Parameters Inference Time
ResNet-18 79.93% 0.80 4.8M 0.104 ms
ResNet-34 82.93% 0.83 9.5M 0.145 ms
ResNet-50 87.19% 0.87 11.2M 0.181 ms
EfficientNetV2-M 80.02% 0.66 0.66M 0.88 ms

sharp, localized activations on critical features, while deformed objects showed diffused activations115

predominantly focused on object edges. This analysis provided crucial insights into the model’s116

feature recognition capabilities under varying deformation conditions. Our industrial optimization117

demonstrated significant cost-efficiency improvements through several key strategies. The adaptive118

processing pipeline, defined as Ttotal = Tbase +
∑N

i=1 pi · Tspecialisti , enabled dynamic model119

loading and batch optimization for improved efficiency. Quantization and model pruning techniques120

were implemented to optimize throughput while maintaining accuracy. Our system’s economic121

viability is demonstrated through its scalable performance across multiple GPUs. While the model122

achieves an inference time of 28ms, the overall system throughput is governed by the physical con-123

straints of the sorting mechanism and data collection process. The return on investment, calculated as124

ROI =
(Aensemble−Abase)·Vthroughput·Toperation

Chardware+Cmaintenance
, helps establish deployment feasibility. The system’s125

scaling efficiency followed E(n) = S(n)
n = T1

n·Tn
, where S(n) is speedup with n processors. Detailed126

error analysis revealed that while dark and glossy surfaces showed 3.1× and 2.3× higher error rates127

respectively, our proposed approach maintained robust performance across varying surface conditions128

through our adaptive processing pipeline.129

6 Limitations130

Our system’s performance fundamentally depends on two critical aspects: data preprocessing quality131

and diversity of object representations. Our models may excel in controlled settings, but real-132

world deployment reveals challenges beyond algorithmic solutions. The class imbalance in our133

dataset, with Type 3 plastics at only 4.4% highlights a core challenge: bridging the gap between134

training data and real-world distribution. Deformation handling is a critical challenge, with model135

performance degrading non-linearly as deformation severity increases, especially for rare plastic136

types. This suggests prioritizing data collection and augmentation over model optimization for future137

improvements. Our work highlights the potential of continuous improvement in industrial settings,138

enabling dynamic model adaptation through simultaneous data collection. However, balancing139

adaptation with stability will be essential for consistent long-term performance.140

7 Conclusion141

This work presents significant advances in automated plastic sorting through a novel ML-driven142

approach for municipal solid waste management. Our comprehensive dataset of 40,000 industrial143

plastic samples, along with the dual-pipeline architecture combining data collection and classification,144

demonstrates the feasibility of deploying deep learning systems in challenging industrial environments.145

The systematic evaluation of architectures led to selecting ResNet-50, achieving 87.19% accuracy146

while maintaining real-time performance at 0.181 ms inference time. Our work bridges the gap147

between theoretical ML capabilities and industrial requirements through three key contributions: (1)148

a scalable system architecture that efficiently handles varying plastic types and lighting conditions,149

(2) an interpretable approach using Grad-CAM and t-SNE for robust classification, particularly150

demonstrated through our controlled study with Type 7 plastics, and (3) an industrially viable151

implementation of simultaneous data collection and classification through our adaptive processing152

pipeline. Looking forward, this work establishes a foundation for future improvements through153

synthetic data generation for underrepresented plastic types and continuous learning mechanisms for154

dynamic adaptation to new materials and deformation patterns.155
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8 Appendix / supplemental material248

8.1 Dataset Collection and Overview249

We bought numerous bales of municipal waste from Florida, each bale 2 consisting of different types250

of unsorted materials and weighing around 800 kg. We started the process by first hand-sorting the251

bales extensively and putting the plastics into Gaylord 3 boxes according to their types and named252

them B id, Type number where B id represents the Bin id. For protection, we wore face masks and253

hand gloves. Each bale required around two weeks to get sorted as we put in around 3 hours daily.254

Most of the time the plastics were sorted by their type engraved under the bottom of the material, in255

certain instances the plastics were too crushed or damaged, so we sent them to an NIR facility (Idaho256

National Lab) to recover the types. Each bale contributed to a different number of plastics for each257

type. Based on the external appearance of the bale, it was expected that some of them were Type 1258

heavy, and some were Type 2 heavy. Since Type 1, Type 2, and Type 5 plastics made up the majority259

of the dataset, we attempted to open the bales with greater variability.260

After completing the initial data sorting phase, we deployed the EcoSorter with a well-trained model261

to reduce manual labor. In its first trial, the machine achieved a notable sorting accuracy for Types 1,262

2, and 5 plastics, reflecting the higher representation of these classes in the training dataset. However,263

manual intervention remained necessary to maintain overall accuracy across all types. Through264

iterative trials and refinements, we reached a consistent 85% accuracy in overall sorting, significantly265

reducing processing time from 15 hours per bale to just 4 hours.266

The data collection process also started as semi-automated, utilizing the EcoSorter (Figure 6) for267

high-speed image acquisition. While automatic, human oversight ensured images are well-centered268

and visible. The sorter uses a dual conveyor system, with two Basler cameras and bright lights per269

lane. Images are captured automatically when objects are detected on the belt, except for dark plastics,270

which required manual adjustment of segmentation settings. Approximately 1,000 images were271

collected every 5 hours and 2 hours took to manually remove outliers. A total of 15,294 images from272

5 bales of plastic were captured. Utilizing these data the YOLO segmentation model was integrated273

into the EcoSorter, enabling it to capture images in real-time as they were being sorted. Much like274

the sorting process, we conducted iterative trials to refine the model, enhancing its accuracy and275

performance over time.276

Figure 2: Unsorted Bales of Municipal Solid Waste
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Figure 3: Gaylord boxes with Plastics sorted into specific types

8.1.1 Dataset Overview277

The original dataset consists of 40,000 images (Training/validation 33,387 + Testing 6,613), each at a278

resolution of 640x465 pixels. This dataset was curated to reflect real-world conditions by capturing279

multiple images of the same materials from different angles, simulating how they would appear on280

a conveyor belt. Type 3 plastics had the lowest representation, with only 35 unique objects found281

across all five bales. To compensate for this, we augmented the dataset by capturing these objects282

multiple times, altering their shapes to increase the number of samples and enhance model training.283

While the dataset included other plastic types, such as Type 4 and Type 6, we chose not to incorporate284

them into the current project due to their minimal representation. The small sample sizes for these285

types would not provide meaningful insights or robust model training for this specific task. Figure 8286

represents the overview of the whole dataset.287

We curated three dataset variations from the original images to evaluate model accuracy under288

conditions similar to the machine’s view of the objects on the conveyor belt. The contexual dataset289

consists of objects cropped to their dimensions with an additional 15-pixel margin on all sides. This290

was achieved using a standard segmentation technique, where we determined the object’s center,291

width, and height, then cropped the image with a 15-pixel margin. This approach worked well for292

most plastics, but dark plastics posed a challenge due to the dark conveyor background, requiring293

manual threshold adjustments for segmentation. The normal dataset was constructed by centering294

the cropped objects on a uniform, dark square background. Finally, the isolated dataset contains295

the objects alone, with the conveyor belt entirely removed. The test set for model evaluation was296

constructed using a completely distinct bale. We curated objects from a new bale, capturing a single297

image per object to ensure a more robust assessment of the model’s accuracy.298

Notably, this type of comprehensive dataset, derived from municipal solid waste, represents an299

unprecedented effort and holds the potential as a valuable resource for training different convolutional300

neural network models. Since our bales are predominantly sourced from Florida, the dataset is likely301

to reflect the composition of Florida’s materials. To enhance the dataset’s diversity and ensure broader302

applicability, it would be necessary to gather data from different regions. If segmentation algorithms303

within the machine were optimized for speed, this could allow for a faster conveyor belt, enabling the304

collection of a higher volume of images per second.305
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Figure 4: Dataset distribution for 40,000 images of 5 types of plastics

(a) (b) (c)

Figure 5: (a) Sample Image from Contexual Dataset (b) Sample Image from Normal Dataset (c)
Sample Image from Isolated Dataset

8.2 Model Training & Results306

We trained a total of four models across the three datasets we curated. The optimal dataset which did307

really well on the test data was the contexual dataset, so all the results presented here are based on308

that dataset. This choice was made after thoroughly training on all datasets and rigorously evaluating309

their accuracy. The following subsections will provide an overview of the architectures employed,310

detailing both their design principles and the rationale behind their selection. Additionally, we will311

explore the performance characteristics of each model in the context of our application, discussing312

their strengths and limitations with respect to processing speed, accuracy, and suitability for real-time313

sorting tasks. This will include an analysis of how these models scale with increasing data complexity314

and how they can be optimized for deployment in resource-constrained environments.315

We employed our 33k dataset to train the model, partitioning it into a 70% training set and a 30%316

validation set randomly. For every 15 epochs, we plotted the training and validation accuracy and317

loss curves, offering a visual guide to the model’s learning trajectory and helping us understand if the318

model was overfitting or underfitting. We also applied class weighting, with a particular emphasis on319

Type 3 plastics, as this class is underrepresented in our dataset. The following hyperparameters guide320
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our training processes for most of the training with different combinations till we get the best model:321

Learning Rate = 0.001,

Batch Size = 64,

Epochs = 2000,

Optimizer = SGD / Adam,

Patience = 35

(Note: The batch size was reduced when training EfficientNetv2-m due to the 480x480 pixel input size.)322

For training ResNets our data augmentation includes resizing images to 224x224 pixels, random323

affine transformations with 1.5 shear and scale, horizontal and vertical flips, color jittering (brightness,324

contrast, saturation, hue adjustments), and random rotations up to 15 degrees, followed by conversion325

to a tensor and normalization. After testing various parameters, we found this configuration to be the326

most effective. For training EfficientNetv2-m, we maintained all parameters, only adjusting the input327

size to 480x480.328

8.2.1 ResNet-18329

ResNet-18 consists of 18 layers, beginning with an initial convolutional layer, ending with a fully330

connected layer, and containing four intermediate stages in between. To adapt ResNet-18 to our task,331

where we classify across 5 categories, we modify the final fully connected layer to accommodate332

these classes. Initially, by freezing all layers except for the fully connected layer, we reduce the333

trainable parameter count to a mere 132,613. After experimentation, we determined that a more334

effective strategy is to freeze only the last two blocks of the fourth layer. This adjustment significantly335

increases the model’s capacity, raising the number of trainable parameters to 4,853,253, allowing for336

more fine-tuned feature extraction without overwhelming our computational resources. Below is the337

structure of our final Fully Connected layer for ResNet-18:338

model.fc = nn.Sequential

(
nn.Linear(512, 256),

nn.BatchNorm1d(256),

nn.ReLU(inplace=True),

nn.Linear(256, 5)

)
The figures below show the output of ResNet-18.339
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Figure 6: Loss and Accuracy curves for ResNet-18 after 1500 epochs

(a) (b)

Figure 7: (a) t-SNE features of ResNet-18 on training set, as indicated by the color: Dark Purple(Type
1), Blue(Type 2), Green(Type 3), Light Green(Type 5), Yellow(Type 7), (b) Grad-CAM heatmap
of Type 2 plastic on ResNet-18. Columns represent layers ‘layer1[1](conv1)‘, ‘layer2[1](conv1)‘,
‘layer3[1](conv2)‘, and ‘layer4[1](conv2)‘, with rows showing features extracted from each class.

8.2.2 ResNet-34340

ResNet-34 offers a well-balanced trade-off between depth and computational efficiency, making it341

an effective medium-capacity classifier. In this configuration, we freeze all layers except for the342

final two layers in the last stage, reducing the number of trainable parameters to 9,573,893. We343

introduce an additional 4,720,640 trainable parameters more than ResNet-18. Given the model’s344

depth and complexity, it can easily overfit our dataset, so we incorporate dropout rate = 0.3 in the345

final layer. This approach slows down the training process, but serves as an essential regularization346

technique, reducing the risk of overfitting. Below is the structure of the final Fully Connected Layer347

for ResNet-34:348
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model.fc = nn.Sequential

(
nn.Linear(512, 256),

nn.BatchNorm1d(256),

nn.ReLU(inplace=True),
nn.Droptout(0.3),

nn.Linear(256, 5)

)
The figures below show the output of ResNet-34:349

Figure 8: Loss and Accuracy curves for ResNet-34 after 1995 epochs
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(a) (b)

Figure 9: (a) t-SNE features of ResNet-34 on training set, as indicated by the color: Dark Purple(Type
1), Blue(Type 2), Green(Type 3), Light Green(Type 5), Yellow(Type 7), (b) Grad-CAM heatmap
of Type 2 plastic on ResNet-34. Columns represent layers ‘layer1[2](conv2)‘, ‘layer2[2](conv2)‘,
‘layer3[2](conv2)‘, and ‘layer4[2](conv2)‘, with rows showing features extracted from each class.

8.2.3 ResNet-50350

With 1 input layer and 1 output layer sandwiching 4 stages of residual blocks which contain 48 layers351

ResNet-50 is designed in bottleneck architecture. The major difference between ResNet-50 with the352

prior ones is the architectural depth it contains which makes it complex as a model allowing it to353

learn more details of an image. After freezing all layers except the last two blocks of the last layer354

we have 11,287,045 numbers of parameters which is 1,713,152 more parameters than ResNet-34.355

We experimented with various configurations to fine-tune the model, as it plays a pivotal role in the356

EcoSorter’s performance on the testing data. Our focus was on refining the architecture by introducing357

two additional layers in the final Fully Connected section, each accompanied by distinct dropout rates.358

We explored a range of activation functions, alternating between ReLU and LeakyReLU, combined359

with different dropout values to improve regularization and avoid overfitting. After multiple iterations,360

we converged on a final architecture that provided the best balance between generalization and361

performance. Below is the structure of the final Fully Connected Layer for ResNet-34:362

model.fc = nn.Sequential

(
nn.Linear(2048, 512),

nn.BatchNorm1d(512),

nn.LeakyReLU(negative_slope = 0.02, inplace=True),
nn.Dropout(0.7),

nn.Linear(512, 5)

)
The figures below show the output of ResNet-50:363
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Figure 10: Loss and Accuracy curves for ResNet-50 after 120 epochs

(a) (b)

Figure 11: (a) t-SNE features of ResNet-50 on training set, as indicated by the color: Dark
Purple(Type 1), Blue(Type 2), Green(Type 3), Light Green(Type 5), Yellow(Type 7), (b) Grad-
CAM heatmap of Type 2 plastic on ResNet-50. Columns represent layers ‘layer1[2](conv3)‘,
‘layer2[3](conv3)‘, ‘layer3[5](conv3)‘, and ‘layer4[2](conv3)‘, with rows showing features extracted
from each class.

8.2.4 EfficientNetv2-m364

EfficientNetV2-M, with 74 layers, balances performance, and computational demand, containing 54365

million parameters and 24.3 billion floating-point operations (FLOPs). EfficientNetV2-M provides366

an ideal middle ground as its’ combination of moderate depth, parameter count, and inference speed367

positions it as a strong contender against our existing classifiers, making it well-suited for rigorous368

evaluation and potential deployment in our system. Training models with pre-trained weights in369

PyTorch offers both flexibility and efficiency. In our case, we leveraged EfficientNetV2-M with370

transfer learning, freezing all layers except for last block leaving us only 0.66 million trainable371

parameters. We retained the final layer unchanged due to limited computational resources.372

The figures below show the output of EfficientNetv2-m:373
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Figure 12: Loss and Accuracy curves for EfficientNetv2-m after 60 epochs

(a) (b)

Figure 13: (a) t-SNE features of EfficientNetv2-m on training set, as indicated by the color: Dark
Purple(Type 1), Blue(Type 2), Green(Type 3), Light Green(Type 5), Yellow(Type 7), (b) Grad-CAM
heatmap of Type 2 plastic on EfficientNetv2-m. Columns represent blocks ‘second block‘, ‘third
block‘, ‘fourth block‘, and ‘final block‘, with rows showing features extracted from each class.

8.2.5 YOLO-v5374

In constructing a detection model, we transitioned from a segmentation-centric approach to a bounding375

box-based one using YOLO-v5m. The choice of the medium-sized model, with 25.1 million376

parameters, balances computational efficiency with the precision required for our specific task.377

This decision stems from the balance of dataset size, the complexity of the problem, and desired378

performance outcomes. The core shift from classifiers to YOLO lies in the dataset preparation. Each379

image now carries labels in the format:380

classID centerx centery width height

With coordinates normalized according to the image dimensions, allowing the network to generalize381

better across different input sizes. We created such a dataset from our basic segmentation, we get382

the bounding boxes of each object from the image and get the labels of those bounding boxes. After383
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training the YOLO we segment the rest of our data and calculate the time it takes. illustrates how384

well YOLO segments dark plastics, removing the need for human threshold modifications. To fully385

leverage this model, we extract the bounding boxes of the objects and pad them by approximately 25386

pixels to ensure no part of the object is cropped. We then crop the padded region and pass it to the387

classifier. The model processes each image in approximately 0.0251 seconds.388

Figure 14: Samples of YOLO segmentation on unseen dark plastics

8.3 EcoSorter389

This section explores the operational framework of the EcoSorter, the system is designed for object390

sorting and data collection simultaneously. The core architecture of the system can be segmented391

into three key components: the CPU head, the mechanical conveyor, and the air nozzles. At the392

heart of the system, the CPU head orchestrates all mechanical operations, functioning as the brain393

of the sorter. This module houses both the segmentation and the classification models, ensuring394

precise control of signals that govern the downstream processes. Built around a mid-range CPU395

AMD Ryzen 5 with a GPU 1080-Ti, the system has enough computational power for real-time396

processing. An integrated automated cooling system ensures that the temperature remains within397

operational bounds, maintaining system stability. Additionally, the CPU head is equipped with two398

Basler cameras (acA2040-120um) featuring the Sony IMX252 CMOS sensorc, 1200 lumen lighting399

arranged to provide optimal illumination during object capturing. The mechanical conveyor serves as400

the backbone of the system’s material handling, operating at a speed of 120 ft/min. This belt moves401

objects from the input to the output stage, with its speed modifiable via the CPU head to adapt to402

different operational needs. The velocity of the conveyor is a critical factor, as it directly influences403

the timing of object classification and subsequent sorting. Finally, the air nozzle system completes the404

process by physically blowing the objects to the right bins. Positioned at the end of the CPU head, the405

EcoSorter utilizes ten air nozzles, each firing in precise intervals to direct classified objects into their406

corresponding bins. The CPU head calculates the exact distance and timing for the nozzles to activate,407

ensuring that objects are sorted accurately based on their classification. Though the current iteration408

is compact, its modular design allows for scalability. The system can be expanded with a larger409

conveyor and more powerful air nozzles for high-throughput sorting, or, conversely, reduced in size410

for smaller-scale operations. This flexibility, coupled with the robust computational and mechanical411

foundation, positions the EcoSorter as a versatile solution for industrial-grade object classification.412
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Figure 15: EcoSorter

8.4 Result analysis413

8.4.1 Computational Resource Analysis414

Our computational resource analysis revealed significant variations across architectures. ResNet-415

18 required minimal computational resources (1.8B FLOPs), ResNet-34 moderate (3.6B FLOPs),416

and ResNet-50 showed balanced efficiency with 4.1B FLOPs, while EfficientNetV2-M required417

substantially higher computations (24.3B FLOPs). With a batch size of 32, ResNet-50 achieved418

our target inference time while maintaining the reported 87.19% accuracy. In comparison, while419

ResNet-18 and ResNet-34 required fewer computational resources, they showed lower accuracy420

(79.93% and 82.93% respectively). EfficientNetV2-M, despite its theoretical efficiency, required more421

computational resources while achieving lower accuracy (80.02%) in our specific use case. Memory422

analysis during training showed peak usage following Mpeak = Mbase + B × (Fmaps +Gmaps),423

where Mbase is the model’s base memory footprint, B is batch size, Fmaps and Gmaps are feature424

and gradient maps respectively.425

8.4.2 Deformation Analysis426

We focused on Type 7 plastics, specifically Arizona tea jugs (98% of our Type 7 samples), providing427

a controlled setting to study model behavior with deformed objects. We conducted a systematic428

analysis by training three progressive models using 50%, 75%, and 100% of our dataset containing429

both pristine and deformed samples.430

For each model, we analyzed samples with classification confidence below 0.5 using Grad-CAM431

visualizations. The analysis revealed distinct patterns: pristine objects generated sharp, localized432

activations on critical features, while deformed objects showed diffused or misaligned activations,433

predominantly focused on object edges. This visualization approach provided insights into how434

deformation affects the model’s feature recognition capabilities.435

Our hypothesis that increased dataset variability through inclusion of more deformed samples would436

improve model generalization was tested through this progressive training regime. The model437

trained on a more diverse dataset demonstrated better handling of deformed samples, suggesting438

that exposure to varied deformation patterns during training enhances the model’s robustness for439

real-world applications.440
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(a) (b)

Figure 16: (a) Pristine Arizona Tea Jug (Type 7) (b) Deformed Arizona Tea Jug(Type 7)

NeurIPS Paper Checklist441

The checklist is designed to encourage best practices for responsible machine learning research,442

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove443

the checklist: The papers not including the checklist will be desk rejected. The checklist should444

follow the references and follow the (optional) supplemental material. The checklist does NOT count445

towards the page limit.446

Please read the checklist guidelines carefully for information on how to answer these questions. For447

each question in the checklist:448

• You should answer [Yes] , [No] , or [NA] .449

• [NA] means either that the question is Not Applicable for that particular paper or the450

relevant information is Not Available.451

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).452

The checklist answers are an integral part of your paper submission. They are visible to the453

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it454

(after eventual revisions) with the final version of your paper, and its final version will be published455

with the paper.456

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.457

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a458

proper justification is given (e.g., "error bars are not reported because it would be too computationally459

expensive" or "we were unable to find the license for the dataset we used"). In general, answering460

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we461

acknowledge that the true answer is often more nuanced, so please just use your best judgment and462

write a justification to elaborate. All supporting evidence can appear either in the main paper or the463

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification464

please point to the section(s) where related material for the question can be found.465

1. Claims466

Question: Do the main claims made in the abstract and introduction accurately reflect the467

paper’s contributions and scope?468

Answer: [Yes]469

Justification: The main claims and contribution are reflected in both Abstract and Introduc-470

tion.471

Guidelines:472
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• The answer NA means that the abstract and introduction do not include the claims473

made in the paper.474

• The abstract and/or introduction should clearly state the claims made, including the475

contributions made in the paper and important assumptions and limitations. A No or476

NA answer to this question will not be perceived well by the reviewers.477

• The claims made should match theoretical and experimental results, and reflect how478

much the results can be expected to generalize to other settings.479

• It is fine to include aspirational goals as motivation as long as it is clear that these goals480

are not attained by the paper.481

2. Limitations482

Question: Does the paper discuss the limitations of the work performed by the authors?483

Answer: [Yes]484

Justification: The limitations are discussed in the Limitation section.485

Guidelines:486

• The answer NA means that the paper has no limitation while the answer No means that487

the paper has limitations, but those are not discussed in the paper.488

• The authors are encouraged to create a separate "Limitations" section in their paper.489

• The paper should point out any strong assumptions and how robust the results are to490

violations of these assumptions (e.g., independence assumptions, noiseless settings,491

model well-specification, asymptotic approximations only holding locally). The authors492

should reflect on how these assumptions might be violated in practice and what the493

implications would be.494

• The authors should reflect on the scope of the claims made, e.g., if the approach was495

only tested on a few datasets or with a few runs. In general, empirical results often496

depend on implicit assumptions, which should be articulated.497

• The authors should reflect on the factors that influence the performance of the approach.498

For example, a facial recognition algorithm may perform poorly when image resolution499

is low or images are taken in low lighting. Or a speech-to-text system might not be500

used reliably to provide closed captions for online lectures because it fails to handle501

technical jargon.502

• The authors should discuss the computational efficiency of the proposed algorithms503

and how they scale with dataset size.504

• If applicable, the authors should discuss possible limitations of their approach to505

address problems of privacy and fairness.506

• While the authors might fear that complete honesty about limitations might be used by507

reviewers as grounds for rejection, a worse outcome might be that reviewers discover508

limitations that aren’t acknowledged in the paper. The authors should use their best509

judgment and recognize that individual actions in favor of transparency play an impor-510

tant role in developing norms that preserve the integrity of the community. Reviewers511

will be specifically instructed to not penalize honesty concerning limitations.512

3. Theory Assumptions and Proofs513

Question: For each theoretical result, does the paper provide the full set of assumptions and514

a complete (and correct) proof?515

Answer: [Yes]516

Justification:Section 3 on Dataset Creation and Curation and section 4 on Methodology517

gives the required details on the theoretical assumptions that have been made in the paper.518

Guidelines:519

• The answer NA means that the paper does not include theoretical results.520

• All the theorems, formulas, and proofs in the paper should be numbered and cross-521

referenced.522

• All assumptions should be clearly stated or referenced in the statement of any theorems.523

• The proofs can either appear in the main paper or the supplemental material, but if524

they appear in the supplemental material, the authors are encouraged to provide a short525

proof sketch to provide intuition.526
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• Inversely, any informal proof provided in the core of the paper should be complemented527

by formal proofs provided in appendix or supplemental material.528

• Theorems and Lemmas that the proof relies upon should be properly referenced.529

4. Experimental Result Reproducibility530

Question: Does the paper fully disclose all the information needed to reproduce the main ex-531

perimental results of the paper to the extent that it affects the main claims and/or conclusions532

of the paper (regardless of whether the code and data are provided or not)?533

Answer: [Yes]534

Justification: The dataset will be publicly available as soon as the project is over and the535

details about training models, and benchmarking is given in the appendix.536

Guidelines:537

• The answer NA means that the paper does not include experiments.538

• If the paper includes experiments, a No answer to this question will not be perceived539

well by the reviewers: Making the paper reproducible is important, regardless of540

whether the code and data are provided or not.541

• If the contribution is a dataset and/or model, the authors should describe the steps taken542

to make their results reproducible or verifiable.543

• Depending on the contribution, reproducibility can be accomplished in various ways.544

For example, if the contribution is a novel architecture, describing the architecture fully545

might suffice, or if the contribution is a specific model and empirical evaluation, it may546

be necessary to either make it possible for others to replicate the model with the same547

dataset, or provide access to the model. In general. releasing code and data is often548

one good way to accomplish this, but reproducibility can also be provided via detailed549

instructions for how to replicate the results, access to a hosted model (e.g., in the case550

of a large language model), releasing of a model checkpoint, or other means that are551

appropriate to the research performed.552

• While NeurIPS does not require releasing code, the conference does require all submis-553

sions to provide some reasonable avenue for reproducibility, which may depend on the554

nature of the contribution. For example555

(a) If the contribution is primarily a new algorithm, the paper should make it clear how556

to reproduce that algorithm.557

(b) If the contribution is primarily a new model architecture, the paper should describe558

the architecture clearly and fully.559

(c) If the contribution is a new model (e.g., a large language model), then there should560

either be a way to access this model for reproducing the results or a way to reproduce561

the model (e.g., with an open-source dataset or instructions for how to construct562

the dataset).563

(d) We recognize that reproducibility may be tricky in some cases, in which case564

authors are welcome to describe the particular way they provide for reproducibility.565

In the case of closed-source models, it may be that access to the model is limited in566

some way (e.g., to registered users), but it should be possible for other researchers567

to have some path to reproducing or verifying the results.568

5. Open access to data and code569

Question: Does the paper provide open access to the data and code, with sufficient instruc-570

tions to faithfully reproduce the main experimental results, as described in supplemental571

material?572

Answer: [No]573

Justification: The data or the code isn’t provided open-access as they are property of UHV574

Technologies Inc, but sufficient instructions are given in both the Appendix and Methodology575

to reproduce.576

Guidelines:577

• The answer NA means that paper does not include experiments requiring code.578

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/579

public/guides/CodeSubmissionPolicy) for more details.580
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• While we encourage the release of code and data, we understand that this might not be581

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not582

including code, unless this is central to the contribution (e.g., for a new open-source583

benchmark).584

• The instructions should contain the exact command and environment needed to run to585

reproduce the results. See the NeurIPS code and data submission guidelines (https:586

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.587

• The authors should provide instructions on data access and preparation, including how588

to access the raw data, preprocessed data, intermediate data, and generated data, etc.589

• The authors should provide scripts to reproduce all experimental results for the new590

proposed method and baselines. If only a subset of experiments are reproducible, they591

should state which ones are omitted from the script and why.592

• At submission time, to preserve anonymity, the authors should release anonymized593

versions (if applicable).594

• Providing as much information as possible in supplemental material (appended to the595

paper) is recommended, but including URLs to data and code is permitted.596

6. Experimental Setting/Details597

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-598

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the599

results?600

Answer: [Yes]601

Justification: The core methods are defined in Methodology but the specific details on602

data split, hyperparameters and everything related to training the models are presented in603

Appendix.604

Guidelines:605

• The answer NA means that the paper does not include experiments.606

• The experimental setting should be presented in the core of the paper to a level of detail607

that is necessary to appreciate the results and make sense of them.608

• The full details can be provided either with the code, in appendix, or as supplemental609

material.610

7. Experiment Statistical Significance611

Question: Does the paper report error bars suitably and correctly defined or other appropriate612

information about the statistical significance of the experiments?613

Answer: [Yes]614

Justification: The result section goes in depth to discuss the statistical significance of the615

experiments that have been discussed in the paper.616

Guidelines:617

• The answer NA means that the paper does not include experiments.618

• The authors should answer "Yes" if the results are accompanied by error bars, confi-619

dence intervals, or statistical significance tests, at least for the experiments that support620

the main claims of the paper.621

• The factors of variability that the error bars are capturing should be clearly stated (for622

example, train/test split, initialization, random drawing of some parameter, or overall623

run with given experimental conditions).624

• The method for calculating the error bars should be explained (closed form formula,625

call to a library function, bootstrap, etc.)626

• The assumptions made should be given (e.g., Normally distributed errors).627

• It should be clear whether the error bar is the standard deviation or the standard error628

of the mean.629

• It is OK to report 1-sigma error bars, but one should state it. The authors should630

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis631

of Normality of errors is not verified.632
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• For asymmetric distributions, the authors should be careful not to show in tables or633

figures symmetric error bars that would yield results that are out of range (e.g. negative634

error rates).635

• If error bars are reported in tables or plots, The authors should explain in the text how636

they were calculated and reference the corresponding figures or tables in the text.637

8. Experiments Compute Resources638

Question: For each experiment, does the paper provide sufficient information on the com-639

puter resources (type of compute workers, memory, time of execution) needed to reproduce640

the experiments?641

Answer: [Yes]642

Justification: The details on compute resources to reproduce the experiments are given in643

Appendix.644

Guidelines:645

• The answer NA means that the paper does not include experiments.646

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,647

or cloud provider, including relevant memory and storage.648

• The paper should provide the amount of compute required for each of the individual649

experimental runs as well as estimate the total compute.650

• The paper should disclose whether the full research project required more compute651

than the experiments reported in the paper (e.g., preliminary or failed experiments that652

didn’t make it into the paper).653

9. Code Of Ethics654

Question: Does the research conducted in the paper conform, in every respect, with the655

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?656

Answer: [Yes]657

Justification: The research conducted in this paper conform with the NeurIPS Code if Ethics.658

Guidelines:659

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.660

• If the authors answer No, they should explain the special circumstances that require a661

deviation from the Code of Ethics.662

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-663

eration due to laws or regulations in their jurisdiction).664

10. Broader Impacts665

Question: Does the paper discuss both potential positive societal impacts and negative666

societal impacts of the work performed?667

Answer: [Yes]668

Justification: We discuss potential positive societal and economical impacts. Our work669

doesn’t have any negative societal impacts.670

Guidelines:671

• The answer NA means that there is no societal impact of the work performed.672

• If the authors answer NA or No, they should explain why their work has no societal673

impact or why the paper does not address societal impact.674

• Examples of negative societal impacts include potential malicious or unintended uses675

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations676

(e.g., deployment of technologies that could make decisions that unfairly impact specific677

groups), privacy considerations, and security considerations.678

• The conference expects that many papers will be foundational research and not tied679

to particular applications, let alone deployments. However, if there is a direct path to680

any negative applications, the authors should point it out. For example, it is legitimate681

to point out that an improvement in the quality of generative models could be used to682

generate deepfakes for disinformation. On the other hand, it is not needed to point out683

that a generic algorithm for optimizing neural networks could enable people to train684

models that generate Deepfakes faster.685
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• The authors should consider possible harms that could arise when the technology is686

being used as intended and functioning correctly, harms that could arise when the687

technology is being used as intended but gives incorrect results, and harms following688

from (intentional or unintentional) misuse of the technology.689

• If there are negative societal impacts, the authors could also discuss possible mitigation690

strategies (e.g., gated release of models, providing defenses in addition to attacks,691

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from692

feedback over time, improving the efficiency and accessibility of ML).693

11. Safeguards694

Question: Does the paper describe safeguards that have been put in place for responsible695

release of data or models that have a high risk for misuse (e.g., pretrained language models,696

image generators, or scraped datasets)?697

Answer: [NA]698

Justification: This paper doesn’t pose any kinds of risk in this manner as all the techniques699

are already available.700

Guidelines:701

• The answer NA means that the paper poses no such risks.702

• Released models that have a high risk for misuse or dual-use should be released with703

necessary safeguards to allow for controlled use of the model, for example by requiring704

that users adhere to usage guidelines or restrictions to access the model or implementing705

safety filters.706

• Datasets that have been scraped from the Internet could pose safety risks. The authors707

should describe how they avoided releasing unsafe images.708

• We recognize that providing effective safeguards is challenging, and many papers do709

not require this, but we encourage authors to take this into account and make a best710

faith effort.711

12. Licenses for existing assets712

Question: Are the creators or original owners of assets (e.g., code, data, models), used in713

the paper, properly credited and are the license and terms of use explicitly mentioned and714

properly respected?715

Answer: [Yes]716

Justification: All assets which are utilized in this paper is credited with references.717

Guidelines:718

• The answer NA means that the paper does not use existing assets.719

• The authors should cite the original paper that produced the code package or dataset.720

• The authors should state which version of the asset is used and, if possible, include a721

URL.722

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.723

• For scraped data from a particular source (e.g., website), the copyright and terms of724

service of that source should be provided.725

• If assets are released, the license, copyright information, and terms of use in the726

package should be provided. For popular datasets, paperswithcode.com/datasets727

has curated licenses for some datasets. Their licensing guide can help determine the728

license of a dataset.729

• For existing datasets that are re-packaged, both the original license and the license of730

the derived asset (if it has changed) should be provided.731

• If this information is not available online, the authors are encouraged to reach out to732

the asset’s creators.733

13. New Assets734

Question: Are new assets introduced in the paper well documented and is the documentation735

provided alongside the assets?736

Answer: [NA]737
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Justification: This paper isn’t releasing any new assets.738

Guidelines:739

• The answer NA means that the paper does not release new assets.740

• Researchers should communicate the details of the dataset/code/model as part of their741

submissions via structured templates. This includes details about training, license,742

limitations, etc.743

• The paper should discuss whether and how consent was obtained from people whose744

asset is used.745

• At submission time, remember to anonymize your assets (if applicable). You can either746

create an anonymized URL or include an anonymized zip file.747

14. Crowdsourcing and Research with Human Subjects748

Question: For crowdsourcing experiments and research with human subjects, does the paper749

include the full text of instructions given to participants and screenshots, if applicable, as750

well as details about compensation (if any)?751

Answer: [NA]752

Justification: Our research did not involve crowd sourcing or experimentation with human.753

Guidelines:754

• The answer NA means that the paper does not involve crowdsourcing nor research with755

human subjects.756

• Including this information in the supplemental material is fine, but if the main contribu-757

tion of the paper involves human subjects, then as much detail as possible should be758

included in the main paper.759

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,760

or other labor should be paid at least the minimum wage in the country of the data761

collector.762

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human763

Subjects764

Question: Does the paper describe potential risks incurred by study participants, whether765

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)766

approvals (or an equivalent approval/review based on the requirements of your country or767

institution) were obtained?768

Answer: [NA]769

Justification: This paper did not require any crowdsourcing or research with human.770

Guidelines:771

• The answer NA means that the paper does not involve crowdsourcing nor research with772

human subjects.773

• Depending on the country in which research is conducted, IRB approval (or equivalent)774

may be required for any human subjects research. If you obtained IRB approval, you775

should clearly state this in the paper.776

• We recognize that the procedures for this may vary significantly between institutions777

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the778

guidelines for their institution.779

• For initial submissions, do not include any information that would break anonymity (if780

applicable), such as the institution conducting the review.781
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