Enhancing Tool Calling in LLLMs with the International Tool Calling (ITC)
Dataset

Anonymous ACL submission

Abstract

Tool calling enables large language models
(LLMs) to interact with external systems,
such as APIs and databases, significantly
enhancing their capabilities beyond text
generation. This functionality is critical
for applications like customer support, data
analysis, and dynamic content generation.
While recent advancements have improved
LLM performance in tool invocation tasks,
challenges persist, particularly with datasets
that rely on simulated or inaccessible APIs and
are often limited in geographical diversity. To
address these issues, we introduce the Inter-
national Tool Calling (ITC) dataset, designed
specifically for international tool-calling
scenarios. The ITC dataset includes 3,571
APIs and 17,540 tool calling tasks, with APIs
covering 20 categories and extensive geograph-
ical representation from 40 countries. We
propose a four-stage pipeline to construct the
dataset, incorporating techniques such as bias
sampling and tool fusion, and use advanced
models to refine queries for high-quality tasks.
Experimental results demonstrate significant
performance variations between open-source
and closed-source LLMs, highlighting the
dataset’s potential to identify key strengths and
weaknesses in tool-calling tasks. Additionally,
fine-tuning open-source LL.Ms using the ITC
dataset results in substantial performance
improvements, both for in-distribution and
out-of-distribution data. Our findings show that
the ITC dataset provides a valuable resource
for training LLMs in complex international and
multiple tools contexts. The data is available
at https://anonymous.4open.science/r/

International-Tool-Calling-ITC-dataset-5FD7/.

1 Introduction

Tool calling empowers large language models
(LLMs) to interact with external systems, such as
databases, APIs, and other software tools, thereby
extending their capabilities beyond mere text gen-

eration. By invoking these tools, LLMs can per-
form tasks requiring real-time data access, complex
computations, or actions outside their training data.
This functionality is vital for applications such as
automated customer support, data analysis, and dy-
namic content generation, where the model’s ability
to access and utilize external resources significantly
enhances its performance and utility. Integrating
tool calling into LLMs enables more sophisticated,
context-aware interactions, making them valuable
assets in diverse domains.

In recent years, LLMs have shown remark-
able progress in tool invocation tasks, leading to
the development of several datasets and frame-
works aimed at improving their performance. Key
benchmarks include API-BLEND, APIGen, and
ToolACE, which focus on API-based function call-
ing, providing diverse APIs for training and eval-
uation. Other datasets, like Gorilla and ToolLLM,
enhance LLM capabilities in real-world API inter-
actions by improving accuracy and reducing issues
such as hallucinations. Additionally, datasets such
as Seal-Tools, PLUTO, and SciToolBench intro-
duce more complex tool-use scenarios involving
multi-step reasoning and domain-specific knowl-
edge. These benchmarks have significantly ad-
vanced the development of LLMs capable of under-
standing and effectively using external tools.

Despite these advancements, several challenges
persist. Many datasets rely on simulated APIs,
which fail to capture the complexity and variability
of real-world tool usage. Although some datasets
incorporate real APIs, they often include propri-
etary or inaccessible endpoints, limiting their prac-
tical adoption. Furthermore, many benchmarks
are not publicly accessible, restricting their usabil-
ity for both research and real-world applications.
Additionally, most existing datasets are predomi-
nantly US-centric, making them less suitable for
tasks requiring region-specific information, partic-
ularly in a global context. For instance, while Ya-

https://anonymous.4open.science/r/International-Tool-Calling-ITC-dataset-5FD7/
https://anonymous.4open.science/r/International-Tool-Calling-ITC-dataset-5FD7/
https://anonymous.4open.science/r/International-Tool-Calling-ITC-dataset-5FD7/

hoo_Weather, a popular weather API, can provide
weather information for Shenzhen, a famous city
in China, it cannot retrieve detailed weather data
for Nanshan, a district within Shenzhen. This high-
lights the need for more diverse, publicly available
datasets that support international tool-calling sce-
narios.

To address these challenges, we introduce the In-
ternational Tool Calling (ITC) dataset, specifically
designed for international tool-calling scenarios.
We propose a four-stage pipeline for constructing
the dataset, which includes collecting APIs from di-
verse sources, preprocessing the APIs through sup-
plementation and filtering, and applying bias sam-
pling and tool fusion techniques to tackle the long-
tail problem of APIs and increase query complex-
ity. Additionally, we refine queries for clarity, rele-
vance, and executability using Claude-3.5-Sonnet
and Gemini-1.5-Pro to generate high-quality tool
calling tasks. The ITC dataset consists of 3,571
APIs and 17,540 QA pairs, with 15,790 training
and 1,750 testing tasks. These APIs span 20 cate-
gories, with the largest being Finance, Data, Com-
munication, and Entertainment. The dataset offers
extensive geographical coverage, featuring global
APIs (64.2%) as well as region-specific APIs, pri-
marily from the US and China, along with long-tail
APIs from over 27 countries. It includes 14,295
single tool calling tasks and 3,245 multiple tools
calling tasks, with a focus on balancing underrepre-
sented APIs. The ITC dataset serves as a valuable
resource for training LLMs in international and
multiple tools contexts.

We investigated the performance of 16 open-
source LL.Ms and 8 closed-source LL.Ms on new
testing data, with the experimental results reveal-
ing significant performance variations between the
two groups across multiple metrics. These find-
ings emphasize the value of the dataset in identify-
ing both strengths and weaknesses in LLM perfor-
mance, particularly in areas such as handling non-
existent tools, missing parameters, and generating
incorrect parameters. Additionally, we fine-tuned
several open-source LLLMs, which had not been
previously fine-tuned on other tool-calling bench-
marks, using our training dataset. These models
showed notable improvements compared to their
original versions, both on in-distribution and out-
of-distribution (OOD) data. These results demon-
strate that our training dataset can effectively en-
hance model performance for a range of real-world,
international tool-calling tasks.

Dataset # Tools Source Access. # Tasks Ex. Lang.

API-BLEND 199 Sim. x 189,040 x Eng.
APIGen 3,673 Real X 60,000 +/ Eng.
Gorilla 1,645 Real v, 16,450 / Eng.
Seal-Tools 4,076 Sim. v 14076 x Eng.
ToolACE 26,507 Sim. X 11,300 x Eng.
ToolBench 16,464 Real v 126,486 / Eng.
RoTBench 568 ToolEyes X 105 +/ Eng.
MLLM-Tool 932 Real x 11,642 / Eng.
PLUTO 2,032 Sim. X 5,824 x Eng.
SciToolBench 2,446 Sim. X 856 x Eng.
GeoLLM-QA 117 Real X 1,000 x Eng.
INJECAGENT 17 Sim. N4 1,054 / Eng.
StableToolBench 16,464 ToolBench /126,486 / Eng.
ToolEyes 568 Sim. Vv 382 / Eng
ToolSword 100 Sim. X 440 / Eng.
Hammer - APIGen X 67,500 x Eng
ours 3,573 Real v 17,540 ./ Multi

Table 1: Summary of existing tool calling datasets. Ac-
cess.: Accessibility, Ex.: Executable, Lang.: Language,
Eng.: English, Sim.: Simulated.

2 Related Work

In this work, we review datasets and frameworks
designed to enhance the performance of large lan-
guage models (LLMs) in tool invocation tasks.
These include datasets for API-related tasks, multi-
modal tool interactions, and methods for improving
tool learning. Table 1 summarizes key datasets and
frameworks.

Existing benchmarks cover a range of tool-
augmented tasks, including API-based interactions,
multi-modal tool usage, and robustness evaluations.
Datasets such as API-BLEND (Basu et al., 2024),
APIGen (Liu et al., 2024c¢), and ToolACE (Liu
et al., 2024b) focus on API-based function calling,
providing diverse APIs for training and evaluation.
While APIGen and ToolACE contain thousands
of executable APIs, API-BLEND primarily sup-
ports semantic parsing and slot-filling tasks. Go-
rilla (Patil et al., 2023) and ToolLLM (Qin et al.,
2023) enhance LLM capabilities in real-world API
interactions, aiming to improve accuracy and re-
duce hallucinations. Meanwhile, Seal-Tools (Wu
et al., 2024), PLUTO (Huang et al., 2024), and
SciToolBench (Ma et al., 2024) introduce more
complex tool-use scenarios, including multi-step
reasoning and domain-specific applications. Other
benchmarks, such as RoTBench (Ye et al., 2024c¢)
and StableToolBench (Guo et al., 2024), assess
LLM robustness and stability, while ToolEyes (Ye
et al., 2024a) and ToolSword (Ye et al., 2024b)
focus on cognitive abilities and safety in tool use.
Additionally, multi-modal frameworks like MLLM-
Tool (Wang et al., 2024) extend tool learning to

non-text modalities, supporting interactions with
images, text, and audio.

Despite these advancements, several limitations
persist in existing tool-calling datasets. Many rely
on simulated APIs, which may not accurately re-
flect real-world tool usage, while those utilizing
real APIs often include proprietary or inaccessible
endpoints, limiting practical adoption. Moreover,
more than half of the available benchmarks are not
publicly accessible, further restricting their usabil-
ity. Although ToolBench leverages real APIs and
is accessible, some of the APIs sourced from Rapi-
dAPI are unavailable. Additionally, most datasets
are primarily US-centric, reducing their applica-
bility for retrieving fine-grained local information
from other countries.

To address these shortcomings, we introduce a
new dataset designed for international tool-calling
scenarios. Our dataset aggregates information from
a diverse set of publicly available, real international
APIs, covering services such as gasoline prices,
global and local news, stock markets, and weather
conditions across various countries. This broad
and diverse coverage enables comparative analysis
across regions in fields like economics, media, and
environmental sciences. By providing real interna-
tional APIs along with QA pairs that require region-
specific information retrieval, our dataset offers a
valuable resource for both academic research and
business applications, facilitating deeper insights
into global trends and regional differences.

3 Dataset Curation

Our dataset construction follows a four-stage
pipeline for minimal human intervention and scala-
bility. First, in API Collection and Processing, we
use automated tools to gather API documentation.
Next, in Query Generation, GPT-40 generates de-
tailed instructions for the APIs. In Query Filtering,
the queries are refined for clarity, relevance, and
executability using Claude-3.5-Sonnet and Gemini-
1.5-Pro. Finally, in Question-and-Answer Pair
Generation, GPT-40 generates high-quality Q&A
pairs. This pipeline is easily scalable for new APIs,
as illustrated in Figure 1.

3.1 API Collection and Processing

API Collection: ToolBench (Qin et al., 2023) is a
widely used tool invocation benchmark that selects
APIs primarily from RapidAPI. However, most of
these APIs originate from the United States, with

API Collection and Construction

Standardized API
Documentation

Public Normalized
APIs documentation

Tool-use Instance Generation

Query Diverse Task API

Prompt repository
| FBy—=4
B—db—E
Query Scoring And Filter

QA Data Checker ngh qudlny
—— Scoring o;

= crlterla @'
G—[E)

Query Scormg High-quality
repository model queries

Figure 1: Dataset construction flowchart.

limited representation from other regions, resulting
in a lack of global diversity. Additionally, many of
these APIs require a paid subscription, restricting
accessibility.

To address these limitations, we collected 49,937
real REST APIs from various platforms, spanning
domains such as social media, e-commerce, and
weather. Our dataset ensures broader geographical
representation by sourcing APIs not only from Rap-
idAPI Hub' but also from multiple international
platforms. These include China’s Juhe API*> and
XiaRou API?, as well as community-curated repos-
itories on GitHub, such as free-api* and public-
apis®. These sources represent just a portion of our
efforts to build a globally diverse and accessible
API dataset. These APIs are categorized into 20
distinct functional groups, including Entertainment,
Finance, Education, and more.

API Supplementation: Since our APIs are sourced
from a variety of platforms, ensuring that each
one is supported by comprehensive, high-quality
documentation—enabling LLMs to accurately in-
terpret the API’s functionality, usage, and con-
straints—can be challenging. Many real-world
APIs lack detailed documentation, which exacer-
bates this issue. To address this, we provide thor-
ough specifications for each API, including clear
descriptions of their functionality and well-defined
input/output schemas. We also conduct rigorous
quality checks, removing incomplete or ambiguous
documentation and enriching simpler APIs with
additional details. These efforts enhance clarity,

"https://rapidapi.com/

2https: //www. juhe.cn/

3https: //api.aal.cn/

4https: //github.com/fangzesheng/free-api
5ht’cps: //github.com/public-apis/public-apis

https://rapidapi.com/
https://www.juhe.cn/
https://api.aa1.cn/
https://github.com/fangzesheng/free-api
https://github.com/public-apis/public-apis

improve usability, and ultimately benefit develop-
ers by facilitating more efficient and accurate inte-
gration.

API Filtering: The initial collection of 49,937 free
APIs contained many redundant or low-quality en-
tries. For instance, multiple APIs provided similar
functionality, such as weather data, while others
suffered from issues like instability, infrequent up-
dates, and poor response accuracy. This reduced
the total number of APIs from 49,937 to 5,410. We
then conducted a more rigorous screening process,
evaluating each API based on key criteria such as
stability, update frequency, and response accuracy.
As a result, our final dataset includes 3,571 high-
quality, free APIs.

3.2 Query Generation

Tool-calling tasks can be categorized into two main
types: Single Tool Calling Task, which involve
calling a single API to accomplish the task, and
Multiple Tools Calling Task, which require in-
voking multiple APIs, potentially from different
countries. The Multiple Tools Calling Task can
be further subdivided into three categories: Re-
peated multiple tools calling, where the model
makes multiple calls to the same API with differ-
ent parameters to complete a multi-stage process;
Parallel multiple tools calling, which involve in-
voking two or more APIs simultaneously to fulfill
the task; and Nested multiple tools calling, where
the model decomposes the task into steps, invoking
APIs in a specific sequence, with the output of one
API serving as the input for the next.

Existing benchmarks for generating queries for
API calls typically focus on queries in English, with
APIs predominantly sourced from the USA. How-
ever, in international toll calling scenarios, queries
can be in multiple languages, and the APIs may
originate from various countries, introducing ad-
ditional complexity in both language and regional
variations. Current benchmarks often overlook the
importance of language and location-specific re-
quirements.

In this paper, we design tasks that involve retriev-
ing local information from region-specific APIs.
For example, consider a Japanese tourist planning
a trip to Lijiang, a popular city in Yunnan Province,
China. The tourist would require weather updates
and information about local travel destinations
from APIs in both Japan and China, presented
in Japanese and Chinese, respectively. This sce-
nario underscores the need for cross-lingual and

cross-national API interactions, highlighting the
challenges and requirements of handling diverse
languages and regions in API-based tasks.

Based on the principles outlined above, we de-
signed 36 seed examples covering a range of sce-
narios. For each case, we first select the desired
number of APIs (one or more) and three corre-
sponding examples with the following strategies to
improve query quality:

1. Biased Sampling. The API collection ex-
hibits a long-tail distribution, with countries
such as China and the United States, possess-
ing more advanced internet infrastructures,
having a disproportionately higher number
of APIs compared to other nations. To ad-
dress this imbalance, we intentionally gener-
ate more instructions for countries with fewer
available APIs, thereby reducing sampling
bias and ensuring more diverse representation.

2. Tool Confusion. To increase the task’s com-
plexity, we introduce a challenge for large
language models (LLMs) by making it harder
for them to differentiate between similar APIs
within the same category. This is accom-
plished by selecting APIs with overlapping
functionalities or by including APIs from dif-
ferent countries that might appear similar. We
then generate queries that intentionally create
ambiguity, potentially misleading the LLM
into selecting the wrong API, thus testing its
ability to handle nuanced distinctions.

We then prompt GPT-4 to generate the neces-
sary queries, ensuring a diverse and randomized
set of outcomes. The output is formatted in JSON,
with the “Thought” label capturing the reasoning
process in the same language as the query, and the
“Action” label indicating the corresponding API
calls.

3.3 Query Selection

In the last step, we obtained 44,198 queries. How-
ever, many of these queries presented issues such
as unclear requirements, insufficient relevance to
the tools, non-standard language, and failure to
appropriately adhere to cultural context. After per-
forming scoring and filtering to select high-quality
queries, we reduced the dataset to 17,540 final
queries.

Our query selection method consists of two key
steps: Query Scoring and Query Selection. In the

Query Scoring step, we address the limitation of
existing datasets, which often lack a fine-grained
evaluation standard for assessing the quality of gen-
erated queries or question-and-answer pairs. Most
existing methods rely on coarse metrics that fail to
fully capture the effectiveness and relevance of the
instructions. To address this gap, we propose five
scoring dimensions: Relevance, which evaluates
how well the query aligns with the task at hand;
Practicality, which assesses the feasibility of the
instruction in real-world scenarios; Linguistic Ap-
plicability, which checks for adherence to linguistic
norms and cultural context; Clarity, which ensures
the instruction is clear, concise, and easily under-
standable; and Specificity, which measures the level
of detail and focus, reducing ambiguity and enhanc-
ing the precision of tool invocation. These scoring
dimensions provide a comprehensive evaluation
of the instructions from multiple perspectives, en-
suring that the final instructions meet high-quality
standards across all aspects. To avoid potential
model bias, as highlighted in recent work (Zheng
et al., 2023), we utilize two independent scoring
standards: Anthropic’s Claude-3.5-sonnet model
and Google’s Gemini-1.5-pro model. Both mod-
els assign a score ranging from 1 to 5, where 1
indicates a very low quality and 5 indicates the
highest quality. Each model evaluates the instruc-
tions independently, and filtering and optimization
are performed based on the scores provided by both
models.

In the Query Selection step, we apply rigorous
filtering criteria to retain only the highest-quality
queries. Specifically, only instructions that re-
ceive a score higher than 4 from both the Claude
and Gemini models are considered high-quality.
This ensures that lower-scoring instructions, which
may contain irrelevant or poorly structured con-
tent, are effectively excluded from the final dataset.
Through this rigorous filtering process, we ensure
that the retained instructions adhere to high stan-
dards of relevance, practicality, clarity, specificity,
and linguistic applicability. This ultimately im-
proves the reliability and usability of the queries
for further tasks.

3.4 Question-and-Answer Pair Generation

The last step is to use GPT-40 model to generate
answer for each query, along with relevant API in-
formation into the GPT-40 model. The model then
generates the corresponding thought process and
identifies the appropriate APIs to be called. This

process requires careful handling of the model’s
reasoning to ensure that both the generated answers
and the API calls are contextually appropriate. Fur-
thermore, ensuring the coherence and accuracy of
the answers across multiple languages adds an ad-
ditional layer of complexity, as it demands that the
model appropriately handles language-specific fea-
tures while maintaining high-quality outputs for
a diverse set of use cases. For single-tool tasks,
the complexity is relatively low, so we directly use
prompt templates to generate question-and-answer
pairs. However, for multiple tools calling tasks,
in addition to using prompt templates, we employ
another large language model as a Checker that
has visibility into the entire generation process.
This Checker validates the generated question-and-
answer pairs, thereby enhancing their accuracy.

4 Data Statistics

Our developed International Tool Calling (ITC)
dataset includes 3,571 APIs and a total of 17,540
question-and-answer pairs, comprising 15,790
training pairs and 1,750 testing pairs.We will intro-
duce the composition of our dataset from two parts:
API and query.

4.1 Statistics on APIs

Utilities : 114 319%
Travel : 8 022% —

Technology : 154 431%
Sports 30

Science : 37%

[Other : 128 358%

Music : 96 2 69%
Media : 156 EX 37%
Math : 30 0 84%

Location : 333 9 33% /
Life : 72 [pR@AL —

Image : 149 417%

Gaming : 158 4.42% —~

Finance : 509 [{EPEY]

—Commerce : 181 EXQg

ommunlcatlon 348

Data : 462 [(PALL}

' Education : 209 585%
\ Entertainment : 292 EREST)

—Environment : 93 PAJ

Figure 2: Distribution of tools across 20 categories.

Figure 2 illustrates the distribution of 3,571 APIs
across 20 categories. The largest categories are Fi-
nance (14.25%), Data (12.9%), Communication
(9.75%), and Entertainment (8.18%). Conversely,
the smallest categories include Travel (0.22%),
Math (0.84%), and Sports (0.84%).

Our dataset demonstrates notable geographical
diversity, encompassing APIs from over 30 coun-
tries and regions. We classify these APIs into
two categories: global APIs, which provide in-
formation across multiple countries and languages,
such as machine translation and weather forecast-
ing. These APIs are predominantly from USA. The

Global 2291
China 612
USA 264
India 92
Vietnam 52
UK 28
Japan 25
Germany 2
Brazil 22
Indonesia 17
France 13
Australia 12
Canada 1n
Nouvelle- 10
Calédonie
Korea 8
Pakistan 8
Egypt 7
Thailand 7
Saudi Arabia 7
Uganda 6
Argentina 6
Senegal 5
Morocco 5
Ghana 5
UAE 5

Kenya 4

Trinidad 4
and Tobago

Mexico 3

Netherlands
Philippines
Finland
Slovenia

Cameroon
Italy
Singapore
Malaysia
Spain

South Sudan
Sweden
Croatia
Russia

10° 10! 10? 10°

Figure 3: Distribution of tools by countries (Logarith-
mic Scale).

second category is country-specific APIs, which
offer information tailored to a particular country
and its language, such as local weather updates
and news. As shown in Figure 3, global APIs ac-
count for 2,291 samples (64.2%). China and the
United States contribute the majority numbers of
country-specific APIs. Finally, Long-tail APIs,
originating from over 27 other countries and re-
gions, contribute 11.31% of the dataset.

4.2 Statistics on Tasks

Our dataset consists of 17,540 tasks, including
14,295 single-tool calling tasks and 3,245 multi-
ple tools calling tasks. For single-tool calling tasks,
we ensure coverage across all countries and cate-
gories from which the APIs are sourced. While a
significant portion of the APIs are from the USA
(including global APIs), resulting in a higher vol-
ume of English-language queries, we have inten-
tionally generated more tasks for long-tail APIs to
mitigate the long-tail problem. As a result, global
APIs comprise 56.27% of the taks, while long-tail
APIs account for 13.57%. In the case of multiple
tools calling tasks, each task typically requires the
LLM to invoke between 2 and 5 tools to success-
fully complete the task.

S Experiments and Results

5.1 Implementation Details

We included both open-source and closed-source
LLMs in our experiments. The open-source mod-
els, which are freely accessible for research and
development, include Qwen2.5(Yang et al., 2024),
Hammer2(Lin et al., 2024b), Functionary-small-
v3.1, ToolACE-8B(Liu et al., 2024b), Watt-tool-8B,
Yi-1.5-9B-Chat-16K(Young et al., 2024), glm-4-
9b-chat(GLM et al., 2024), and Phi-4(Abdin et al.,
2024). These models exhibit diverse performance
across various task categories, such as tool invoca-
tion and argument extraction.In contrast, the closed-
source models consist of GPT40, GLM-Zero-
Preview, Gemini-2.0(Team et al., 2023), Claude-
3.5-Sonnet, Deepseek-V3(Liu et al., 2024a), and
Deepseek-R1(Guo et al., 2025).

We applied the default parameters for the open-
source LLMs during testing on our dataset. To
fine-tune the models, we used LoRA (Hu et al.,
2021), training them for 3 epochs with a batch size
of 1 per device, 8 gradient accumulation steps, and
a learning rate of 1.0e-4. A cosine learning rate
scheduler with a warmup ratio of 0.1 was used for
the training configuration.

5.2 Evaluation Metrics

We evaluate the experimental results using four
metrics: Tool Selection (P/R/F1) measures the
model’s ability to identify appropriate tools from
candidates, focusing on tool localization accuracy,
computed using precision, recall, and F1-score.
Tool Invocation (P/R/F1) evaluates the model’s
understanding of tool parameters and the complete-
ness of structured information extraction, also us-
ing precision, recall, and F1-score through triple
matching. Language Matching Accuracy (LM)
quantifies how closely the output adheres to the tar-
get language requirements, specifically assessing
whether the “thought” label is in the same language
as the query, computed with the langid library.
Finally, Format Matching Accuracy (FM) mea-
sures the model’s ability to conform to the expected
JSON format needed for successful tool invocation.

5.3 Evaluation on testing datasets

Main results: The experimental results presented
in Table 2 highlight the performance differences
between open-source and closed-source models on
tool invocation tasks. In summary, closed-source
LLMs generally outperform open-source LLMs. In

Model Name LM FM Tool Selection Tool Invocation
P R F1 P R Fl1

Qwen2.5-7B-Instruct 90.51 96.65 54.08 53.06 53.18 4276 43.37 4271
Qwen2.5-Coder-7B 9493 9838 69.76 66.01 6723 5417 54.11 5375
Qwen2.5-3B-Instruct 87.40 93.00 4934 4584 4752 4090 4177 4133
Qwen2.5-Coder-3B 8426 89.25 4892 49.01 4876 3849 3883 3843
watt-tool-8B 7448 553 8890 88.03 8830 7633 7346 74.31
ToolACE-8B 8131 456 7030 69.82 69.93 59.39 5622 57.17
Hammer2.1-7b 86.82 20.71 64.64 64.68 6444 33.14 3268 3275
Hammer2.0-7b 7821 9542 6122 5748 58.68 45.00 4525 4485
Functionary-v3.1 76.75 5415 40.63 37.15 3830 3525 3564 35.02
Yi-1.5-9B-Chat-16K 8237 919 4528 4571 4532 35.67 3566 35.33
glm-4-9b-chat 76.00 9755 4345 4144 4209 3277 3285 32.57
Phi-4 96.73 9629 80.90 82.68 8149 70.15 7025 69.84
Qwen2.5-Coder-32B 91.05 99.14 84.82 81.44 8254 71.13 71.04 70.69
Qwen2.5-72B-Instruct 89.47 98.16 5278 5144 51.83 43.11 4335 42.89
Deepseek-V3 86.09 99.89 83.10 83.73 8328 7594 7577 7549
Deepseek-R1 7705 100 86.89 8525 8579 7347 73.15 72.79
ol-mini 95.89 93.68 6441 66.61 6472 6058 6253 61.06
03-mini 86.19 71.37 61.06 61.13 6093 54.01 53.56 53.54
GPT40-mini 9624 99.83 7647 7521 7555 71.69 70.38 70.71
GPT4o0 97.95 99.83 88.95 89.48 89.01 82.18 8157 81.57
GLM-Zero 8837 9845 5124 5031 5051 42.64 43.64 4278
gemini-2.0-flash 95.04 99.77 7725 77776 77.32 69.08 68.14 68.18
gemini-2.0-pro 96.17 94.13 84.57 83.50 83.86 7322 71.65 7195
Claude-3.5-sonnet 9475 97.06 82.08 81.00 81.19 72.05 7229 71.77

Table 2: Experimental results on our testing dataset (%).

terms of Language Matching Accuracy (LM),
scores range from 74% to over 97%, with open-
source models like Qwen2.5-7B-Instruct (90.51%)
and closed-source models like GPT40 (97.95%)
exhibiting strong linguistic consistency. Regarding
Format Matching Accuracy (FM), most models
show solid adherence to expected output formats,
ranging from 4.56% to 99.89%. Open-source mod-
els such as Deepseek-R1 (100%) and Qwen?2.5-
Coder-32B (99.14%) excel in maintaining the re-
quired JSON format, while models like watt-tool-
8B and Tool ACE-8B show lower performance in
this aspect.

Performance also varies in Tool Selection and
Tool Invocation metrics. Models like GPT4o0 lead
in Tool Selection (P/R/F1), demonstrating high
precision, recall, and F1 scores, while open-source
models like watt-tool-8B also perform well. How-
ever, models like Functionary-v3.1 show limited
capabilities in selecting appropriate tools. Simi-
larly, in Tool Invocation (P/R/F1), GPT40 and
watt-tool-8B excel, indicating strong tool invoca-
tion capabilities, while models such as Hammer?2.1-
7b struggle to generate and structure effective tool
invocations.

The difference between Tool Selection and Tool
Invocation reflects a model’s ability to choose the
right tool and generate the correct invocation pa-
rameters. Models like GPT40 show minimal dis-
crepancy, excelling in both aspects. In contrast,
models with a larger gap, such as Hammer2.1-7b,
struggle with generating proper parameters for se-
lected tools, highlighting areas for improvement in
parameter generation and structural output. This

discrepancy is a key performance indicator for tool-

based tasks.

Model Name

| Tool selection | Tool invocation

Hall. Mis. Ex.

Incor. Miss. Ext.

Qwen2.5-7B-Instruct
Qwen2.5-Coder-7B
Qwen2.5-3B-Instruct
Qwen2.5-Coder-3B
watt-tool-8B
ToolACE-8B
Hammer2.1-7b
Hammer2.0-7b
Functionary-v3.1
Yi-1.5-9B-Chat-16K
glm-4-9b-chat

Phi-4
Qwen2.5-Coder-32B
Qwen2.5-72B-Instruct
Deepseek-V3
Deepseek-R1

21.5773.23 5.20
4.25 86.65 9.10
8.74 75.79 15.47
38.48 51.51 10.00
25.5167.74 6.74
4.12 88.75 7.13
0.70 91.56 7.74
2.35 89.16 8.49
20.9276.97 2.11
37.3555.78 6.86
0.98 93.90 5.12
11.2969.18 19.53
8.09 66.3125.61
43.6451.95 441
0.43 80.21 19.36
8.33 83.33 8.33

51.5319.73 28.74
51.01 20.59 28.39
42.14 16.42 41.45
37.36 23.02 39.62
45.54 40.61 13.85
42.03 48.63 9.34
17.18 64.26 18.56
57.8023.92 18.28
37.70 28.80 33.51
38.90 18.66 42.44
27.88 54.78 17.34
44.75 29.11 26.14
46.43 27.80 25.78
46.65 22.79 30.56
57.65 24.38 17.97
41.67 29.1729.17

ol-mini

03-mini
GPT40-mini
GPT4o
GLM-Zero
gemini-2.0-flash
gemini-2.0-pro
Claude-3.5-sonnet

35.5 61.68 2.82
34.8 62.33 2.87
19.7176.26 4.03
47.1649.72 3.12
37.6358.09 4.28
30.9362.13 6.95

0 85.6414.36
22.1168.81 9.08

545 285 17.0
53.89 29.64 16.47
48.76 39.94 11.29
53.67 21.22 25.10
48.89 13.27 37.83
50.42 29.50 20.08
47.3135.13 17.56
54.67 21.2124.12

Table 3: Error analysis of tool selection and invoca-
tion across different LLMs (%). Hall.: hallucinating
non-existing tools, Mis.: missing required tools, Ex.:
calling extra tools, Incor.: generating incorrect parame-
ters, Miss.: missing parameters, Ext. in tool invocation:
generating extra parameters.

Error analysis: Table 3 presents an analysis of
all LLMs in tool selection and invocation. Across
all models, tool selection errors primarily consist
of hallucinating non-existing tools and missing re-
quired tools. Notably, models like Qwen2.5-72B-
Instruct and Hammer2.1-7b show the highest and
lowest hallucination rates, respectively, with signif-
icant variation in the missing tools rate, as seen in
glm-4-9b-chat and Deepseek-V3. Extra tool calls
(Ex. in tool selection) also vary, with models like
Qwen2.5-Coder-32B generating higher rates com-
pared to Deepseek-V3. For tool invocation errors,
models display notable discrepancies in generat-
ing incorrect parameters, with Hammer2.1-7b hav-
ing a high rate of 64.26%. Additionally, models
like GPT40-mini and gemini-2.0-flash exhibit a
more balanced performance in terms of missing
parameters and extra parameters. Overall, the main
challenges highlighted are tool hallucination, miss-
ing parameters, and generating incorrect invocation
parameters, reflecting areas for potential improve-
ment across different models.

Model Name LM FC Tool Selection Tool Invocation

P R Fl P R F1
Qwen2.5-7B-Instruct ~ 96.89(+6.38) 99.77(+3.12) 97.72(+43.64) 98.08(+45.02) 97.76(+44.58) 90.64(+47.88) 90.55(+47.18) 90.34(+47.63)
Qwen2.5-Coder-7B 97.41(+2.48) 99.64(+1.26) 97.69(+27.93) 98.00(+31.99) 97.72(+30.49) 90.57(+36.4) 90.38(+36.27) 90.22(+36.47)
Qwen2.5-3B-Instruct ~ 97.26(+9.86) 99.54(+6.54) 97.35(+18.01) 97.92(+22.08) 97.48(+49.96) 89.78(+28.88) 89.50(+27.73) 89.36(+48.03)
Qwen2.5-Coder-3B 97.29(+13.03) 99.79(+10.54) 97.64(+48.72) 97.89(+48.88) 97.64(+48.88) 90.25(+51.76) 90.26(+51.43) 89.96(+51.53)

Table 4: Results on our testing dataset by fine-tuned LLMs (%), with values in brackets showing the improvement
from the original models.

Model Nexus Raven Seal-Tools Tool-Alpaca

Tool Selection Tool Invocation Tool Selection Tool Invocation Tool Selection Tool Invocation

Qwen2.5-7B-Instruct 90.57(+25.75) 59.97(+10.23) 89.91(+24.00) 76.16(+17.76) 77.05(+18.10) 49.96(+9.85)
Qwen2.5-Coder-7B-Instruct 90.99(+20.44) 68.04(+17.76) 89.57(+22.22) 78.04(+18.92) 77.34(+14.91) 50.87(+8.23)
Qwen2.5-3B-Instruct 81.03(+6.50) 57.14(+2.78) 90.32(+23.26) 76.76(+20.02) 75.00(+8.92) 47.54(+8.57)
Qwen2.5-Coder-3B-Instruct 84.17(+2.09) 64.22(+4.90) 89.34(+8.50) 76.18(+7.97) 73.10(+4.53) 48.69(+7.06)

Table 5: Results on three benchmark testing dataset by fine-tuned LLMs (%), with values in brackets showing the

improvement from the original models.

5.4 Evaluation for Fine-tuning

In this experiment, we fine-tuned four versions of
Qwen 2.5—Qwen2.5-7B-Instruct, Qwen2.5-Coder-
7B, Qwen2.5-3B-Instruct, and Qwen2.5-Coder-
3B—on our training dataset. These models had
not previously been fine-tuned on any tool-calling
datasets, allowing us to evaluate the impact of our
training dataset on enhancing the tool-calling capa-
bilities of open-source LLMs.

Testing results on our testing dataset: The results,
shown in Table 4, reveal substantial improvements
in both tool selection and tool invocation after fine-
tuning the large language models (LLMs). Tool
invocation gains reached up to 51.76%, with the
smaller 3B models performing almost as well as
their larger 7B counterparts, highlighting the ef-
fectiveness of our training dataset. The evaluated
models include Qwen2.5-7B-Instruct, Qwen2.5-
Coder-7B, Qwen2.5-3B-Instruct, and Qwen2.5-
Coder-3B. Across all models, significant improve-
ments were observed, especially in tool selection
and invocation tasks. For example, Qwen2.5-7B-
Instruct showed a 47.63% increase in tool selection
F1 score and a 47.88% improvement in tool in-
vocation F1 score. Notably, Qwen2.5-Coder-3B
achieved the highest improvement in tool invoca-
tion, with a 51.53% increase in F1 score. Remark-
ably, Qwen2.5-Coder-3B achieved performance
levels comparable to Qwen2.5-7B-Instruct, further
demonstrating the success of our training dataset
in enhancing the models’ tool-calling capabilities.
Testing results on OOD data: To evaluate the ro-
bustness and generalization of our fine-tuned mod-
els, we tested them on three OOD datasets: Nexus

Raven(team, 2023), Seal-Tools(Wu et al., 2024),
and Tool-Alpaca(Tang et al., 2023a). The results,
shown in Table 5, reveal significant improvements
across all four models. Four fine-tuned versions of
Qwen?2.5 exhibited notable enhancements in tool
selection and invocation, in terms in F1, with im-
provements reaching up to 25.75% for tool selec-
tion and 18.10% for tool invocation. These findings
highlight the effectiveness of our training dataset
in boosting model performance on various tool-
calling tasks.

6 Conclusion

In this paper, we addresses the pressing need for a
more diverse, globally-oriented dataset to support
the development of LLMSs’ tool-calling capabilities.
By introducing the International Tool Calling (ITC)
dataset, we provide a comprehensive resource for
training and evaluating LLMs on international and
multiple tools calling scenarios. Our dataset, which
spans a wide range of API categories and includes
both global and region-specific APIs, effectively
tackles the challenges of long-tail API represen-
tation and the complexities of multiple tools call-
ing interactions. The experimental results under-
score the utility of the ITC dataset in identifying
key performance issues in LLM tool invocation,
such as handling missing or incorrect parameters,
and demonstrate the potential for significant per-
formance improvement through fine-tuning. These
findings highlight the promise of our dataset in ad-
vancing LLMs’ ability to interact with international
APIs, and suggest promising directions for future
research.

Limitations

While our work offers significant advancements,
several limitations warrant further investigation.
First, although our dataset prioritizes geographi-
cal diversity, certain regions (e.g., Africa and parts
of Asia) remain underrepresented, potentially lim-
iting the model’s ability to handle nuanced cultural
or regulatory contexts in these areas. Second, the
dataset focuses exclusively on REST APIs, leav-
ing other tool types (e.g., SOAP APIs or database
connectors) unexplored, which may restrict appli-
cability in heterogeneous tool ecosystems. Third,
while our automated pipeline ensures scalability, it
may inadvertently propagate biases or errors from
synthetic instruction generation, particularly in low-
resource languages. Additionally, error analysis re-
vealed persistent challenges in handling nested tool
calls and parameter hallucination, suggesting the
need for stronger semantic validation frameworks.
Finally, the reliance on free APIs introduces po-
tential instability due to service deprecation or rate
limits, which could affect long-term reproducibility.
Finally, the dataset with advanced difficulty is re-
quired to boost the tool calling capabilities for open
source LLMs. Addressing these limitations will be
critical for future work to achieve truly robust and
universal tool-calling systems.

Acknowledgments

References

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien
Bubeck, Ronen Eldan, Suriya Gunasekar, Michael
Harrison, Russell] Hewett, Mojan Javaheripi, Piero
Kauffmann, et al. 2024. Phi-4 technical report. arXiv
preprint arXiv:2412.08905.

Kinjal Basu, Ibrahim Abdelaziz, Subhajit Chaudhury,
Soham Dan, Maxwell Crouse, Asim Munawar, Sad-
hana Kumaravel, Vinod Muthusamy, Pavan Kapa-
nipathi, and Luis A. Lastras. 2024. Api-blend: A
comprehensive corpora for training and benchmark-
ing api llms. Preprint, arXiv:2402.15491.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chen-
hui Zhang, Da Yin, Dan Zhang, Diego Rojas, Guanyu
Feng, Hanlin Zhao, et al. 2024. Chatglm: A family
of large language models from glm-130b to glm-4 all
tools. arXiv preprint arXiv:2406.12793.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-rl: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang,
Yujia Qin, Peng Li, Zhiyuan Liu, Maosong Sun, and
Yang Liu. 2024. Stabletoolbench: Towards stable
large-scale benchmarking on tool learning of large
language models. arXiv preprint arXiv:2403.07714.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Tenghao Huang, Dongwon Jung, and Muhao Chen.
2024. Planning and editing what you retrieve
for enhanced tool learning. arXiv preprint
arXiv:2404.00450.

Qigiang Lin, Muning Wen, Qiuying Peng, Guanyu Nie,
Junwei Liao, Jun Wang, Xiaoyun Mo, Jiamu Zhou,
Cheng Cheng, Yin Zhao, Jun Wang, and Weinan
Zhang. 2024a. Hammer: Robust function-calling
for on-device language models via function masking.
Preprint, arXiv:2410.04587.

Qiqgiang Lin, Muning Wen, Qiuying Peng, Guanyu
Nie, Junwei Liao, Jun Wang, Xiaoyun Mo, Jiamu
Zhou, Cheng Cheng, Yin Zhao, et al. 2024b. Ham-
mer: Robust function-calling for on-device lan-
guage models via function masking. arXiv preprint
arXiv:2410.04587.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, et al. 2024a.
Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao,
Shuai Yu, Dexun Li, Shuai Wang, Weinan Gan,
Zhengying Liu, Yuanqing Yu, Zezhong Wang, Yux-
ian Wang, Wu Ning, Yutai Hou, Bin Wang, Chuhan
Wu, Xinzhi Wang, Yong Liu, Yasheng Wang, Duyu
Tang, Dandan Tu, Lifeng Shang, Xin Jiang, Ruiming
Tang, Defu Lian, Qun Liu, and Enhong Chen. 2024b.
Toolace: Winning the points of llm function calling.
Preprint, arXiv:2409.00920.

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu,
Tian Lan, Shirley Kokane, Juntao Tan, Weiran Yao,
Zhiwei Liu, Yihao Feng, Rithesh Murthy, Liangwei
Yang, Silvio Savarese, Juan Carlos Niebles, Huan
Wang, Shelby Heinecke, and Caiming Xiong. 2024c.
Apigen: Automated pipeline for generating verifi-
able and diverse function-calling datasets. ArXiv,
abs/2406.18518.

Marco Lui and Timothy Baldwin. 2012. langid.py: An
off-the-shelf language identification tool. In Proceed-
ings of the ACL 2012 System Demonstrations, pages
25-30, Jeju Island, Korea. Association for Computa-
tional Linguistics.

Yubo Ma, Zhibin Gou, Junheng Hao, Ruochen Xu,
Shuohang Wang, Liangming Pan, Yujiu Yang, Yixin
Cao, Aixin Sun, Hany Awadalla, et al. 2024. Scia-
gent: Tool-augmented language models for scientific
reasoning. arXiv preprint arXiv:2402.11451.

https://arxiv.org/abs/2402.15491
https://arxiv.org/abs/2402.15491
https://arxiv.org/abs/2402.15491
https://arxiv.org/abs/2402.15491
https://arxiv.org/abs/2402.15491
https://arxiv.org/abs/2410.04587
https://arxiv.org/abs/2410.04587
https://arxiv.org/abs/2410.04587
https://arxiv.org/abs/2409.00920
https://api.semanticscholar.org/CorpusID:270738094
https://api.semanticscholar.org/CorpusID:270738094
https://api.semanticscholar.org/CorpusID:270738094
https://aclanthology.org/P12-3005/
https://aclanthology.org/P12-3005/
https://aclanthology.org/P12-3005/

Aaron Parisi, Yao Zhao, and Noah Fiedel. 2022.
Talm: Tool augmented language models. Preprint,
arXiv:2205.12255.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and
Joseph E. Gonzalez. 2023. Gorilla: Large lan-
guage model connected with massive apis. Preprint,
arXiv:2305.15334.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian,
Ruobing Xie, Jie Zhou, Mark Gerstein, Dahai Li,
Zhiyuan Liu, and Maosong Sun. 2023. Toolllm: Fa-
cilitating large language models to master 16000+
real-world apis. Preprint, arXiv:2307.16789.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.
Preprint, arXiv:2302.04761.

Simranjit Singh, Michael Fore, and Dimitrios Stamoulis.
2024. Evaluating tool-augmented agents in remote
sensing platforms. arXiv preprint arXiv:2405.00709.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei
Han, Qiao Liang, Boxi Cao, and Le Sun. 2023a.
Toolalpaca: Generalized tool learning for language
models with 3000 simulated cases. arXiv preprint
arXiv:2306.05301.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei
Han, Qiao Liang, Boxi Cao, and Le Sun. 2023b.
Toolalpaca: Generalized tool learning for language
models with 3000 simulated cases. Preprint,
arXiv:2306.05301.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan
Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang, et al.
2024. Gemini 1.5: Unlocking multimodal under-
standing across millions of tokens of context. arXiv
preprint arXiv:2403.05530.

Nexusflow.ai team. 2023. Nexusraven: Surpassing the
state-of-the-art in open-source function calling 1lms.

Chenyu Wang, Weixin Luo, Qianyu Chen, Haonan
Mai, Jindi Guo, Sixun Dong, Zhengxin Li, Lin Ma,
Shenghua Gao, et al. 2024. Tool-lmm: A large multi-
modal model for tool agent learning. arXiv preprint
arXiv:2401.10727.

Mengsong Wu, Tong Zhu, Han Han, Chuanyuan Tan,
Xiang Zhang, and Wenliang Chen. 2024. Seal-tools:
self-instruct tool learning dataset for agent tuning and

10

detailed benchmark. In CCF International Confer-
ence on Natural Language Processing and Chinese
Computing, pages 372-384. Springer.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5 tech-
nical report. arXiv preprint arXiv:2412.15115.

Junjie Ye, Guanyu Li, Songyang Gao, Caishuang Huang,
Yilong Wu, Sixian Li, Xiaoran Fan, Shihan Dou,
Qi Zhang, Tao Gui, et al. 2024a. Tooleyes: Fine-
grained evaluation for tool learning capabilities of
large language models in real-world scenarios. arXiv
preprint arXiv:2401.00741.

Junjie Ye, Sixian Li, Guanyu Li, Caishuang Huang,
Songyang Gao, Yilong Wu, Qi Zhang, Tao Gui,
and Xuanjing Huang. 2024b. Toolsword: Un-
veiling safety issues of large language models in
tool learning across three stages. arXiv preprint
arXiv:2402.10753.

Junjie Ye, Yilong Wu, Songyang Gao, Caishuang
Huang, Sixian Li, Guanyu Li, Xiaoran Fan, Qi Zhang,
Tao Gui, and Xuanjing Huang. 2024c. Rotbench: a
multi-level benchmark for evaluating the robustness
of large language models in tool learning. arXiv
preprint arXiv:2401.08326.

Alex Young, Bei Chen, Chao Li, Chengen Huang,
Ge Zhang, Guanwei Zhang, Guoyin Wang, Heng
Li, Jiangcheng Zhu, Jianqun Chen, et al. 2024. Yi:
Open foundation models by 01. ai. arXiv preprint
arXiv:2403.04652.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.
Judging 1lm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing
Systems, 36:46595-46623.

https://arxiv.org/abs/2205.12255
https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2306.05301
https://arxiv.org/abs/2306.05301
https://arxiv.org/abs/2306.05301
http://nexusflow.ai/blog
http://nexusflow.ai/blog
http://nexusflow.ai/blog

Single Tool Calling Tasks Query Generation Prompt

Please strictly follow these guidelines:

diversity in your instructions.
2.

4.
5.
or technology.

Generate 10 diverse instructions.

non

xxx","a xxx" or "a specific xxx".

structures that convey a request.

Here is the API information:
{api_list}

your response:

1. The instructions should be 1 to 2 sentences long. Use a mix of interrogative sentences,
first-person statements, imperative sentences, and other structures that convey a request. Aim for

Do not mention the API's name in your instructions.
3. Your instructions should only involve the features provided by these APIs.

Use specific nouns and real-world examples from various domains, such as entertainment, sports,

6. Please provide concrete details.Don't using any form of generic phrases, such as "this xxx", "the
7. Ensure diversity in language by combining questions with imperative statements and other

8. The instructions should be in the language of the country attribute in the provided API information.

9. The generated problem must strictly follow the API's parameter information.
10. If country is Global, please generate 10 instructions in English.

Please generate the question in the language of the specified country.

Figure 4: Query generation prompt for single tool calling tasks.

A Single Tool Calling Tasks Query
Generation Prompt

For single tool calling tasks, we utilize a prompt-
based approach to instruct the LLM to generate a
query. The prompt templates used for this process
are illustrated in Figures 4.

B Multiple tools Calling Tasks Query
Generation

For multiple tool calling tasks, we have classified
them into three categories: Repeated Calls, Parallel
Calls, and Nested Calls. Given that the require-
ments for each type of task differ, we have tailored
specific prompts to generate queries for each cat-
egory. The prompt templates for these tasks are
illustrated in Figures 5, 6, and 7.

11

C Query Scoring

Figure 8 illustrates an example of query scoring,
where, given a query and relevant API information,
we used both Anthropic’s Claude-3.5-sonnet model
and Google’s Gemini-1.5-pro model to evaluate the
query’s quality across five dimensions, with scores
ranging from 1 to 5 for each dimension. Figure 9
shows the prompt for LLMs to evaluate the query.

Multiple tool Repeate Query Generation

Please strictly follow these guidelines:

1. Provide 1 to 2 sentences for each instruction, using a mix of
interrogative sentences, imperative statements, and descriptive
requests. Ensure the instructions are diverse in structure and tone to
reflect real-world scenarios.

2. For each instruction, select only one tool (from the provided API
list) and perform multiple calls to the same tool to complete different|
tasks.

3. Do not mention any API names directly in your instructions. Instead,
focus on the functionality they provide.

4. Leverage the unique features of the selected tool. Each instruction
must clearly demonstrate how the tool can be used through multiple
calls to effectively solve a problem or fulfill a request. Avoid
generic or vague task descriptions.

5. Use detailed and specific nouns, examples, and contextual scenarios
from domains like travel, business, sports, entertainment, or
technology. Avoid vague phrases such as "this information” or "a
specific detail.”

6. The generated instructions must strictly align with the parameter
information of each API/tool. Ensure the inputs and outputs are valid
for the respective tools.

7. Generate 10 diverse instructions, each showcasing a single tool
being used multiple times. Each instruction can use a different tool.
8. Ensure the content of each instruction strictly aligns with the
examples provided and closely follows the format of the examples below|]

Here are some examples for Multi-Tool Instructions:
{example_list}

Here is the API information:
{api_data}

Here is the Output format:
{Output_format}

Please select only one tool (from the provided API list) and strictly
following the Output format.

your response:

Figure 5: Multiple tool repeated calls.

D Data Examples

Figure 10 illustrates an example of the Google
Translate API. Figure 11 provides an example of
a single tool calling task, while Figure 12 demon-
strates a repeated multiple tools calling task. Fig-
ure 13 shows an example of a parallel multiple tools
calling task, and Figure 14 presents an example of
a nested multiple tools calling task.

12

Multiple tool Parallel Calling Tas]

Please strictly follow these guidelines:

1. Provide 1 to 2 sentences for each instruction, using a mix of
interrogative sentences, imperative statements, and descriptive
requests. Ensure the instructions are diverse in structure and tone to
reflect real-world scenarios.

2. For each instruction, select only one tool (from the provided API
list) and perform multiple calls to the same tool to complete different
tasks.

3. Do not mention any API names directly in your instructions. Instead,
focus on the functionality they provide.

4. Leverage the unique features of the selected tool. Each instruction
must clearly demonstrate how the tool can be used through multiple
calls to effectively solve a problem or fulfill a request. Avoid
generic or vague task descriptions.

5. Use detailed and specific nouns, examples, and contextual scenarios
from domains like travel, business, sports, entertainment, or
technology. Avoid vague phrases such as "this information” or "a
specific detail.”

6. The generated instructions must strictly align with the parameter
information of each API/tool. Ensure the inputs and outputs are valid
for the respective tools.

7. Generate 10 diverse instructions, each showcasing a single tool
being used multiple times. Each instruction can use a different tool.
8. Ensure the content of each instruction strictly aligns with the
examples provided and closely follows the format of the examples below

Here are some examples for Multi-Tool Instructions:
{example_list}

Here is the API information:
{api_data}

Here is the Output format:
{Output_format}

Please select only one tool (from the provided API list) and strictly
following the Output format.

your response:

Figure 6: Multiple tool parallel calls.

Multiple tool Nested Calling Tasks Query Generation

Please strictly follow these guidelines:

1. Provide 1 to 2 sentences for each instruction, using a mix of
interrogative sentences, imperative statements, and descriptive
requests. Ensure the instructions are diverse in structure and tone to
reflect real-world scenarios.

2. For each instruction, select exactly 2 or 3 tools from the provided
API list to create a scenario where these tools are used in a logical
sequence. Ensure that the output of the previous tool can serve as the
input for the next tool, forming a nested call.

3. Do not mention any API names directly in your instructions. Instead,
focus on the functionality they provide.

4. Use detailed and specific nouns, examples, and contextual scenarios
from domains like travel, business, sports, entertainment, or
technology. Avoid vague phrases such as "this information” or "
specific detail.”

5. The generated instructions must strictly align with the parameter
information of each API/tool. Ensure the inputs and outputs are valid
for the respective tools.

6. Generate 10 diverse instructions, each involving 2 or 3 tools
working together in a logical sequence and existence of nested calls.

a

Here are some examples for Multi-Tool Instructions:
{example_list}

Here is the API information:
{api_data}

Here is the Output format:
{Output_format}

Please strictly following the Output format.

your response:

Figure 7: Multiple tool nested calls.

BAR2023F1181R
WEFAES , REQ
EBRREEEHT.

Query

{"country": "China",
"api_name": "EAHEH
API",

“api_description”: “3REX
BERMNERER",
“required_parameters™:[],
"optional_parameters":[],
"method": "GET"}

Relative API Information

Score Result

/ Relevance: 5 points — The query is highly relevant to the API's functio@

specifically requesting the yellow calendar information for a particular date,
usually including suggestions for auspicious activities such as travel.
Clarity: 4 points — The query is clear, but the clarity could be slightly
improved by explicitly stating that the user is seeking advice on the
suitability of travel based on the yellow calendar.

Specificity: S points — The query clearly specifies a particular date

¢ (November 1, 2023) and requests travel-related information, making full use
W\ |)of the APT's capabilities.

Usability: 5 points — The request reflects a common real-world scenario, as
people often consult the yellow calendar for guidance on travel plans.
Linguistic Appropriateness: 5 points — The language used is appropriate for
the target audience, in Mandarin, and utilizes terminology familiar to users

seeking yellow calendar information.
Total Score: 5 points

/ Relevance: 5 — The query explicitly requests the yellow calendar inform@

for November 1, 2023, and asks whether it is suitable for travel, directly
aligning with the functionality of the yellow calendar query API.

Clarity: 5 — The query is expressed clearly, specifying the type of information
needed (yellow calendar data) and the specific requirement (suitability for
travel).

Specificity: 5 — The query specifies a concrete date (November 1, 2023) and a
clear request (whether it is suitable for travel), demonstrating high specificity.
Usability: 5 — The query reflects a common real-world scenario, where people
refer to the yellow calendar to decide whether to travel, showing strong
practical relevance.

Linguistic Appropriateness: 5 — The language used is simple and clear,
aligning with the query's purpose, and is suitable for the audience seeking

yellow calendar information.
Total Score: 5 points

Score Result

Figure 8: The query scoring process.

13

Evaluation Criteria:

Use a 1-5 scale to score the following five dimensions:

1. Relevance: How well the query matches the API's functionality.

2. Clarity: Whether the query is specific enough, avoiding ambiguous
terms like 'this xxx', 'the xxx', or 'a xxx', and ensuring the use of
the API's features.

3. Specificity: Whether the query is specific enough to utilize the
API's capabilities

4. Practicality: Whether the query reflects real-world usage scenarios|
5. Language Appropriateness: Whether the query's language is suitable
for target users

Scoring Standard:

1 point: Does not meet the standard

2 points: Partially meets the standard
3 points: Meets the basic standard

4 points: Meets the standard well

5 points: Fully meets the standard

Total Score Calculation:
Calculate the average of the five dimension scores, round to the
nearest integer, as the final total score (1-5 points).

Evaluation Steps:

1. Carefully read the API name and the generated query.

2. Score each dimension and provide a brief explanation.

3. Calculate the total score.

4. Provide an overall evaluation and suggestions for improvement.
5. If the total score is less than 3, mark it as "Needs Improvement”.

Output Format:
Scores:

1. Relevance: [Score] - [Explanation]

2. Clarity: [Score] - [Explanation]

3. Specificity: [Score] - [Explanation]

4. Practicality: [Score] - [Explanation]

5. Language Appropriateness: [Score] - [Explanation]
Total Score: [1-5 points]

Overall Evaluation:

[Brief summary of the query's strengths and weaknesses]
Improvement Suggestions:

[Provide specific suggestions for improvement if needed]
Conclusion: [If total score >= 4, then "Pass”; if total score < 4, then
"Needs Improvement”]

Please evaluate the following data's query

{datal'query']}

Your response:

Figure 9: Query scoring prompt.

14

API Example

{
"tool_name": "Google Translate”,
"tool_description”: "A tool for translating
text between different languages using
Google's translation services.”,
"home_url”: "https://rapidapi.com/
nickrapidapi/api/google_translate/",
"country"”: "Global”,
"api_list”: [
{
"name”: "translatel”,
"url”: "https://google_translate.p.rapidapi.
com/",
"description”: "This API endpoint allows users
to perform translations of text from
one language to another.”,
"method”: "GET",
"category”: "Utilities”,
"required_parameters”: [
{
"name”: "text",
"type": "string",
"description”: "The text content to be
translated”

"name”: "target_lang”,
"type": "string",
"description”: "The target language code
(e.g., 'en' for English, 'zh' for Chinese)"”
}
1,
"optional_parameters”: [],
"statuscode”: "200",
"schema”: {}}]
3

Figure 10: Example of google translate API.

Single Tool Calling Task Example

{"system”: "You are an advanced AI assistant with expertise in:
1. Intelligent tool and API selection
2. Multilingual problem-solving
3. Systematic analytical thinking
Task Guidelines:
- Carefully analyze the problem presented
- Select the most appropriate tool(s) or API(s) to solve the task
- Provide clear, structured reasoning for your tool selection
- Ensure precise and efficient problem resolution

Important Principles:
- If no suitable tool exists, clearly explain the limitations
- Prioritize accuracy and relevance in tool selection
- Consider potential alternative approaches
- Maintain a logical and methodical approach

When tools are insufficient or parameters are incomplete:
- Explicitly state the gaps in available tools or information
- Provide constructive suggestions for obtaining resources
- Return an empty list in the \"Action\" section
Note: Please respond in the same national language as the problem
while maintaining clarity, logic, and structure in your answers.
Below is the list of functions you can invoke (in JSON format):
{api_list}

Please strictly follow the format below, without additional text:

json{\"Thought\": \"Respond in same language as problem. Provide
analysis, reasoning for tool selection, and challenges.\",
\"Action\": \"[function_namel(param_1='vall', param_2='val2'),
function_name2(param_1="'vall', param_2='val2')I\"}",
"conversations”: [
{
"from": "user”,
"value"”: "Can you help me translate "Hello, how are you?" into French for my
upcoming trip to Paris?”
}’
{
"from": "assistant”,
"value"”: "json{\"Thought\":\"To assist the user with their request for
translation, I will utilize the Google Translate API, which is specifically
designed for translating text between languages. The user needs a translation
for a common greeting in French, which is straightforward.\",
\"Action\":\"[Google Translate(text="'Hello, how are you?',"target_lang”"="fr")]
\"}"31}

Figure 11: Single tool calling task example.

15

Repeated Multiple Tools Calling Task Example

{"system”: "You are an advanced AI assistant with expertise in:
1. Intelligent tool and API selection
2. Multilingual problem-solving
3. Systematic analytical thinking
Task Guidelines:
- Carefully analyze the problem presented
Select the most appropriate tool(s) or API(s) to solve the task
Provide clear, structured reasoning for your tool selection
- Ensure precise and efficient problem resolution

Important Principles:
- If no suitable tool exists, clearly explain the limitations
- Prioritize accuracy and relevance in tool selection
- Consider potential alternative approaches
- Maintain a logical and methodical approach

When tools are insufficient or parameters are incomplete:
- Explicitly state the gaps in available tools or information
- Provide constructive suggestions for obtaining resources
- Return an empty list in the \"Action\" section
Note: Please respond in the same national language as the problem
while maintaining clarity, logic, and structure in your answers.
Below is the list of functions you can invoke (in JSON format):
{api_list}

Please strictly follow the format below, without additional text:

json{\"Thought\": \"Respond in same language as problem. Provide
analysis, reasoning for tool selection, and challenges.\",
\"Action\": \"[function_namel(param_1="'vall', param_2='val2'),
function_name2(param_1='vall', param_2='val2')J\"}",
"conversations”: [
{
"from": "user",
"value"”: "Can you verify the email address 'john.doe@example.com' using the
Express option? After that, check 'jane.smith@sample.com' with the Premium
option to see if it's valid.”
}’
{
"from": "assistant”,
"value"”: "json{\"Thought\":\"To verify the email addresses, I will use the
Global Email V4 API. First, I will check 'john.doe@example.com' with the Express
option, and then I will verify 'jane.smith@sample.com' using the Premium option.
\"Action\":\"[Global Email V4(opt="VerifyMailbox:Express”, email=
"john.doe@example.com”),Global Email V4(opt="VerifyMailbox:ExpressPremium”,
email="jane.smith@sample.com"”)]

\"}"31}

Figure 12: Repeated multiple tools calling task example.

16

Parallel Multiple Tools Calling Task Example

{"system”: "You are an advanced AI assistant with expertise in:
1. Intelligent tool and API selection
2. Multilingual problem-solving
3. Systematic analytical thinking
Task Guidelines:
- Carefully analyze the problem presented
- Select the most appropriate tool(s) or API(s) to solve the task
- Provide clear, structured reasoning for your tool selection
- Ensure precise and efficient problem resolution

Important Principles:
- If no suitable tool exists, clearly explain the limitations
- Prioritize accuracy and relevance in tool selection
- Consider potential alternative approaches
- Maintain a logical and methodical approach

When tools are insufficient or parameters are incomplete:
- Explicitly state the gaps in available tools or information
- Provide constructive suggestions for obtaining resources
- Return an empty list in the \"Action\" section
Note: Please respond in the same national language as the problem
while maintaining clarity, logic, and structure in your answers.
Below is the list of functions you can invoke (in JSON format):
{api_list}

Please strictly follow the format below, without additional text:

json{\"Thought\": \"Respond in same language as problem. Provide
analysis, reasoning for tool selection, and challenges.\",
\"Action\": \"[function_namel(param_1='vall', param_2='val2'),
function_name2(param_1="'vall', param_2='val2')I\"}",
"conversations”: [
{
"from": "user”,
"value": "Can you check the latest exchange rates for USD and AUD against EUR,
and also give me a list of all available currencies?”
}’
{
"from": "assistant”,
"value"”: "json{\"Thought\":\"To fulfill the request, I need to retrieve the
latest exchange rates for USD and AUD against EUR, as well as a list of all
available currencies. This requires using two different API endpoints: one for
the latest exchange rates and another for the list of currencies.”,
\"Action\":\"[latest(from="EUR', to='USD,AUD'), currencies()]
\"}"31}

Figure 13: Parallel multiple tools calling task example.

17

Nested Multiple Tools Calling Task Example

{"system”: "You are an advanced AI assistant with expertise in:
1. Intelligent tool and API selection
2. Multilingual problem-solving
3. Systematic analytical thinking
Task Guidelines:
- Carefully analyze the problem presented
- Select the most appropriate tool(s) or API(s) to solve the task
- Provide clear, structured reasoning for your tool selection
- Ensure precise and efficient problem resolution

Important Principles:
- If no suitable tool exists, clearly explain the limitations
- Prioritize accuracy and relevance in tool selection
- Consider potential alternative approaches
- Maintain a logical and methodical approach

When tools are insufficient or parameters are incomplete:
- Explicitly state the gaps in available tools or information
- Provide constructive suggestions for obtaining resources
- Return an empty list in the \"Action\"” section
Note: Please respond in the same national language as the problem
while maintaining clarity, logic, and structure in your answers.
Below is the list of functions you can invoke (in JSON format):
{api_list}

Please strictly follow the format below, without additional text:

json{\"Thought\": \"Respond in same language as problem. Provide
analysis, reasoning for tool selection, and challenges.\",
\"Action\": \"[function_namel(param_1="'vall', param_2='val2'),
function_name2(param_1="'vall', param_2='val2')J\"}",
"conversations”: [

{

"from": "user”,

"value"”: "Can you generate a secure password with numbers and then hash that
password using the MD5 algorithm?”

},

{

"from": "assistant”,

"value": "json{\"Thought\":\"To generate a secure password with numbers, I will
use the 'Generate password' API with the appropriate parameters. After
generating the password, I will hash it using the 'MD5 Text Hash' API.”,
\"Action\":\"[Generate password(numbers=true,pwCount=1,length=12),MD5 Text
Hash(dataString="'generated_password')]

\"y

}’

{

"role”: "Tool”,

"content”: {\"code\": 200,\"msg\": \"Password generated successfully.\",
\"data\": {\"password\": \"A1b2C3d4E5f6\" 33

}!

{

"from": "assistant”,

"value”: "json{\"Thought\":\"I have generated the password 'A1b2C3d4E5f6'
successfully. Now, I will hash this password using the MD5 algorithm.”,
\"Action\":\"[MD5 Text Hash(dataString='A1b2C3d4E5f6"')]

\"y

}

13

Figure 14: Nested multiple tools calling task example.

18

	Introduction
	Related Work
	Dataset Curation
	API Collection and Processing
	Query Generation
	Query Selection
	Question-and-Answer Pair Generation

	Data Statistics
	Statistics on APIs
	Statistics on Tasks

	Experiments and Results
	Implementation Details
	Evaluation Metrics
	Evaluation on testing datasets
	Evaluation for Fine-tuning

	Conclusion
	Single Tool Calling Tasks Query Generation Prompt
	Multiple tools Calling Tasks Query Generation
	Query Scoring
	Data Examples

