
Enhancing Tool Calling in LLMs with the International Tool Calling (ITC)
Dataset

Anonymous ACL submission

Abstract001

Tool calling enables large language models002
(LLMs) to interact with external systems,003
such as APIs and databases, significantly004
enhancing their capabilities beyond text005
generation. This functionality is critical006
for applications like customer support, data007
analysis, and dynamic content generation.008
While recent advancements have improved009
LLM performance in tool invocation tasks,010
challenges persist, particularly with datasets011
that rely on simulated or inaccessible APIs and012
are often limited in geographical diversity. To013
address these issues, we introduce the Inter-014
national Tool Calling (ITC) dataset, designed015
specifically for international tool-calling016
scenarios. The ITC dataset includes 3,571017
APIs and 17,540 tool calling tasks, with APIs018
covering 20 categories and extensive geograph-019
ical representation from 40 countries. We020
propose a four-stage pipeline to construct the021
dataset, incorporating techniques such as bias022
sampling and tool fusion, and use advanced023
models to refine queries for high-quality tasks.024
Experimental results demonstrate significant025
performance variations between open-source026
and closed-source LLMs, highlighting the027
dataset’s potential to identify key strengths and028
weaknesses in tool-calling tasks. Additionally,029
fine-tuning open-source LLMs using the ITC030
dataset results in substantial performance031
improvements, both for in-distribution and032
out-of-distribution data. Our findings show that033
the ITC dataset provides a valuable resource034
for training LLMs in complex international and035
multiple tools contexts. The data is available036
at https://anonymous.4open.science/r/037
International-Tool-Calling-ITC-dataset-5FD7/.038

1 Introduction039

Tool calling empowers large language models040

(LLMs) to interact with external systems, such as041

databases, APIs, and other software tools, thereby042

extending their capabilities beyond mere text gen-043

eration. By invoking these tools, LLMs can per- 044

form tasks requiring real-time data access, complex 045

computations, or actions outside their training data. 046

This functionality is vital for applications such as 047

automated customer support, data analysis, and dy- 048

namic content generation, where the model’s ability 049

to access and utilize external resources significantly 050

enhances its performance and utility. Integrating 051

tool calling into LLMs enables more sophisticated, 052

context-aware interactions, making them valuable 053

assets in diverse domains. 054

In recent years, LLMs have shown remark- 055

able progress in tool invocation tasks, leading to 056

the development of several datasets and frame- 057

works aimed at improving their performance. Key 058

benchmarks include API-BLEND, APIGen, and 059

ToolACE, which focus on API-based function call- 060

ing, providing diverse APIs for training and eval- 061

uation. Other datasets, like Gorilla and ToolLLM, 062

enhance LLM capabilities in real-world API inter- 063

actions by improving accuracy and reducing issues 064

such as hallucinations. Additionally, datasets such 065

as Seal-Tools, PLUTO, and SciToolBench intro- 066

duce more complex tool-use scenarios involving 067

multi-step reasoning and domain-specific knowl- 068

edge. These benchmarks have significantly ad- 069

vanced the development of LLMs capable of under- 070

standing and effectively using external tools. 071

Despite these advancements, several challenges 072

persist. Many datasets rely on simulated APIs, 073

which fail to capture the complexity and variability 074

of real-world tool usage. Although some datasets 075

incorporate real APIs, they often include propri- 076

etary or inaccessible endpoints, limiting their prac- 077

tical adoption. Furthermore, many benchmarks 078

are not publicly accessible, restricting their usabil- 079

ity for both research and real-world applications. 080

Additionally, most existing datasets are predomi- 081

nantly US-centric, making them less suitable for 082

tasks requiring region-specific information, partic- 083

ularly in a global context. For instance, while Ya- 084

1

https://anonymous.4open.science/r/International-Tool-Calling-ITC-dataset-5FD7/
https://anonymous.4open.science/r/International-Tool-Calling-ITC-dataset-5FD7/
https://anonymous.4open.science/r/International-Tool-Calling-ITC-dataset-5FD7/

hoo_Weather, a popular weather API, can provide085

weather information for Shenzhen, a famous city086

in China, it cannot retrieve detailed weather data087

for Nanshan, a district within Shenzhen. This high-088

lights the need for more diverse, publicly available089

datasets that support international tool-calling sce-090

narios.091

To address these challenges, we introduce the In-092

ternational Tool Calling (ITC) dataset, specifically093

designed for international tool-calling scenarios.094

We propose a four-stage pipeline for constructing095

the dataset, which includes collecting APIs from di-096

verse sources, preprocessing the APIs through sup-097

plementation and filtering, and applying bias sam-098

pling and tool fusion techniques to tackle the long-099

tail problem of APIs and increase query complex-100

ity. Additionally, we refine queries for clarity, rele-101

vance, and executability using Claude-3.5-Sonnet102

and Gemini-1.5-Pro to generate high-quality tool103

calling tasks. The ITC dataset consists of 3,571104

APIs and 17,540 QA pairs, with 15,790 training105

and 1,750 testing tasks. These APIs span 20 cate-106

gories, with the largest being Finance, Data, Com-107

munication, and Entertainment. The dataset offers108

extensive geographical coverage, featuring global109

APIs (64.2%) as well as region-specific APIs, pri-110

marily from the US and China, along with long-tail111

APIs from over 27 countries. It includes 14,295112

single tool calling tasks and 3,245 multiple tools113

calling tasks, with a focus on balancing underrepre-114

sented APIs. The ITC dataset serves as a valuable115

resource for training LLMs in international and116

multiple tools contexts.117

We investigated the performance of 16 open-118

source LLMs and 8 closed-source LLMs on new119

testing data, with the experimental results reveal-120

ing significant performance variations between the121

two groups across multiple metrics. These find-122

ings emphasize the value of the dataset in identify-123

ing both strengths and weaknesses in LLM perfor-124

mance, particularly in areas such as handling non-125

existent tools, missing parameters, and generating126

incorrect parameters. Additionally, we fine-tuned127

several open-source LLMs, which had not been128

previously fine-tuned on other tool-calling bench-129

marks, using our training dataset. These models130

showed notable improvements compared to their131

original versions, both on in-distribution and out-132

of-distribution (OOD) data. These results demon-133

strate that our training dataset can effectively en-134

hance model performance for a range of real-world,135

international tool-calling tasks.136

Dataset # Tools Source Access. # Tasks Ex. Lang.
API-BLEND 199 Sim. × 189,040 × Eng.
APIGen 3,673 Real × 60,000

√
Eng.

Gorilla 1,645 Real
√

16,450
√

Eng.
Seal-Tools 4,076 Sim.

√
14,076 × Eng.

ToolACE 26,507 Sim. × 11,300 × Eng.
ToolBench 16,464 Real

√
126,486

√
Eng.

RoTBench 568 ToolEyes × 105
√

Eng.
MLLM-Tool 932 Real × 11,642

√
Eng.

PLUTO 2,032 Sim. × 5,824 × Eng.
SciToolBench 2,446 Sim. × 856 × Eng.
GeoLLM-QA 117 Real × 1,000 × Eng.
INJECAGENT 17 Sim.

√
1,054

√
Eng.

StableToolBench 16,464 ToolBench
√

126,486
√

Eng.
ToolEyes 568 Sim.

√
382

√
Eng.

ToolSword 100 Sim. × 440
√

Eng.
Hammer - APIGen × 67,500 × Eng
ours 3,573 Real

√
17,540

√
Multi

Table 1: Summary of existing tool calling datasets. Ac-
cess.: Accessibility, Ex.: Executable, Lang.: Language,
Eng.: English, Sim.: Simulated.

2 Related Work 137

In this work, we review datasets and frameworks 138

designed to enhance the performance of large lan- 139

guage models (LLMs) in tool invocation tasks. 140

These include datasets for API-related tasks, multi- 141

modal tool interactions, and methods for improving 142

tool learning. Table 1 summarizes key datasets and 143

frameworks. 144

Existing benchmarks cover a range of tool- 145

augmented tasks, including API-based interactions, 146

multi-modal tool usage, and robustness evaluations. 147

Datasets such as API-BLEND (Basu et al., 2024), 148

APIGen (Liu et al., 2024c), and ToolACE (Liu 149

et al., 2024b) focus on API-based function calling, 150

providing diverse APIs for training and evaluation. 151

While APIGen and ToolACE contain thousands 152

of executable APIs, API-BLEND primarily sup- 153

ports semantic parsing and slot-filling tasks. Go- 154

rilla (Patil et al., 2023) and ToolLLM (Qin et al., 155

2023) enhance LLM capabilities in real-world API 156

interactions, aiming to improve accuracy and re- 157

duce hallucinations. Meanwhile, Seal-Tools (Wu 158

et al., 2024), PLUTO (Huang et al., 2024), and 159

SciToolBench (Ma et al., 2024) introduce more 160

complex tool-use scenarios, including multi-step 161

reasoning and domain-specific applications. Other 162

benchmarks, such as RoTBench (Ye et al., 2024c) 163

and StableToolBench (Guo et al., 2024), assess 164

LLM robustness and stability, while ToolEyes (Ye 165

et al., 2024a) and ToolSword (Ye et al., 2024b) 166

focus on cognitive abilities and safety in tool use. 167

Additionally, multi-modal frameworks like MLLM- 168

Tool (Wang et al., 2024) extend tool learning to 169

2

non-text modalities, supporting interactions with170

images, text, and audio.171

Despite these advancements, several limitations172

persist in existing tool-calling datasets. Many rely173

on simulated APIs, which may not accurately re-174

flect real-world tool usage, while those utilizing175

real APIs often include proprietary or inaccessible176

endpoints, limiting practical adoption. Moreover,177

more than half of the available benchmarks are not178

publicly accessible, further restricting their usabil-179

ity. Although ToolBench leverages real APIs and180

is accessible, some of the APIs sourced from Rapi-181

dAPI are unavailable. Additionally, most datasets182

are primarily US-centric, reducing their applica-183

bility for retrieving fine-grained local information184

from other countries.185

To address these shortcomings, we introduce a186

new dataset designed for international tool-calling187

scenarios. Our dataset aggregates information from188

a diverse set of publicly available, real international189

APIs, covering services such as gasoline prices,190

global and local news, stock markets, and weather191

conditions across various countries. This broad192

and diverse coverage enables comparative analysis193

across regions in fields like economics, media, and194

environmental sciences. By providing real interna-195

tional APIs along with QA pairs that require region-196

specific information retrieval, our dataset offers a197

valuable resource for both academic research and198

business applications, facilitating deeper insights199

into global trends and regional differences.200

3 Dataset Curation201

Our dataset construction follows a four-stage202

pipeline for minimal human intervention and scala-203

bility. First, in API Collection and Processing, we204

use automated tools to gather API documentation.205

Next, in Query Generation, GPT-4o generates de-206

tailed instructions for the APIs. In Query Filtering,207

the queries are refined for clarity, relevance, and208

executability using Claude-3.5-Sonnet and Gemini-209

1.5-Pro. Finally, in Question-and-Answer Pair210

Generation, GPT-4o generates high-quality Q&A211

pairs. This pipeline is easily scalable for new APIs,212

as illustrated in Figure 1.213

3.1 API Collection and Processing214

API Collection: ToolBench (Qin et al., 2023) is a215

widely used tool invocation benchmark that selects216

APIs primarily from RapidAPI. However, most of217

these APIs originate from the United States, with218

API Collection and Construction

Public
APIs

Query Generation

Query Scoring And Filter

Tool-use Instance Generation

Query
repository

Scoring
model

High-quality
queries

API
repository

Query Diverse Task
Prompt

Checker High-quality
QA

QA Data
Scoring
criteria

RESTfulAPI

Toolname: ……
Description : ……
Home_url: ………
Country: ……
Api_list:[
{name: ……,
Required_Parameters:..,
}]

Normalized
documentation

Standardized API
Documentation

Figure 1: Dataset construction flowchart.

limited representation from other regions, resulting 219

in a lack of global diversity. Additionally, many of 220

these APIs require a paid subscription, restricting 221

accessibility. 222

To address these limitations, we collected 49,937 223

real REST APIs from various platforms, spanning 224

domains such as social media, e-commerce, and 225

weather. Our dataset ensures broader geographical 226

representation by sourcing APIs not only from Rap- 227

idAPI Hub1 but also from multiple international 228

platforms. These include China’s Juhe API2 and 229

XiaRou API3, as well as community-curated repos- 230

itories on GitHub, such as free-api4 and public- 231

apis5. These sources represent just a portion of our 232

efforts to build a globally diverse and accessible 233

API dataset. These APIs are categorized into 20 234

distinct functional groups, including Entertainment, 235

Finance, Education, and more. 236

API Supplementation: Since our APIs are sourced 237

from a variety of platforms, ensuring that each 238

one is supported by comprehensive, high-quality 239

documentation—enabling LLMs to accurately in- 240

terpret the API’s functionality, usage, and con- 241

straints—can be challenging. Many real-world 242

APIs lack detailed documentation, which exacer- 243

bates this issue. To address this, we provide thor- 244

ough specifications for each API, including clear 245

descriptions of their functionality and well-defined 246

input/output schemas. We also conduct rigorous 247

quality checks, removing incomplete or ambiguous 248

documentation and enriching simpler APIs with 249

additional details. These efforts enhance clarity, 250

1https://rapidapi.com/
2https://www.juhe.cn/
3https://api.aa1.cn/
4https://github.com/fangzesheng/free-api
5https://github.com/public-apis/public-apis

3

https://rapidapi.com/
https://www.juhe.cn/
https://api.aa1.cn/
https://github.com/fangzesheng/free-api
https://github.com/public-apis/public-apis

improve usability, and ultimately benefit develop-251

ers by facilitating more efficient and accurate inte-252

gration.253

API Filtering: The initial collection of 49,937 free254

APIs contained many redundant or low-quality en-255

tries. For instance, multiple APIs provided similar256

functionality, such as weather data, while others257

suffered from issues like instability, infrequent up-258

dates, and poor response accuracy. This reduced259

the total number of APIs from 49,937 to 5,410. We260

then conducted a more rigorous screening process,261

evaluating each API based on key criteria such as262

stability, update frequency, and response accuracy.263

As a result, our final dataset includes 3,571 high-264

quality, free APIs.265

3.2 Query Generation266

Tool-calling tasks can be categorized into two main267

types: Single Tool Calling Task, which involve268

calling a single API to accomplish the task, and269

Multiple Tools Calling Task, which require in-270

voking multiple APIs, potentially from different271

countries. The Multiple Tools Calling Task can272

be further subdivided into three categories: Re-273

peated multiple tools calling, where the model274

makes multiple calls to the same API with differ-275

ent parameters to complete a multi-stage process;276

Parallel multiple tools calling, which involve in-277

voking two or more APIs simultaneously to fulfill278

the task; and Nested multiple tools calling, where279

the model decomposes the task into steps, invoking280

APIs in a specific sequence, with the output of one281

API serving as the input for the next.282

Existing benchmarks for generating queries for283

API calls typically focus on queries in English, with284

APIs predominantly sourced from the USA. How-285

ever, in international toll calling scenarios, queries286

can be in multiple languages, and the APIs may287

originate from various countries, introducing ad-288

ditional complexity in both language and regional289

variations. Current benchmarks often overlook the290

importance of language and location-specific re-291

quirements.292

In this paper, we design tasks that involve retriev-293

ing local information from region-specific APIs.294

For example, consider a Japanese tourist planning295

a trip to Lijiang, a popular city in Yunnan Province,296

China. The tourist would require weather updates297

and information about local travel destinations298

from APIs in both Japan and China, presented299

in Japanese and Chinese, respectively. This sce-300

nario underscores the need for cross-lingual and301

cross-national API interactions, highlighting the 302

challenges and requirements of handling diverse 303

languages and regions in API-based tasks. 304

Based on the principles outlined above, we de- 305

signed 36 seed examples covering a range of sce- 306

narios. For each case, we first select the desired 307

number of APIs (one or more) and three corre- 308

sponding examples with the following strategies to 309

improve query quality: 310

1. Biased Sampling. The API collection ex- 311

hibits a long-tail distribution, with countries 312

such as China and the United States, possess- 313

ing more advanced internet infrastructures, 314

having a disproportionately higher number 315

of APIs compared to other nations. To ad- 316

dress this imbalance, we intentionally gener- 317

ate more instructions for countries with fewer 318

available APIs, thereby reducing sampling 319

bias and ensuring more diverse representation. 320

2. Tool Confusion. To increase the task’s com- 321

plexity, we introduce a challenge for large 322

language models (LLMs) by making it harder 323

for them to differentiate between similar APIs 324

within the same category. This is accom- 325

plished by selecting APIs with overlapping 326

functionalities or by including APIs from dif- 327

ferent countries that might appear similar. We 328

then generate queries that intentionally create 329

ambiguity, potentially misleading the LLM 330

into selecting the wrong API, thus testing its 331

ability to handle nuanced distinctions. 332

We then prompt GPT-4 to generate the neces- 333

sary queries, ensuring a diverse and randomized 334

set of outcomes. The output is formatted in JSON, 335

with the “Thought” label capturing the reasoning 336

process in the same language as the query, and the 337

“Action” label indicating the corresponding API 338

calls. 339

3.3 Query Selection 340

In the last step, we obtained 44,198 queries. How- 341

ever, many of these queries presented issues such 342

as unclear requirements, insufficient relevance to 343

the tools, non-standard language, and failure to 344

appropriately adhere to cultural context. After per- 345

forming scoring and filtering to select high-quality 346

queries, we reduced the dataset to 17,540 final 347

queries. 348

Our query selection method consists of two key 349

steps: Query Scoring and Query Selection. In the 350

4

Query Scoring step, we address the limitation of351

existing datasets, which often lack a fine-grained352

evaluation standard for assessing the quality of gen-353

erated queries or question-and-answer pairs. Most354

existing methods rely on coarse metrics that fail to355

fully capture the effectiveness and relevance of the356

instructions. To address this gap, we propose five357

scoring dimensions: Relevance, which evaluates358

how well the query aligns with the task at hand;359

Practicality, which assesses the feasibility of the360

instruction in real-world scenarios; Linguistic Ap-361

plicability, which checks for adherence to linguistic362

norms and cultural context; Clarity, which ensures363

the instruction is clear, concise, and easily under-364

standable; and Specificity, which measures the level365

of detail and focus, reducing ambiguity and enhanc-366

ing the precision of tool invocation. These scoring367

dimensions provide a comprehensive evaluation368

of the instructions from multiple perspectives, en-369

suring that the final instructions meet high-quality370

standards across all aspects. To avoid potential371

model bias, as highlighted in recent work (Zheng372

et al., 2023), we utilize two independent scoring373

standards: Anthropic’s Claude-3.5-sonnet model374

and Google’s Gemini-1.5-pro model. Both mod-375

els assign a score ranging from 1 to 5, where 1376

indicates a very low quality and 5 indicates the377

highest quality. Each model evaluates the instruc-378

tions independently, and filtering and optimization379

are performed based on the scores provided by both380

models.381

In the Query Selection step, we apply rigorous382

filtering criteria to retain only the highest-quality383

queries. Specifically, only instructions that re-384

ceive a score higher than 4 from both the Claude385

and Gemini models are considered high-quality.386

This ensures that lower-scoring instructions, which387

may contain irrelevant or poorly structured con-388

tent, are effectively excluded from the final dataset.389

Through this rigorous filtering process, we ensure390

that the retained instructions adhere to high stan-391

dards of relevance, practicality, clarity, specificity,392

and linguistic applicability. This ultimately im-393

proves the reliability and usability of the queries394

for further tasks.395

3.4 Question-and-Answer Pair Generation396

The last step is to use GPT-4o model to generate397

answer for each query, along with relevant API in-398

formation into the GPT-4o model. The model then399

generates the corresponding thought process and400

identifies the appropriate APIs to be called. This401

process requires careful handling of the model’s 402

reasoning to ensure that both the generated answers 403

and the API calls are contextually appropriate. Fur- 404

thermore, ensuring the coherence and accuracy of 405

the answers across multiple languages adds an ad- 406

ditional layer of complexity, as it demands that the 407

model appropriately handles language-specific fea- 408

tures while maintaining high-quality outputs for 409

a diverse set of use cases. For single-tool tasks, 410

the complexity is relatively low, so we directly use 411

prompt templates to generate question-and-answer 412

pairs. However, for multiple tools calling tasks, 413

in addition to using prompt templates, we employ 414

another large language model as a Checker that 415

has visibility into the entire generation process. 416

This Checker validates the generated question-and- 417

answer pairs, thereby enhancing their accuracy. 418

4 Data Statistics 419

Our developed International Tool Calling (ITC) 420

dataset includes 3,571 APIs and a total of 17,540 421

question-and-answer pairs, comprising 15,790 422

training pairs and 1,750 testing pairs.We will intro- 423

duce the composition of our dataset from two parts: 424

API and query. 425

4.1 Statistics on APIs 426

Commerce：181 5.07%

Communication：348 9.75%

Data：462 12.94%

Education：209 5.85%

Entertainment：292 8.18%

Environment：93 2.60%
14.25% 509Finance：

4.42% 158Gaming：

4.17% 149Image：

2.02% 72Life：

9.33% 333Location：
0.84% 30Math：
4.37% 156Media：
2.69% 96Music：
3.58% 128Other：

1.37% 49Science：
0.84% 30Sports：

4.31% 154Technology：
0.22% 8Travel：

3.19% 114Utilities：

Commerce Communication Data Education Entertainment Environment Finance Gaming Image Life

Location Math Media Music Other Science Sports Technology Travel Utilities

Figure 2: Distribution of tools across 20 categories.

Figure 2 illustrates the distribution of 3,571 APIs 427

across 20 categories. The largest categories are Fi- 428

nance (14.25%), Data (12.9%), Communication 429

(9.75%), and Entertainment (8.18%). Conversely, 430

the smallest categories include Travel (0.22%), 431

Math (0.84%), and Sports (0.84%). 432

Our dataset demonstrates notable geographical 433

diversity, encompassing APIs from over 30 coun- 434

tries and regions. We classify these APIs into 435

two categories: global APIs, which provide in- 436

formation across multiple countries and languages, 437

such as machine translation and weather forecast- 438

ing. These APIs are predominantly from USA. The 439

5

Figure 3: Distribution of tools by countries (Logarith-
mic Scale).

second category is country-specific APIs, which440

offer information tailored to a particular country441

and its language, such as local weather updates442

and news. As shown in Figure 3, global APIs ac-443

count for 2,291 samples (64.2%). China and the444

United States contribute the majority numbers of445

country-specific APIs. Finally, Long-tail APIs,446

originating from over 27 other countries and re-447

gions, contribute 11.31% of the dataset.448

4.2 Statistics on Tasks449

Our dataset consists of 17,540 tasks, including450

14,295 single-tool calling tasks and 3,245 multi-451

ple tools calling tasks. For single-tool calling tasks,452

we ensure coverage across all countries and cate-453

gories from which the APIs are sourced. While a454

significant portion of the APIs are from the USA455

(including global APIs), resulting in a higher vol-456

ume of English-language queries, we have inten-457

tionally generated more tasks for long-tail APIs to458

mitigate the long-tail problem. As a result, global459

APIs comprise 56.27% of the taks, while long-tail460

APIs account for 13.57%. In the case of multiple461

tools calling tasks, each task typically requires the462

LLM to invoke between 2 and 5 tools to success-463

fully complete the task.464

5 Experiments and Results 465

5.1 Implementation Details 466

We included both open-source and closed-source 467

LLMs in our experiments. The open-source mod- 468

els, which are freely accessible for research and 469

development, include Qwen2.5(Yang et al., 2024), 470

Hammer2(Lin et al., 2024b), Functionary-small- 471

v3.1, ToolACE-8B(Liu et al., 2024b), Watt-tool-8B, 472

Yi-1.5-9B-Chat-16K(Young et al., 2024), glm-4- 473

9b-chat(GLM et al., 2024), and Phi-4(Abdin et al., 474

2024). These models exhibit diverse performance 475

across various task categories, such as tool invoca- 476

tion and argument extraction.In contrast, the closed- 477

source models consist of GPT4o, GLM-Zero- 478

Preview, Gemini-2.0(Team et al., 2023), Claude- 479

3.5-Sonnet, Deepseek-V3(Liu et al., 2024a), and 480

Deepseek-R1(Guo et al., 2025). 481

We applied the default parameters for the open- 482

source LLMs during testing on our dataset. To 483

fine-tune the models, we used LoRA (Hu et al., 484

2021), training them for 3 epochs with a batch size 485

of 1 per device, 8 gradient accumulation steps, and 486

a learning rate of 1.0e-4. A cosine learning rate 487

scheduler with a warmup ratio of 0.1 was used for 488

the training configuration. 489

5.2 Evaluation Metrics 490

We evaluate the experimental results using four 491

metrics: Tool Selection (P/R/F1) measures the 492

model’s ability to identify appropriate tools from 493

candidates, focusing on tool localization accuracy, 494

computed using precision, recall, and F1-score. 495

Tool Invocation (P/R/F1) evaluates the model’s 496

understanding of tool parameters and the complete- 497

ness of structured information extraction, also us- 498

ing precision, recall, and F1-score through triple 499

matching. Language Matching Accuracy (LM) 500

quantifies how closely the output adheres to the tar- 501

get language requirements, specifically assessing 502

whether the “thought” label is in the same language 503

as the query, computed with the langid library. 504

Finally, Format Matching Accuracy (FM) mea- 505

sures the model’s ability to conform to the expected 506

JSON format needed for successful tool invocation. 507

5.3 Evaluation on testing datasets 508

Main results: The experimental results presented 509

in Table 2 highlight the performance differences 510

between open-source and closed-source models on 511

tool invocation tasks. In summary, closed-source 512

LLMs generally outperform open-source LLMs. In 513

6

Model Name LM FM Tool Selection Tool Invocation

P R F1 P R F1

Qwen2.5-7B-Instruct 90.51 96.65 54.08 53.06 53.18 42.76 43.37 42.71
Qwen2.5-Coder-7B 94.93 98.38 69.76 66.01 67.23 54.17 54.11 53.75
Qwen2.5-3B-Instruct 87.40 93.00 49.34 45.84 47.52 40.90 41.77 41.33
Qwen2.5-Coder-3B 84.26 89.25 48.92 49.01 48.76 38.49 38.83 38.43
watt-tool-8B 74.48 5.53 88.90 88.03 88.30 76.33 73.46 74.31
ToolACE-8B 81.31 4.56 70.30 69.82 69.93 59.39 56.22 57.17
Hammer2.1-7b 86.82 20.71 64.64 64.68 64.44 33.14 32.68 32.75
Hammer2.0-7b 78.21 95.42 61.22 57.48 58.68 45.00 45.25 44.85
Functionary-v3.1 76.75 54.15 40.63 37.15 38.30 35.25 35.64 35.02
Yi-1.5-9B-Chat-16K 82.37 91.9 45.28 45.71 45.32 35.67 35.66 35.33
glm-4-9b-chat 76.00 97.55 43.45 41.44 42.09 32.77 32.85 32.57
Phi-4 96.73 96.29 80.90 82.68 81.49 70.15 70.25 69.84
Qwen2.5-Coder-32B 91.05 99.14 84.82 81.44 82.54 71.13 71.04 70.69
Qwen2.5-72B-Instruct 89.47 98.16 52.78 51.44 51.83 43.11 43.35 42.89
Deepseek-V3 86.09 99.89 83.10 83.73 83.28 75.94 75.77 75.49
Deepseek-R1 77.05 100 86.89 85.25 85.79 73.47 73.15 72.79

o1-mini 95.89 93.68 64.41 66.61 64.72 60.58 62.53 61.06
o3-mini 86.19 71.37 61.06 61.13 60.93 54.01 53.56 53.54
GPT4o-mini 96.24 99.83 76.47 75.21 75.55 71.69 70.38 70.71
GPT4o 97.95 99.83 88.95 89.48 89.01 82.18 81.57 81.57
GLM-Zero 88.37 98.45 51.24 50.31 50.51 42.64 43.64 42.78
gemini-2.0-flash 95.04 99.77 77.25 77.76 77.32 69.08 68.14 68.18
gemini-2.0-pro 96.17 94.13 84.57 83.50 83.86 73.22 71.65 71.95
Claude-3.5-sonnet 94.75 97.06 82.08 81.00 81.19 72.05 72.29 71.77

Table 2: Experimental results on our testing dataset (%).

terms of Language Matching Accuracy (LM),514

scores range from 74% to over 97%, with open-515

source models like Qwen2.5-7B-Instruct (90.51%)516

and closed-source models like GPT4o (97.95%)517

exhibiting strong linguistic consistency. Regarding518

Format Matching Accuracy (FM), most models519

show solid adherence to expected output formats,520

ranging from 4.56% to 99.89%. Open-source mod-521

els such as Deepseek-R1 (100%) and Qwen2.5-522

Coder-32B (99.14%) excel in maintaining the re-523

quired JSON format, while models like watt-tool-524

8B and ToolACE-8B show lower performance in525

this aspect.526

Performance also varies in Tool Selection and527

Tool Invocation metrics. Models like GPT4o lead528

in Tool Selection (P/R/F1), demonstrating high529

precision, recall, and F1 scores, while open-source530

models like watt-tool-8B also perform well. How-531

ever, models like Functionary-v3.1 show limited532

capabilities in selecting appropriate tools. Simi-533

larly, in Tool Invocation (P/R/F1), GPT4o and534

watt-tool-8B excel, indicating strong tool invoca-535

tion capabilities, while models such as Hammer2.1-536

7b struggle to generate and structure effective tool537

invocations.538

The difference between Tool Selection and Tool539

Invocation reflects a model’s ability to choose the540

right tool and generate the correct invocation pa-541

rameters. Models like GPT4o show minimal dis-542

crepancy, excelling in both aspects. In contrast,543

models with a larger gap, such as Hammer2.1-7b,544

struggle with generating proper parameters for se-545

lected tools, highlighting areas for improvement in546

parameter generation and structural output. This547

discrepancy is a key performance indicator for tool- 548

based tasks. 549

Model Name Tool selection Tool invocation

Hall. Mis. Ex. Incor. Miss. Ext.
Qwen2.5-7B-Instruct 21.57 73.23 5.20 51.53 19.73 28.74
Qwen2.5-Coder-7B 4.25 86.65 9.10 51.01 20.59 28.39
Qwen2.5-3B-Instruct 8.74 75.79 15.47 42.14 16.42 41.45
Qwen2.5-Coder-3B 38.48 51.51 10.00 37.36 23.02 39.62
watt-tool-8B 25.51 67.74 6.74 45.54 40.61 13.85
ToolACE-8B 4.12 88.75 7.13 42.03 48.63 9.34
Hammer2.1-7b 0.70 91.56 7.74 17.18 64.26 18.56
Hammer2.0-7b 2.35 89.16 8.49 57.80 23.92 18.28
Functionary-v3.1 20.92 76.97 2.11 37.70 28.80 33.51
Yi-1.5-9B-Chat-16K 37.35 55.78 6.86 38.90 18.66 42.44
glm-4-9b-chat 0.98 93.90 5.12 27.88 54.78 17.34
Phi-4 11.29 69.18 19.53 44.75 29.11 26.14
Qwen2.5-Coder-32B 8.09 66.31 25.61 46.43 27.80 25.78
Qwen2.5-72B-Instruct 43.64 51.95 4.41 46.65 22.79 30.56
Deepseek-V3 0.43 80.21 19.36 57.65 24.38 17.97
Deepseek-R1 8.33 83.33 8.33 41.67 29.17 29.17
o1-mini 35.5 61.68 2.82 54.5 28.5 17.0
o3-mini 34.8 62.33 2.87 53.89 29.64 16.47
GPT4o-mini 19.71 76.26 4.03 48.76 39.94 11.29
GPT4o 47.16 49.72 3.12 53.67 21.22 25.10
GLM-Zero 37.63 58.09 4.28 48.89 13.27 37.83
gemini-2.0-flash 30.93 62.13 6.95 50.42 29.50 20.08
gemini-2.0-pro 0 85.64 14.36 47.31 35.13 17.56
Claude-3.5-sonnet 22.11 68.81 9.08 54.67 21.21 24.12

Table 3: Error analysis of tool selection and invoca-
tion across different LLMs (%). Hall.: hallucinating
non-existing tools, Mis.: missing required tools, Ex.:
calling extra tools, Incor.: generating incorrect parame-
ters, Miss.: missing parameters, Ext. in tool invocation:
generating extra parameters.

Error analysis: Table 3 presents an analysis of 550

all LLMs in tool selection and invocation. Across 551

all models, tool selection errors primarily consist 552

of hallucinating non-existing tools and missing re- 553

quired tools. Notably, models like Qwen2.5-72B- 554

Instruct and Hammer2.1-7b show the highest and 555

lowest hallucination rates, respectively, with signif- 556

icant variation in the missing tools rate, as seen in 557

glm-4-9b-chat and Deepseek-V3. Extra tool calls 558

(Ex. in tool selection) also vary, with models like 559

Qwen2.5-Coder-32B generating higher rates com- 560

pared to Deepseek-V3. For tool invocation errors, 561

models display notable discrepancies in generat- 562

ing incorrect parameters, with Hammer2.1-7b hav- 563

ing a high rate of 64.26%. Additionally, models 564

like GPT4o-mini and gemini-2.0-flash exhibit a 565

more balanced performance in terms of missing 566

parameters and extra parameters. Overall, the main 567

challenges highlighted are tool hallucination, miss- 568

ing parameters, and generating incorrect invocation 569

parameters, reflecting areas for potential improve- 570

ment across different models. 571

7

Model Name LM FC Tool Selection Tool Invocation

P R F1 P R F1

Qwen2.5-7B-Instruct 96.89(+6.38) 99.77(+3.12) 97.72(+43.64) 98.08(+45.02) 97.76(+44.58) 90.64(+47.88) 90.55(+47.18) 90.34(+47.63)
Qwen2.5-Coder-7B 97.41(+2.48) 99.64(+1.26) 97.69(+27.93) 98.00(+31.99) 97.72(+30.49) 90.57(+36.4) 90.38(+36.27) 90.22(+36.47)
Qwen2.5-3B-Instruct 97.26(+9.86) 99.54(+6.54) 97.35(+18.01) 97.92(+22.08) 97.48(+49.96) 89.78(+28.88) 89.50(+27.73) 89.36(+48.03)
Qwen2.5-Coder-3B 97.29(+13.03) 99.79(+10.54) 97.64(+48.72) 97.89(+48.88) 97.64(+48.88) 90.25(+51.76) 90.26(+51.43) 89.96(+51.53)

Table 4: Results on our testing dataset by fine-tuned LLMs (%), with values in brackets showing the improvement
from the original models.

Model Nexus Raven Seal-Tools Tool-Alpaca

Tool Selection Tool Invocation Tool Selection Tool Invocation Tool Selection Tool Invocation

Qwen2.5-7B-Instruct 90.57(+25.75) 59.97(+10.23) 89.91(+24.00) 76.16(+17.76) 77.05(+18.10) 49.96(+9.85)
Qwen2.5-Coder-7B-Instruct 90.99(+20.44) 68.04(+17.76) 89.57(+22.22) 78.04(+18.92) 77.34(+14.91) 50.87(+8.23)
Qwen2.5-3B-Instruct 81.03(+6.50) 57.14(+2.78) 90.32(+23.26) 76.76(+20.02) 75.00(+8.92) 47.54(+8.57)
Qwen2.5-Coder-3B-Instruct 84.17(+2.09) 64.22(+4.90) 89.34(+8.50) 76.18(+7.97) 73.10(+4.53) 48.69(+7.06)

Table 5: Results on three benchmark testing dataset by fine-tuned LLMs (%), with values in brackets showing the
improvement from the original models.

5.4 Evaluation for Fine-tuning572

In this experiment, we fine-tuned four versions of573

Qwen 2.5—Qwen2.5-7B-Instruct, Qwen2.5-Coder-574

7B, Qwen2.5-3B-Instruct, and Qwen2.5-Coder-575

3B—on our training dataset. These models had576

not previously been fine-tuned on any tool-calling577

datasets, allowing us to evaluate the impact of our578

training dataset on enhancing the tool-calling capa-579

bilities of open-source LLMs.580

Testing results on our testing dataset: The results,581

shown in Table 4, reveal substantial improvements582

in both tool selection and tool invocation after fine-583

tuning the large language models (LLMs). Tool584

invocation gains reached up to 51.76%, with the585

smaller 3B models performing almost as well as586

their larger 7B counterparts, highlighting the ef-587

fectiveness of our training dataset. The evaluated588

models include Qwen2.5-7B-Instruct, Qwen2.5-589

Coder-7B, Qwen2.5-3B-Instruct, and Qwen2.5-590

Coder-3B. Across all models, significant improve-591

ments were observed, especially in tool selection592

and invocation tasks. For example, Qwen2.5-7B-593

Instruct showed a 47.63% increase in tool selection594

F1 score and a 47.88% improvement in tool in-595

vocation F1 score. Notably, Qwen2.5-Coder-3B596

achieved the highest improvement in tool invoca-597

tion, with a 51.53% increase in F1 score. Remark-598

ably, Qwen2.5-Coder-3B achieved performance599

levels comparable to Qwen2.5-7B-Instruct, further600

demonstrating the success of our training dataset601

in enhancing the models’ tool-calling capabilities.602

Testing results on OOD data: To evaluate the ro-603

bustness and generalization of our fine-tuned mod-604

els, we tested them on three OOD datasets: Nexus605

Raven(team, 2023), Seal-Tools(Wu et al., 2024), 606

and Tool-Alpaca(Tang et al., 2023a). The results, 607

shown in Table 5, reveal significant improvements 608

across all four models. Four fine-tuned versions of 609

Qwen2.5 exhibited notable enhancements in tool 610

selection and invocation, in terms in F1, with im- 611

provements reaching up to 25.75% for tool selec- 612

tion and 18.10% for tool invocation. These findings 613

highlight the effectiveness of our training dataset 614

in boosting model performance on various tool- 615

calling tasks. 616

6 Conclusion 617

In this paper, we addresses the pressing need for a 618

more diverse, globally-oriented dataset to support 619

the development of LLMs’ tool-calling capabilities. 620

By introducing the International Tool Calling (ITC) 621

dataset, we provide a comprehensive resource for 622

training and evaluating LLMs on international and 623

multiple tools calling scenarios. Our dataset, which 624

spans a wide range of API categories and includes 625

both global and region-specific APIs, effectively 626

tackles the challenges of long-tail API represen- 627

tation and the complexities of multiple tools call- 628

ing interactions. The experimental results under- 629

score the utility of the ITC dataset in identifying 630

key performance issues in LLM tool invocation, 631

such as handling missing or incorrect parameters, 632

and demonstrate the potential for significant per- 633

formance improvement through fine-tuning. These 634

findings highlight the promise of our dataset in ad- 635

vancing LLMs’ ability to interact with international 636

APIs, and suggest promising directions for future 637

research. 638

8

Limitations639

While our work offers significant advancements,640

several limitations warrant further investigation.641

First, although our dataset prioritizes geographi-642

cal diversity, certain regions (e.g., Africa and parts643

of Asia) remain underrepresented, potentially lim-644

iting the model’s ability to handle nuanced cultural645

or regulatory contexts in these areas. Second, the646

dataset focuses exclusively on REST APIs, leav-647

ing other tool types (e.g., SOAP APIs or database648

connectors) unexplored, which may restrict appli-649

cability in heterogeneous tool ecosystems. Third,650

while our automated pipeline ensures scalability, it651

may inadvertently propagate biases or errors from652

synthetic instruction generation, particularly in low-653

resource languages. Additionally, error analysis re-654

vealed persistent challenges in handling nested tool655

calls and parameter hallucination, suggesting the656

need for stronger semantic validation frameworks.657

Finally, the reliance on free APIs introduces po-658

tential instability due to service deprecation or rate659

limits, which could affect long-term reproducibility.660

Finally, the dataset with advanced difficulty is re-661

quired to boost the tool calling capabilities for open662

source LLMs. Addressing these limitations will be663

critical for future work to achieve truly robust and664

universal tool-calling systems.665

Acknowledgments666

References667

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien668
Bubeck, Ronen Eldan, Suriya Gunasekar, Michael669
Harrison, Russell J Hewett, Mojan Javaheripi, Piero670
Kauffmann, et al. 2024. Phi-4 technical report. arXiv671
preprint arXiv:2412.08905.672

Kinjal Basu, Ibrahim Abdelaziz, Subhajit Chaudhury,673
Soham Dan, Maxwell Crouse, Asim Munawar, Sad-674
hana Kumaravel, Vinod Muthusamy, Pavan Kapa-675
nipathi, and Luis A. Lastras. 2024. Api-blend: A676
comprehensive corpora for training and benchmark-677
ing api llms. Preprint, arXiv:2402.15491.678

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chen-679
hui Zhang, Da Yin, Dan Zhang, Diego Rojas, Guanyu680
Feng, Hanlin Zhao, et al. 2024. Chatglm: A family681
of large language models from glm-130b to glm-4 all682
tools. arXiv preprint arXiv:2406.12793.683

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,684
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,685
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In-686
centivizing reasoning capability in llms via reinforce-687
ment learning. arXiv preprint arXiv:2501.12948.688

Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang, 689
Yujia Qin, Peng Li, Zhiyuan Liu, Maosong Sun, and 690
Yang Liu. 2024. Stabletoolbench: Towards stable 691
large-scale benchmarking on tool learning of large 692
language models. arXiv preprint arXiv:2403.07714. 693

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 694
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, 695
and Weizhu Chen. 2021. Lora: Low-rank adap- 696
tation of large language models. arXiv preprint 697
arXiv:2106.09685. 698

Tenghao Huang, Dongwon Jung, and Muhao Chen. 699
2024. Planning and editing what you retrieve 700
for enhanced tool learning. arXiv preprint 701
arXiv:2404.00450. 702

Qiqiang Lin, Muning Wen, Qiuying Peng, Guanyu Nie, 703
Junwei Liao, Jun Wang, Xiaoyun Mo, Jiamu Zhou, 704
Cheng Cheng, Yin Zhao, Jun Wang, and Weinan 705
Zhang. 2024a. Hammer: Robust function-calling 706
for on-device language models via function masking. 707
Preprint, arXiv:2410.04587. 708

Qiqiang Lin, Muning Wen, Qiuying Peng, Guanyu 709
Nie, Junwei Liao, Jun Wang, Xiaoyun Mo, Jiamu 710
Zhou, Cheng Cheng, Yin Zhao, et al. 2024b. Ham- 711
mer: Robust function-calling for on-device lan- 712
guage models via function masking. arXiv preprint 713
arXiv:2410.04587. 714

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, 715
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi 716
Deng, Chenyu Zhang, Chong Ruan, et al. 2024a. 717
Deepseek-v3 technical report. arXiv preprint 718
arXiv:2412.19437. 719

Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao, 720
Shuai Yu, Dexun Li, Shuai Wang, Weinan Gan, 721
Zhengying Liu, Yuanqing Yu, Zezhong Wang, Yux- 722
ian Wang, Wu Ning, Yutai Hou, Bin Wang, Chuhan 723
Wu, Xinzhi Wang, Yong Liu, Yasheng Wang, Duyu 724
Tang, Dandan Tu, Lifeng Shang, Xin Jiang, Ruiming 725
Tang, Defu Lian, Qun Liu, and Enhong Chen. 2024b. 726
Toolace: Winning the points of llm function calling. 727
Preprint, arXiv:2409.00920. 728

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, 729
Tian Lan, Shirley Kokane, Juntao Tan, Weiran Yao, 730
Zhiwei Liu, Yihao Feng, Rithesh Murthy, Liangwei 731
Yang, Silvio Savarese, Juan Carlos Niebles, Huan 732
Wang, Shelby Heinecke, and Caiming Xiong. 2024c. 733
Apigen: Automated pipeline for generating verifi- 734
able and diverse function-calling datasets. ArXiv, 735
abs/2406.18518. 736

Marco Lui and Timothy Baldwin. 2012. langid.py: An 737
off-the-shelf language identification tool. In Proceed- 738
ings of the ACL 2012 System Demonstrations, pages 739
25–30, Jeju Island, Korea. Association for Computa- 740
tional Linguistics. 741

Yubo Ma, Zhibin Gou, Junheng Hao, Ruochen Xu, 742
Shuohang Wang, Liangming Pan, Yujiu Yang, Yixin 743
Cao, Aixin Sun, Hany Awadalla, et al. 2024. Scia- 744
gent: Tool-augmented language models for scientific 745
reasoning. arXiv preprint arXiv:2402.11451. 746

9

https://arxiv.org/abs/2402.15491
https://arxiv.org/abs/2402.15491
https://arxiv.org/abs/2402.15491
https://arxiv.org/abs/2402.15491
https://arxiv.org/abs/2402.15491
https://arxiv.org/abs/2410.04587
https://arxiv.org/abs/2410.04587
https://arxiv.org/abs/2410.04587
https://arxiv.org/abs/2409.00920
https://api.semanticscholar.org/CorpusID:270738094
https://api.semanticscholar.org/CorpusID:270738094
https://api.semanticscholar.org/CorpusID:270738094
https://aclanthology.org/P12-3005/
https://aclanthology.org/P12-3005/
https://aclanthology.org/P12-3005/

Aaron Parisi, Yao Zhao, and Noah Fiedel. 2022.747
Talm: Tool augmented language models. Preprint,748
arXiv:2205.12255.749

Shishir G. Patil, Tianjun Zhang, Xin Wang, and750
Joseph E. Gonzalez. 2023. Gorilla: Large lan-751
guage model connected with massive apis. Preprint,752
arXiv:2305.15334.753

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan754
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,755
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian,756
Ruobing Xie, Jie Zhou, Mark Gerstein, Dahai Li,757
Zhiyuan Liu, and Maosong Sun. 2023. Toolllm: Fa-758
cilitating large language models to master 16000+759
real-world apis. Preprint, arXiv:2307.16789.760

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta761
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola762
Cancedda, and Thomas Scialom. 2023. Toolformer:763
Language models can teach themselves to use tools.764
Preprint, arXiv:2302.04761.765

Simranjit Singh, Michael Fore, and Dimitrios Stamoulis.766
2024. Evaluating tool-augmented agents in remote767
sensing platforms. arXiv preprint arXiv:2405.00709.768

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei769
Han, Qiao Liang, Boxi Cao, and Le Sun. 2023a.770
Toolalpaca: Generalized tool learning for language771
models with 3000 simulated cases. arXiv preprint772
arXiv:2306.05301.773

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei774
Han, Qiao Liang, Boxi Cao, and Le Sun. 2023b.775
Toolalpaca: Generalized tool learning for language776
models with 3000 simulated cases. Preprint,777
arXiv:2306.05301.778

Gemini Team, Rohan Anil, Sebastian Borgeaud,779
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,780
Radu Soricut, Johan Schalkwyk, Andrew M Dai,781
Anja Hauth, et al. 2023. Gemini: a family of782
highly capable multimodal models. arXiv preprint783
arXiv:2312.11805.784

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan785
Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,786
Damien Vincent, Zhufeng Pan, Shibo Wang, et al.787
2024. Gemini 1.5: Unlocking multimodal under-788
standing across millions of tokens of context. arXiv789
preprint arXiv:2403.05530.790

Nexusflow.ai team. 2023. Nexusraven: Surpassing the791
state-of-the-art in open-source function calling llms.792

Chenyu Wang, Weixin Luo, Qianyu Chen, Haonan793
Mai, Jindi Guo, Sixun Dong, Zhengxin Li, Lin Ma,794
Shenghua Gao, et al. 2024. Tool-lmm: A large multi-795
modal model for tool agent learning. arXiv preprint796
arXiv:2401.10727.797

Mengsong Wu, Tong Zhu, Han Han, Chuanyuan Tan,798
Xiang Zhang, and Wenliang Chen. 2024. Seal-tools:799
self-instruct tool learning dataset for agent tuning and800

detailed benchmark. In CCF International Confer- 801
ence on Natural Language Processing and Chinese 802
Computing, pages 372–384. Springer. 803

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, 804
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, 805
Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5 tech- 806
nical report. arXiv preprint arXiv:2412.15115. 807

Junjie Ye, Guanyu Li, Songyang Gao, Caishuang Huang, 808
Yilong Wu, Sixian Li, Xiaoran Fan, Shihan Dou, 809
Qi Zhang, Tao Gui, et al. 2024a. Tooleyes: Fine- 810
grained evaluation for tool learning capabilities of 811
large language models in real-world scenarios. arXiv 812
preprint arXiv:2401.00741. 813

Junjie Ye, Sixian Li, Guanyu Li, Caishuang Huang, 814
Songyang Gao, Yilong Wu, Qi Zhang, Tao Gui, 815
and Xuanjing Huang. 2024b. Toolsword: Un- 816
veiling safety issues of large language models in 817
tool learning across three stages. arXiv preprint 818
arXiv:2402.10753. 819

Junjie Ye, Yilong Wu, Songyang Gao, Caishuang 820
Huang, Sixian Li, Guanyu Li, Xiaoran Fan, Qi Zhang, 821
Tao Gui, and Xuanjing Huang. 2024c. Rotbench: a 822
multi-level benchmark for evaluating the robustness 823
of large language models in tool learning. arXiv 824
preprint arXiv:2401.08326. 825

Alex Young, Bei Chen, Chao Li, Chengen Huang, 826
Ge Zhang, Guanwei Zhang, Guoyin Wang, Heng 827
Li, Jiangcheng Zhu, Jianqun Chen, et al. 2024. Yi: 828
Open foundation models by 01. ai. arXiv preprint 829
arXiv:2403.04652. 830

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan 831
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, 832
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023. 833
Judging llm-as-a-judge with mt-bench and chatbot 834
arena. Advances in Neural Information Processing 835
Systems, 36:46595–46623. 836

10

https://arxiv.org/abs/2205.12255
https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2306.05301
https://arxiv.org/abs/2306.05301
https://arxiv.org/abs/2306.05301
http://nexusflow.ai/blog
http://nexusflow.ai/blog
http://nexusflow.ai/blog

Single Tool Calling Tasks Query Generation Prompt

Please strictly follow these guidelines:
1. The instructions should be 1 to 2 sentences long. Use a mix of interrogative sentences,
first-person statements, imperative sentences, and other structures that convey a request. Aim for
diversity in your instructions.
2. Do not mention the API's name in your instructions.
3. Your instructions should only involve the features provided by these APIs.
4. Generate 10 diverse instructions.
5. Use specific nouns and real-world examples from various domains, such as entertainment, sports,
or technology.
6. Please provide concrete details.Don't using any form of generic phrases, such as "this xxx", "the
xxx","a xxx" or "a specific xxx".
7. Ensure diversity in language by combining questions with imperative statements and other
structures that convey a request.
8. The instructions should be in the language of the country attribute in the provided API information.
9. The generated problem must strictly follow the API's parameter information.
10. If country is Global, please generate 10 instructions in English.

Here is the API information:
{api_list}
Please generate the question in the language of the specified country.

your response:

Figure 4: Query generation prompt for single tool calling tasks.

A Single Tool Calling Tasks Query837

Generation Prompt838

For single tool calling tasks, we utilize a prompt-839

based approach to instruct the LLM to generate a840

query. The prompt templates used for this process841

are illustrated in Figures 4.842

B Multiple tools Calling Tasks Query843

Generation844

For multiple tool calling tasks, we have classified845

them into three categories: Repeated Calls, Parallel846

Calls, and Nested Calls. Given that the require-847

ments for each type of task differ, we have tailored848

specific prompts to generate queries for each cat-849

egory. The prompt templates for these tasks are850

illustrated in Figures 5, 6, and 7.851

C Query Scoring 852

Figure 8 illustrates an example of query scoring, 853

where, given a query and relevant API information, 854

we used both Anthropic’s Claude-3.5-sonnet model 855

and Google’s Gemini-1.5-pro model to evaluate the 856

query’s quality across five dimensions, with scores 857

ranging from 1 to 5 for each dimension. Figure 9 858

shows the prompt for LLMs to evaluate the query. 859

11

Multiple tool Repeated Calling Tasks Query Generation

Please strictly follow these guidelines:
1. Provide 1 to 2 sentences for each instruction, using a mix of
interrogative sentences, imperative statements, and descriptive
requests. Ensure the instructions are diverse in structure and tone to
reflect real-world scenarios.
2. For each instruction, select only one tool (from the provided API
list) and perform multiple calls to the same tool to complete different
tasks.
3. Do not mention any API names directly in your instructions. Instead,
focus on the functionality they provide.
4. Leverage the unique features of the selected tool. Each instruction
must clearly demonstrate how the tool can be used through multiple
calls to effectively solve a problem or fulfill a request. Avoid
generic or vague task descriptions.
5. Use detailed and specific nouns, examples, and contextual scenarios
from domains like travel, business, sports, entertainment, or
technology. Avoid vague phrases such as "this information" or "a
specific detail."
6. The generated instructions must strictly align with the parameter
information of each API/tool. Ensure the inputs and outputs are valid
for the respective tools.
7. Generate 10 diverse instructions, each showcasing a single tool
being used multiple times. Each instruction can use a different tool.
8. Ensure the content of each instruction strictly aligns with the
examples provided and closely follows the format of the examples below.

Here are some examples for Multi-Tool Instructions:
{example_list}

Here is the API information:
{api_data}

Here is the Output format:
{Output_format}

Please select only one tool (from the provided API list) and strictly
following the Output format.

your response:

Figure 5: Multiple tool repeated calls.

D Data Examples860

Figure 10 illustrates an example of the Google861

Translate API. Figure 11 provides an example of862

a single tool calling task, while Figure 12 demon-863

strates a repeated multiple tools calling task. Fig-864

ure 13 shows an example of a parallel multiple tools865

calling task, and Figure 14 presents an example of866

a nested multiple tools calling task.867

Multiple tool Parallel Calling Tasks Query Generation

Please strictly follow these guidelines:
1. Provide 1 to 2 sentences for each instruction, using a mix of
interrogative sentences, imperative statements, and descriptive
requests. Ensure the instructions are diverse in structure and tone to
reflect real-world scenarios.
2. For each instruction, select only one tool (from the provided API
list) and perform multiple calls to the same tool to complete different
tasks.
3. Do not mention any API names directly in your instructions. Instead,
focus on the functionality they provide.
4. Leverage the unique features of the selected tool. Each instruction
must clearly demonstrate how the tool can be used through multiple
calls to effectively solve a problem or fulfill a request. Avoid
generic or vague task descriptions.
5. Use detailed and specific nouns, examples, and contextual scenarios
from domains like travel, business, sports, entertainment, or
technology. Avoid vague phrases such as "this information" or "a
specific detail."
6. The generated instructions must strictly align with the parameter
information of each API/tool. Ensure the inputs and outputs are valid
for the respective tools.
7. Generate 10 diverse instructions, each showcasing a single tool
being used multiple times. Each instruction can use a different tool.
8. Ensure the content of each instruction strictly aligns with the
examples provided and closely follows the format of the examples below.

Here are some examples for Multi-Tool Instructions:
{example_list}

Here is the API information:
{api_data}

Here is the Output format:
{Output_format}

Please select only one tool (from the provided API list) and strictly
following the Output format.

your response:

Figure 6: Multiple tool parallel calls.

Multiple tool Nested Calling Tasks Query Generation

Please strictly follow these guidelines:
1. Provide 1 to 2 sentences for each instruction, using a mix of
interrogative sentences, imperative statements, and descriptive
requests. Ensure the instructions are diverse in structure and tone to
reflect real-world scenarios.
2. For each instruction, select exactly 2 or 3 tools from the provided
API list to create a scenario where these tools are used in a logical
sequence. Ensure that the output of the previous tool can serve as the
input for the next tool, forming a nested call.
3. Do not mention any API names directly in your instructions. Instead,
focus on the functionality they provide.
4. Use detailed and specific nouns, examples, and contextual scenarios
from domains like travel, business, sports, entertainment, or
technology. Avoid vague phrases such as "this information" or "a
specific detail."
5. The generated instructions must strictly align with the parameter
information of each API/tool. Ensure the inputs and outputs are valid
for the respective tools.
6. Generate 10 diverse instructions, each involving 2 or 3 tools
working together in a logical sequence and existence of nested calls.

Here are some examples for Multi-Tool Instructions:
{example_list}

Here is the API information:
{api_data}

Here is the Output format:
{Output_format}

Please strictly following the Output format.

your response:

Figure 7: Multiple tool nested calls.

12

请给我2023年11月1日
的黄历信息，我想知
道那天是否适合出行。

{"country": "China",
"api_name": "黄历查询
API",
“api_description”: “获取
特定日期的黄历信息”,
“required_parameters”:[],
"optional_parameters":[],
"method": "GET"}

Relevance: 5 points – The query is highly relevant to the API's functionality,
specifically requesting the yellow calendar information for a particular date,
usually including suggestions for auspicious activities such as travel.
Clarity: 4 points – The query is clear, but the clarity could be slightly
improved by explicitly stating that the user is seeking advice on the
suitability of travel based on the yellow calendar.
Specificity: 5 points – The query clearly specifies a particular date
(November 1, 2023) and requests travel-related information, making full use
of the API's capabilities.
Usability: 5 points – The request reflects a common real-world scenario, as
people often consult the yellow calendar for guidance on travel plans.
Linguistic Appropriateness: 5 points – The language used is appropriate for
the target audience, in Mandarin, and utilizes terminology familiar to users
seeking yellow calendar information.
Total Score: 5 points

Relevance: 5 – The query explicitly requests the yellow calendar information
for November 1, 2023, and asks whether it is suitable for travel, directly
aligning with the functionality of the yellow calendar query API.
Clarity: 5 – The query is expressed clearly, specifying the type of information
needed (yellow calendar data) and the specific requirement (suitability for
travel).
Specificity: 5 – The query specifies a concrete date (November 1, 2023) and a
clear request (whether it is suitable for travel), demonstrating high specificity.
Usability: 5 – The query reflects a common real-world scenario, where people
refer to the yellow calendar to decide whether to travel, showing strong
practical relevance.
Linguistic Appropriateness: 5 – The language used is simple and clear,
aligning with the query's purpose, and is suitable for the audience seeking
yellow calendar information.
Total Score: 5 points

Query

Rela�ve API Informa�on

Score Result

Score Result

Figure 8: The query scoring process.

13

Query Scoring Prompt

Evaluation Criteria:
Use a 1-5 scale to score the following five dimensions:
1. Relevance: How well the query matches the API's functionality.
2. Clarity: Whether the query is specific enough, avoiding ambiguous
terms like 'this xxx', 'the xxx', or 'a xxx', and ensuring the use of
the API's features.
3. Specificity: Whether the query is specific enough to utilize the
API's capabilities
4. Practicality: Whether the query reflects real-world usage scenarios
5. Language Appropriateness: Whether the query's language is suitable
for target users

Scoring Standard:
1 point: Does not meet the standard
2 points: Partially meets the standard
3 points: Meets the basic standard
4 points: Meets the standard well
5 points: Fully meets the standard

Total Score Calculation:
Calculate the average of the five dimension scores, round to the
nearest integer, as the final total score (1-5 points).

Evaluation Steps:
1. Carefully read the API name and the generated query.
2. Score each dimension and provide a brief explanation.
3. Calculate the total score.
4. Provide an overall evaluation and suggestions for improvement.
5. If the total score is less than 3, mark it as "Needs Improvement".

Output Format:
Scores:
1. Relevance: [Score] - [Explanation]
2. Clarity: [Score] - [Explanation]
3. Specificity: [Score] - [Explanation]
4. Practicality: [Score] - [Explanation]
5. Language Appropriateness: [Score] - [Explanation]
Total Score: [1-5 points]

Overall Evaluation:
[Brief summary of the query's strengths and weaknesses]
Improvement Suggestions:
[Provide specific suggestions for improvement if needed]
Conclusion: [If total score >= 4, then "Pass"; if total score < 4, then
"Needs Improvement"]
Please evaluate the following data's query
{data['query']}

Your response:

Figure 9: Query scoring prompt.

API Example

{
"tool_name": "Google Translate",
"tool_description": "A tool for translating
text between different languages using
Google's translation services.",
"home_url": "https://rapidapi.com/
nickrapidapi/api/google_translate/",
"country": "Global",
"api_list": [
{
"name": "translate1",
"url": "https://google_translate.p.rapidapi.
com/",
"description": "This API endpoint allows users
to perform translations of text from
one language to another.",
"method": "GET",
"category": "Utilities",
"required_parameters": [
{

"name": "text",
"type": "string",
"description": "The text content to be
translated"

},
{

"name": "target_lang",
"type": "string",

"description": "The target language code
(e.g., 'en' for English, 'zh' for Chinese)"

}
],
"optional_parameters": [],
"statuscode": "200",
"schema": {}}]
}

Figure 10: Example of google translate API.

14

Single Tool Calling Task Example

{"system": "You are an advanced AI assistant with expertise in:
1. Intelligent tool and API selection
2. Multilingual problem-solving
3. Systematic analytical thinking
Task Guidelines:

- Carefully analyze the problem presented
- Select the most appropriate tool(s) or API(s) to solve the task
- Provide clear, structured reasoning for your tool selection
- Ensure precise and efficient problem resolution

Important Principles:
- If no suitable tool exists, clearly explain the limitations
- Prioritize accuracy and relevance in tool selection
- Consider potential alternative approaches
- Maintain a logical and methodical approach

When tools are insufficient or parameters are incomplete:
- Explicitly state the gaps in available tools or information
- Provide constructive suggestions for obtaining resources
- Return an empty list in the \"Action\" section

Note: Please respond in the same national language as the problem
while maintaining clarity, logic, and structure in your answers.
Below is the list of functions you can invoke (in JSON format):
{api_list}

Please strictly follow the format below, without additional text:

json{\"Thought\": \"Respond in same language as problem. Provide
analysis, reasoning for tool selection, and challenges.\",
\"Action\": \"[function_name1(param_1='val1', param_2='val2'),
function_name2(param_1='val1', param_2='val2')]\"}",

"conversations": [
{
"from": "user",
"value": "Can you help me translate "Hello, how are you?" into French for my
upcoming trip to Paris?"
},
{
"from": "assistant",
"value": "json{\"Thought\":\"To assist the user with their request for
translation, I will utilize the Google Translate API, which is specifically
designed for translating text between languages. The user needs a translation
for a common greeting in French, which is straightforward.\",
\"Action\":\"[Google Translate(text='Hello, how are you?',"target_lang"="fr")]
\"}"}]}

Figure 11: Single tool calling task example.

15

Repeated Multiple Tools Calling Task Example

{"system": "You are an advanced AI assistant with expertise in:
1. Intelligent tool and API selection
2. Multilingual problem-solving
3. Systematic analytical thinking
Task Guidelines:

- Carefully analyze the problem presented
- Select the most appropriate tool(s) or API(s) to solve the task
- Provide clear, structured reasoning for your tool selection
- Ensure precise and efficient problem resolution

Important Principles:
- If no suitable tool exists, clearly explain the limitations
- Prioritize accuracy and relevance in tool selection
- Consider potential alternative approaches
- Maintain a logical and methodical approach

When tools are insufficient or parameters are incomplete:
- Explicitly state the gaps in available tools or information
- Provide constructive suggestions for obtaining resources
- Return an empty list in the \"Action\" section

Note: Please respond in the same national language as the problem
while maintaining clarity, logic, and structure in your answers.
Below is the list of functions you can invoke (in JSON format):
{api_list}

Please strictly follow the format below, without additional text:

json{\"Thought\": \"Respond in same language as problem. Provide
analysis, reasoning for tool selection, and challenges.\",
\"Action\": \"[function_name1(param_1='val1', param_2='val2'),
function_name2(param_1='val1', param_2='val2')]\"}",

"conversations": [
{
"from": "user",
"value": "Can you verify the email address 'john.doe@example.com' using the
Express option? After that, check 'jane.smith@sample.com' with the Premium
option to see if it's valid."
},
{
"from": "assistant",
"value": "json{\"Thought\":\"To verify the email addresses, I will use the
Global Email V4 API. First, I will check 'john.doe@example.com' with the Express
option, and then I will verify 'jane.smith@sample.com' using the Premium option.",
\"Action\":\"[Global Email V4(opt="VerifyMailbox:Express", email=
"john.doe@example.com"),Global Email V4(opt="VerifyMailbox:ExpressPremium",
email="jane.smith@sample.com")]
\"}"}]}

Figure 12: Repeated multiple tools calling task example.

16

Parallel Multiple Tools Calling Task Example

{"system": "You are an advanced AI assistant with expertise in:
1. Intelligent tool and API selection
2. Multilingual problem-solving
3. Systematic analytical thinking
Task Guidelines:

- Carefully analyze the problem presented
- Select the most appropriate tool(s) or API(s) to solve the task
- Provide clear, structured reasoning for your tool selection
- Ensure precise and efficient problem resolution

Important Principles:
- If no suitable tool exists, clearly explain the limitations
- Prioritize accuracy and relevance in tool selection
- Consider potential alternative approaches
- Maintain a logical and methodical approach

When tools are insufficient or parameters are incomplete:
- Explicitly state the gaps in available tools or information
- Provide constructive suggestions for obtaining resources
- Return an empty list in the \"Action\" section

Note: Please respond in the same national language as the problem
while maintaining clarity, logic, and structure in your answers.
Below is the list of functions you can invoke (in JSON format):
{api_list}

Please strictly follow the format below, without additional text:

json{\"Thought\": \"Respond in same language as problem. Provide
analysis, reasoning for tool selection, and challenges.\",
\"Action\": \"[function_name1(param_1='val1', param_2='val2'),
function_name2(param_1='val1', param_2='val2')]\"}",

"conversations": [
{
"from": "user",
"value": "Can you check the latest exchange rates for USD and AUD against EUR,
and also give me a list of all available currencies?"
},
{
"from": "assistant",
"value": "json{\"Thought\":\"To fulfill the request, I need to retrieve the
latest exchange rates for USD and AUD against EUR, as well as a list of all
available currencies. This requires using two different API endpoints: one for
the latest exchange rates and another for the list of currencies.",
\"Action\":\"[latest(from='EUR', to='USD,AUD'), currencies()]
\"}"}]}

Figure 13: Parallel multiple tools calling task example.

17

Nested Multiple Tools Calling Task Example

{"system": "You are an advanced AI assistant with expertise in:
1. Intelligent tool and API selection
2. Multilingual problem-solving
3. Systematic analytical thinking
Task Guidelines:

- Carefully analyze the problem presented
- Select the most appropriate tool(s) or API(s) to solve the task
- Provide clear, structured reasoning for your tool selection
- Ensure precise and efficient problem resolution

Important Principles:
- If no suitable tool exists, clearly explain the limitations
- Prioritize accuracy and relevance in tool selection
- Consider potential alternative approaches
- Maintain a logical and methodical approach

When tools are insufficient or parameters are incomplete:
- Explicitly state the gaps in available tools or information
- Provide constructive suggestions for obtaining resources
- Return an empty list in the \"Action\" section

Note: Please respond in the same national language as the problem
while maintaining clarity, logic, and structure in your answers.
Below is the list of functions you can invoke (in JSON format):
{api_list}

Please strictly follow the format below, without additional text:

json{\"Thought\": \"Respond in same language as problem. Provide
analysis, reasoning for tool selection, and challenges.\",
\"Action\": \"[function_name1(param_1='val1', param_2='val2'),
function_name2(param_1='val1', param_2='val2')]\"}",

"conversations": [
{
"from": "user",
"value": "Can you generate a secure password with numbers and then hash that
password using the MD5 algorithm?"
},
{
"from": "assistant",
"value": "json{\"Thought\":\"To generate a secure password with numbers, I will
use the 'Generate password' API with the appropriate parameters. After
generating the password, I will hash it using the 'MD5 Text Hash' API.",
\"Action\":\"[Generate password(numbers=true,pwCount=1,length=12),MD5 Text
Hash(dataString='generated_password')]
\"}"
},
{
"role": "Tool",
"content": {\"code\": 200,\"msg\": \"Password generated successfully.\",
\"data\": {\"password\": \"A1b2C3d4E5f6\" }}"
},
{
"from": "assistant",
"value": "json{\"Thought\":\"I have generated the password 'A1b2C3d4E5f6'
successfully. Now, I will hash this password using the MD5 algorithm.",
\"Action\":\"[MD5 Text Hash(dataString='A1b2C3d4E5f6')]
\"}"
}
]}

Figure 14: Nested multiple tools calling task example.

18

	Introduction
	Related Work
	Dataset Curation
	API Collection and Processing
	Query Generation
	Query Selection
	Question-and-Answer Pair Generation

	Data Statistics
	Statistics on APIs
	Statistics on Tasks

	Experiments and Results
	Implementation Details
	Evaluation Metrics
	Evaluation on testing datasets
	Evaluation for Fine-tuning

	Conclusion
	Single Tool Calling Tasks Query Generation Prompt
	Multiple tools Calling Tasks Query Generation
	Query Scoring
	Data Examples

