NEURAL-SYMBOLIC MESSAGE PASSING WITH DY NAMIC PRUNING

Anonymous authors

004

010 011

012

013

014

015

016

017

018

019

021

025

026 027 Paper under double-blind review

ABSTRACT

Complex Ouery Answering (COA) over Knowledge Graphs (KGs) is a fundamental yet challenging task. Given that KGs are usually incomplete, the CQA models not only need to execute logical operators, but aslo need to leverage observed knowledge to predict the missing one. Recently, a line of message-passing-based research has been proposed to re-use pre-trained neural link predictors to solve CQA. However, they perform unsatisfactorily on negative queries and fail to address the unnecessary noisy messages between variable nodes in the query graph. Moreover, like most neural CQA models, these message passing models offer little interpretability and require complex query data and resource-intensive training. In this paper, we propose a Neural-Symbolic Message Passing framework (NSMP) based on pre-trained neural link predictors. By introducing symbolic reasoning and fuzzy logic, NSMP can generalize to arbitrary existential first order logic queries without requiring training on any complex queries while providing interpretable answers. Furthermore, we introduce an effective dynamic pruning strategy to filter out noisy messages between variable nodes during message passing. Empirically, our model demonstrates strong performance and offers efficient inference. Our code can be found at https://anonymous.4open.science/r/NSMP.

028 1 INTRODUCTION

Knowledge graphs (KGs) store factual knowledge in the form of graph representations, which can 031 be applied to various intelligent application scenarios (Saxena et al., 2020; Wang et al., 2021a). Complex Query Answering (CQA) over KGs is a fundamental and practical task, which requires 033 answering existential first order logic formula with logical operators including conjunction (\wedge), dis-034 junction (\vee), negation (\neg), and existential quantifier (\exists). A straightforward way is to traverse the KG to identify the answers directly (Zou et al., 2011). However, given that modern KGs are usually 035 auto-generated (Toutanova & Chen, 2015) or built through crowd-sourcing (Vrandečić & Krötzsch, 2014), real-world KGs (Bollacker et al., 2008; Carlson et al., 2010) often suffer from incomplete-037 ness, which is also known as the Open World Assumption (OWA) (Libkin & Sirangelo, 2009; Ji et al., 2021). This makes it impossible to answer a complex query with missing links using traditional traversal methods. Therefore, the CQA models not only need to execute logical operators, but 040 also need to utilize available knowledge to predict the unseen one (Ren & Leskovec, 2020). 041

Inspired by the success of neural link predictors (Bordes et al., 2013; Trouillon et al., 2016; Sun 042 et al., 2019; Li et al., 2022) on answering one-hop atomic queries on incomplete KGs, neural mod-043 els (Hamilton et al., 2018; Ren & Leskovec, 2020; Zhang et al., 2021; Chen et al., 2022; Wang et al., 044 2023b; Zhang et al., 2024b) have been proposed to represent the entity sets by low-dimensional 045 embeddings. Building on the foundation laid by these neural CQA models, message-passing-based 046 research (Wang et al., 2023c; Zhang et al., 2024a) has demonstrated promising advancements in 047 CQA. These message passing approaches represent logical formulas as query graphs, where each 048 edge represents an atomic formula containing a predicate with a (possible) negation operator, and each node represents an input constant entity or a variable, as illustrated in Figure 1. By utilizing pre-trained neural link predictors, they perform one-hop inference on atomic formulas, thereby 051 inferring intermediate embeddings for variable nodes. An intermediate embedding is interpreted as a logical message passed from the neighboring node on the corresponding edge. Following the 052 message passing paradigm (Gilmer et al., 2017), the embeddings of variable nodes are updated to retrieve answers. Due to the integration of pre-trained neural link predictors, these message passing approaches are effective on both one-hop atomic and multi-hop complex queries. However, limitations still exist.

Firstly, even when augmented with fuzzy logic (Hájek, 2013) for one-hop inference on atomic formulas, existing message passing CQA models still perform unsatisfactorily on negative queries.

Secondly, while recent work (Zhang et al., 2024a) has considered noisy messages between variable and constant nodes, 060 noisy messages between variable nodes remain unexplored. At 061 the initial layers of message passing, messages inferred from 062 neighboring variable nodes-whose states have not yet been 063 updated-are ineffective. Aggregating such messages to up-064 date node states is essentially equivalent to introducing noise. Thirdly, similar to most neural CQA models, they offer lit-065 tle interpretability and require training on large complex query 066 datasets, which entails substantial training costs. In practical 067 scenarios, gathering meaningful complex query data poses a 068 significant challenge. 069

Figure 1: A query graph representation of a given logical formula.

In this paper, we propose a Neural-Symbolic Message Passing framework (NSMP), which leverages a simple pre-trained
neural link predictor without requiring training on any com-

plex query data. Specifically, NSMP conducts one-hop inference on atomic formulas by integrating 073 neural and symbolic reasoning to compute intermediate states for variable nodes. The intermediate 074 state can be interpreted as a message, represented by a fuzzy vector that denotes the fuzzy set of the 075 variable within the corresponding atomic formula. In particular, we propose a novel pruning strat-076 egy that dynamically filters out unnecessary noisy messages between variable nodes during message 077 passing. Based on fuzzy logic theory, NSMP aggregates the messages received by the variable nodes and updates the node states. Such a mechanism attains interpretability for the variables in the for-079 mula and can naturally execute the negation operator through fuzzy logic. Extensive experiments 080 results show that NSMP achieves competitive performance with more efficient inference. In general, 081 our main contributions can be summarized as follows:

082

084

085

087

090

091

092

093

094

095

- We propose a neural-symbolic message passing framework that, for the first time, integrates neural and symbolic reasoning within a message passing CQA model. By leveraging fuzzy logic theory, our approach can naturally answer arbitrary existential first order logic formulas without requiring training on complex queries while providing interpretability.
 - We propose a novel dynamic pruning strategy to filter out unnecessary noisy messages between variable nodes during message passing, thereby reducing unnecessary computation and improving performance.
 - Extensive experimental results on benchmark datasets show that NSMP achieves a strong performance. In particular, NSMP significantly improves the performance of message passing CQA models on negative queries by introducing symbolic reasoning and fuzzy logic.
 - Through computational complexity analyses, we reveal that our message-passing-based method can provide more efficient inference than the current state-of-the-art step-by-step neural-symbolic method and empirically verify this.
- 096 097 098

099

2 RELATED WORK

100 In recent years, neural models (Hamilton et al., 2018; Ren & Leskovec, 2020; Zhang et al., 2021; 101 Amayuelas et al., 2022) have been proposed to solve complex query answering by representing 102 sets of entities using low-dimensional embeddings. Among these models, message-passing-based 103 approaches (Wang et al., 2023c; Zhang et al., 2024a) have demonstrated promising potential. How-104 ever, they overlook noisy messages between variables and, compared to symbolic integration meth-105 ods (Arakelyan et al., 2021; Xu et al., 2022; Bai et al., 2023b), suffer from reliance on training data and a lack of interpretability. In contrast, our proposed message-passing approach can effectively ad-106 dress these challenges. Recently, Yin et al. (2024) proposed a step-by-step neural-symbolic method, 107 which achieves state-of-the-art performance but suffers from inefficiency. In contrast, our messagepassing-based NSMP provides more efficient inference while achieving competitive performance.
 Further discussion of related work can be found in Appendix A.

110 111 112

3 BACKGROUND

113 114 3.1 KNOWLEDGE GRAPHS

115 Given a set of entities \mathcal{V} and a set of relations \mathcal{R} , a knowledge graph \mathcal{KG} can be defined as a set 116 of triples $\mathcal{E} = \{(e_{h_i}, r_i, e_{t_i})\}$ that encapsulates the factual knowledge, where each triple encodes 117 a relationship of type $r_i \in \mathcal{R}$ between the head and tail entity $e_{h_i}, e_{t_i} \in \mathcal{V}$. According to the 118 definition in Wang et al. (2022b; 2023c), the \mathcal{KG} is an $\mathcal{L}_{\mathcal{KG}}$ -structure defined by a language $\mathcal{L}_{\mathcal{KG}}$. 119 Specifically, a first-order language \mathcal{L} can be defined as a triple $(\mathcal{F}, \mathcal{R}, \mathcal{C})$, where \mathcal{F}, \mathcal{R} , and \mathcal{C} are sets of function symbols, predicate symbols, and constants symbols, respectively. Under language $\mathcal{L}_{\mathcal{KG}}$, 120 the predicate symbols in \mathcal{R} denote binary relations, the constant symbol set \mathcal{C} is finite and comprises 121 all entities, and the set of function symbol satisfies $\mathcal{F} = \emptyset$. In this case, each entity $e \in \mathcal{V}$ is also 122 a constant $c \in C = V$ and each relation $r \in R$ is a set $r \subseteq V \times V$. In addition, only a part of the 123 complete knowledge graph \mathcal{KG} can be observed due to OWA. Let \mathcal{KG}_{obs} be the observed knowledge 124 graph, we have $\mathcal{KG}_{obs} \subseteq \mathcal{KG}$. 125

126 127

138

139 140

141

142 143

159

3.2 EXISTENTIAL FIRST ORDER QUERIES WITH A SINGLE FREE VARIABLE

The complex queries that existing studies aim to address exclude universal quantifiers (Ren et al., 2020; Ren & Leskovec, 2020). We follow Yin et al. (2024) and formally define such queries as Existential First Order queries with a single free variable (EFO₁), which are an important subset of first-order queries, using existential quantifier, conjunction, disjunction, and atomic negation. Following (Marker, 2006; Wang et al., 2022b; Yin et al., 2024), we give a set of definitions to describe the EFO₁ queries over knowledge graphs.

Definition 1. (Atomic Formula). An atomic formula is of the form $\phi = r(t_1, t_2)$, where $r \in \mathcal{R}$ and each t_i is a term that is either a variable or a constant $c \in \mathcal{C} = \mathcal{V}$.

Definition 2. (Existential First Order Formula). The set of existential formulas is the smallest set Φ that satisfies the following property:

- An atomic formula and its negation $\phi = r(t_1, t_2), \neg \phi = r(t_1, t_2) \in \Phi$;
- If $\phi, \psi \in \Phi$, then $(\phi \land \psi), (\phi \lor \psi) \in \Phi$;
- If $\phi \in \Phi$ and x_i is any variable, then $\exists x_i \phi \in \Phi$.

144 A variable is a bound variable when associated with a quantifier. Otherwise, it is a free variable. 145 For an existential first order formula ϕ containing a free variable y, that is, an EFO₁ formula, we 146 denote it as $\phi(y)$. Specifically, a formula with at least one free variable can be referred to as a query, 147 whereas one with no free variables can be called a sentence.

Definition 3. (Substitution). Given an EFO_1 formula $\phi(y)$, for any constant entity $e \in \mathcal{V}$, we denote $\phi(e)$ as the result of replacing all free occurrences of y in ϕ with e.

Definition 4. (The Answer Set of EFO₁ Query). For an EFO₁ query $\phi(y)$, its answer set $\mathcal{A}[\phi(y)] \subseteq \mathcal{V}$ is a set of entities such that $e \in \mathcal{A}[\phi(y)]$ iff $\phi(e) = True$.

Most previous studies convert EFO₁ queries into Disjunctive Normal Form (DNF) (Davey & Priestley, 2002) to handle disjunction operators in a scalable manner (Ren et al., 2020; 2022; Wang et al., 2023b; Zhang et al., 2024a). Our work can also apply such DNF-based processing to answer complex queries. Therefore, we also give the definition of DNF here.

Definition 5. (Disjunctive Normal Form). The disjunctive normal form ϕ_{DNF} of an EFO₁ formula is

- $\phi_{\text{DNF}}(y) = CF_1(y) \lor \dots \lor CF_d(y), \tag{1}$
- where $CF_i = \exists x_1, ..., \exists x_k. a_1^i \land ... \land a_{n_i}^i$ is a conjunctive formula, $x_1, ..., x_k$ are existential variables, y is the only free variable, and a_i^i are atomic formulas or its negation.

According to Ren et al. (2020), the answer set $\mathcal{A}[\phi_{\text{DNF}}(y)]$ can be obtained by taking the union of the answer sets of each sub-conjunctive formula, i.e., $\mathcal{A}[\phi_{\text{DNF}}(y)] = \bigcup_{i=1}^{d} \mathcal{A}[CF_i(y)]$. This means that solving all conjunctive formulas CF_i , $1 \le i \le d$ yields the answer set $\mathcal{A}[\phi_{\text{DNF}}(y)]$ for the EFO₁ query in DNF.

166 167

168

3.3 QUERY GRAPH

As mentioned above, since a DNF query can be addressed by solving all its sub-conjunctive queries, it is only necessary to define query graphs for conjunctive formulas. Following Wang et al. (2023c);
Zhang et al. (2024a); Yin et al. (2024), we represent the conjunctive formula as the query graph where the terms are represented as nodes connected by the atomic formulas.

Definition 6. (Query Graph). For a conjunctive formula CF, its query graph G(CF) is defined as $\{(h, r, t, \{0/1\})\}$, where each quadruple represents an atomic formula and specifies whether it is negated. The quadruple defines an edge with two endpoints h, t, and two attributes: r and 0/1. Here, r denotes the relation, and 0/1 indicates whether the atomic formula is positive or negated.

According to Definition 1, each node in the query graph is either a constant entity or a free or existential variable, as illustrated in the example in Figure 1.

180 181 3.4 NEURAL LINK PREDICTORS

A neural link predictor is a differentiable model that embeds entities and relations into a lowdimensional vector space to produce confidence scores for triples. Specifically, let h, r and t represent the embedding of the head entity, relation, and tail entity, respectively. The neural link predictor uses its scoring function to compute the likelihood that a given triple exists. In particular, by applying a sigmoid function σ , it can output a continuous truth value $\varphi(h, r, t) \in [0, 1]$ for the triple. For example, we can get the truth value for a triple through ComplEx (Trouillon et al., 2016):

$$\varphi(h, r, t) = \sigma(Re\left(\left\langle h \otimes r, \overline{t} \right\rangle\right)), \tag{2}$$

where \otimes denotes element-wise complex number multiplication, $\langle \cdot, \cdot \rangle$ represents the complex inner product, and *Re* refers to extracting the real part of a complex number. Similar to other messagepassing-based models (Wang et al., 2023c; Zhang et al., 2024a), the input to the neural link predictor in our work includes not only embeddings of specific entities but also embeddings of variables. Following previous works (Arakelyan et al., 2021; 2023; Wang et al., 2023c), in our work, we use ComplEx-N3 (Trouillon et al., 2016; Lacroix et al., 2018) as the neural link predictor of NSMP.

195 196 197

188

3.5 NEURAL ONE-HOP INFERENCE ON ATOMIC FORMULAS

According to Definition 6, each edge in a query graph represents either an atomic formula or a 199 negated atomic formula. As such, an edge encodes information about the relation, logical negation, and terms. Previous message passing CQA models (Wang et al., 2023c; Zhang et al., 2024a) leverage 200 this information to perform neural one-hop inference that maximizes the continuous truth value of 201 the (negated) atomic formulas, computing intermediate embeddings (i.e., logical messages) for the 202 variable nodes in the query graph. Specifically, a logical message encoding function ρ is proposed 203 to define this neural one-hop inference on edges. On each edge, when a node is at the head position, 204 its neighbor is at the tail position, and vice versa. The function ρ takes four input arguments: the 205 neighbor embedding, the relation embedding, the direction information (either $h \to t$ or $t \to h$), and 206 the logical negation indicator (0 for no negation and 1 for with negation). Depending on these input 207 arguments, ρ operates in four distinct cases. Given the tail embedding t and relation embedding r on 208 a non-negated atomic formula, ρ is formulated in the form of continuous truth value maximization 209 to infer the intermediate embedding \hat{h} for the node at the head position on this edge: 210

$$\hat{h} = \rho(t, r, t \to h, 0) := \arg\max_{x \in \mathcal{D}} \varphi(x, r, t), \tag{3}$$

where \mathcal{D} is the search domain for the embedding x. Similarly, the intermediate embedding \hat{t} for the node at the tail position on a non-negated edge can be inferred given h and r:

215

$$\hat{t} = \rho(h, r, h \to t, 0) := \arg\max_{x \in \mathcal{D}} \varphi(h, r, x).$$
(4)

Based on the fuzzy logic negator (Hájek, 2013), the estimation of intermediate embeddings on negated atomic formulas can be defined as follows:

$$\hat{h} = \rho(t, r, t \to h, 1) := \arg\max_{x \in \mathcal{D}} \varphi(x, \neg r, t) = \arg\max_{x \in \mathcal{D}} \left[1 - \varphi(x, r, t)\right], \tag{5}$$

$$\hat{t} = \rho(h, r, h \to t, 1) := \arg\max_{x \in \mathcal{D}} \varphi(h, \neg r, x) = \arg\max_{x \in \mathcal{D}} \left[1 - \varphi(h, r, x)\right].$$
(6)

In our work, we perform symbolic-integrated one-hop inference on edges, incorporating both neural and symbolic components into our message encoding function. We use the above neural message encoding function ρ as the neural component of our neural-symbolic message encoding function.

4 PROPOSED METHOD

223

224

225 226

227 228

229

230

231

232

In this section, we first propose how to integrate symbolic reasoning into neural one-hop inference to compute neural-symbolic messages. Then, we propose our message passing mechanism based on fuzzy logic and dynamic pruning. Finally, we analyze the computational complexity of the proposed method to reveal the superiority of the message-passing-based method in terms of efficiency.

4.1 NEURAL-SYMBOLIC ONE-HOP INFERENCE ON ATOMIC FORMULAS

235 To integrate symbolic information into neural message passing, there are two different represen-236 tations of entities and relations in our work: neural and symbolic representations. For the neural representation, since we utilize the pre-trained neural link predictor to compute neural messages, 237 the entities and relations are encoded into the embedding space of the pre-trained neural link predic-238 tor. That is, they already have pre-trained embeddings. For the symbolic representation, each entity 239 $e \in \mathcal{V}$ is encoded as a one-hot vector $p_e \in \{0, 1\}^{1 \times |\mathcal{V}|}$ and each relation $r \in \mathcal{R}$ is represented as an 240 adjacency matrix $M_r \in \{0,1\}^{|\mathcal{V}| \times |\mathcal{V}|}$, where $M_r^{ij} = 1$ if $(e_i, r, e_j) \in \mathcal{E}$ else $M_r^{ij} = 0$. We follow 241 Zhang et al. (2024a) and only consider inferring the intermediate state for the variable, so the neural 242 and symbolic representations of entities and relations remain unchanged. Accordingly, we also as-243 sign neural and symbolic representations to the variable nodes in the query graph. Specifically, each 244 variable is equipped with a corresponding embedding and symbolic vector. However, the symbolic 245 representation of a variable is not a one-hot vector but a fuzzy vector $p_v \in [0, 1]^{1 \times |\mathcal{V}|}$ that represents 246 a fuzzy set. Each element of p_v can be interpreted as the probability of the corresponding entity. 247

To conduct symbolic reasoning on atomic formulas, we follow TensorLog (Cohen et al., 2020) and define a symbolic one-hop inference function μ for four cases depending on the input arguments. The first situation is to infer the tail symbolic vector p_t given the head symbolic vector p_h and relational adjacency matrix M_r on a non-negated atomic formula:

$$p_t = \mu(p_h, M_r, h \to t, 0) := \mathcal{N}(p_h M_r), \tag{7}$$

where $\mathcal{N}(\triangle) = \triangle / sum(\triangle)$ is a normalized function. Similarly, the head symbolic vector p_h can be inferred given p_t and M_r :

$$p_h = \mu(p_t, M_r, t \to h, 0) := \mathcal{N}(p_t M_r^{\top}), \tag{8}$$

where ⊤ stands for transpose. Based on the fuzzy logic theory (Klement et al., 2013; Hájek, 2013), we follow Xu et al. (2022) and define the estimation of symbolic vector on negated atomic formulas as follows:

$$p_t = \mu(p_h, M_r, h \to t, 1) := \mathcal{N}(\frac{\alpha}{|\mathcal{V}|} - p_h M_r), \tag{9}$$

269

260

252

256

$$p_h = \mu(p_t, M_r, t \to h, 1) := \mathcal{N}(\frac{\alpha}{|\mathcal{V}|} - p_t M_r^{\top}), \tag{10}$$

where α is a hyperparameter. In order to integrate neural reasoning to enhance symbolic reasoning, we consider converting the intermediate embedding obtained by the neural message encoding function ρ into a fuzzy vector. Specifically, for an intermediate embedding inferred by ρ , we first compute its similarity with the embeddings of all entities. After applying a softmax operation, we can obtain a fuzzy vector $p' \in [0, 1]^{1 \times |\mathcal{V}|}$. We define this procedure as a function f as follows:

$$f(\rho) = softmax(concat(\mathcal{S}(\rho, E_e))), \tag{11}$$

Figure 2: A toy example to show the process of dynamic pruning. The query graph follows Figure 1. The blue arrow represents the passing of the message computed by encoding function ρ , and the vector indicates the state of the corresponding node after message passing at each layer.

281

282

283

284

285

286

287

288

289 290 291

276

277

where E_e represents the embedding of the entity e, S is a binary similarity function, and *concat* is a function that maps the similarities between all entities and the intermediate embedding inferred by ρ to a vector. Depending on the selected pre-trained neural link predictor, S can either be an inner-product-based or a distance-based scoring function. Then, we can define our neural-symbolic message encoding function ρ , which also has four cases depending on the input arguments.

Given the embedding t and symbolic vector p_t of the tail term on a non-negated atomic formula, as well as the embedding r and adjacency matrix M_r of the relation, we infer the intermediate state $p_{\hat{h}}$ for the variable node at the head position on this edge. We formulate the inference task in the form of *neural-enhanced symbolic reasoning*:

$$p_{\hat{h}} = \varrho(t, p_t, r, M_r, t \to h, 0) := \mathcal{N}(f(\rho(t, r, t \to h, 0)) + \mu(p_t, M_r, t \to h, 0)).$$
(12)

This approach leverages the embeddings inferred by pre-trained neural link predictors to enhance symbolic reasoning results. It enables symbolic reasoning to handle missing links in observed knowledge graphs. Additionally, such an approach can represent the membership degree of variables concerning all entities in the form of fuzzy sets, thereby providing interpretability. Similarly, for the other three cases, the encoding functions ρ are as follows:

$$p_{f} = \varrho(h, p_{h}, r, M_{r}, h \to t, 0) := \mathcal{N}(f(\rho(h, r, h \to t, 0)) + \mu(p_{h}, M_{r}, h \to t, 0)),$$
(13)

$$p_{\hat{h}} = \varrho(t, p_t, r, M_r, t \to h, 1) := \mathcal{N}(f(\rho(t, r, t \to h, 1)) + \mu(p_t, M_r, t \to h, 1)), \tag{14}$$

$$p_{\hat{t}} = \varrho(h, p_h, r, M_r, h \to t, 1) := \mathcal{N}(f(\rho(h, r, h \to t, 1)) + \mu(p_h, M_r, h \to t, 1)).$$
(15)

301 302 303

304

305

306

307

308

309

4.2 NEURAL-SYMBOLIC MESSAGE PASSING

In this subsection, we propose a Neural-Symbolic Message Passing framework (NSMP). This framework builds on the neural-symbolic one-hop inference proposed in Section 4.1 and incorporates a dynamic pruning strategy. As a variation of the message passing neural network (Gilmer et al., 2017), each NSMP layer has two stages: (1) Passing neural-symbolic messages based on our dynamic pruning strategy; (2) Updating the state of the variable node that has received messages.

310 311 312

4.2.1 MESSAGE PASSING WITH DYNAMIC PRUNING

A query graph contains two types of nodes: constant and variable nodes. For constant nodes, we fol-313 low Zhang et al. (2024a) and do not pass messages to constant nodes. However, the situation varies 314 across different layers of message passing when passing messages to variable nodes. At the initial 315 layers, messages passed from neighboring variable nodes, whose states have not yet been updated, 316 can be regarded as noise, as these nodes do not carry any meaningful information at this stage. In 317 contrast, at the later layers, messages from neighboring variable nodes with updated states provide 318 valuable information derived from constants, which is especially important for variable nodes not 319 directly connected to constant nodes. To dynamically filter out unnecessary noisy messages while 320 retaining valuable ones, we decide whether a variable node should pass messages to its neighboring 321 variable nodes based on whether its state has been updated. Specifically, a variable node is allowed to pass messages to its neighboring variable nodes only when its state has been updated. This is 322 a dynamic pruning process, which can effectively avoid the computation of noise messages during 323 message passing. Figure 2 illustrates an example of this pruning strategy at different layers.

4.2.2 NODE STATE UPDATE SCHEME

Let $z_e^{(l)}$ and $s_e^{(l)}$ denote the embedding and symbolic vector of a constant entity node at the l^{th} layer, 326 respectively, while $z_v^{(l)}$ and $s_v^{(l)}$ represent the embedding and symbolic vector of a variable node at 327 the same layer. Next, we discuss how to compute these representations from the input layer l = 0328 to latent layers l > 0. For a constant entity node, $z_e^{(0)}$ is the corresponding frozen entity embedding 329 in the pre-trained neural link predictor, $s_e^{(0)}$ is the corresponding one-hot symbolic vector. For a 330 331 variable node, both $z_v^{(0)}$ and $s_v^{(0)}$ are vectors containing all zeros. Since we do not pass messages 332 to constant nodes, the embeddings and symbolic vectors of the constant nodes are the same at each 333 layer, i.e., $z_e^{(l)} = z_e^{(0)}$ and $s_e^{(l)} = s_e^{(0)}$. While for $z_v^{(l)}$ and $s_v^{(l)}$, similar to the dynamic pruning 334 proposed in Section 4.2.1, we only update the state of variable nodes that have received messages. 335 That is, if the corresponding variable node receives messages from neighboring nodes, we utilize 336 these messages to update the state of this node. Otherwise, we do not update its state at l^{th} layer. 337

For a variable node, the messages it receives from neighboring nodes essentially represent interme-338 diate states inferred by the neural-symbolic message encoding function ρ , as proposed in Section 339 4.1. These intermediate states, which are fuzzy vectors representing fuzzy sets, can be aggregated 340 using fuzzy logic theory to update the state of the variable node. Specifically, for a variable node v, 341 we form a neighbor set $N_{DP}(v)$ that includes all its neighboring variable nodes with updated states 342 and all its neighboring constant nodes, in accordance with the dynamic pruning strategy. For each 343 neighboring node $n \in N_{DP}(v)$, one can obtain information about the edge between n and v, which contains the neighbor mebdding $z_n^{(l-1)}$, the neighbor symbolic vector $s_n^{(l-1)}$, the relation embedding r_{nv} , the relational adjacency matrix $M_{r_{nv}}$, the direction $D_{nv} \in \{h \to t, t \to h\}$, and the negation 344 345 346 indicator $Neg_{nv} \in \{0, 1\}$. Then, we can calculate the message $m^{(l)}$ that n passes to v: 347

$$m^{(l)} = \varrho(z_n^{(l-1)}, s_n^{(l-1)}, r_{nv}, M_{r_{nv}}, D_{nv}, Neg_{nv}).$$
(16)

The variable node v receives k_v messages from its neighbors, denoted as $m_1^{(l)}, \ldots, m_{k_v}^{(l)}$, where $k_v \ge 1$ represents the number of neighboring nodes in $N_{DP}(v)$. We employ product fuzzy logic to aggregate these messages and update the state (i.e., the symbolic vector) of node v:

$$s_v^{(l)} = \mathcal{N}(m_1^{(l)} \circ \dots \circ m_{k_v}^{(l)}), \tag{17}$$

where \circ is Hadmard product. While for $z_v^{(l)}$, we utilze the updated state $s_v^{(l)}$ to update it. Specifically, we form an entity set \mathcal{V}_{nz} consisting of the entities corresponding to the non-zero elements in the fuzzy vector $s_v^{(l)}$. We then aggregate the embeddings of these entities weighted by their corresponding probabilities.

359 360

348 349

350

351

352 353

$$\mathcal{L}_{v}^{(l)} = \sum_{i=1}^{|\mathcal{V}_{nz}|} s_{v,i}^{(l)} E_{e_{i}}, e_{i} \in \mathcal{V}_{nz},$$
(18)

361 362 363

364

365

371 372

where $s_{v,i}^{(l)}$ is the corresponding probability of e_i in $s_v^{(l)}$ and E_{e_i} is the embedding of the entity e_i .

4.2.3 ANSWERING COMPLEX QUERIES WITH NSMP

According to Definition 5, a DNF query can be answered by solving all of its sub-conjunctive queries. For a given conjunctive query Q, we employ NSMP layers L times to the query graph of Q, where L is the depth of NSMP. Then, we use the state $s_y^{(L)}$ of the free variable node y at the final layer, along with the corresponding embedding $z_y^{(L)}$, to obtain the probability of each entity being the answer, thereby retrieving the final answers:

$$p_{\mathcal{A}[\mathcal{Q}]} = \lambda s_y^{(L)} + (1 - \lambda) softmax(concat(cos(z_y^{(L)}, E_e))),$$
(19)

where λ is a hyperparameter that balances the influence of neural and symbolic representation and $cos(\cdot, \cdot)$ is the cosine similarity. Let *D* denote the largest distance between the constant nodes and the free variable node. According to Wang et al. (2023c), *L* should be larger than or equal to *D* to ensure the free variable node successfully receives all messages from the constant nodes. Therefore, *L* should dynamically change based on different types of conjunctive queries. In addition, the pretrained neural link predictor is frozen in our work. In this case, NSMP has no trainable parameters.

378 4.3 DISCUSSION ON COMPUTATIONAL COMPLEXITY

379 380

As a neural-symbolic CQA model based on message passing, NSMP is more efficient than the 381 current state-of-the-art step-by-step precise symbolic search method FIT (Yin et al., 2024). Next, we 382 discuss the computational complexity of NSMP compared to FIT and reveal why message-passingbased models can lead to more efficient inference than the step-by-step approach. Here, we focus 384 on time complexity, and the analyses of space complexity can be found in Appendix F.

Since the computational bottleneck of NSMP lies in the symbolic-related parts, we focus on dis-386 cussing the time complexity of this aspect. Due to the sparsity of the adjacency matrix and fuzzy 387 vector, both NSMP and FIT can utilize sparse techniques for efficient inference. But for simplicity, 388 we will not consider this sparsity in the following discussion.

389 According to Equations 7 - 10, the complexity of symbolic one-hop inference is $\mathcal{O}(|\mathcal{V}|^2)$, so the 390 complexity of neural-symbolic message encoding function ρ is approximately $\mathcal{O}(|\mathcal{V}|^2)$. This means 391 that the complexity of message computation during message passing is linear to $\mathcal{O}(|\mathcal{V}|^2)$. For the 392 node state update process, symbolic state update and neural state update are involved, corresponding 393 to Equations 17 and 18, respectively. The complexity of the symbolic node state update is linear to 394 $\mathcal{O}(|\mathcal{V}|)$, while the complexity of the neural node state update is $\mathcal{O}(|\mathcal{V}|d)$, where d is the embedding 395 dimension. Since we have $d \ll |\mathcal{V}|$, the total computational complexity of NSMP is approximately 396 linear to $\mathcal{O}(|\mathcal{V}|^2)$. In particular, as a message-passing-based approach, the solving process of NSMP 397 is the same for both acyclic and cyclic queries, i.e., performing message passing on the query graph. Consequently, the complexity of NSMP for any EFO₁ formula is approximately linear to $O(|\mathcal{V}|^2)$. 398

399 For the previous step-by-step neural-symbolic method FIT, according to Yin et al. (2024), FIT solves 400 the acyclic query by continuously removing constants and leaf nodes, and the complexity of this 401 process is approximately linear to $\mathcal{O}(|\mathcal{V}|^2)$. However, for cyclic queries, FIT needs to enumerate one 402 variable within the cycle as a constant node, so the complexity is $\mathcal{O}(|\mathcal{V}|^n)$, where n is the number of variables in the query graph. In contrast, the complexity of NSMP on cyclic queries is approximately 403 linear to $\mathcal{O}(|\mathcal{V}|^2)$, which means that NSMP can provide more efficient inference on cyclic queries. 404 As we show in Section 5.2, NSMP achieves faster inference times when compared with FIT on cyclic 405 queries, with speedup ranging from $69 \times$ to over $150 \times$. Moreover, while both NSMP and FIT exhibit 406 a complexity linear to $\mathcal{O}(|\mathcal{V}|^2)$ for acyclic queries, the computation of different messages in NSMP's 407 message-passing process is independent. This independence enables a parallelized computation of 408 messages. In contrast, FIT requires removing constant and leaf nodes step by step, where the steps 409 are interdependent, necessitating a serial process. As a result, even for acyclic queries, the message-410 passing-based NSMP can achieve more efficient inference. As demonstrated in Section 5.2, NSMP 411 achieves a speedup of at least $10 \times$ for acyclic queries in NELL995.

412 413 414

415

Table 1: MRR results of baselines and our model on BetaE datasets. The average score is calculated separately among positive and negative queries. Highlighted are the top first and second results.

KG	Model	1p	2p	3p	2i	3i	pi	ip	2u	up	AVG.(P)	2in	3in	inp	pin	AVG.(N)
	BetaE	39.0	10.9	10.0	28.8	42.5	22.4	12.6	12.4	9.7	20.9	5.1	7.9	7.4	3.6	6.0
	CQD	46.7	10.3	6.5	23.1	29.8	22.1	16.3	14.2	8.9	19.8	0.2	0.2	2.1	0.1	0.7
	FuzzQE	42.8	12.9	10.3	33.3	46.9	26.9	17.8	14.6	10.3	24.0	8.5	11.6	7.8	5.2	8.3
	GNN-QE	42.8	14.7	11.8	38.3	54.1	31.1	18.9	16.2	13.4	26.8	10.0	16.8	9.3	7.2	10.8
	ENeSy	44.7	11.7	8.6	34.8	50.4	27.6	19.7	14.2	8.4	24.5	10.1	10.4	7.6	6.1	8.6
B15k-237	CQD^{A}	46.7	13.6	11.4	34.5	48.3	27.4	20.9	17.6	11.4	25.7	13.6	16.8	7.9	8.9	11.8
	(Based on	messag	e passir	ıg)												
	LMPNN	45.9	13.1	10.3	34.8	48.9	22.7	17.6	13.5	10.3	24.1	8.7	12.9	7.7	4.6	8.5
	CLMPT	45.7	13.7	11.3	37.4	52.0	28.2	19.0	14.3	11.1	25.9	7.7	13.7	8.0	5.0	8.6
	NSMP	46.7	15.1	12.3	38.7	52.2	31.2	23.3	17.2	11.9	27.6	11.9	17.6	10.8	7.9	12.0
	BetaE	53.0	13.0	11.4	37.6	47.5	24.1	14.3	12.2	8.5	24.6	5.1	7.8	10.0	3.1	6.5
	CQD	60.8	18.3	13.2	36.5	43.0	30.0	22.5	17.6	13.7	28.4	0.1	0.1	4.0	0.0	1.1
	FuzzQE	47.4	17.2	14.6	39.5	49.2	26.2	20.6	15.3	12.6	27.0	7.8	9.8	11.1	4.9	8.4
	GNN-QE	53.3	18.9	14.9	42.4	52.5	30.8	18.9	15.9	12.6	28.9	9.9	14.6	11.4	6.3	10.6
	ENeSy	59.0	18.0	14.0	39.6	49.8	29.8	24.8	16.4	13.1	29.4	11.3	8.5	11.6	8.6	10.0
NELL995	$CQD^{\mathcal{A}}$	60.4	22.9	16.7	43.4	52.6	32.1	26.4	20.0	17.0	32.3	15.1	18.6	15.8	10.7	15.1
	(Based on	messag	e passir	ng)												
	LMPNN	60.6	22.1	17.5	40.1	50.3	28.4	24.9	17.2	15.7	30.7	8.5	10.8	12.2	3.9	8.9
	CLMPT	58.9	22.1	18.4	41.8	51.9	28.8	24.4	18.6	16.2	31.3	6.6	8.1	11.8	3.8	7.6
	NSMP	60.7	21.6	17.5	44.2	53.8	33.7	26.7	19.1	14.4	32.4	12.4	15.7	13.7	7.8	12.4

Knowledge Granh	Model	nni	2il	3il	2m	2nm	3mn	3nm	im	30	3cm	AVG
intownedge Gruph	mouer	Pm	211	-	2	2	omp	opm			Jem	
	BetaE	9.0	25.0	40.1	8.6	6.7	8.6	6.8	12.3	25.2	22.9	16.5
	LogicE	9.5	27.1	42.0	8.6	6.7	9.4	6.1	12.8	25.4	23.3	17.1
	ConE	10.8	27.6	43.9	9.6	7.0	9.3	7.3	14.0	28.2	24.9	18.3
	QTO	12.1	28.9	47.9	8.5	10.7	11.4	6.5	17.9	38.3	35.4	21.8
	CQD	7.7	29.6	46.1	6.0	1.7	6.8	3.3	12.3	25.9	23.8	16.3
FB15k-237	FIT	14.9	34.2	51.4	9.9	12.7	11.9	7.7	19.6	39.4	37.3	23.9
	(Based on	messag	ge passi	ng)								
	LMPNN	10.7	28.7	42.1	9.4	4.2	9.8	7.2	15.4	25.3	22.2	17.5
	CLMPT	10.1	31.0	48.5	8.7	7.8	10.1	6.1	15.8	30.2	28.5	19.7
	NSMP	13.4	32.9	51.2	9.2	9.9	11.4	7.5	18.9	39.0	34.5	22.8
	BetaE	7.5	43.3	64.6	29.0	5.3	8.7	14.4	29.5	36.1	33.7	27.2
	LogicE	9.8	47.0	66.6	34.7	6.4	13.3	17.8	35.1	38.9	37.9	30.8
	ConE	10.3	42.1	65.8	32.4	7.0	12.6	16.8	34.4	40.2	38.2	30.0
	QTO	12.3	48.5	68.2	38.8	12.3	22.8	19.3	41.1	45.4	43.9	35.3
	COD	7.9	48.7	68.0	31.7	1.5	12.9	13.8	33.9	38.8	35.9	29.3
NELL995	FÌT	14.4	53.3	69.5	42.1	12.5	24.0	22.8	41.5	47.5	45.3	37.3
	(Based on	messag	ge passi	ng)								
	LMPNN	11.6	43.9	62.3	35.6	6.2	15.9	19.3	38.3	39.1	34.4	30.7
	CLMPT	12.5	48.7	68.2	36.6	7.5	19.0	19.9	39.1	44.4	41.2	33.7
	NSMP	13.0	52.4	71.3	37.6	11.5	21.7	18.3	41.7	46.6	42.4	35.7

Table 2: MRR results on FIT datasets. Highlighted are the top first and second results.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets and Queries. We evaluate our model on two popular KGs: FB15k-237 (Toutanova & Chen, 2015) and NELL995 (Xiong et al., 2017). We follow Chen et al. (2022); Xu et al. (2022) and exclude FB15k (Bordes et al., 2013) since it suffers from major test leakage (Toutanova & Chen, 2015; Rossi et al., 2021). For a fair comparison with previous works, we evaluate our model using both the datasets introduced by Ren & Leskovec (2020), which we refer to as the **BetaE** datasets, and the datasets proposed by Yin et al. (2024), which we refer to as the **FIT** datasets. In particular, according to Yin et al. (2024), the "pni" query type in the BetaE datasets is not a real EFO₁ formula, we do not evaluate this query type in the BetaE datasets, but in the FIT datasets. For the graph representation of the query types and related statistics, please refer to Appendix B.

Evaluation Protocol. The evaluation scheme follows the previous works (Ren & Leskovec, 2020),
 which divide the answers to each complex query into easy and hard parts. The difference between
 easy and hard answers lies in whether they can be obtained through direct graph traversal. Such hard
 answers cannot be found directly from the observed knowledge graph, which means that the CQA
 model needs to complete non-trivial reasoning. Specifically, for each hard answer of a query, we
 rank it against non-answer entities and compute the Mean Reciprocal Rank (MRR).

Baselines. We consider the state-of-the-art CQA models from recent years as our baselines, includ-ing BetaE (Ren & Leskovec, 2020), CQD (Arakelyan et al., 2021), LogicE (Luus et al., 2021), ConE (Zhang et al., 2021), FuzzQE (Chen et al., 2022), GNN-QE (Zhu et al., 2022), ENeSy (Xu et al., 2022), CQD^A (Arakelyan et al., 2023), LMPNN (Wang et al., 2023c), QTO (Bai et al., 2023b), CLMPT (Zhang et al., 2024a), and FIT (Yin et al., 2024), where LMPNN and CLMPT are based on message passing. We also compare more neural CQA models on the BetaE datasets in Appendix D. For details about the model, implementation and experiments, please refer to Appendix C.

5.2 MAJOR RESULTS

Table 1 and Table 2 present the results of NSMP compared to neural and neural-symbolic CQA baselines on the BetaE and FIT datasets, respectively. It can be observed that NSMP outperforms other
message-passing-based CQA models on both positive and negative queries, even without training
on complex queries, and achieves a significant improvement on negative queries. For other baselines, NSMP outperforms most neural and neural-symbolic CQA models, achieving a strong performance. Despite the achievement of second-best results compared to the state-of-the-art neuralsymbolic model FIT, NSMP can offer superior inference efficiency. Specifically, we evaluate the
relative speedup of NSMP over FIT in terms of inference time on the FIT dataset to make a sharp

Figure 3: Relative speedup of NSMP over FIT in terms of inference time on FIT datasets.

contrast, as illustrated in Figure 3. NSMP demonstrates faster inference times across all query types on both FB15k-237 and NELL995, with speedup ranging from 2× to over 150×. Notably, for more complicated cyclic queries, such as "3c" and "3cm", the relative speedup of NSMP becomes even more pronounced, as discussed in Section 4.3. Moreover, on the larger knowledge graph NELL995, NSMP exhibits even greater relative speedup, suggesting that NSMP offers better scalability compared to FIT. More experimental details on inference time can be found in Appendix C.

504 505

523 524

526 527 528

529

530 531

532

486 487

488

494

495 496

497 498

499

500

501

502

5.3 ABLATION STUDY

We first explore the effect of the hyperparameter L on performance. As noted in Section 4.2.3, Lshould be greater than or equal to D. Thus, we evaluate the performance for depths D, D+1, D+2, and D+3 on FB15k-237. As shown in Table 3, NSMP achieves the best average performance when L = D + 1. However, we observe that other depth choices can yield better results for specific query types. One approach is to manually select the most appropriate depth L for different query types to achieve better average performance. As indicated in Table 3, this manual choice achieves an average MRR result of 23.3. But for simplicity, we set L = D + 1 by default in our work.

To verify the effectiveness of the proposed dynamic pruning strategy, we conduct experiments on whether to perform dynamic pruning, and the results are shown in Table 4, where "w/o DP" indicates "without using dynamic pruning", AVG.(P), AVG.(N), and AVG.(F) represent the average scores for positive queries, negative queries on the BetaE datasets, and the average scores on the FIT datasets, respectively. It is found that the dynamic pruning strategy brings significant performance improvement, which shows the effectiveness of the strategy, indicating that the message from the variable node whose state is not updated is an unnecessary noise.

521 For the discussion of other hyperparameters, please refer to Appendix E. We also provide a case 522 study in Appendix G.

Model	pni	2il	3il	2m	2nm	3mp	3pm	im	3c	3cm	AVG	KG	Model	AVG.(P)	AVG.(N)	AVG.(F)
L = D L = D + 1 L = D + 2	11.9 13.4 12.7	29.1 32.9 32.9	49.2 51.2 51.2	9.2 9.2 7.9	9.9 9.9 10.5	11.4 11.4 11.5	7.5 7.5 5.6	18.9 18.9 16.8	40.0 39.1 38.5	37.9 34.5 33.5	22.5 22.8 22.1	FB15k-237	NSMP w/o DP NSMP	27.0 27.6	11.6 12.0	20.4 22.8
L = D + 3	13.3	31.8	50.2	7.9	10.5	11.5	5.6	16.8	38.1	31.8	21.8		NSMP w/o DP	32.1	12.1	31.2
Manual Choice	13.4	32.9	51.2	9.2	10.5	11.5	7.5	18.9	40.0	37.9	23.3	NELL995	NSMP	32.4	12.4	35.7

Table 3: MRR results of NSMP with different layers on FB15k-237.

Table 4: Average MRR results of NSMP with or without dynamic pruning.

6 CONCLUSION

In this paper, we propose NSMP, a neural-symbolic message passing framework, to answer complex queries over KGs. By integrating neural and symbolic reasoning, NSMP can utilize fuzzy logic theory to answer arbitrary EFO₁ queries without the need for training on complex query datasets, while also offering interpretability through fuzzy sets. Moreover, we introduce a novel dynamic pruning strategy to filter out unnecessary noisy messages during message passing. In our ablation study, we validate the effectiveness of this strategy. Extensive experimental results demonstrate that NSMP outperforms other message passing CQA models, achieving a strong performance, and can provide more efficient inference than previous state-of-the-art neural-symbolic CQA models.

540 REFERENCES 541

567

569

542	Dimitrios Alivanistos, Max Berrendorf, Michael Cochez, and Mikhail Galkin. Query embedding
543	on hyper-relational knowledge graphs. In International Conference on Learning Representations,
544	2022. URL https://openreview.net/forum?id=4rLw09TgRw9.

- Alfonso Amayuelas, Shuai Zhang, Xi Susie Rao, and Ce Zhang. Neural methods for logical rea-546 soning over knowledge graphs. In International Conference on Learning Representations, 2022. URL https://openreview.net/forum?id=tgcAoUVHRIB. 547
- 548 Erik Arakelyan, Daniel Daza, Pasquale Minervini, and Michael Cochez. Complex query answering 549 with neural link predictors. In International Conference on Learning Representations, 2021. URL 550 https://openreview.net/forum?id=Mos9F9kDwkz. 551
- Erik Arakelyan, Pasquale Minervini, Daniel Daza, Michael Cochez, and Isabelle Augenstein. Adapt-552 ing neural link predictors for data-efficient complex query answering. In Thirty-seventh Confer-553 ence on Neural Information Processing Systems, 2023. 554
- 555 Jiaxin Bai, Zihao Wang, Hongming Zhang, and Yangqiu Song. Query2particles: Knowledge graph 556 reasoning with particle embeddings. In Findings of the Association for Computational Linguistics: NAACL 2022, pp. 2703–2714, 2022.
- Jiaxin Bai, Tianshi Zheng, and Yangqiu Song. Sequential query encoding for complex query an-559 swering on knowledge graphs. arXiv preprint arXiv:2302.13114, 2023a. 560
- Yushi Bai, Xin Lv, Juanzi Li, and Lei Hou. Answering complex logical queries on knowledge graphs 561 via query computation tree optimization. In International Conference on Machine Learning, pp. 562 1472-1491. PMLR, 2023b. 563
- 564 Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: a collab-565 oratively created graph database for structuring human knowledge. In Proceedings of the 2008 566 ACM SIGMOD international conference on Management of data, pp. 1247–1250, 2008.
- Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko. 568 Translating embeddings for modeling multi-relational data. Advances in neural information processing systems, 26, 2013. 570
- Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam Hruschka, and Tom 571 Mitchell. Toward an architecture for never-ending language learning. In Proceedings of the 572 AAAI conference on artificial intelligence, volume 24, pp. 1306–1313, 2010. 573
- 574 Linlin Chao, Jianshan He, Taifeng Wang, and Wei Chu. Pairre: Knowledge graph embeddings 575 via paired relation vectors. In Proceedings of the 59th Annual Meeting of the Association for 576 Computational Linguistics and the 11th International Joint Conference on Natural Language 577 Processing (Volume 1: Long Papers), pp. 4360–4369, 2021.
- 578 Xuelu Chen, Ziniu Hu, and Yizhou Sun. Fuzzy logic based logical query answering on knowledge 579 graphs. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 3939– 580 3948, 2022.
- Kewei Cheng, Jiahao Liu, Wei Wang, and Yizhou Sun. Rlogic: Recursive logical rule learning 582 from knowledge graphs. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge 583 Discovery and Data Mining, pp. 179–189, 2022. 584
- 585 Kewei Cheng, Nesreen Ahmed, and Yizhou Sun. Neural compositional rule learning for knowledge 586 graph reasoning. In The Eleventh International Conference on Learning Representations, 2023. 587 URL https://openreview.net/forum?id=F8VKQyDqRVj.
- 588 Nurendra Choudhary, Nikhil Rao, Sumeet Katariya, Karthik Subbian, and Chandan Reddy. Prob-589 abilistic entity representation model for reasoning over knowledge graphs. Advances in Neural 590 Information Processing Systems, 34:23440–23451, 2021a. 591
- Nurendra Choudhary, Nikhil Rao, Sumeet Katariya, Karthik Subbian, and Chandan K Reddy. Self-592 supervised hyperboloid representations from logical queries over knowledge graphs. In Proceedings of the Web Conference 2021, pp. 1373-1384, 2021b.

621

- William Cohen, Fan Yang, and Kathryn Rivard Mazaitis. Tensorlog: A probabilistic database implemented using deep-learning infrastructure. *Journal of Artificial Intelligence Research*, 67: 285–325, 2020.
- Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, Luke Vilnis, Ishan Durugkar, Akshay Krishnamurthy, Alex Smola, and Andrew McCallum. Go for a walk and arrive at the answer: Reasoning over paths in knowledge bases using reinforcement learning. In *International Conference on Learning Representations*, 2018. URL https://openreview.net/forum?id= Syg-YfWCW.
- Brian A Davey and Hilary A Priestley. *Introduction to lattices and order*. Cambridge university press, 2002.
- ⁶⁰⁵ Daniel Daza and Michael Cochez. Message passing query embedding. *arXiv preprint arXiv:2002.02406*, 2020.
- Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d knowledge graph embeddings. In *Proceedings of the AAAI conference on artificial intelligence*, volume 32, 2018.
- Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
 message passing for quantum chemistry. In *International conference on machine learning*, pp.
 1263–1272. PMLR, 2017.
- Petr Hájek. *Metamathematics of fuzzy logic*, volume 4. Springer Science & Business Media, 2013.
- Will Hamilton, Payal Bajaj, Marinka Zitnik, Dan Jurafsky, and Jure Leskovec. Embedding logical
 queries on knowledge graphs. *Advances in neural information processing systems*, 31, 2018.
- Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and S Yu Philip. A survey on knowledge graphs: Representation, acquisition, and applications. *IEEE transactions on neural networks and learning systems*, 33(2):494–514, 2021.
- Erich Peter Klement, Radko Mesiar, and Endre Pap. *Triangular norms*, volume 8. Springer Science & Business Media, 2013.
- Bhushan Kotnis, Carolin Lawrence, and Mathias Niepert. Answering complex queries in knowledge
 graphs with bidirectional sequence encoders. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pp. 4968–4977, 2021.
- Timothée Lacroix, Nicolas Usunier, and Guillaume Obozinski. Canonical tensor decomposition for knowledge base completion. In *International Conference on Machine Learning*, pp. 2863–2872.
 PMLR, 2018.
- Rui Li, Jianan Zhao, Chaozhuo Li, Di He, Yiqi Wang, Yuming Liu, Hao Sun, Senzhang Wang, Weiwei Deng, Yanming Shen, et al. House: Knowledge graph embedding with householder parameterization. In *International conference on machine learning*, pp. 13209–13224. PMLR, 2022.
- Leonid Libkin and Cristina Sirangelo. Open and closed world assumptions in data exchange. *Description Logics*, 477, 2009.
- Lihui Liu, Boxin Du, Heng Ji, ChengXiang Zhai, and Hanghang Tong. Neural-answering logical queries on knowledge graphs. In *Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining*, pp. 1087–1097, 2021.
- Kiao Liu, Shiyu Zhao, Kai Su, Yukuo Cen, Jiezhong Qiu, Mengdi Zhang, Wei Wu, Yuxiao Dong, and Jie Tang. Mask and reason: Pre-training knowledge graph transformers for complex logical queries. In *Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 1120–1130, 2022.
- Kiao Long, Liansheng Zhuang, Li Aodi, Shafei Wang, and Houqiang Li. Neural-based mixture
 probabilistic query embedding for answering fol queries on knowledge graphs. In *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*, pp. 3001–3013, 2022.

667

681

686

687

688

689

690

691

- Francois Luus, Prithviraj Sen, Pavan Kapanipathi, Ryan Riegel, Ndivhuwo Makondo, Thabang Lebese, and Alexander Gray. Logic embeddings for complex query answering. *arXiv preprint arXiv:2103.00418*, 2021.
- David Marker. *Model theory: an introduction*, volume 217. Springer Science & Business Media, 2006.
- 654
 655
 656
 656
 657
 658
 659
 659
 659
 650
 650
 650
 651
 652
 653
 654
 654
 654
 655
 656
 657
 657
 658
 659
 659
 659
 659
 659
 659
 650
 650
 650
 651
 652
 655
 655
 656
 657
 657
 658
 659
 659
 659
 659
 659
 659
 650
 650
 650
 651
 652
 652
 655
 655
 655
 655
 656
 657
 657
 657
 658
 658
 659
 659
 659
 659
 659
 659
 650
 650
 650
 650
 650
 650
 650
 651
 652
 655
 655
 655
 656
 657
 656
 657
 657
 658
 658
 659
 659
 659
 659
 659
 659
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
 650
- Hongyu Ren and Jure Leskovec. Beta embeddings for multi-hop logical reasoning in knowledge
 graphs. Advances in Neural Information Processing Systems, 33:19716–19726, 2020.
- Hongyu Ren, Weihua Hu, and Jure Leskovec. Query2box: Reasoning over knowledge graphs in vector space using box embeddings. *arXiv preprint arXiv:2002.05969*, 2020.
- Hongyu Ren, Hanjun Dai, Bo Dai, Xinyun Chen, Denny Zhou, Jure Leskovec, and Dale Schuurmans. Smore: Knowledge graph completion and multi-hop reasoning in massive knowledge graphs. In *Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 1472–1482, 2022.
- Andrea Rossi, Denilson Barbosa, Donatella Firmani, Antonio Matinata, and Paolo Merialdo.
 Knowledge graph embedding for link prediction: A comparative analysis. ACM Transactions on Knowledge Discovery from Data (TKDD), 15(2):1–49, 2021.
- Ali Sadeghian, Mohammadreza Armandpour, Patrick Ding, and Daisy Zhe Wang. Drum: End-toend differentiable rule mining on knowledge graphs. *Advances in Neural Information Processing Systems*, 32, 2019.
- Apoorv Saxena, Aditay Tripathi, and Partha Talukdar. Improving multi-hop question answering
 over knowledge graphs using knowledge base embeddings. In *Proceedings of the 58th annual meeting of the association for computational linguistics*, pp. 4498–4507, 2020.
- Apoorv Saxena, Adrian Kochsiek, and Rainer Gemulla. Sequence-to-sequence knowledge graph completion and question answering. In *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 2814–2828, 2022.
- Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max
 Welling. Modeling relational data with graph convolutional networks. In *The semantic web: 15th international conference, ESWC 2018, Heraklion, Crete, Greece, June 3–7, 2018, proceedings* 15, pp. 593–607. Springer, 2018.
 - Haitian Sun, Andrew O. Arnold, Tania Bedrax-Weiss, Fernando Pereira, and William W. Cohen. Faithful embeddings for knowledge base queries. In Hugo Larochelle, Marc'Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/fe74074593f21197b7be3c08678616-Abstract.html.
- ⁶⁹³
 ⁶⁹⁴ Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph embedding by relational rotation in complex space. In *International Conference on Learning Representations*, 2019. URL https://openreview.net/forum?id=HkgEQnRqYQ.
- Komal Teru, Etienne Denis, and Will Hamilton. Inductive relation prediction by subgraph reasoning.
 In *International Conference on Machine Learning*, pp. 9448–9457. PMLR, 2020.
- Kristina Toutanova and Danqi Chen. Observed versus latent features for knowledge base and text inference. In *Proceedings of the 3rd workshop on continuous vector space models and their compositionality*, pp. 57–66, 2015.

702 703 704	Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Com- plex embeddings for simple link prediction. In <i>International conference on machine learning</i> , pp. 2071–2080. PMLR, 2016.
705 706 707 708	Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar. Composition-based multi- relational graph convolutional networks. In <i>International Conference on Learning Representa-</i> <i>tions</i> , 2020. URL https://openreview.net/forum?id=BylA_C4tPr.
709 710 711	Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowledgebase. <i>Communications of the ACM</i> , 57(10):78–85, 2014.
712 713 714	Siyuan Wang, Zhongyu Wei, Meng Han, Zhihao Fan, Haijun Shan, Qi Zhang, and Xuanjing Huang. Query structure modeling for inductive logical reasoning over knowledge graphs. <i>arXiv preprint</i> <i>arXiv:2305.13585</i> , 2023a.
715 716 717 718	Xiang Wang, Tinglin Huang, Dingxian Wang, Yancheng Yuan, Zhenguang Liu, Xiangnan He, and Tat-Seng Chua. Learning intents behind interactions with knowledge graph for recommendation. In <i>Proceedings of the web conference 2021</i> , pp. 878–887, 2021a.
719 720 721	Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan Zhang, Zhiyuan Liu, Juanzi Li, and Jian Tang. Kepler: A unified model for knowledge embedding and pre-trained language representation. <i>Transactions of the Association for Computational Linguistics</i> , 9:176–194, 2021b.
722 723 724 725 726	Zihao Wang, Hang Yin, and Yangqiu Song. Benchmarking the combinatorial generalizability of complex query answering on knowledge graphs. <i>Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks 1 (NeurIPS Datasets and Benchmarks 2021)</i> , 2022a.
727 728	Zihao Wang, Hang Yin, and Yangqiu Song. Logical queries on knowledge graphs: Emerging inter- face of incomplete relational data. <i>IEEE Data Eng. Bull.</i> , 45(4):3–18, 2022b.
729 730 731 732	Zihao Wang, Weizhi Fei, Hang Yin, Yangqiu Song, Ginny Y Wong, and Simon See. Wasserstein- fisher-rao embedding: Logical query embeddings with local comparison and global transport. <i>arXiv preprint arXiv:2305.04034</i> , 2023b.
733 734 735	Zihao Wang, Yangqiu Song, Ginny Wong, and Simon See. Logical message passing networks with one-hop inference on atomic formulas. In <i>The Eleventh International Conference on Learning Representations</i> , 2023c. URL https://openreview.net/forum?id=SoyOsp7i_l.
736 737 738 720	Wenhan Xiong, Thien Hoang, and William Yang Wang. Deeppath: A reinforcement learning method for knowledge graph reasoning. In <i>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</i> , pp. 564–573, 2017.
740 741 742	Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In International Conference on Learning Representations, 2019. URL https://openreview.net/forum?id=ryGs6iA5Km.
743 744 745 746	Yao Xu, Shizhu He, Cunguang Wang, Li Cai, Kang Liu, and Jun Zhao. Query2triple: Unified query encoding for answering diverse complex queries over knowledge graphs. In <i>Findings of the Association for Computational Linguistics: EMNLP 2023</i> , pp. 11369–11382, 2023.
747 748 749	Zezhong Xu, Wen Zhang, Peng Ye, Hui Chen, and Huajun Chen. Neural-symbolic entangled frame- work for complex query answering. <i>Advances in Neural Information Processing Systems</i> , 35: 1806–1819, 2022.
750 751 752	Bishan Yang, Scott Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and relations for learning and inference in knowledge bases. In <i>Proceedings of the International Conference on Learning Representations (ICLR) 2015</i> , 2015.
754 755	Dong Yang, Peijun Qing, Yang Li, Haonan Lu, and Xiaodong Lin. Gammae: Gamma embeddings for logical queries on knowledge graphs. In <i>Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing</i> , pp. 745–760, 2022.

- 756 Liang Yao, Chengsheng Mao, and Yuan Luo. Kg-bert: Bert for knowledge graph completion. arXiv 757 preprint arXiv:1909.03193, 2019. 758
- Hang Yin, Zihao Wang, and Yangqiu Song. Rethinking complex queries on knowledge graphs with 759 neural link predictors. In The Twelfth International Conference on Learning Representations, 760 2024. URL https://openreview.net/forum?id=1BmveEMNbG. 761
- 762 Chongzhi Zhang, Zhiping Peng, Junhao Zheng, and Qianli Ma. Conditional logical message passing 763 transformer for complex query answering. In Proceedings of the 30th ACM SIGKDD Conference 764 on Knowledge Discovery and Data Mining, pp. 4119-4130, 2024a.
- 765 Chongzhi Zhang, Zhiping Peng, Junhao Zheng, Linghao Wang, Ruifeng Shi, and Qianli Ma. Path-766 former: Recursive path query encoding for complex logical query answering. arXiv preprint 767 arXiv:2406.14880. 2024b. 768
- 769 Denghui Zhang, Zixuan Yuan, Hao Liu, Hui Xiong, et al. Learning to walk with dual agents for 770 knowledge graph reasoning. In Proceedings of the AAAI Conference on artificial intelligence, volume 36, pp. 5932-5941, 2022. 771
- 772 Zhanqiu Zhang, Jie Wang, Jiajun Chen, Shuiwang Ji, and Feng Wu. Cone: Cone embeddings for multi-hop reasoning over knowledge graphs. Advances in Neural Information Processing Systems, 34:19172-19183, 2021.
- Zhaocheng Zhu, Mikhail Galkin, Zuobai Zhang, and Jian Tang. Neural-symbolic models for logical 776 queries on knowledge graphs. In International Conference on Machine Learning, pp. 27454– 777 27478. PMLR, 2022. 778
- 779 Lei Zou, Jinghui Mo, Lei Chen, M Tamer Özsu, and Dongyan Zhao. gstore: answering sparql 780 queries via subgraph matching. Proceedings of the VLDB Endowment, 4(8):482-493, 2011.
- 781 782

774

775

MORE RELATED WORKS А

- 783 784
- 785 A.1 NEURAL LINK PREDICTORS

786 Reasoning over KGs with missing knowledge is one of the long-standing topics in machine learning 787 and has been widely explored. In the last few years, neural link predictors (Bordes et al., 2013; 788 Yang et al., 2015; Trouillon et al., 2016; Dettmers et al., 2018; Sun et al., 2019; Chao et al., 2021) 789 have been proposed to answer one-hop atomic queries on incomplete KGs. These latent feature 790 models learn a low-dimensional vector for each entity and relation. By employing a well-defined 791 scoring function to assess link confidence, they can effectively predict unseen links. In addition to 792 these models, other research lines for one-hop KG reasoning include rule learning (Sadeghian et al., 793 2019; Cheng et al., 2022; 2023), text representation learning (Yao et al., 2019; Wang et al., 2021b; 794 Saxena et al., 2022), reinforcement learning (Xiong et al., 2017; Das et al., 2018; Zhang et al., 2022), and graph neural networks (Schlichtkrull et al., 2018; Vashishth et al., 2020; Teru et al., 2020). 795

796 797 798

A.2 NEURAL COMPLEX QUERY ANSWERING

Answering complex queries requires solving query formulas extended by atomic formulas combined 799 with existential first-order logical operators. Therefore, CQA is a more challenging task than one-800 hop KG reasoning. In recent years, neural models have been proposed to represent the set of entities 801 by low-dimensional embeddings. Most of them conceptualize a complex query as an operator tree 802 (Ren et al., 2020; Wang et al., 2022a), wherein first-order logical operators are replaced with cor-803 responding set operators. In particular, the existential quantifier induces a set projection operation, 804 which corresponds to the logic skolemization (Luus et al., 2021). Specifically, these CQA mod-805 els embed the sets of entities in various forms, including geometric shapes (Hamilton et al., 2018; 806 Ren et al., 2020; Liu et al., 2021; Choudhary et al., 2021b; Zhang et al., 2021; Amayuelas et al., 2022; Bai et al., 2022; Nguyen et al., 2023), probabilistic distributions (Ren & Leskovec, 2020; 807 Choudhary et al., 2021a; Yang et al., 2022; Long et al., 2022), fuzzy logic (Chen et al., 2022), and 808 bounded histograms (Wang et al., 2023b). Subsequently, neural set operations are applied to these 809 set embeddings in accordance with the operator tree to derive the answer embedding. Other neural

810 models represent the complex queries as graphs and solve CQA with graph neural networks (Daza 811 & Cochez, 2020; Alivanistos et al., 2022) or transformers (Kotnis et al., 2021; Liu et al., 2022; Wang 812 et al., 2023a; Bai et al., 2023a; Xu et al., 2023). However, most of the aforementioned neural models 813 tend to be less effective than a simple neural link predictor on one-hop atomic queries.

814 To this end, Wang et al. (2023c) proposed a logical message passing model, which is most related 815 to our work. This model leverages the pre-trained neural link predictor to infer intermediate em-816 beddings for nodes in a query graph, interpreting these embeddings as logical messages. Through 817 message passing paradigm (Xu et al., 2019), the free variable node embedding is updated to re-818 trieve the answers. While effective on both one-hop atomic and multi-hop complex queries, logical 819 message passing ignores the difference between constant and variable nodes, thus introducing noisy 820 messages. To mitigate this, recent work (Zhang et al., 2024a) proposed a conditional message passing mechanism, which can be viewed as a pruning strategy regardless of the messages passed by 821 variable nodes to constant nodes. However, this pruning strategy overlooks the noisy messages 822 between variable nodes at the initial layers of message passing. In contrast, the dynamic pruning 823 strategy employed in our model effectively eliminates these unnecessary noisy messages. Moreover, 824 our proposed NSMP only needs to re-use a simple pre-trained neural link predictor without requiring 825 training on complex query datasets, and offers interpretability through fuzzy sets. 826

827 A.3 SYMBOLIC INTEGRATION MODELS 828

829 In addition to the models mentioned above, there are several neural models enhanced with symbolic 830 reasoning (Sun et al., 2020; Arakelyan et al., 2021; Zhu et al., 2022; Xu et al., 2022; Arakelyan et al., 2023; Bai et al., 2023b) related to our work. These neural-symbolic models typically integrate 832 neural link predictors with fuzzy logic to address CQA. Most of them depend on the operator tree, 833 which, as noted in Yin et al. (2024), can only handle the existential first order logic formulas in an approximate way. In contrast, our proposed neural-symbolic model, which utilizes the query graph, 834 enables a more natural and direct handling of these formulas. A recently proposed neural-symbolic 835 model (Yin et al., 2024) introduces an algorithm that cuts nodes and edges step by step to handle the 836 query graph. Compared to this model, our message-passing-based approach can offer more efficient inference, as discussed in Section 4.3 and Section 5.2. 838

Table 5: Statistics of knowledge graphs as well as training, validation and test edge splits.

K	Knowledge Graph	Entities	Relations	Training Edges	Val Edges	Test Edges	Total Edges
	FB15k-237	14,505	237	272,115	17,526	20,438	310,079
	NELL995	63,361	200	114,213	14,324	14,267	142,804

Table 6: Statistics of different query types used in the BetaE datasets.

Knowledge Granh	Traini	ng Queries	Validatio	on Queries	Test Queries		
interned or the	1p/2p/3p/2i/3i	2in/3in/inp/pin/pni	1p	Others	1p	Others	
FB15k-237	149,689	14,968	20,101	5,000	22,812	5,000	
NELL995	107,982	10,798	16,927	4,000	17,034	4,000	

Table 7: Statistics of different query types used in the FIT datasets.

Knowledge Graph	pni	2il	3il	2m	2nm	3mp	3pm	im	3c	3cm
FB15k-237	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000
NELL995	4,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000

859 861 862

863

858

854 855

831

837

839

MORE DETAILS ABOUT THE DATASETS В

The statistics of the two knowledge graphs used in our experiment are shown in Table 5. As we described in Section 5.1, we evaluate our model using both BetaE (Ren & Leskovec, 2020) datasets

Figure 4: Graphical representation of the query types of the BetaE dataset considered in our experiment, where p, i, u, and n represent projection, intersection, union, and negation, respectively.

Figure 5: Graphical representation of the query types of the FIT dataset considered in our experiment, where l, m, and c represent existential leaf, multi graph, and circle, respectively.

and FIT (Yin et al., 2024) datasets. The statistics for the BetaE datasets are shown in Table 6. Since our model does not require training on complex queries, we use only the test split of the BetaE datasets. In addition, according to Yin et al. (2024), the "pni" query type does not conform to a real EFO₁ formula. Consequently, we do not evaluate "pni" queries in BetaE datasets. Specifically, the query types we evaluated in BetaE datasets are shown in Figure 4. For the FIT dataset, which contains only test queries, the statistics are shown in Table 7. The query types in FIT datasets are shown in Figure 5.

C DETAILS ABOUT THE MODEL, IMPLEMENTATION AND EXPERIMENTS

- Our code is implemented using PyTorch. We use NVIDIA RTX 3090 GPU (24GB) and NVIDIA
 A100 GPU (40GB) to conduct all of our experiments. Following Arakelyan et al. (2021); Wang
 et al. (2023c); Yin et al. (2024), we select ComplEx-N3 (Trouillon et al., 2016; Lacroix et al., 2018)
 as the neural link predictor and use the checkpoints released by Arakelyan et al. (2021) for a fair
 comparison. The rank of ComplEx-N3 is 1,000, and the epoch for the checkpoints is 100. To
- determine the optimal hyperparameters of NSMP, we employ grid search. Specifically, the value for α is selected from {1, 10, 100, 1000, 10000, $|\mathcal{V}|$ }, for λ from {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, and for L from {D, D + 1, D + 2, D + 3}. After experimental analyses on hyperparameters, we choose λ as 0.3 for FB15k-237 and 0.1 for NELL995. The number of layers L is D + 1, and α is 100 for FB15k-237 and 1000 for NELL995.
- In the case of choosing ComplEx-N3 as the neural link predictor, according to Wang et al. (2023c), given the corresponding complex embeddings, the neural message encoding function ρ can be de-

rived into the following closed-form expressions for all four cases:

$$\rho(t, r, t \to h, 0) = \frac{\overline{r} \otimes t}{\sqrt{3\beta \|\overline{r} \otimes t\|}},\tag{20}$$

$$\rho(h, r, h \to t, 0) = \frac{r \otimes h}{\sqrt{3\beta \|r \otimes h\|}},\tag{21}$$

$$o(t, r, t \to h, 1) = \frac{-\overline{r} \otimes t}{\sqrt{3\beta \|\overline{r} \otimes t\|}},$$
(22)

$$p(h, r, h \to t, 1) = \frac{-r \otimes h}{\sqrt{3\beta \, \|r \otimes h\|}},\tag{23}$$

where β is a hyperparameter that needs to be determined. In our application, we follow previous works (Wang et al., 2023c; Zhang et al., 2024a) and let $3\beta \|\cdot\| = 1$ for simplicity. Thus, ρ is simplified to the following expressions for four cases:

$$\rho(t, r, t \to h, 0) := \overline{r} \otimes t, \tag{24}$$

$$\rho(h, r, h \to t, 0) := r \otimes h, \tag{25}$$

$$\rho(t, r, t \to h, 1) := -\overline{r} \otimes t, \tag{26}$$

$$o(h, r, h \to t, 1) := -r \otimes h.$$
⁽²⁷⁾

938 For closed-form expressions of other neural link predictors, please refer to Wang et al. (2023c).

For the experiments evaluating the relative speedup of NSMP over FIT (Yin et al., 2024) in terms of inference time on the FIT dataset, we conduct the experiments on an NVIDIA A100 GPU. Specifically, we measure the average time required by NSMP and FIT to process each type of test query on the FIT dataset. To ensure a fair comparison, the batch size during the testing phase is set to 1. The relative speedup is presented in Figure 3, and detailed inference times are provided in Table 8.

Table 8: Inference time (ms/query) on each query type on FIT datasets, evaluated on one NVIDIA A100 GPU.

Knowledge Graph	Model	pni	2il	3il	2m	2nm	3mp	3pm	im	3c	3cm
FB15k-237	FIT	93.4	48.4	73.4	47.8	71.2	69.4	74.4	69.8	2482.2	2824.2
	NSMP	15.8	10.6	14.6	15.2	15.2	25.6	23.4	18.8	34.0	40.6
NELL995	FIT	843.0	419.0	630.6	422.6	649.6	636.0	632.4	634.2	11832.4	11149.9
	NSMP	41.5	37.0	39.6	41.0	38.0	61.2	57.8	44.2	78.2	90.4

956

957

958

959

960

961

920 921 922

930

931

932 933 934

935 936 937

944

945

D COMPARISON WITH MORE NEURAL CQA MODELS ON BETAE DATASETS

To further evaluate the performance of NSMP, we also consider comparing more neural CQA models on BetaE (Ren & Leskovec, 2020) datasets, including Q2P (Bai et al., 2022), MLP (Amayuelas et al., 2022), GammaE (Yang et al., 2022), CylE (Nguyen et al., 2023), WRFE (Wang et al., 2023b), and Pathformer (Zhang et al., 2024b). The reported MRR results are from these papers (Wang et al., 2023b; Nguyen et al., 2023; Zhang et al., 2024b). As shown in the results in Table 9, our model reaches the best performance across all query types on both FB15k-237 and NELL995, indicating the effectiveness of NSMP.

962 963 964

965

E ANALYSES ON MORE HYPERPARAMETERS

For the evaluation of hyperparameters α and λ , we conduct experiments on FB15k-237. Specifically, we compare the effects of different hyperparameters on model performance under default hyperparameter settings. Since α only influences the results of the negative queries, we evaluate α using the negative queries from both the BetaE and FIT datasets. As shown in the results in Table 10, α has a minor impact on the model performance, but $\alpha = 100$ achieves slightly better results, so we set $\alpha = 100$ for the experiments on FB15k-237. Similarly, we evaluate the performance of various settings for the hyperparameter λ on the BetaE and FIT datasets. Specifically, we report the

Table 9: MRR results of other neural CQA models and our model on BetaE datasets. The average score is calculated separately among positive and negative queries. Highlighted are the top first results.

975																	
976	Dataset	Model	1p	2p	3p	2i	3i	pi	ip	2u	up	AVG.(P)	2in	3in	inp	pin	AVG.(N)
977		Q2P MLP	39.1 42.7	11.4 12.4	10.1 10.6	32.3 31.7	47.7 43.9	24.0 24.2	14.3 14.9	8.7 13.7	9.1 9.7	21.9 22.6	4.4 6.6	9.7 10.7	7.5 8.1	4.6 4.7	6.6 7.5
978		GammaE	43.2	13.2	11.0	33.5	47.9	27.2	15.9	13.9	10.3	24.0	6.7	9.4	8.6	4.8	7.4
979	FB15k-237	Pathformer CylE	44.8 42.9	12.9 13.3	10.6 11.3	34.2 35.0	47.3 49.0	26.2 27.0	17.0 15.7	14.9 15.3	$10.0 \\ 11.2$	24.2 24.5	6.4 4.9	11.6 8.3	8.3 8.2	4.7 3.7	7.8 6.3
980		WRFE NSMP	44.1 46.7	13.4 15.1	11.1 12.3	35.1 38.7	50.1 52.2	27.4 31.2	17.2 23.3	13.9 17.2	10.9 11.9	24.8 27.6	6.9 11.9	11.2 17.6	8.5 10.8	5.0 7 .9	7.9 12.0
981 982		Q2P MLP	56.5 55.2	15.2 16.8	12.5 14.9	35.8 36.4	48.7 48.0	22.6 22.7	16.1 18.2	11.1 14.7	10.4 11.3	25.5 26.5	5.1 5.1	7.4 8.0	10.2 10.0	3.3 3.6	6.5 6.7
983	NELL995	GammaE Pathformer	55.1 56.4	17.3 17.4	14.2 14.9	41.9 39.9	51.1 50.4	26.9 26.0	18.3 19.4	15.1 14.4	11.2 11.1	27.9 27.8	6.3 5.1	8.7 8.6	11.4 10.3	4.0 3.9	7.6 7.0
984		CylE WRFE	56.5 58.6	17.5 18.6	15.6 16.0	41.4 41.2	51.2 52.7	27.2 28.4	19.6 20.7	15.7 16.1	12.3 13.2	28.6 29.5	5.6 6.9	7.5 8.8	11.2 12.5	3.4 4.1	6.9 8.1
985		NSMP	60.8	21.6	17.6	44.2	53.6	33.7	26.7	19.1	14.4	32.4	12.4	15.5	13.7	7.9	12.4

average MRR results for different λ values on FB15k-237, as presented in Table 11, where AVG.(P), AVG.(N), and AVG.(F) represent the average scores for positive queries, negative queries on the Be-taE datasets, and the average scores on the FIT datasets, respectively. Notably, except for $\lambda = 0$, the other hyperparameter settings exhibit comparable performance. Combined with the experimental results for hyperparameter α , this indirectly validates the effectiveness of our proposed framework in maintaining stable results across different configurations. Furthermore, these results suggest that relying solely on aggregated neural representations (i.e., the $\lambda = 0$ case) is insufficient for address-ing complex queries. We adopt a default setting of $\lambda = 0.3$, as it achieves a relatively balanced performance.

Table 10: MRR results for different hyperparameters α on FB15k-237.

Model	2in	3in	inp	pin	pni	2nm	AVG
$\alpha = 1$	11.9	17.6	10.7	8.0	13.0	8.9	11.7
$\alpha = 10$	11.9	17.6	10.7	8.0	12.8	9.5	11.8
$\alpha = 100$	11.9	17.6	10.8	7.9	13.4	9.9	11.9
$\alpha = 1000$	11.9	17.6	10.8	7.9	13.7	9.6	11.9
$\alpha = 10000$	11.7	17.6	10.8	7.8	13.9	9.0	11.8
$\alpha = \mathcal{V} $	11.7	17.5	10.8	7.8	13.7	8.4	11.7

Table 11: Average MRR	results for different hyperparameters .	λ on FB15k-237
U U	* 1 1	

Model	AVG.(P)	AVG.(N)	AVG.(F)
$\lambda = 0$	19.8	5.5	17.4
$\lambda = 0.1$	27.5	12.0	22.6
$\lambda = 0.2$	27.6	12.0	22.7
$\lambda = 0.3$	27.6	12.0	22.8
$\lambda = 0.4$	27.6	12.0	22.8
$\lambda = 0.5$	27.5	12.0	22.8
$\lambda = 0.6$	27.5	12.0	22.8
$\lambda = 0.7$	27.5	12.0	22.8
$\lambda = 0.8$	27.4	12.0	22.8
$\lambda = 0.9$	27.4	12.0	22.8
$\lambda = 1.0$	27.4	12.0	22.9

F ANALYSES ON SPACE COMPLEXITY

For the space complexity of neural components, both NSMP and FIT use a pre-trained neural link predictor with a complexity of $\mathcal{O}((|\mathcal{V}| + |\mathcal{R}|)d)$, where d is the embedding dimension. The symbolic

1027 one-hop inference component of NSMP utilizes relational adjacency matrices, which contain $|\mathcal{R}| \cdot |\mathcal{V}|^2$ entries. However, due to the sparsity of KG, most entries are 0. With the help of sparse matrix 1028 techniques, the adjacency matrices can be stored efficiently. In this regard, NSMP has a space 1029 complexity similar to that of FIT. The neural adjacency matrix used in FIT also contains $|\mathcal{R}| \cdot |\mathcal{V}|^2$ 1030 entries and can be efficiently stored by setting appropriate thresholds.

1032 G CASE STUDY

To verify whether NSMP can provide interpretability, we sample an "ip" query from FB15k-237 to visualize the corresponding entity ranking derived from the final fuzzy state of each vari-able after message passing. Specifically, the EFO_1 formula for the "ip" query we sampled is $\exists x, r_1(x, e_1) \land r_2(x, e_2) \land r_3(x, y)$, where e_1 is Adventure Film, e_2 is The Expendables, r_1 is Genre, r_2 is *Prequel*, and r_3 is *Film Regional Debut Venue*. This query has the following hard answers: Paris, Buenos Aires, Madrid, Los Angeles, London and Belgrade. After applying NSMP to the query, for each variable node, we find the top five entities with the highest probability from its final state based on Equation 19 and a softmax operation. The results are shown in Table 12. The results indicate that the fuzzy set of each variable can be used to represent its membership degrees across all entities, thereby providing interpretability. Although NSMP cannot sample a specific reasoning path like step-by-step methods Arakelyan et al. (2023); Bai et al. (2023b), such as the path sampled by beam search (Arakelyan et al., 2021), the introduction of fuzzy logic allows each variable's state to be represented as a fuzzy vector that defines a fuzzy set. These fuzzy vectors can be leveraged to enhance interpretability. Compared to neural embeddings as representations of variable states, fuzzy vectors offer a more intuitive explanation of the current state of variables, thereby improving interpretability.

Table 12: The top five entities with the highest probability for each variable and their corresponding probabilities. \checkmark indicates that the correct entity is hit.

<i>x</i>		y		
Entity	Probability	Entity	Probability	
The Expendables 2 \checkmark	1.0	Buenos Aires √	0.36	
Green Lantern	$almost \ 0$	Los Angeles √	0.32	
The Dark Knight	$almost \ 0$	London √	0.29	
Battle Royale	$almost \ 0$	Madrid √	0.03	
freak folk	$almost \ 0$	Toronto International Film Festival	$almost \ 0$	