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ABSTRACT

Offline reinforcement learning (RL) has garnered significant attention for its ability
to learn effective policies from pre-collected datasets without the need for further
environmental interactions. While promising results have been demonstrated in
single-agent settings, offline multi-agent reinforcement learning (MARL) presents
additional challenges due to the large joint state-action space and the complexity
of multi-agent behaviors. A key issue in offline RL is the distributional shift,
which arises when the target policy being optimized deviates from the behavior
policy that generated the data. This problem is exacerbated in MARL due to the
interdependence between agents’ local policies and the expansive joint state-action
space. Prior approaches have primarily addressed this challenge by incorporating
regularization in the space of either Q-functions or policies. In this work, we
introduce a regularizer in the space of stationary distributions to better handle
distributional shift. Our algorithm, ComaDICE, offers a principled framework for
offline cooperative MARL by incorporating stationary distribution regularization
for the global learning policy, complemented by a carefully structured multi-
agent value decomposition strategy to facilitate multi-agent training. Through
extensive experiments on the multi-agent MuJoCo and StarCraft II benchmarks,
we demonstrate that ComaDICE achieves superior performance compared to state-
of-the-art offline MARL methods across nearly all tasks.

1 INTRODUCTION

Over the years, deep RL has achieved remarkable success in various decision-making tasks (Levine
et al., 2016; Silver et al., 2017; Kalashnikov et al., 2018; Haydari & Yılmaz, 2020). However, a
significant limitation of deep RL is its need for millions of interactions with the environment to gather
experiences for policy improvement. This process can be both costly and risky, especially in real-
world applications like robotics and healthcare. To address this challenge, offline RL has emerged,
enabling policy learning based solely on pre-collected demonstrations (Levine et al., 2020). Despite
this advancement, offline RL faces a critical issue: the distribution shift between the offline dataset and
the learned policy (Kumar et al., 2019). This distribution shift complicates value estimation for unseen
states and actions during policy evaluation, resulting in extrapolation errors where out-of-distribution
(OOD) state-action pairs are assigned unrealistic values (Fujimoto et al., 2018).

To tackle OOD actions, many existing works impose action-level constraints, either implicitly by
regulating the learned value functions or explicitly through distance or divergence penalties (Fujimoto
et al., 2019; Kumar et al., 2019; Wu et al., 2019; Peng et al., 2019; Fujimoto & Gu, 2021; Xu et al.,
2021). Only a few recent studies have addressed both OOD actions and states using state-action-level
behavior constraints (Li et al., 2022; Zhang et al., 2022; Lee et al., 2021; 2022; Mao et al., 2024). In
particular, there is an important line of work on DIstribution Correction Estimation (DICE) (Nachum
& Dai, 2020) that constrains the distance in terms of the joint state-action occupancy measure between
the learning policy and the offline policy. These DICE-based methods have demonstrated impressive
performance results on the D4RL benchmarks (Lee et al., 2021; 2022; Mao et al., 2024).

It is important to note that that all the aforementioned offline RL approaches primarily focus on the
single-agent setting. While multi-agent setting is prevalent in many real-world sequential decision-
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making tasks, offline MARL remains a relatively under-explored area. The multi-agent setting poses
significantly greater challenges due to the large joint state-action space, which expands exponentially
with the number of agents, as well as the inter-dependencies among the local policies of different
agents. As a result, the offline data distribution can become quite sparse in these high-dimensional
joint action spaces, leading to an increased number of OOD state-action pairs and exacerbating
extrapolation errors. A few recent studies have sought to address the negative effects of sparse data
distribution in offline MARL by adapting the well-known centralized training decentralized execution
(CTDE) paradigm from online MARL (Oliehoek et al., 2008; Kraemer & Banerjee, 2016), enabling
data-related regularization at the individual agent level. Notably, some of these works (Pan et al.,
2022; Shao et al., 2024; Wang et al., 2022b) extend popular offline single-agent RL algorithms, such
as CQL (Kumar et al., 2020) and SQL/EQL (Xu et al., 2023), within the CTDE framework.

In our work, we focus on addressing the aforementioned challenges in offline cooperative MARL.
In particular, we follow the DICE approach to address both OOD states and actions, motivated by
remarkable performance of recent DICE-based methods in offline single-agent RL. Similar to previous
works in offline MARL, we adopt the CTDE framework to handle exponential joint state-action
spaces in the multi-agent setting. We remark that extending the DICE approach under this CTDE
framework is not straightforward given the complex objective of DICE that involves the f-divergence
in stationary distribution between the learning joint policy and the behavior policy. Therefore, the
value decomposition in CTDE needs to be carefully designed to ensure the consistency in optimality
between the global and local policies. In particular, we provide the following main contributions:

• We propose ComaDICE, a new offline MARL algorithm that integrates DICE with a carefully
designed value decomposition strategy. In ComaDICE, under the CTDE framework, we
decompose both the global value function νtot and the global advantage functions Atotν ,
rather than using Q-functions as in previous MARL works. This unique factorization
approach allows us to theoretically demonstrate that the global learning objective in DICE
is convex in local values, provided that the mixing network used in the value decomposition
employs non-negative weights and convex activation functions. This significant finding
ensures that our decomposition strategy promotes an efficient and stable training process.

• Building on our decomposition strategy, we demonstrate that finding an optimal global
policy can be divided into multiple sub-problems, each aims to identify a local optimal
policy for an individual agent. We provide a theoretical proof that the global optimal policy
is, in fact, equivalent to the product of the local policies derived from these sub-problems.

• Finally, we conduct extensive experiments to evaluate the performance of our algorithm,
ComaDICE, in complex MARL environments, including: multi-agent StarCraft II (i.e.,
SMACv1 (Samvelyan et al., 2019), SMACv2 (Ellis et al., 2022)) and multi-agent Mu-
joco (de Witt et al., 2020) benchmarks. Our empirical results show that our ComaDICE
outperforms several strong baselines in all these benchmarks.

2 RELATED WORK

Offline Reinforcement Learning (offline RL). Offline RL focuses on learning policies from
pre-collected datasets without any further interactions with the environment (Levine et al., 2020;
Prudencio et al., 2023). A significant challenge in offline RL is the issue of distribution shift,
where unseen actions and states may arise during training and execution, leading to inaccurate
policy evaluations and suboptimal outcomes. Consequently, there is a substantial body of literature
addressing this challenge through various approaches (Prudencio et al., 2023). In particular, some
studies impose explicit or implicit policy constraints to ensure that the learned policy remains close
to the behavioral policy (Fujimoto et al., 2019; Kumar et al., 2019; Wu et al., 2019; Kostrikov et al.,
2021; Peng et al., 2019; Nair et al., 2020; Fujimoto & Gu, 2021; Xu et al., 2021; Cheng et al., 2024; Li
et al., 2023). Others incorporate regularization terms into the learning objectives to mitigate the value
overestimation on OOD actions (Kumar et al., 2020; Kostrikov et al., 2021; Xu et al., 2022c; Niu et al.,
2022; Xu et al., 2023; Wang et al., 2022b). Uncertainty-based offline RL methods seek to balance
conservative approaches with naive off-policy RL techniques, relying on estimates of model, value,
or policy uncertainty (Agarwal et al., 2020; An et al., 2021; Bai et al., 2022). Offline model-based
algorithms focus on conservatively estimating the transition dynamics and reward functions based on
the pre-collected datasets (Kidambi et al., 2020; Yu et al., 2020; Matsushima et al., 2020; Yu et al.,
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2021). Some other methods impose action-level regularization through imitation learning techniques
(Xu et al., 2022b; Chen et al., 2020; Zhang et al., 2023; Zheng et al., 2024; Brandfonbrener et al.,
2021; Xu et al., 2022a). Finally, while a majority of previous works target OOD actions only, there
are a few recent works attempt to address both OOD states and actions (Li et al., 2022; Zhang et al.,
2022; Lee et al., 2021; 2022; Sikchi et al., 2023; Mao et al., 2024). Our work on offline MARL follow
the DICE-based approach, as motivated by compelling performance of DICE-based algorithms in
single-agent settings (Lee et al., 2021; 2022; Sikchi et al., 2023; Mao et al., 2024).

Offline Multi-agent Reinforcement Learning (offline MARL). While there is a substantial body
of literature on offline single-agent RL, research on offline MARL remains limited. Offline MARL
faces challenges from both distribution shift—characteristic of offline settings—and the exponentially
large joint action space typical of multi-agent environments. Recent studies have begun to merge
advanced methodologies from both offline RL and MARL to address these challenges (Yang et al.,
2021; Pan et al., 2022; Shao et al., 2024; Wang et al., 2022b) Specifically, these works employ local
policy regularization within the centralized training with decentralized execution (CTDE) framework
to mitigate distribution shift. The CTDE paradigm, well-established in online MARL, facilitates more
efficient and stable learning while allowing agents to operate in a decentralized manner (Oliehoek
et al., 2008; Kraemer & Banerjee, 2016). For instance, Yang et al. (2021) utilize importance sampling
to manage local policy learning on OOD samples. Both works by Pan et al. (2022) and Shao
et al. (2024) are built upon CQL (Kumar et al., 2020), a prominent offline RL algorithm for single-
agent scenarios. Matsunaga et al. (2023) developed AlberDICE, leveraging the Nash equilibrium
solution concept from game theory to iteratively update the best responses of individual agents. Both
AlberDICE and our method, ComaDICE, adopt the DICE framework to address the out-of-distribution
(OOD) issue. However, while AlberDICE proposes learning individual Lagrange multipliers (or
value functions) to obtain occupancy ratios, our ComaDICE algorithm learns a global value function
by mixing local functions, adhering to the well-established CTDE principle. This design enables
ComaDICE to better capture inter-agent relationships and improve credit assignment across local
agents. Finally, OMIGA (Wang et al., 2022b) establishes the equivalence between global and local
value regularization within a policy constraint framework, making it the current state-of-the-art
algorithm in offline MARL. The key difference between ComaDICE and OMIGA lies in their
respective approaches: OMIGA focuses on learning a global Q-function, whereas our algorithm (and
other methods in the DICE family) operates in the occupancy space, aiming to learn the ratio between
the occupancy of the learning policy and the behavior policy.

Beyond this main line of research, some studies formulate offline MARL as a sequence modeling
problem, employing supervised learning techniques to tackle the issue (Meng et al., 2023; Tseng
et al., 2022), while others adhere to decentralized approaches (Jiang & Lu, 2023).

3 PRELIMINARIES

Our work focuses on cooperative multi-agent RL, which can be modeled as a multi-agent Partially Ob-
servable Markov Decision Process (POMDP), defined by the tuple M = ⟨S,A, P, r,Z,O, n,N , γ⟩.
Here, n is number of agents, N = {1, . . . , n} is the set of agents, s ∈ S represents the true state
of the multi-agent environment, and A =

∏
i∈N Ai is the set of joint actions, where Ai is the set

of individual actions available to agent i ∈ N . At each time step, each agent i ∈ {1, 2, . . . , n}
selects an action ai ∈ Ai, forming a joint action a = (a1, a2, . . . , an) ∈ A. The transition dy-
namics P (s′|s, a) : S × A × S → [0, 1] describe the probability of transitioning to the next state
s′ when agents take an action a from the current state s. The discount factor γ ∈ [0, 1) represents
the weight given to future rewards. In a partially observable environment, each agent receives a
local observation si ∈ Oi based on the observation function Zi(s) : S → Oi, and we denote the
joint observation as o = (o1, o2, . . . , on). In cooperative MARL, all agents share a global reward
function r(s, a) : S × A → R. The goal of all agents is to learn a joint policy πππtot = {π1, . . . , πn}
that collectively maximize the expected discounted returns E(o,a)∼πππtot [

∑∞
t=0 γ

tr(st, at)]. In the
offline MARL setting, a pre-collected dataset D is obtained by sampling from a behavior policy
µtot = {µ1, . . . , µn}, and the policy learning is conducted soly based on D, with no interactions with
the environment. We also define the occupancy measure (or stationary distribution) as follows:

ρπππtot(s, a) = (1− γ)
∑∞

t=0
P (st = s, at = a)
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which represents distribution visiting the pair (observation, action) (st, a1) when following the joint
policy πππtot, where s0 ∼ P0, at ∼ πππtot(·|st) and st+1 ∼ P (·|st, at).

4 COMADICE: OFFLINE COOPERATIVE MULTI-AGENT RL WITH
STATIONARY DISTRIBUTION CORRECTION ESTIMATION

We consider an offline cooperative MARL problem where the goal is to optimize the expected
discounted joint reward. In this work, we focus on the DICE objective function Nachum & Dai
(2020); Lee et al. (2021), which incorporates a stationary distribution regularizer to capture the
divergence between the occupancy measures of the learning policy, πππtot, and the behavior policy,
µµµtot, formulated as follows:

maxπππtot
E(s,a)∼ρπππtot [r(s, a)]− αDf (ρπππtot ∥ ρµµµtot) (1)

where Df (ρπππtot ∥ ρµµµtot) = E(s,a)∼ρπππtot

[
f
(
ρπππtot

ρµµµtot

)]
is the f-divergence between the stationary dis-

tribution ρπππtot of the learning policy and ρµµµtot of the behavior policy. In this work, we consider f(·) to
be strictly convex and differentiable. The parameter α controls the trade-off between maximizing the
reward and penalizing deviation from the offline dataset’s distribution (i.e., penalizing distributional
shift). When α = 0, the problem becomes the standard offline MARL, where the objective is to find
a joint policy that maximizes the expected joint reward. On the other hand, when α≫ 1, the problem
shifts towards imitation learning, aiming to closely mimic the behavioral policy.

This DICE-based approach offers the advantage of better capturing the system dynamics inherent in
the offline data. Such stationary distributions, ρπππtot and ρµµµtot , however, are not directly available. We
will discuss how to estimate them in the next subsection.

4.1 CONSTRAINED OPTIMIZATION IN THE STATIONARY DISTRIBUTION SPACE

We first formulate the learning problem in Eq. 1 as a constrained optimization on the space of ρπππtot :

maxρπππtot E(s,a)∼ρπππtot [r(s, a)]− αDf (ρπππtot ∥ ρµµµtot) (2)

s.t.
∑

a′
ρπππtot(s, a′) = (1− γ)p0(s) + γ

∑
a′,s′

ρπππtot(s′, a′)P (s|a′, s′), ∀s ∈ S. (3)

When f is convex, (2-3) becomes a convex optimization problem, as it involves maximizing a concave
objective function subject to linear constraints. We now consider the Lagrange dual of (2-3):

L(νtot,ρπππtot) = E(s,a)∼ρπππtot [r(s, a)]− αE(s,a)∼ρµµµtot

[
f

(
ρπππtot(s, a)
ρµµµtot(s, a)

)]
−
∑

s
νtot(s)

(∑
a′
ρπππtot(s, a′)− (1− γ)p0(s)− γ

∑
a′,s′

ρπππtot(s′, a′)P (s|a′, s′)
)
, (4)

where νtot(s) is a Lagrange multiplier. Since (2-3) is a convex optimization problem, it is equivalent to
the following minimax problem over the spaces of νtot and ρπππtot : minνtot maxρπππtot {L(νtot, ρπππtot)} .
Furthermore, we observe that L(νtot, ρπππtot) is linear in νtot and concave in ρπππtot , so
the minimax problem has a saddle point, implying: minνtot maxρπππtot {L(νtot, ρπππtot)} =
maxρπππtot minνtot {L(νtot, ρπππtot)} . In a manner analogous to the single-agent case (Lee et al., 2021),
by defining wtotν (s, a) = ρπππtot (s,a)

ρµµµtot (s,a) , the Lagrange dual function can be simplified into the more
compact form (with detailed derivations are in the appendix):

L(νtot, wtot) = (1− γ)Es∼p0 [ν
tot(s)] + E(s,a)∼ρµµµtot

[
−αf

(
wtotν (s, a)

)
+ wtotν (s, a)Atotν (s, a)

]
,

where Atotν is an “advantage function” defined based on νtot as:

Atotν (s, a) = qtot(s, a)− νtot(s), (5)

with qtot(s, a) = r(Z(s), a)+γEs′∼P (·|s,a)[ν
tot(s′)]. It is important to note that νtot(s) and qtot(s, a)

can be interpreted as a value function and a Q function, respectively, arising from the decomposition
of the stationary distribution regularizer. We can now write the learning problem as follows:

minνtot maxwtot≥0 {L(νtot, wtot)}. (6)
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It can be observed that L(νtot, wtot) is linear in νtot and concave in wtot, which ensures well-
behaved properties in both the νtot- and wtot-spaces. Following the derivations in Lee et al. (2021) ,
a key feature of the above minimax problem is that the inner maximization problem has a closed-
form solution, which greatly simplifies the minimax problem, making it no longer adversarial. We
formalize this result as follows:
Proposition 4.1. The minimax problem in Eq. 6 is equivalent to minνtot

{
L̃(νtot)

}
, where

L̃(νtot) = (1− γ)Es∼p0 [ν
tot(s)] + E(s,a)∼ρµµµtot

[
αf∗

(
Atotν (s, a)

α

)]
.

Here, f∗ is convex conjugate of f , i.e., f∗(y) = supt≥0{ty−f(t)}. Moreover, if νtot is parameterized
by θ, the first-order derivative of L̃(νtot) w.r.t. θ is given as follows:

∇θL̃(νtot) = (1− γ)Es∼p0 [∇θν
tot(s)] + E(s,a)∼ρµµµtot

[
∇θA

tot
ν (s, a)wtot∗ν (s, a)

]
.

where wtot∗ν (s, a) = max{0, f ′−1
(Atotν (s, a)/α)}, with f ′−1(·) is the inverse function of the first-

order derivative of f .

Proposition 4.1 above is a direct extension of the formulations in Lee et al. (2021) developed for the
single-agent setting, differing only in the inclusion of the closed-form expression for the first-order
derivative of the objective function, L̃(νtot).

4.2 VALUE FACTORIZATION

Directly optimizing minνtot {L(νtot, wtot∗ν )} in multi-agent settings is generally impractical due to
the large state and action spaces. Therefore, we follow the idea of value decomposition in the well-
known CTDE framework in cooperative MARL to address this computational challenge. However, it
is not straightforward to extend the DICE approach within this CTDE framework due to the complex
objective of DICE, which involves the f-divergence between the learned joint policy and the behavior
policy in stationary distributions. Thus, it is crucial to carefully design the value decomposition in
CTDE to ensure optimality consistency between the global and local policies.

Specifically, we adopt a factorization approach that decomposes the value function νtot(s)
(or global Lagrange multipliers) into local values using mixing network architectures. Let
ννν(s) = {ν1(s1), . . . , νn(sn)} represent a collection of local “value functions” and let Aννν(s, a) =
{Ai(si, ai), i = 1, ..., n} represent a collection of local advantage functions. The local ad-
vantage functions are computed as Ai(si, ai) = qi(si, ai) − νi(si) for all i ∈ N , where
q(s, a) = {qi(si, ai), i = 1, ..., n} is a vector of local Q functions. To facilitate centralized
learning, we create a mixing network, Mθ, where θ are the learnable weights, that aggregates the
local values to form the global value and advantage functions as follows:

νtot(s, a) = Mθ[ννν(s)], Atotν (s, a) = Mθ[q(s, a)− ννν(s)],

where each network takes the vectors ννν(s) or Aννν(s, a) as inputs and outputs νtot andAtotν , respectively.
Under this architecture, the learning objective becomes:

L̃(ννν, θ) = (1− γ)Es∼p0 [Mθ[ννν(s)]] + E(s,a)∼ρµµµtot

[
αf∗

(
Mθ[q(s, a)− ννν(s)]

α

)]
,

with the observation that Aν(s, a) can be expressed as a linear function of ννν. There are different
ways to construct the mixing network Mθ; previous work often employs a single linear combination
(1-layer network) or a two-layer network with convex activations such as ReLU, ELU, or Maxout. In
the following, we show a general result stating that the learning objective function is convex in ννν,
provided that the mixing network is constructed with nonnegative weights and convex activations.
Theorem 4.2. If the mixing network Mθ[·] is constructed with non-negative weights and convex
activations, then L̃(ννν, θ) is convex in ννν.

Mixing networks with non-negative weights and concave activations (e.g., ELU or ReLU) have been
extensively used in MARL, forming the foundation of several notable state-of-the-art algorithms such
as QMIX (Rashid et al., 2020), QTRAN (Son et al., 2019), and MFIQ (Bui et al., 2024). In particular,
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it has been demonstrated that mixing networks with either negative weights or non-concave activations
result in significantly degraded performance (Bui et al., 2024). Theorem 4.2 shows that L̃(ννν, θ) is
convex in ννν when using any multi-layer feed-forward mixing networks with non-negative weights and
convex activation functions. This finding is highly general and non-trivial, given the nonlinearity and
complexity of both the function (in terms of ννν) and the mixing networks. Previous work has often
focused on single-layer (Wang et al., 2022b) or two-layer mixing structures (Rashid et al., 2020; Bui
et al., 2024), emphasizing that such two-layer networks can approximate any monotonic function
arbitrarily closely as network width approaches infinity (Dugas et al., 2009). In our experiments,
we test two configurations for the mixing network: a linear combination (or 1-layer) and a 2-layer
feed-forward network. While 2-layer mixing structures have shown strong performance in online
MARL (Rashid et al., 2020; Son et al., 2019; Wang et al., 2020), we observe in our offline settings
that the linear combination approach provides more stable results.

4.3 POLICY EXTRACTION

Let ννν∗ be an optimal solution to the training problem with mixing networks, i.e.,

min
ννν,θ

L̃(ννν, θ). (7)

We now need to extract a local and joint policy from this solution. Based on Prop. 4.1, given ννν∗, we
can compute this occupancy ratio as follows: :

wtot∗(s, a) = max

{
0, f ′

−1
(
Mθ[Aννν∗(s, a)]

α

)}
.

The global policy can then be obtained as follows: πππ∗
tot(a|s) = wtot∗(s,a)·ρµµµtot (s,a)∑

a′∈A wtot∗(s,a′)·ρµµµtot (s,a′) . This
computation, however, is not practical since ρµµµtot is generally not available and might not be
accurately estimated in the offline setting. A more practical way to estimate the global policy, πππ∗

tot,
as the result of solving the following weighted behavioral cloning (BC):

max
πππtot∈Πtot

E
(s,a)∼ρπππ

∗
tot

[logπππtot(a|s)] = max
πππtot∈Πtot

E(s,a)∼ρµµµtot [w
tot∗(s, a) logπππtot(a|s)], (8)

where Πtot represents the feasible set of global policies. Here we assume that Πtot contains decom-
posable global policies, i.e., Πtot = {πππtot | ∃πi, ∀i ∈ N such that πππtot(a|s) =

∏
i∈N πi(ai|si)}. In

other words, Πtot consists of global policies that can be expressed as a product of local policies. This
decomposability is highly useful for decentralized learning and has been widely adopted in MARL
(Wang et al., 2022b; Bui et al., 2024; Zhang et al., 2021).

While the above weighted BC appears practical, as (s, a) can be sampled from the offline dataset
generated by ρπππtot , and since wtot∗(s, a) is available from solving 7, it does not directly yield local
policies, which are essential for decentralized execution. To address this, we propose solving the
following weighted BC for each local agent i ∈ N :

maxπi
E(s,a)∼D

[
wtot∗(s, a) log πi(ai|si)

]
. (9)

This local WBC approach has several attractive properties. First, wtot∗(s, a) appears explicitly in the
local policy optimization and is computed from global observations and actions. This enables local
policies to be optimized with global information, ensuring consistency with the credit assignment in
the multi-agent system. Furthermore, as shown in Proposition 4.3 below, the optimization of local
policies through local WBC is highly consistent with the global weighted BC in 8.
Proposition 4.3. Let π∗

i be the optimal solution to the local weighted BC 9. Then π∗
tot(a|s) =∏

i∈N π∗
i (ai|si) is also optimal for the global weighted BC in 8.

Here we note that consistency between global and local policies is a critical aspect of centralized
training with CTDE. Previous MARL approaches typically achieve this by factoring Q or V functions
into local functions and training local policies based on these local functions (Rashid et al., 2020;
Wang et al., 2020; Bui et al., 2024). However, in our case, there are key differences that prevent us
from employing such local values to derive local policies. Specifically, we factorize the Lagrange
multipliers νtot to train the stationary distribution ratiowtot. Although localw values can be extracted
from local νi, these local w values do not represent a local stationary distribution ratio and therefore
cannot be used to recover local policies.

6
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5 PRACTICAL ALGORITHM

Let D represent the offline dataset, consisting of sequences of local observations and actions gathered
from a global behavior policy πππtot. To train the value function ννν, we construct a value network
νi(si;ψν) for each local agent i, along with a network for each local Q-function qi(si, ai;ψq), where
ψν and ψq are learnable parameters for the local value and Q-functions. We note that the introduction
and learning of the Q-functions are intended to facilitate the decomposition of the advantage function,
Atotν . In our multi-agent setting, the absence of local rewards makes it difficult to directly compute
local advantage functions. To overcome this challenge, we learn local Q-functions, which are then
used to derive the local advantage functions. Additionally, as explained below, a MSE is optimized to
ensure that the global Q-function and state-value function align properly with the global rewards.

Now, each local advantage function is then calculated as follows: The global value function and
advantage function are subsequently aggregated using two mixing networks with a shared set of
learnable parameters θ:

νtot(s) = Ms
θ[ννν(s;ψν)], Atotν (s, a) = Ms

θ[q(s, a;ψq)− ννν(s;ψν)],
where Ms

θ[·] represents a linear combination of its inputs with non-negative weights, such that
Ms

θ[ννν(s;ψν)] = ννν(s;ψν)⊤W s
θ + bs

θ, where W s
θ and bs

θ are weights of the mixing network.1 It is
important to note that W s

θ and bs
θ are generated by hyper-networks that take the global state s and

the learnable parameters θ as inputs. In this context, we employ the same mixing network Ms
θ to

combine the local values and advantages. However, our framework is flexible enough to allow the
use of two different mixing networks for νtot and Atotν .

In our setting, the relationship between the global Q-function, value, and advantage functions is
described in Eq. 5. Specifically, we have: Atotν (s, a) = r(Z(s), a)+γEs′∼P (·|s,a)[ν

tot(s′)]− νtot(s).
To capture this relationship, we train the Q-function by optimizing the following MSE loss:

minq
∑

(s,a,s′)∼D

(
Atotν (s, a)− r(Z(s), a) + γνtot(s′)− νtot(s)

)2
.

This is equivalent to:

minψq
Lq(ψq) =

∑
(s,a,s′)∼D

(
Ms

θ[q(s, a;ψq)− ννν(s;ψν)]

− r(Z(s), a) + γMs′
θ [ννν(s

′;ψν)]−Ms
θ[ννν(s;ψν)]

)2
. (10)

For the primary loss function used to train the value function, we leverage transitions from the offline
dataset to approximate the objective L̃, resulting in the following loss function for offline training:

L̃(ψν , θ) = (1−γ)Es0∼D[Ms0
θ [ννν(s0;ψν)]]+E(s,a)∼D

[
αf∗
(
Ms

θ[q(s, a;ψq)− ννν(s;ψν)]
α

)]
. (11)

As mentioned, after obtaining (ννν∗, θ∗) by solving minψν ,θ L̃(ψν , θ), we compute the occupancy ratio:

wtot∗ν (s, a) = max
{
0, f ′

−1
(

Ms
θ∗ [ννν

∗(s)]−Ms
θ∗ [q(s,a;ψq)]

α

)}
. To train the local policy πi(ai|si), we

represent it using a policy network πi(ai|si; ηi), where ηi are the learnable parameters. The training
process involves optimizing the following weighted behavioral cloning (BC) objective:

maxηi Lπ(ηi) =
∑

(s,a)∼D
wtot∗ν (s, a) log(πi(ai|si; ηi)). (12)

Our ComaDICE algorithm consists of two primary steps. The first step involves estimating the
occupancy ratio wtot∗ from the offline dataset. The second step focuses on training the local policy
by solving the weighted BC problem using wtot∗. In the first step, we simultaneously update the
Q-functions ψq , the mixing network parameters θ, and the value function ψν , aiming to minimize the
mean squared error (MSE) in Eq. 10 while optimizing the main loss function in Eq. 11.

It is important to note that, in practical POMDP scenarios, the global state s is not directly accessible
during training and is instead represented by the joint observations o from the agents. For notational
convenience, we use the global state s in our formulation; however, in practice, it corresponds to the
joint observation Z(s). Specifically, terms like ρµµµtot(s, a) and νtot(s) actually refer to ρµµµtot(o, a)
and νtot(o), where o = Z(s).

1In our experiments, we use a single-layer mixing network due to its superior performance compared to a
two-layer structure, though our approach is general and can handle any multi-layer feed-forward mixing network.
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6 EXPERIMENTS

6.1 ENVIRONMENTS

We utilize three standard MARL environments: SMACv1 (Samvelyan et al., 2019), SMACv2 (Ellis
et al., 2022), and Multi-Agent MuJoCo (MaMujoco) (de Witt et al., 2020), each offering unique
challenges and configurations for evaluating cooperative MARL algorithms.

SMACv1. SMACv1 is based on Blizzard’s StarCraft II. It uses the StarCraft II API and DeepMind’s
PySC2 to enable agent interactions with the game. SMACv1 focuses on decentralized micromanage-
ment scenarios where each unit is controlled by an RL agent. Tasks like 2c vs 64zg and 5m vs 6m
are labeled hard, while 6h vs 8z and corridor are super hard. The offline dataset, provided by Meng
et al. (2023), was generated using MAPPO-trained agents (Yu et al., 2022).

SMACv2. In comparison to SMACv1, SMACv2 introduces increased randomness and diversity by
randomizing start positions, unit types, and modifying sight and attack ranges. This version includes
tasks such as protoss, terran, and zerg, with instances ranging from 5 vs 5 to 20 vs 23, increasing in
difficulty. Our offline dataset for SMACv2 was generated by running MAPPO for 10 million training
steps and collecting 1,000 trajectories, ensuring medium quality but comprehensive coverage of the
learning process. To the best of our knowledge, we are the first to explore SMACv2 in offline MARL,
whereas most prior work has used this environment in online settings.

MaMujoco. MaMujoco serves as a benchmark for continuous cooperative multi-agent robotic
control. Derived from the single-agent MuJoCo control suite in OpenAI Gym (Brockman et al.,
2016), it presents scenarios where multiple agents within a single robot must collaborate to achieve
tasks. The tasks include Hopper-v2, Ant-v2, and HalfCheetah-v2, with instances labeled as expert,
medium, medium-replay, and medium-expert. The offline dataset was created by (Wang et al., 2022b)
using the HAPPO method (Wang et al., 2022a).

6.2 BASELINES

We consider the following baselines, which represent either standard or state-of-the-art (SOTA)
methods for offline MARL: (i) BC (Behavioral Cloning); (ii) BCQ (Batch-Constrained Q-learning)
(Fujimoto et al., 2019) – an offline RL algorithm that constrains the policy to actions similar to
those in the dataset to reduce distributional shift, adapted for offline MARL settings; (iii) CQL
(Conservative Q-Learning) (Kumar et al., 2020) – a method that stabilizes offline Q-learning by
penalizing out-of-distribution actions, ensuring conservative value estimates; (iv) ICQ (Implicit
Constraint Q-learning) (Yang et al., 2021) – an approach using importance sampling to manage out-
of-distribution actions in multi-agent settings; (v) OMAR (Offline MARL with Actor Rectification)
(Pan et al., 2022) – a method combining CQL with optimization techniques to ensure the global
validity of local regularizations, promoting cooperative behavior; (vi) OMIGA (Offline MARL with
Implicit Global-to-Local Value Regularization) (Wang et al., 2022b) – a SOTA method that transforms
global regularizations into implicit local ones, optimizing local policies with global insights; (vii)
OptDICE - a naive extension of the OptDICE algorithm Lee et al. (2021) to multi-agent settings
where the global value function are directly learned without value factorization; and (viii) AlberDICE
Matsunaga et al. (2023) - an offline MARL algorithm which also leverages the DICE framework to
address the OOD.

We used experimental results contributed by the authors of OMIGA (Wang et al., 2022b) as our
baselines. They provided both the results and source code for all the baseline methods. This source
code was also employed to run these baselines for the SMACv2 environment. All hyperparameters
were kept at their default settings, and each experiment was conducted with five different random
seeds to ensure robustness and reproducibility of the results.

6.3 MAIN COMPARISON

We now present a comprehensive evaluation of our proposed algorithm, ComaDICE, against several
baseline methods in offline MARL. The baselines selected for comparison include both standard and
SOTA approaches, providing a robust benchmark to assess the effectiveness of ComaDICE.
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Instances BC BCQ CQL ICQ OMAR OMIGA OptDICE AlberDICE ComaDICE
(ours)

2c vs 64zg
poor 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.6 ± 1.3

medium 1.9 ± 1.5 2.5 ± 3.6 2.5 ± 3.6 1.9 ± 1.5 1.2 ± 1.5 6.2 ± 5.6 1.0 ± 1.5 1.6 ± 1.6 8.8 ± 7.0
good 31.2 ± 9.9 35.6 ± 8.8 44.4 ± 13.0 28.7 ± 4.6 28.7 ± 9.1 40.6 ± 9.5 37.5 ± 3.1 42.2 ± 6.4 55.0 ± 1.5

5m vs 6m
poor 2.5 ± 1.3 1.2 ± 1.5 1.2 ± 1.5 1.2 ± 1.5 0.6 ± 1.2 6.9 ± 1.2 0.0 ± 0.0 0.0 ± 0.0 4.4 ± 4.2

medium 1.9 ± 1.5 1.2 ± 1.5 2.5 ± 1.2 1.2 ± 1.5 0.6 ± 1.2 2.5 ± 3.1 0.0 ± 0.0 3.1 ± 0.0 7.5 ± 2.5
good 2.5 ± 2.3 1.9 ± 2.5 1.9 ± 1.5 3.8 ± 2.3 3.8 ± 1.2 6.9 ± 1.2 7.3 ± 3.9 3.9 ± 1.4 8.1 ± 3.2

6h vs 8z
poor 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.0 ± 1.5 1.9 ± 3.8

medium 1.9 ± 1.5 1.9 ± 1.5 1.9 ± 1.5 2.5 ± 1.2 1.9 ± 1.5 1.2 ± 1.5 0.0 ± 0.0 2.3 ± 2.6 3.1 ± 2.0
good 8.8 ± 1.2 8.8 ± 3.6 7.5 ± 1.5 9.4 ± 2.0 0.6 ± 1.3 5.6 ± 3.6 0.0 ± 0.0 0.0 ± 0.0 11.2 ± 5.4

corridor
poor 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.6 ± 1.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.6 ± 1.3

medium 15.0 ± 2.3 23.1 ± 1.5 14.4 ± 1.5 22.5 ± 3.1 11.9 ± 2.3 23.8 ± 5.1 19.8 ± 2.9 9.4 ± 6.8 27.3 ± 3.4
good 30.6 ± 4.1 42.5 ± 6.4 5.6 ± 1.2 42.5 ± 6.4 3.1 ± 0.0 41.9 ± 6.4 39.6 ± 5.3 43.1 ± 6.4 48.8 ± 2.5

Table 1: Comparison of average winrates for ComaDICE and baselines on SMACv1 tasks.

Instances BC BCQ CQL ICQ OMAR OMIGA OptDICE AlberDICE ComaDICE
(ours)

Protoss

5 vs 5 36.9±8.7 16.2±2.3 10.0±4.1 36.9±9.1 21.2±4.1 33.1±5.4 10.8±1.2 12.6±0.9 46.2±6.1
10 vs 10 36.2±10.6 9.4±5.6 26.2±7.6 28.1±6.6 13.8±7.0 40.0±10.7 9.5±0.8 11.8±0.9 50.6±8.7
10 vs 11 19.4±4.6 10.0±4.1 10.6±5.4 12.5±4.4 12.5±3.4 16.2±6.1 10.0±0.5 9.8±0.3 20.0±4.2
20 vs 20 37.5±4.4 6.2±2.0 11.9±4.1 32.5±8.1 23.8±2.5 36.2±5.1 10.0±2.0 10.1±0.6 47.5±7.8
20 vs 23 13.8±1.5 1.2±1.5 0.0±0.0 12.5±5.6 11.2±7.8 12.5±8.1 8.1±1.4 8.8±0.8 13.8±5.8

Terran

5 vs 5 30.0±4.2 12.5±6.2 9.4±7.9 23.1±5.8 14.4±4.7 28.1±4.4 6.4±1.1 8.1±1.4 30.6±8.2
10 vs 10 29.4±5.8 6.9±6.1 9.4±5.6 16.9±5.8 15.0±4.6 29.4±3.2 6.0±1.6 8.2±1.0 32.5±5.8
10 vs 11 16.2±3.6 3.8±4.6 7.5±6.4 5.0±4.2 9.4±5.6 12.5±5.2 4.8±1.2 6.2±0.9 19.4±5.4
20 vs 20 26.2±10.4 5.0±3.2 10.6±4.2 15.6±3.4 7.5±7.3 21.9±4.4 6.3±1.8 5.9±1.2 29.4±3.8
20 vs 23 4.4±4.2 0.0±0.0 0.0±0.0 7.5±6.1 5.0±4.2 4.4±2.5 4.4±0.7 3.9±0.8 9.4±5.2

Zerg

5 vs 5 26.9±10.0 14.4±4.2 14.4±5.8 18.8±7.1 13.8±6.1 21.9±5.9 8.2±1.8 9.5±0.8 31.2±7.7
10 vs 10 25.0±2.8 5.6±4.6 5.6±4.6 15.6±7.4 19.4±2.3 23.8±6.4 7.8±1.0 8.5±0.3 33.8±11.8
10 vs 11 13.8±4.7 9.4±5.2 6.2±4.4 10.6±6.7 10.6±3.8 13.8±6.7 7.2±0.7 9.1±0.5 19.4±3.6
20 vs 20 8.1±1.5 2.5±1.2 1.2±1.5 10.0±7.8 12.5±4.4 10.0±2.3 7.3±0.7 8.3±0.5 9.4±6.2
20 vs 23 7.5±3.2 0.6±1.3 1.2±1.5 7.5±3.2 3.8±2.3 4.4±4.2 7.1±1.2 8.8±0.5 11.2±4.2

Table 2: Comparison of win rates for ComaDICE and baselines across SMACv2 tasks.

Instances BCQ CQL ICQ OMIGA OptDICE AlberDICE ComaDICE
(ours)

Hopper

expert 77.9 ± 58.0 159.1 ± 313.8 754.7 ± 806.3 859.6 ± 709.5 655.9 ± 120.1 844.6 ± 556.5 2827.7 ± 62.9
medium 44.6 ± 20.6 401.3 ± 199.9 501.8 ± 14.0 1189.3 ± 544.3 204.1 ± 41.9 216.9 ± 35.3 822.6 ± 66.2
m-replay 26.5 ± 24.0 31.4 ± 15.2 195.4 ± 103.6 774.2 ± 494.3 257.8 ± 55.3 419.2 ± 243.5 906.3 ± 242.1
m-expert 54.3 ± 23.7 64.8 ± 123.3 355.4 ± 373.9 709.0 ± 595.7 400.9 ± 132.5 515.1 ± 303.4 1362.4 ± 522.9

Ant

expert 1317.7 ± 286.3 1042.4 ± 2021.6 2050.0 ± 11.9 2055.5 ± 1.6 1717.2 ± 27.0 1896.8 ± 33.7 2056.9 ± 5.9
medium 1059.6 ± 91.2 533.9 ± 1766.4 1412.4 ± 10.9 1418.4 ± 5.4 1199.0 ± 26.8 1304.3 ± 2.6 1425.0 ± 2.9
m-replay 950.8 ± 48.8 234.6 ± 1618.3 1016.7 ± 53.5 1105.1 ± 88.9 869.4 ± 62.6 1042.8 ± 80.8 1122.9 ± 61.0
m-expert 1020.9 ± 242.7 800.2 ± 1621.5 1590.2 ± 85.6 1720.3 ± 110.6 1293.2 ± 183.1 1780.0 ± 23.6 1813.9 ± 68.4

Half
Cheetah

expert 2992.7 ± 629.7 1189.5 ± 1034.5 2955.9 ± 459.2 3383.6 ± 552.7 2601.6 ± 461.9 3356.4 ± 546.9 4082.9 ± 45.7
medium 2590.5 ± 1110.4 1011.3 ± 1016.9 2549.3 ± 96.3 3608.1 ± 237.4 305.3 ± 946.8 522.4 ± 315.5 2664.7 ± 54.2
m-replay -333.6 ± 152.1 1998.7 ± 693.9 1922.4 ± 612.9 2504.7 ± 83.5 -912.9 ± 1363.9 440.0 ± 528.0 2855.0 ± 242.2
m-expert 3543.7 ± 780.9 1194.2 ± 1081.0 2834.0 ± 420.3 2948.5 ± 518.9 -2485.8 ± 2338.4 2288.2 ± 759.5 3889.7 ± 81.6

Table 3: Average returns for ComaDICE and baselines on MaMuJoCo benchmarks.

Our evaluation focuses on two primary metrics: returns and winrates. Returns are the average
rewards accumulated by the agents across multiple trials, providing a measure of policy effectiveness.
Winrates, applicable in competitive environments such as SMACv1 and SMACv2, indicate the
success rate of agents against opponents, reflecting the algorithm’s robustness in adversarial settings.

The experimental results, summarized in Tables 1-3, demonstrate that ComaDICE consistently
achieves superior performance compared to baseline methods across a range of scenarios. Notably,
ComaDICE excels in complex tasks, highlighting its ability to effectively manage distributional shifts
in challenging environments.

6.4 ABLATION STUDY - IMPACT OF THE REGULARIZATION PARAMETER ALPHA

We investigate how varying the regularization parameter alpha (α) affects the performance of our
ComaDICE algorithm. The parameter α is crucial for balancing the trade-off between maximizing
rewards and penalizing deviations from the offline dataset’s distribution. We conducted experiments
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Figure 1: Impact of regularization parameter α on performance in different environments.

with α values ranging from {0.01, 0.1, 1, 10, 100}, evaluating performance using average winrates
across all the SMACv2 tasks and average returns across all the MaMujoco tasks. These results,
illustrated in Figure 1, highlight the sensitivity of ComaDICE to different α values. In particular, we
observe that ComaDICE achieves optimal performance when α is around 10, suggesting that the
stationary distribution regularizer plays a essential role in the success of our algorithm.

In our appendix, we provide additional ablation studies to analyze the performance of our algorithm
using different forms of f-divergence functions, as well as comparisons between 1-layer and 2-layer
mixing network structures. The appendix also includes proofs of the theoretical claims made in the
main paper, details of our experimental settings, and other experimental information.

7 CONCLUSION, FUTURE WORK AND BROADER IMPACTS

Conclusion. In this paper, we propose ComaDICE, a principled framework for offline MARL. Our
algorithm incorporates a stationary distribution shift regularizer into the standard MARL objective to
address the conventional distribution shift issue in offline RL. To facilitate training within a CTDE
framework, we decompose both the global value and advantage functions using a mixing network.
We demonstrate that, under our mixing architecture, the main objective function is concave in the
value function, which is crucial for ensuring stable and efficient training. The results of this training
are then utilized to derive local policies through a weighted BC approach, ensuring consistency
between global and local policy optimization. Extensive experiments on SOTA benchmark tasks,
including SMACv2, show that ComaDICE outperforms other baseline methods.

Limitations and Future Work: There are some limitations that are not addressed within the scope of
this paper. For instance, we focus solely on cooperative learning, leaving open the question of how the
approach would perform in cooperative-competitive settings. Extending ComaDICE to such scenarios
would require considerable effort and is an interesting direction for future research. Additionally,
in our training objective, the DICE term is designed to reduce the divergence between the learning
policy and the behavior policy. As a result, the performance of the algorithm is heavily dependent
on the quality of the behavior policy. Although this reliance may be unavoidable, future research
should focus on mitigating the influence of the behavior policy on training outcomes. Furthermore,
our algorithm, like other baselines, still requires a large amount of data to achieve desirable learning
outcomes. Improving sample efficiency would be another valuable area for future research.

Broader Impacts: The development of an offline MARL algorithm using a stationary distribution
shift regularizer could lead to improved performance in tasks where real-time interaction is costly, such
as robotics, autonomous driving, and healthcare. It could also promote safer exploration and wider
adoption of offline learning in high-stakes environments. On the negative side, since the algorithm
relies heavily on the behavior policy, if the behavior policy is flawed or biased, the performance of the
learnt policy could also suffer. This could reinforce preexisting biases or suboptimal behaviors in real-
world applications. Moreover, like any AI technology, there is a risk of the algorithm being applied
in unintended or harmful ways, such as in surveillance or military applications, where multi-agent
systems could be used to manipulate environments or people without adequate oversight.

ETHICAL STATEMENT

Our work introduces ComaDICE, a framework for offline MARL, aimed at improving training
stability and policy optimization in complex multi-agent environments. While this research has
significant potential for positive applications, particularly in domains such as autonomous systems,
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resource management, and multi-agent simulations, it is crucial to address the ethical implications
and risks associated with this technology.

The deployment of reinforcement learning systems in real-world, multi-agent settings raises con-
cerns about unintended behaviors, especially in safety-critical domains. If the policies learned by
ComaDICE are applied without proper testing and validation, they may lead to undesirable or harmful
outcomes, especially in areas such as autonomous driving, healthcare, or robotics. Additionally,
bias in the training data or simulation environments could result in suboptimal policies that unfairly
impact certain agents or populations, potentially leading to ethical concerns regarding fairness and
transparency.

To mitigate these risks, we emphasize the need for extensive testing and validation of policies
generated using ComaDICE, particularly in real-world environments where the consequences of
errors could be severe. It is also essential to ensure that the datasets and simulations used in training
are representative, unbiased, and carefully curated. We encourage practitioners to use human oversight
and collaborate with domain experts to ensure that ComaDICE is applied responsibly, particularly in
high-stakes settings.

REPRODUCIBILITY STATEMENT

In order to facilitate reproducibility, we have submitted the source code for ComaDICE, along with
the datasets utilized to produce the experimental results presented in this paper (all these will be made
publicly available if the paper gets accepted). Additionally, in the appendix, we provide details of
our algorithm, including key implementation steps and details needed to replicate the results. The
hyper-parameter settings for all experiments are also included to ensure that others can reproduce the
findings under the same experimental conditions. We invite the research community to explore and
apply the ComaDICE framework in various environments to further validate and expand upon the
results reported in this work.
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APPENDIX
Our appendix includes the following:

• Proofs of the theoretical claims presented in the main paper.
• Details of our experimental settings.
• Detailed numerical results from the ablation study investigating the impact of α on Co-

maDICE’s performance.
• An ablation study assessing ComaDICE’s performance with different forms of f-divergence

functions.
• An ablation study comparing ComaDICE’s performance using 1-layer versus 2-layer mixing

networks.
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A MISSING PROOFS

A.1 PROOF OF PROPOSITION 4.1

Proposition. The minimax problem in 6 is equivalent to minνtot

{
L̃(νtot)

}
, where

L̃(νtot) = (1− γ)Es∼p0 [ν
tot(s)] + E(s,a)∼ρµµµtot

[
αf∗

(
Atotν (s, a)

α

)]
.

where f∗ is convex conjugate of f , i.e., f∗(y) = supt≥0{ty − f(t)}. Moreover, if νtot is parameter-
ized by θ, the first order derivative of L̃(νtot) w.r.t. θ is given as

∇θL̃(νtot) = (1− γ)Es∼p0 [∇θν
tot(s)] + E(s,a)∼ρµµµtot

[
∇θA

tot
ν (s, a)wtot∗ν (s, a)

]
.

where wtot∗ν (s, a) = max{0, f ′−1
(Atotν (s, a)/α)}, where f ′−1(·) is the inverse function of the first-

order derivative of f .

Proof. The first part of the proof, concerning the closed-form formulation for L̃(νtot), follows
directly from the single-agent OptDICE paper (Lee et al., 2021). While straightforward, we include it
here for the sake of completeness. Our novelty begins with the derivation of the formulation for the
first-order derivative of the loss function, ∇θL̃(νtot).
We write the Lagrange dual function as:

L(νtot,ρπππtot) = E(s,a)∼ρπππtot [r(s, a)]− αE(s,a)∼ρµµµtot

[
f

(
ρπππtot(s, a)
ρµµµtot(s, a)

)]

−
∑

s

νtot(s)

∑
a′
ρπππtot(s, a′)− (1− γ)p0(s)− γ

∑
a′,s′

ρπππtot(s′, a′)P (s|a′, s′)


=
∑

s

νtot(s)(1− γ)p0(s)− αE(s,a)∼ρµµµtot

[
f

(
ρπππtot(s, a)
ρµµµtot(s, a)

)]
+
∑
s,a

ρµµµtot(s, a)
(
r(s, a) + γEs′∼P (·|s,a)ν

tot(s′)− νtot(s)
)

= (1− γ)Es∼p0 [ν
tot(s)] + E(s,a)∼ρµµµtot

[
−αf

(
wtotν (s, a)

)
+ wtotν (s, a)Atotν (s, a)

]
, (13)

where wtotν (s, a) = ρπππtot (s,a)
ρµµµtot (s,a) . We now see that, for each (s, a), each component −αf (wtotν (s, a)) +

wtotν (s, a)Atotν (s, a) is maximized at:

max
wtot≥0

−αf
(
wtotν (s, a)

)
+ wtotν (s, a)Atotν (s, a) = f∗

(
Atotν (s, a)

α

)
,

where f∗ is the (variant) convex conjugate of the convex function f . We then obtain:

max
wtot≥0

L(νtot, wtot) = L̃(νtot) = (1− γ)Es∼p0 [ν
tot(s)] + E(s,a)∼ρµµµtot

[
αf∗

(
Atotν (s, a)

α

)]
.

Moreover, consider the maximization problem maxwtot≥0 T (w
tot(s, a)) = −αf (wtotν (s, a)) +

wtotν (s, a)Atotν (s, a). Taking its first-order derivative w.r.t wtot(s, a) yields:

−αf ′(wtot(s, a)) +Atotν (s, a).

So, if f ′−1
(
Atot

ν (s,a)
α

)
≥ 0, then wtot∗(s, a) = f ′−1

(
Atot

ν (s,a)
α

)
≥ 0 is optimal for the maxi-

mization problem. Otherwise, if f ′−1
(
Atot

ν (s,a)
α

)
< 0, we see that T (wtot(s, a)) is increasing

when wtot(s, a) ≤ f ′−1
(
Atot

ν (s,a)
α

)
and decreasing when wtot(s, a) ≥ f ′−1

(
Atot

ν (s,a)
α

)
, imply-

ing that the maximization problem has an optimal solution at wtot∗(s, a) = 0. So, putting all
together, wtot∗ν (s, a) = max{0, f ′−1

(Atotν (s, a)/α)} is optimal for the maximization problem
maxwtot≥0 T (w

tot(s, a)).
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To get derivatives of L̃(νtot), we note that, for any y ∈ R, ∇f∗(y) = t∗, where y∗ = argmaxt≥0(ty−
f(t)). Thus, the first-order derivative of f∗

(
Atot

ν (s,a)
α

)
can be computed as:

∇θf
∗
(
Atotν (s, a)

α

)
=

∇θA
tot
ν (s, a)
α

wtot
∗
(s, a),

which implies:

∇θL̃(νtot) = (1− γ)Es∼p0 [∇θν
tot(s)] + E(s,a)∼ρµµµtot

[
∇θA

tot
ν (s, a)wtot∗ν (s, a)

]
,

we complete the proof.

A.2 PROOF OF THEOREM 4.2

Theorem. Assume the mixing network Mθ[·] is constructed with non-negative weights and convex
activations, then L̃(ννν, θ) is convex in ννν.

Proof. We first introduce the following lemma, which is essential to validate the convexity of L̃(ννν, θ).
Lemma A.1. If the mixing network are multi-level feed-forward, constructed with non-negative
weights and convex activations, then Mθ[ννν(s)] and Mθ[q(s, a)− ννν(s)] are convex in ννν

Proof. To simplify the proof, we first prove a general result stating that if Mθ[X] is a multi-level
feed-forward network with non-negative weights and convex activations, then Mθ[X] is convex in X.
To start, we note that any N -layer feed-forward network with input X can be defined recursively as

F 0(X) = X (14)

Fn(X) = σn
(
Fn−1(X)

)
×Wn + bn, n = 1, . . . , N, (15)

where σn is a set of activation functions applied to each element of vector Fn−1(X), and Wn and bn
are the weights and biases, respectively, at layer n. Therefore, we will prove the result by induction,
i.e., Fn(X) is convex and non-decreasing in X for n = 0, . . .. Here we note that Fn(X) is a vector,
so when we say “Fn(X) is convex and non-decreasing in X,” it means each element of Fn(X) is
convex and non-decreasing in X.

We first see that the claim indeed holds for n = 0. Now let us assume that Fn−1(X) is convex
and non-decreasing in X; we will prove that Fn(X) is also convex and non-decreasing in X. The
non-decreasing property can be easily verified as we can see, given two vectors X and X′ such that
X ≥ X′ (element-wise comparison), we have the following chain of inequalities:

Fn−1(X)
(a)

≥ Fn−1(X′)

σn(Fn−1(X))
(b)

≥ σn(Fn−1(X′))

σn(Fn−1(X))×Wn + bn
(c)

≥ σn(Fn−1(X′))×Wn + bn,

where (a) is due to the induction assumption that Fn−1(X) is non-decreasing in X, (b) is because σn
is also non-decreasing, and (c) is because the weights Wn are non-negative.

To verify the convexity of Fn(X), we will show that for any X,X′, and any scalar α ∈ (0, 1), the
following holds:

αFn(X) + (1− α)Fn(X) ≥ Fn(αX + (1− α)X′) (16)
To this end, we write:

αFn(X) + (1− α)Fn(X′) =
(
ασn(Fn−1(X)) + (1− α)σn(Fn−1(X′))

)
×Wn + bn

(d)

≥
(
σn
(
αFn−1(X) + (1− α)Fn−1(X′)

))
×Wn + bn

(e)

≥
(
σn
(
Fn−1(αX + (1− α)X′)

))
×Wn + bn

= Fn(αX + (1− α)X′).
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where (d) is due to the assumption that activation functions σn are convex and Wn ≥ 0, and (e) is
because αFn−1(X) + (1− α)Fn−1(X′) ≥ Fn−1(αX + (1− α)X′) (because Fn−1(X) is convex
in X, by the induction assumption), and the activation functions σn are non-decreasing and Wn ≥ 0.
So, we have:

αFn(X) + (1− α)Fn(X′) ≥ Fn(αX + (1− α)X′).

implying that Fn(X) is convex in X. We then complete the induction proof and conclude that Fn(X)
is convex and non-decreasing in X for any n = 0, . . . , N .

From the result above, since both ννν(s) and q(s, a) − ννν(s) are linear in ννν, it follows that Mθ[ννν(s)]
and Mθ[q(s, a)− ννν(s)] are convex with respect to ννν.

We are now ready to prove the convexity of L̃(ννν, θ) with respect to ννν. Directly verifying the
convexity of this function is challenging, as it involves some complicated components such as
f∗
(

Mθ[q(s,a)−ννν(s)]
α

)
, which is difficult to analyze. However, we recall that:

L̃(ννν, θ) = max
wtot≥0

L(ννν, θ, wtot),

where

L(ννν, θ, wtot) = (1− γ)Es∼p0 [Mθ[ννν(s)]]
+ E(s,a)∼ρµµµtot

[
−αf

(
wtotν (s, a)

)
+ wtotν (s, a)Mθ[q(s, a)− ννν(s)]

]
.

From Lemma A.1, we know that Mθ[ννν(s)] and Mθ[q(s, a)−ννν(s)] are convex in ννν, thus L(ννν, θ, wtot)
is also convex in ννν. We now follow the standard approach to verify the convexity of L̃(ννν, θ) as
follows. Let ννν1 and ννν2 be two feasible value functions. Given any β ∈ (0, 1), we will prove that:

βL̃(ννν1, θ) + (1− β)L̃(ννν2, θ) ≥ L̃(βννν1 + (1− β)ννν2, θ). (17)

To see why this should hold, we recall that L(ννν, θ, wtot) is convex in ννν and L̃(ννν, θ) =
maxwtot≥0 L(ννν, θ, wtot), leading to the following chain of inequalities:

βL̃(ννν1, θ) + (1− β)L̃(ννν2, θ) = βmax
wtot

L(ννν1, θ, wtot) + (1− β)max
wtot

L(ννν2, θ, wtot)

≥ max
wtot

{
βL(ννν1, θ, wtot) + (1− β)L(ννν2, θ, wtot)

}
≥ max

wtot

{
L(βννν1 + (1− β)ννν2, θ, wtot)

}
= L̃(βννν1 + (1− β)ννν2, θ).

The last inequality directly confirms Eq. 17, implying the convexity of L̃(ννν, θ) in ννν, as desired.

A.3 PROOF OF PROPOSITION 4.3

Proposition. Let π∗
i be the optimal solution to the local weighted BC 9. Then π∗

tot(a|s) =∏
i∈N π∗

i (ai|si) is also optimal for the global weighted BC problem 8.

Proof. To prove that π∗
tot(a|s) =

∏
i∈N π∗

i (ai|si) is optimal for the global WBC problem 8, we
need to verify that

E(s,a)∼ρµµµtot

[
wtot∗(s, a) logπππtot(a|s)

]
≤ E(s,a)∼ρµµµtot

[
wtot∗(s, a) logπππ∗

tot(a|s)
]

for any global policy πππtot ∈ Πtot.

Since πππtot is decomposable, there exist local policies πi such that

πππtot(a|s) =
∏
i∈N

πi(ai|si).

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

As a result, we have the following inequalities:

E(s,a)∼ρµµµtot

[
wtot∗(s, a) logπππtot(a|s)

]
= E(s,a)∼ρµµµtot

[
wtot∗(s, a)

∑
i∈N

log πi(ai|si)

]
=
∑
i∈N

E(s,a)∼ρµµµtot

[
wtot∗(s, a) log πi(ai|si)

]
≤
∑
i∈N

max
π′
i

E(s,a)∼ρµµµtot

[
wtot∗(s, a) log π′

i(ai|si)
]

=
∑
i∈N

E(s,a)∼ρµµµtot

[
wtot∗(s, a) log π∗

i (ai|si)
]

= E(s,a)∼ρµµµtot

[
wtot∗(s, a) logπππ∗

tot(a|s)
]
,

which directly implies that πππ∗
tot is optimal for the global WBC problem 8.
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B ADDITIONAL DETAILS

B.1 FACTORIZATION ASPECT OF THE LEARNING OBJECTIVE IN COMADICE

In this section, we delve into the main learning objective function of ComaDICE to explore its
factorization aspect. Specifically, we show that, under certain conditions on the mixing network
and the f-divergence function, optimizing the objective function L̃ is approximately equivalent to
optimizing factorized occupancy ratios.

To see this, let us consider the main learning objective with mixing networks:

L̃(ννν, θ) = (1− γ)Es∼p0 [Mθ[ννν(s)]] + E(s,a)∼ρµµµtot

[
αf∗

(
Mθ[q(s, a)− ννν(s)]

α

)]
,

where Mθ is the mixing network.

Assume that the mixing structure is linear in its inputs, i.e.,

Mθ(ννν(s)) =
∑
i

βiνi(si), Mθ[q(s, a)− ννν(s)] =
∑
i

βi(qi(si, ai)− νi(si)),

where βi are non-negative weights of the mixing network. Moreover, assume that the f-divergence
function is chi-square. Under these assumptions, the learning objective can be written as:

L̃(ννν, θ) =
∑
i

βi(1− γ)Esi∼pi0 [νi(si)] +
∑
i

E(si,ai)∼ρµµµtot

[
αf∗

(∑
i

βi
qi(si, ai)− νi(si)

α

)]
,

(a)
≈
∑
i

βiLi(νi),

where

Li(νi) = βi(1− γ)Esi∼pi0 [νi(si)] + E(si,ai)∼ρµµµtot

[
αf∗

(
qi(si, ai)− νi(si)

α

)]
.

Here, the approximation holds because the mixing network is linear in νi, and the f-divergence is
chi-square, where (f ′χ2)−1(x) = x+ 1.

We now see that minimizing the local function Li(νi) is equivalent to:

maxπi E(si,ai)∼ρπi [ri(si, ai)]− αDf (ρπi ∥ ρµi) ,

which is essentially solving the OptDICE learning problem for each individual agent.

Thus, the above discussion implies that optimizing the main objective function L̃ of ComaDICE,
under the setting of a linear mixing network and chi-square divergence, is approximately equivalent to
optimizing factorized policies. This further implies the global-local consistency property mentioned
in the main paper. It is also worth noting that the setting of a linear mixing network and chi-square
divergence is exactly what we employ in our experiments, yielding the best performance compared to
the variants.

When using a two-layer mixing network, the equivalence becomes harder to achieve. However, since
the mixing network in our setting consists of non-negative weights, minimizing the global training
objective L̃ is expected to behave similarly to minimizing each local function L̃i, partially indicating
the global-local consistency and the factorization aspect of ComaDICE.

In comparison with other DICE-based approaches such as AlberDICE and OptDICE, ComaDICE
takes a distinctive approach by learning a global occupancy ratio and employing a factorization
method to decompose the global learning variables into local ones, leveraging local information. This
design captures the contribution of each local agent to the global objective, enabling ComaDICE to
effectively model the interconnections between agents. Furthermore, during the policy extraction
phase, local policies are optimized using a shared global occupancy ratio, which incorporates aspects
of credit assignment across agents—an important feature not present in AlberDICE.
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B.2 OFFLINE MULTI-AGENT DATASETS

Instances Trajectories Samples Agents State Obs Action Average
dim dim dim returns

2c vs 64zg
poor 0.3K 21.7K 2 675 478 70 8.9±1.0

medium 1.0K 75.9K 2 675 478 70 13.0±1.4
good 1.0K 118.4K 2 675 478 70 19.9±1.3

5m vs 6m
poor 1.0K 113.7K 5 156 124 12 8.5±1.2

medium 1.0K 138.6K 5 156 124 12 11.0±0.6
good 1.0K 138.7K 5 156 124 12 20.0±0.0

6h vs 8z
poor 1.0K 145.5K 6 213 172 14 9.1±0.8

medium 1.0K 177.1K 6 213 172 14 12.0±1.3
good 1.0K 228.2K 6 213 172 14 17.8±2.1

corridor
poor 1.0K 307.6K 6 435 346 30 4.9±1.7

medium 1.0K 756.1K 6 435 346 30 13.1±1.3
good 1.0K 601.0K 6 435 346 30 19.9±1.0

Protoss

5 vs 5 1.0K 60.8K 5 130 92 11 16.8±6.3
10 vs 10 1.0K 68.3K 10 310 182 16 15.7±5.2
10 vs 11 1.0K 62.9K 10 327 191 17 15.3±5.7
20 vs 20 1.0K 76.7K 20 820 362 26 16.2±4.7
20 vs 23 1.0K 65.0K 20 901 389 29 14.0±4.5

Terran

5 vs 5 1.0K 47.6K 5 120 82 11 15.2±7.2
10 vs 10 1.0K 56.4K 10 290 162 16 14.7±6.2
10 vs 11 1.0K 52.5K 10 306 170 17 12.1±5.7
20 vs 20 1.0K 63.0K 20 780 322 26 14.0±6.0
20 vs 23 1.0K 51.3K 20 858 346 29 11.7±5.7

Zerg

5 vs 5 1.0K 27.5K 5 120 82 11 10.4±5.0
10 vs 10 1.0K 31.9K 10 290 162 16 14.7±6.0
10 vs 11 1.0K 30.9K 10 306 170 17 12.0±5.1
20 vs 20 1.0K 35.4K 20 780 322 26 12.3±4.2
20 vs 23 1.0K 32.8K 20 858 346 29 10.8±4.0

Hopper

expert 1.5K 999K 3 42 14 1 2452.0±1097.9
medium 4.0K 915K 3 42 14 1 723.6±211.7
m-replay 4.2K 1311K 3 42 14 1 746.4±671.9
m-expert 5.5K 1914K 3 42 14 1 1190.6±973.4

Ant

expert 1.0K 1000K 2 226 113 4 2055.1±22.1
medium 1.0K 1000K 2 226 113 4 1418.7±37.0
m-replay 1.8K 1750K 2 226 113 4 1029.5±141.3
m-expert 2.0K 2000K 2 226 113 4 1736.9±319.6

Half
Cheetah

expert 1.0K 1000K 6 138 23 1 2785.1±1053.1
medium 1.0K 1000K 6 138 23 1 1425.7±520.1
m-replay 1.0K 1000K 6 138 23 1 655.8±590.4
m-expert 2.0K 2000K 6 138 23 1 2105.4±1073.2

Table 4: Overview of datasets used in experiments, including details of trajectories, samples, agent
counts, and state, observation, and action space dimensions across SMACv1, SMACv2, and MaMu-
joco environments, with average returns indicating performance levels.

B.3 IMPLEMENTATION DETAILS

Our experiments were implemented using PyTorch and executed in parallel on a single NVIDIA®
H100 NVL Tensor Core GPU. Our study required running a large number of sub-tasks, specifically
1,365 in total (i.e., 39 instances across 7 algorithms with 5 different random seeds each).
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Algorithm 1 ComaDICE: Offline Cooperative MARL with Stationary DIstribution Correction
Estimation

1: Input: Parameters θ, ψq, ψν , ηi and the corresponding learning rates λθ, λψq
, λψν

, λη, respec-
tively. Offline data D.

2: Output: Local optimized polices πi.
3: # Training the occupancy ratio wtot∗
4: for a certain number of training steps do
5: ψq = ψq − λψq

∇ψq
L(ψq) # Update Q-function towards the MSE in 10

6: θ = θ − λθ∇θL̃(ψν , θ) # Update θ to minimize the loss in 11
7: ψν = ψν − λψν∇ψν L̃(ψν , θ) # Update ψν to minimize the loss in 11
8: end for
9: # Training local policy

10: for a certain number of training steps do
11: ηi = ηi + λη∇ηiLπ(ηi) # Update the local policy by optimizing 12
12: end for
13: Return πi(ai|oi; ηi), i = 1, ..., n

Agent
Network

Agent
Network

Mixing Network

...

Linear

Linear

...

...

+

Hyper Network

Update Update 

Mixing Network

Update 

Figure 2: Our ComaDICE model architecture.

The offline datasets for each instance are substantial, reaching sizes of up to 7.4 GB. To manage this,
we developed a preprocessing step designed to optimize data handling and improve computational
efficiency. This process involves reading all transitions from each dataset and combining individual
trajectory files into a single large NumPy object that contains batches of trajectories. In this step,
we define the data type for each element, such as states (float32), actions (int64), and dones (bool),
ensuring consistent and efficient data storage. The processed data is then saved into a compressed
NumPy file, which significantly boosts computing performance.

Despite these optimizations, loading the entire dataset still requires a large amount of RAM. By
leveraging parallel processing and efficient data management strategies, we effectively managed the
extensive computational and memory demands of our experiments. This approach allowed us to
handle the large-scale data and complex computations necessary for our study.
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B.3.1 HYPER-PARAMETERS

Hyperparameter Value
Optimizer Adam
Learning rate (Q-value and policy networks) 1× 10−4

Tau (τ ) 0.005
Gamma (γ) 0.99
Batch size 128
Agent hidden dimension 256
Mixer hidden dimension 64
Number of seeds 5
Number of episodes per evaluation step 32
Number of evaluation steps 100
Lambda scale (λ) 1.0
Alpha (α) 10
f-divergence soft-χ2

Table 5: Hyperparameters for our algorithm

In our study, we developed two versions of our algorithm: a continuous version for MaMujoco
using Gaussian distributions (torch.distributions.Normal), and a discrete version for SMACv1 and
SMACv2 using Categorical distributions (torch.distributions.Categorical). In the discrete setting,
action probabilities are computed using softmax over available actions only, ensuring zero probability
for unavailable actions, which enhances the accuracy of log likelihood calculations. Key hyperparam-
eters are listed on the Table 5. Experiments were conducted with 5 seeds, 32 episodes per evaluation
step, and 100 evaluation steps.

B.4 ADDITIONAL EXPERIMENTAL DETAILS

We evaluate the performance of our ComaDICE algorithm using two key metrics: mean and standard
deviation (std) of returns and winrates. Returns measure the average rewards accumulated by
agents, calculated across five random seeds to ensure robustness, while winrates, applicable only to
competitive environments like SMACv1 and SMACv2, indicate the success rate against other agents.
For cooperative settings such as MaMujoco, winrates are not applicable. We also include figures
showing evaluation curves, highlighting how each method’s performance evolves during training
with offline datasets. These metrics and visualizations provide a comprehensive overview of our
algorithm’s effectiveness and consistency in various MARL tasks.

B.4.1 RETURNS

Tables 6, 7, 8, 9, and 10 present the returns from our experimental results across the SMACv1,
SMACv2, and Multi-Agent MuJoCo environments, highlighting the performance of our proposed
algorithm, ComaDICE, alongside baseline methods such as BC, BCQ, CQL, ICQ, OMAR, OMIGA,
OptDICE and AlberDICE. Our results demonstrate that ComaDICE consistently achieves superior
returns, particularly excelling in more complex difficulty tasks. Figures 3, 4, and 5 illustrate the
learning curves for these algorithms, showing that ComaDICE not only outperforms other algorithms
in terms of mean returns but also exhibits lower standard deviation, indicating robust and stable
performance. This suggests that ComaDICE effectively handles distributional shifts in offline settings.
These findings underscore our algorithm’s adaptability and effectiveness in diverse multi-agent
coordination scenarios, setting a new benchmark in offline MARL.
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Instances BC BCQ CQL ICQ OMAR OMIGA OptDICE AlberDICE ComaDICE

2c vs 64zg
poor 11.6 ± 0.4 12.5 ± 0.2 10.8 ± 0.5 12.6 ± 0.2 11.3 ± 0.5 13.0 ± 0.7 10.8 ± 0.4 11.0 ± 0.2 12.1 ± 0.5

medium 13.4 ± 1.9 15.6 ± 0.4 12.8 ± 1.6 15.6 ± 0.6 10.2 ± 0.2 16.0 ± 0.2 11.2 ± 0.8 15.2 ± 0.5 16.3 ± 0.7
good 17.9 ± 1.3 19.1 ± 0.3 18.5 ± 1.0 18.8 ± 0.2 17.3 ± 0.8 19.1 ± 0.3 14.9 ± 1.2 17.9 ± 0.6 20.3 ± 0.1

5m vs 6m
poor 7.0 ± 0.5 7.6 ± 0.4 7.4 ± 0.1 7.3 ± 0.2 7.3 ± 0.4 7.5 ± 0.2 7.1 ± 0.2 5.7 ± 1.2 8.1 ± 0.5

medium 7.0 ± 0.8 7.6 ± 0.1 7.8 ± 0.1 7.8 ± 0.3 7.1 ± 0.5 7.9 ± 0.6 5.9 ± 1.3 7.7 ± 0.4 8.7 ± 0.4
good 7.0 ± 0.5 7.8 ± 0.1 8.1 ± 0.2 7.9 ± 0.3 7.4 ± 0.6 8.3 ± 0.4 5.8 ± 1.5 6.5 ± 0.6 8.7 ± 0.5

6h vs 8z
poor 8.6 ± 0.8 10.8 ± 0.2 10.8 ± 0.5 10.6 ± 0.1 10.6 ± 0.2 11.3 ± 0.2 9.8 ± 0.3 10.6 ± 0.3 11.4 ± 0.6

medium 9.5 ± 0.3 11.8 ± 0.2 11.3 ± 0.3 11.1 ± 0.3 10.4 ± 0.2 12.2 ± 0.2 10.8 ± 0.6 12.3 ± 0.4 12.8 ± 0.2
good 10.0 ± 1.7 12.2 ± 0.2 10.4 ± 0.2 11.8 ± 0.1 9.9 ± 0.3 12.5 ± 0.2 9.1 ± 0.7 10.0 ± 0.3 13.1 ± 0.5

corridor
poor 2.9 ± 0.6 4.5 ± 0.9 4.1 ± 0.6 4.5 ± 0.3 4.3 ± 0.5 5.6 ± 0.3 6.3 ± 0.5 5.0 ± 0.5 6.4 ± 0.5

medium 7.4 ± 0.8 10.8 ± 0.9 7.0 ± 0.7 11.3 ± 1.6 7.3 ± 0.7 11.7 ± 1.3 11.2 ± 0.7 9.3 ± 0.3 12.9 ± 0.6
good 10.8 ± 2.6 15.2 ± 1.2 5.2 ± 0.8 15.5 ± 1.1 6.7 ± 0.7 15.9 ± 0.9 13.4 ± 2.1 14.4 ± 1.2 18.0 ± 0.1

Table 6: Comparison of average returns for ComaDICE and baselines on SMACv1 benchmarks.

Figure 3: Evaluation of SMACv1 tasks comparing the returns achieved by ComaDICE and baselines.

Instances BC BCQ CQL ICQ OMAR OMIGA OptDICE AlberDICE ComaDICE (ours)

Protoss

5 vs 5 13.2 ± 0.7 6.8 ± 1.6 9.3 ± 1.6 10.7 ± 1.2 8.9 ± 0.8 14.3 ± 1.4 10.8 ± 1.2 12.6 ± 0.9 14.4 ± 1.1
10 vs 10 12.0 ± 1.9 7.7 ± 1.3 11.3 ± 0.9 10.4 ± 1.6 8.8 ± 0.6 14.2 ± 1.5 9.5 ± 0.8 11.8 ± 0.9 14.6 ± 1.8
10 vs 11 11.2 ± 0.5 5.2 ± 1.4 7.9 ± 0.8 10.3 ± 0.7 8.0 ± 0.3 12.1 ± 0.5 10.0 ± 0.5 9.8 ± 0.3 13.2 ± 0.9
20 vs 20 13.1 ± 0.5 4.8 ± 0.6 10.5 ± 0.9 11.8 ± 0.5 9.1 ± 0.5 14.0 ± 0.9 10.0 ± 2.0 10.1 ± 0.6 14.8 ± 1.0
20 vs 23 11.2 ± 0.5 3.5 ± 0.6 5.6 ± 0.7 10.2 ± 0.7 7.4 ± 0.7 13.0 ± 1.1 8.1 ± 1.4 8.8 ± 0.8 13.3 ± 0.9

Terran

5 vs 5 10.8 ± 1.4 6.4 ± 1.1 6.5 ± 0.9 6.8 ± 0.6 6.9 ± 0.6 10.5 ± 1.2 6.4 ± 1.1 8.1 ± 1.4 10.7 ± 1.5
10 vs 10 10.3 ± 0.3 4.6 ± 0.4 6.8 ± 0.6 8.7 ± 1.4 7.6 ± 1.0 10.1 ± 0.6 6.0 ± 1.6 8.2 ± 1.0 11.8 ± 0.9
10 vs 11 9.0 ± 0.7 3.6 ± 1.1 5.5 ± 0.2 5.5 ± 0.9 5.9 ± 0.7 8.8 ± 1.4 4.8 ± 1.2 6.2 ± 0.9 9.4 ± 0.9
20 vs 20 10.8 ± 0.8 3.9 ± 0.6 4.3 ± 0.6 8.3 ± 0.3 7.3 ± 0.4 10.5 ± 0.7 6.3 ± 1.8 5.9 ± 1.2 11.8 ± 0.5
20 vs 23 7.2 ± 1.0 1.2 ± 1.0 1.6 ± 0.2 5.3 ± 0.5 5.1 ± 0.3 7.9 ± 0.6 4.4 ± 0.7 3.9 ± 0.8 8.2 ± 0.7

Zerg

5 vs 5 10.5 ± 2.2 6.6 ± 0.2 6.7 ± 0.5 6.5 ± 0.9 7.7 ± 0.9 8.9 ± 1.1 8.2 ± 1.8 9.5 ± 0.8 10.7 ± 2.0
10 vs 10 11.0 ± 0.8 7.3 ± 1.0 7.2 ± 0.3 7.7 ± 1.1 7.5 ± 0.8 11.8 ± 1.6 7.8 ± 1.0 8.5 ± 0.3 11.5 ± 1.0
10 vs 11 9.2 ± 1.1 7.6 ± 0.9 6.7 ± 0.4 6.8 ± 1.0 6.5 ± 1.0 9.5 ± 1.2 7.2 ± 0.7 9.1 ± 0.5 11.0 ± 0.9
20 vs 20 9.3 ± 0.5 3.7 ± 0.4 4.7 ± 0.3 6.9 ± 0.5 6.9 ± 0.8 9.2 ± 0.5 7.3 ± 0.7 8.3 ± 0.5 9.4 ± 1.2
20 vs 23 8.5 ± 0.7 3.3 ± 0.3 4.1 ± 0.6 6.9 ± 0.5 5.7 ± 0.4 9.8 ± 0.6 7.1 ± 1.2 8.8 ± 0.5 10.5 ± 0.8

Table 7: Comparison of average returns for ComaDICE and baselines on SMACv2 tasks.
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Figure 4: Evaluation of SMACv2 tasks comparing the returns achieved by ComaDICE and baselines.

Method Hopper-v2
expert medium medium-replay medium-expert

BC 209.8±191.1 511.9±7.4 133.3±53.5 155.3±111.5
BCQ 77.9±58.0 44.6±20.6 26.5±24.0 54.3±23.7
CQL 159.1±313.8 401.3±199.9 31.4±15.2 64.8±123.3
ICQ 754.7±806.3 501.8±14.0 195.4±103.6 355.4±373.9

OMAR 2.4±1.5 21.3±24.9 3.3±3.2 1.4±0.9
OMIGA 859.6±709.5 1189.3±544.3 774.2±494.3 709.0±595.7
OptDICE 655.9±120.1 204.1±41.9 257.8±55.3 400.9±132.5

AlberDICE 844.6±556.5 216.9±35.3 419.2±243.5 515.1±303.4
ComaDICE (ours) 2827.7±62.9 822.6±66.2 906.3±242.1 1362.4±522.9

Table 8: Comparison of average returns on Hopper-v2 of MaMujoco benchmarks.

B.4.2 WINRATES

In this section, we analyze the winrates of our ComaDICE algorithm across various multi-agent
reinforcement learning scenarios. Winrates are crucial in competitive environments like SMACv1
and SMACv2, as they measure the algorithm’s success against other agents. Our results demonstrate
that ComaDICE consistently achieves higher winrates compared to baseline methods. Notably,
ComaDICE performs well across both simple and complex tasks, reflecting its robustness and
adaptability. As shown in Tables 1 and 2, as well as Figures 6 and 7, ComaDICE not only excels
in average winrates but also exhibits lower variance, indicating stable performance across different
trials. These findings highlight ComaDICE’s ability to effectively manage distributional shifts and
the OOD issue.

B.5 ABLATION STUDY: DIFFERENT VALUES OF ALPHA

We provide more experimental details for ablation study assessing the impact of varying the regular-
ization parameter alpha (α) on the performance of our ComaDICE.

B.5.1 RETURNS

Our results, in Tables 11, 12, and 13, show that the performance of ComaDICE is sensitive to
the choice of α. Lower values of α tend to prioritize imitation learning, leading to suboptimal
performance in terms of returns, whereas higher values facilitate better adaptation to the offline data,
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Method Ant-v2
expert medium medium-replay medium-expert

BC 2046.3±6.2 1421.1±7.9 994.0±20.3 1561.7±64.8
BCQ 1317.7±286.3 1059.6±91.2 950.8±48.8 1020.9±242.7
CQL 1042.4±2021.6 533.9±1766.4 234.6±1618.3 800.2±1621.5
ICQ 2050.0±11.9 1412.4±10.9 1016.7±53.5 1590.2±85.6

OMAR 312.5±297.5 -1710.0±1589.0 -2014.2±844.7 -2992.8±7.0
OMIGA 2055.5±1.6 1418.4±5.4 1105.1±88.9 1720.3±110.6
OptDICE 1717.2±27.0 1199.0±26.8 869.4±62.6 1293.2±183.1

AlberDICE 1896.8±33.7 1304.3±2.6 1042.8±80.8 1780.0±23.6
ComaDICE (ours) 2056.9±5.9 1425.0±2.9 1122.9±61.0 1813.9±68.4

Table 9: Comparison of average returns on Ant-v2 of MaMujoco benchmarks.

Method HalfCheetah-v2
expert medium medium-replay medium-expert

BC 3251.2±386.8 2280.3±178.2 1886.2±390.8 2451.9±783.0
BCQ 2992.7±629.7 2590.5±1110.4 -333.6±152.1 3543.7±780.9
CQL 1189.5±1034.5 1011.3±1016.9 1998.7±693.9 1194.2±1081.0
ICQ 2955.9±459.2 2549.3±96.3 1922.4±612.9 2834.0±420.3

OMAR -206.7±161.1 -265.7±147.0 -235.4±154.9 -253.8±63.9
OMIGA 3383.6±552.7 3608.1±237.4 2504.7±83.5 2948.5±518.9
OptDICE 2601.6±461.9 305.3±946.8 -912.9±1363.9 -2485.8±2338.4

AlberDICE 3356.4±546.9 522.4±315.5 440.0±528.0 2288.2±759.5
ComaDICE (ours) 4082.9±45.7 2664.7±54.2 2855.0±242.2 3889.7±81.6

Table 10: Comparison of average returns on HalfCheetah-v2 of MaMujoco benchmarks.

achieving superior returns. Notably, an α value of 10 consistently yielded the best results across most
tasks, indicating an optimal balance between exploration and exploitation in offline settings. This
ablation study underscores the importance of selecting an appropriate α to enhance the algorithm’s
robustness and effectiveness in handling distributional shifts in offline multi-agent reinforcement
learning scenarios.

Instances α = 0.01 α = 0.1 α = 1 α = 10 α = 100

2c vs 64zg
poor 10.6±0.5 11.1±0.4 11.1±0.1 12.1±0.5 11.8±0.2

medium 9.6±0.5 13.1±0.8 12.5±2.4 16.3±0.7 16.0±0.3
good 11.1±1.4 9.6±2.7 17.4±0.5 20.3±0.1 19.9±0.1

5m vs 6m
poor 5.7±0.1 5.1±0.3 7.1±0.7 8.1±0.5 7.7±0.3

medium 5.6±0.1 5.3±0.2 7.8±0.8 8.7±0.4 8.5±0.7
good 5.7±0.1 5.7±0.2 7.8±0.5 8.7±0.5 8.8±0.8

6h vs 8z
poor 8.5±0.2 9.6±0.3 10.0±0.3 11.4±0.6 10.7±0.4

medium 8.5±0.6 10.5±0.8 10.7±0.5 12.8±0.2 12.3±0.3
good 7.9±0.1 9.5±0.6 11.3±0.6 13.1±0.5 12.8±0.4

corridor
poor 2.1±0.4 3.7±1.0 6.1±0.8 6.4±0.5 5.0±1.1

medium 1.7±1.0 2.2±1.7 11.3±0.3 12.9±0.6 13.3±0.1
good 4.7±2.4 3.8±5.0 15.7±0.3 18.0±0.1 17.4±0.1

Table 11: Impact of alpha on returns for ComaDICE and baselines in SMACv1.

B.5.2 WINRATES

In the A.4.2 section of the appendix, we investigate the impact of varying α on winrates across
different multi-agent reinforcement learning environments. We observe that an intermediate α
value of 10 consistently yields optimal results, suggesting it strikes an effective balance between
conservative policy adherence and exploration of the offline dataset. This section underscores the
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Figure 5: Evaluation of MaMujoco tasks comparing the returns achieved by ComaDICE and baselines.

Figure 6: Evaluation of SMACv1 tasks comparing the winrates achieved by ComaDICE and baselines.

importance of fine-tuning α to enhance the robustness and efficacy of the ComaDICE algorithm in
managing distributional shifts within competitive multi-agent settings.

B.6 ABLATION STUDY: DIFFERENT FORMS OF F-DIVERGENCE

We conduct an ablation study to examine the effects of different functions of f -divergence on
the performance of our ComaDICE algorithm across various multi-agent reinforcement learning
environments. The study specifically evaluates three types of f -divergence: Kullback-Leibler (KL),
χ2, and Soft-χ2 .
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Figure 7: Evaluation of SMACv2 tasks comparing the winrates achieved by ComaDICE and baselines.

Instances α = 0.01 α = 0.1 α = 1 α = 10 α = 100

Protoss

5 vs 5 12.2±1.0 13.1±1.3 13.2±1.1 14.4±1.1 14.0±2.0
10 vs 10 12.8±0.9 14.0±0.8 13.4±1.2 14.6±1.8 14.1±1.3
10 vs 11 9.9±1.1 11.1±0.8 11.3±1.2 13.2±0.9 12.2±1.1
20 vs 20 10.3±0.5 11.1±1.0 12.2±0.9 14.8±1.0 13.2±0.4
20 vs 23 8.0±2.3 11.2±1.2 11.7±0.6 13.3±0.9 13.2±0.5

Terran

5 vs 5 11.1±1.8 10.1±1.2 9.0±1.0 10.7±1.5 12.6±1.9
10 vs 10 8.5±0.8 10.3±0.7 10.4±1.1 11.8±0.9 11.8±1.7
10 vs 11 7.5±0.7 8.6±2.1 8.5±1.6 9.4±0.9 9.6±0.9
20 vs 20 6.2±1.1 6.4±1.7 9.1±0.7 11.8±0.5 9.3±0.6
20 vs 23 5.5±1.1 6.5±1.6 6.5±0.8 8.2±0.7 8.2±0.4

Zerg

5 vs 5 7.9±0.6 9.3±0.9 10.5±1.4 10.7±2.0 10.4±1.2
10 vs 10 10.9±1.5 11.4±1.5 11.8±0.7 11.5±1.0 10.9±2.2
10 vs 11 10.1±2.5 9.1±1.2 10.0±1.2 11.0±0.9 9.8±0.8
20 vs 20 8.0±0.5 9.2±1.3 9.2±1.0 9.4±1.2 10.5±0.9
20 vs 23 9.1±1.1 10.0±0.7 10.4±0.6 10.5±0.8 10.1±0.7

Table 12: Impact of alpha on returns for ComaDICE and baselines in SMACv2.

KL-Divergence: This is a well-known measure of how one probability distribution diverges from a
second, expected probability distribution. It is defined as:

fKL(x) = x log x− x+ 1

The corresponding inverse derivative, which is used in optimization, is:
(f ′KL)

−1(x) = exp(x− 1)

KL-divergence can lead to numerical instability due to the exponential function, especially when the
values become large.

χ2-Divergence: This divergence measures the difference between two probability distributions by
considering the square of the differences. It is expressed as:

fχ2(x) =
1

2
(x− 1)2

The inverse derivative is:
(f ′χ2)−1(x) = x+ 1

While this function avoids the exponential instability seen in KL-divergence, it may suffer from zero
gradients for negative values, which can slow down or halt training.
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Instances α = 0.01 α = 0.1 α = 1 α = 10 α = 100

Hopper

expert 147.3±67.9 107.9±65.5 545.7±820.6 2827.7±62.9 2690.7±58.6
medium 149.6±96.8 107.5±66.9 244.7±267.5 822.6±66.2 807.5±122.2
m-replay 165.6±104.1 109.6±38.7 155.6±61.6 906.3±242.1 186.5±16.8
m-expert 119.1±77.1 95.6±69.5 58.8±26.1 1362.4±522.9 1358.4±595.1

Ant

expert 1016.4±196.5 1179.0±273.7 1927.7±174.1 2056.9±5.9 1950.0±3.3
medium 907.3±32.2 1000.0±90.4 1424.3±3.1 1425.0±2.9 1354.6±2.5
m-replay 969.1±21.9 978.4±39.6 944.6±28.9 1122.9±61.0 1072.1±41.4
m-expert 915.8±364.1 1132.9±282.2 738.5±250.2 1813.9±68.4 1559.6±86.8

Half
Cheetah

expert 1068.9±635.2 935.2±905.9 3637.0±80.9 4082.9±45.7 3843.7±149.4
medium 575.9±724.8 445.2±403.9 2690.0±92.4 2664.7±54.2 2523.4±59.0
m-replay 412.3±310.5 233.5±270.1 861.6±173.5 2855.0±242.2 2557.4±241.5
m-expert -107.5±298.1 -275.9±544.5 1136.9±1608.3 3889.7±81.6 3605.6±70.4

Table 13: Impact of alpha on returns for ComaDICE and baselines in MaMujoco.
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Figure 8: Impact of alpha on returns for ComaDICE and baselines.

Soft-χ2 Divergence: This function combines the forms of KL and χ2 divergences to mitigate both
numerical instability and the dying gradient problem. It is defined piecewise as:

fSoft-χ2(x) =

{
x log x− x+ 1 if 0 < x < 1
1
2 (x− 1)2 if x ≥ 1

The inverse derivative is:

(f ′Soft-χ2)−1(x) =

{
exp(x) if x < 0

x+ 1 if x ≥ 0

This choice provides a stable optimization process by maintaining non-zero gradients and avoiding
large exponential values, making it suitable for reinforcement learning tasks.

We assess their impact on both returns and winrates in environments such as SMACv1, SMACv2, and
MaMujoco. Our results, detailed in Tables 16-20, reveal that the choice of f -divergence function sig-
nificantly influences the algorithm’s effectiveness. For instance, the Soft-χ2 divergence consistently
yields superior returns and competitive winrates across most scenarios, suggesting its robustness in
managing distributional shifts in offline settings. Conversely, while Soft-χ2 divergence also performs
well, particularly in environments with higher complexity, KL divergence shows varying results,
indicating its sensitivity to specific task dynamics. This comprehensive analysis underscores the
importance of selecting an appropriate f -divergence function to optimize ComaDICE’s performance
in diverse multi-agent reinforcement learning contexts.
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Instances α = 0.01 α = 0.1 α = 1 α = 10 α = 100

2c vs 64zg
poor 0.0±0.0 0.0±0.0 0.0±0.0 0.6±1.3 0.6±1.3

medium 0.0±0.0 1.9±3.8 5.0±5.1 8.8±7.0 8.8±4.6
good 0.6±1.2 0.0±0.0 40.6±4.0 55.0±1.5 51.9±1.5

5m vs 6m
poor 0.0±0.0 0.0±0.0 4.4±4.7 4.4±4.2 1.9±1.5

medium 0.0±0.0 0.0±0.0 8.1±6.4 7.5±2.5 7.5±3.8
good 0.0±0.0 0.0±0.0 6.2±4.4 8.1±3.2 10.0±6.1

6h vs 8z
poor 0.0±0.0 0.0±0.0 1.9±3.8 1.9±3.8 0.6±1.3

medium 0.0±0.0 0.6±1.3 1.9±1.5 3.1±2.0 3.1±2.0
good 0.0±0.0 0.0±0.0 7.5±5.8 11.2±5.4 7.5±7.3

corridor
poor 0.0±0.0 0.6±1.2 0.0±0.0 0.6±1.3 1.2±1.5

medium 0.0±0.0 0.0±0.0 30.0±5.1 27.3±3.4 34.4±2.8
good 0.0±0.0 4.4±8.8 48.8±4.7 48.8±2.5 49.4±3.6

Table 14: Impact of alpha on winrates for ComaDICE and baselines in SMACv1.

Instances α = 0.01 α = 0.1 α = 1 α = 10 α = 100

Protoss

5 vs 5 20.6±10.0 31.9±6.1 50.0±2.8 46.2±6.1 46.2±8.5
10 vs 10 19.4±6.1 25.0±3.4 45.0±11.1 50.6±8.7 51.2±7.6
10 vs 11 0.0±0.0 6.2±9.7 18.8±8.1 20.0±4.2 29.4±8.3
20 vs 20 1.2±1.5 8.8±7.8 28.1±8.6 47.5±7.8 40.6±6.2
20 vs 23 0.0±0.0 1.9±2.5 9.4±6.6 13.8±5.8 17.5±5.1

Terran

5 vs 5 25.6±4.6 22.5±7.2 30.6±4.1 30.6±8.2 41.2±4.6
10 vs 10 15.0±8.7 28.7±7.2 33.8±9.4 32.5±5.8 43.8±7.1
10 vs 11 3.8±2.3 13.8±9.2 14.4±9.2 19.4±5.4 16.2±10.3
20 vs 20 0.6±1.2 2.5±3.6 18.8±2.0 29.4±3.8 21.9±3.4
20 vs 23 0.6±1.3 2.5±3.6 2.5±3.6 9.4±5.2 6.2±2.0

Zerg

5 vs 5 10.0±4.6 20.0±5.8 28.7±4.6 31.2±7.7 25.0±8.6
10 vs 10 13.8±9.0 20.6±8.3 29.4±9.0 33.8±11.8 31.9±6.7
10 vs 11 9.4±9.5 12.5±6.8 16.9±3.2 19.4±3.6 17.5±9.2
20 vs 20 0.0±0.0 1.9±1.5 6.9±6.1 9.4±6.2 12.5±4.0
20 vs 23 1.2±1.5 3.8±2.3 12.5±4.0 11.2±4.2 11.9±6.1

Table 15: Impact of alpha on winrates for ComaDICE and baselines in SMACv2.
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Figure 9: Impact of alpha on winrates for ComaDICE and baselines.
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B.6.1 RETURNS

Instances fχ2(x) fKL(x) fSoft-χ2(x)

2c vs 64zg
poor 11.6±0.2 11.1±0.3 12.1±0.5

medium 16.1±0.6 15.7±0.3 16.3±0.7
good 19.7±0.1 19.3±0.1 20.3±0.1

5m vs 6m
poor 7.8±0.4 7.5±0.5 8.1±0.5

medium 8.1±0.5 7.7±0.4 8.7±0.4
good 8.7±0.6 8.1±0.4 8.7±0.5

6h vs 8z
poor 10.5±0.3 10.0±0.2 11.4±0.6

medium 12.9±0.4 12.4±0.5 12.8±0.2
good 12.7±0.4 12.4±0.5 13.1±0.5

corridor
poor 6.5±0.5 6.1±0.4 6.4±0.5

medium 12.7±0.7 12.0±0.7 12.9±0.6
good 17.3±0.1 16.9±0.1 18.0±0.1

Table 16: Impact of f -divergence on returns for ComaDICE and baselines in SMACv1.

Instances fχ2(x) fKL(x) fSoft-χ2(x)

Protoss

5 vs 5 14.6±0.5 13.6±0.9 14.4±1.1
10 vs 10 14.7±1.3 13.7±1.6 14.6±1.8
10 vs 11 12.8±1.0 11.4±1.7 13.2±0.9
20 vs 20 12.7±0.3 13.1±0.7 14.8±1.0
20 vs 23 12.4±0.9 12.5±0.7 13.3±0.9

Terran

5 vs 5 11.1±1.2 12.7±2.0 10.7±1.5
10 vs 10 9.8±0.9 10.7±1.3 11.8±0.9
10 vs 11 8.9±0.8 8.9±1.0 9.4±0.9
20 vs 20 10.5±0.5 10.2±0.7 11.8±0.5
20 vs 23 8.2±0.4 7.4±0.7 8.2±0.7

Zerg

5 vs 5 10.0±0.8 9.6±1.5 10.7±2.0
10 vs 10 12.4±1.2 10.3±1.1 11.5±1.0
10 vs 11 8.9±0.4 9.1±1.1 11.0±0.9
20 vs 20 9.0±0.8 9.0±0.6 9.4±1.2
20 vs 23 10.2±1.0 9.3±0.8 10.5±0.8

Table 17: Impact of f -divergence on returns for ComaDICE and baselines in SMACv2.

Instances fχ2(x) fKL(x) fSoft-χ2(x)

Hopper

expert 2625.0±191.3 2018.7±972.0 2827.7±62.9
medium 794.4±69.2 295.5±227.1 822.6±66.2
m-replay 221.3±58.0 129.9±55.0 906.3±242.1
m-expert 1294.1±520.4 105.5±103.9 1362.4±522.9

Ant

expert 1945.2±2.8 1884.1±27.8 2056.9±5.9
medium 1359.2±3.2 1346.2±49.8 1425.0±2.9
m-replay 1111.1±57.8 987.5±33.9 1122.9±61.0
m-expert 1655.9±42.8 1182.5±405.1 1813.9±68.4

Half
Cheetah

expert 3860.6±91.5 3830.0±88.8 4082.9±45.7
medium 2532.3±81.9 2347.8±171.8 2664.7±54.2
m-replay 2729.9±241.5 1258.5±1015.4 2855.0±242.2
m-expert 3665.2±74.0 3601.0±155.6 3889.7±81.6

Table 18: Impact of f -divergence on returns for ComaDICE and baselines in MaMujoco.
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B.6.2 WINRATES

Instances fχ2(x) fKL(x) fSoft-χ2(x)

2c vs 64zg
poor 0.0±0.0 0.0±0.0 0.6±1.3

medium 13.1±4.6 10.6±3.8 8.8±7.0
good 55.6±3.1 54.4±1.5 55.0±1.5

5m vs 6m
poor 3.8±3.1 3.8±3.6 4.4±4.2

medium 6.2±2.8 5.0±3.8 7.5±2.5
good 8.8±3.6 6.9±3.1 8.1±3.2

6h vs 8z
poor 0.0±0.0 0.0±0.0 1.9±3.8

medium 5.0±2.5 5.0±3.8 3.1±2.0
good 9.4±4.4 9.4±2.0 11.2±5.4

corridor
poor 1.2±1.5 1.2±1.5 0.6±1.3

medium 31.2±6.2 28.1±5.9 27.3±3.4
good 49.4±5.4 48.1±1.5 48.8±2.5

Table 19: Impact of f -divergence on winrates for ComaDICE and baselines in SMACv1.

Instances fχ2(x) fKL(x) fSoft-χ2(x)

Protoss

5 vs 5 52.5±4.1 46.2±7.2 46.2±6.1
10 vs 10 48.1±7.6 55.0±9.8 50.6±8.7
10 vs 11 22.5±8.7 20.6±6.1 20.0±4.2
20 vs 20 38.1±2.3 41.2±7.8 47.5±7.8
20 vs 23 16.9±4.2 15.0±3.6 13.8±5.8

Terran

5 vs 5 41.2±7.2 38.8±10.6 30.6±8.2
10 vs 10 30.6±4.1 36.2±10.8 32.5±5.8
10 vs 11 15.6±11.5 15.0±7.5 19.4±5.4
20 vs 20 33.8±6.4 28.7±11.8 29.4±3.8
20 vs 23 5.6±4.1 8.1±4.2 9.4±5.2

Zerg

5 vs 5 29.4±9.0 33.1±13.3 31.2±7.7
10 vs 10 31.2±7.7 26.2±5.1 33.8±11.8
10 vs 11 11.2±1.5 16.2±7.2 19.4±3.6
20 vs 20 7.5±3.2 11.2±7.0 9.4±6.2
20 vs 23 10.6±3.2 10.0±2.3 11.2±4.2

Table 20: Impact of f -divergence on winrates for ComaDICE and baselines in SMACv2.

B.7 ABLATION STUDY: DIFFERENT TYPES OF MIXER NETWORK

In this section, we explore the impact of using different types of mixer networks within the ComaDICE
algorithm. We introduce two settings for the mixer network within the ComaDICE algorithm: 1-layer
and 2-layer settings. The mixer network plays a crucial role in aggregating local value functions into a
global value function, which is essential for effective policy optimization in multi-agent reinforcement
learning (MARL) settings. By examining various mixer network architectures, we aim to understand
how these configurations affect the performance and stability of the ComaDICE algorithm. The
comparisons are presented in Tables 21-25, reporting both average returns and win rates. The results
clearly show that the 1-layer configuration outperforms the 2-layer configuration, delivering more
stable training outcomes across nearly all tasks. This finding contrasts with many prior online MARL
studies (Rashid et al., 2020; Son et al., 2019; Wang et al., 2020), which could be attributed to
overfitting issues in the offline learning setting.

Since mixing networks are effective in capturing the interdependencies between local values and
policies—reflecting credit assignment across local agents—the observed instability with the 2-
layer mixing network suggests that this configuration may be too complex to effectively model
the relationships between local agent policies in offline settings, leading to overfitting. While the
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performance of the 2-layer mixing network might improve with more offline data, increasing the
dataset size could overload storage capacity, making training computationally infeasible.

B.7.1 RETURNS

Instances ComaDICE (ours)
1-layer 2-layer

2c vs 64zg
poor 12.1±0.5 11.5±0.9

medium 16.3±0.7 11.2±0.8
good 20.3±0.1 9.0±2.2

5m vs 6m
poor 8.1±0.5 3.8±1.1

medium 8.7±0.4 0.8±0.3
good 8.7±0.5 7.7±0.1

6h vs 8z
poor 11.4±0.6 10.3±0.3

medium 12.8±0.2 9.1±0.6
good 13.1±0.5 8.3±0.5

corridor
poor 6.4±0.5 1.5±0.7

medium 12.9±0.6 3.9±1.7
good 18.0±0.1 2.6±2.3

Table 21: Average returns for ComaDICE and baselines on SMACv1 with different mixer settings.

Instances ComaDICE (ours)
1-layer 2-layer

Protoss

5 vs 5 14.4±1.1 10.5±1.4
10 vs 10 14.6±1.8 11.2±1.6
10 vs 11 13.2±0.9 9.5±0.4
20 vs 20 14.8±1.0 9.5±0.9
20 vs 23 13.3±0.9 7.1±2.2

Terran

5 vs 5 10.7±1.5 8.3±0.8
10 vs 10 11.8±0.9 8.8±1.1
10 vs 11 9.4±0.9 6.4±1.2
20 vs 20 11.8±0.5 7.8±0.9
20 vs 23 8.2±0.7 6.6±0.9

Zerg

5 vs 5 10.7±2.0 7.8±1.1
10 vs 10 11.5±1.0 9.7±0.6
10 vs 11 11.0±0.9 7.9±0.7
20 vs 20 9.4±1.2 7.8±0.6
20 vs 23 10.5±0.8 8.0±0.5

Table 22: Average returns for ComaDICE and baselines on SMACv2 with different mixer settings.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Instances ComaDICE (ours)
1-layer 2-layer

Hopper

expert 2827.7±62.9 483.7±349.7
medium 822.6±66.2 648.4±245.9
m-replay 906.3±242.1 441.9±260.8
m-expert 1362.4±522.9 402.3±288.2

Ant

expert 2056.9±5.9 1583.0±160.4
medium 1425.0±2.9 1198.9±53.9
m-replay 1122.9±61.0 1041.8±38.4
m-expert 1813.9±68.4 1426.6±171.4

Half
Cheetah

expert 4082.9±45.7 2159.4±658.0
medium 2664.7±54.2 2026.7±244.3
m-replay 2855.0±242.2 1299.2±196.1
m-expert 3889.7±81.6 1336.3±381.9

Table 23: Average returns for ComaDICE and baselines on MaMujoco with different mixer settings.

B.7.2 WINRATES

Instances ComaDICE (ours)
1-layer 2-layer

2c vs 64zg
poor 0.6±1.3 0.0±0.0

medium 8.8±7.0 3.8±3.6
good 55.0±1.5 19.4±5.0

5m vs 6m
poor 4.4±4.2 3.1±0.0

medium 7.5±2.5 1.2±1.5
good 8.1±3.2 3.1±0.0

6h vs 8z
poor 1.9±3.8 0.0±0.0

medium 3.1±2.0 0.0±0.0
good 11.2±5.4 1.9±2.5

corridor
poor 0.6±1.3 0.0±0.0

medium 27.3±3.4 11.2±2.5
good 48.8±2.5 23.1±8.1

Table 24: Average winrates for ComaDICE and baselines on SMACv1 with different mixer settings.

Instances ComaDICE (ours)
1-layer 2-layer

Protoss

5 vs 5 46.2±6.1 31.9±3.6
10 vs 10 50.6±8.7 32.5±5.8
10 vs 11 20.0±4.2 10.6±7.3
20 vs 20 47.5±7.8 21.9±4.0
20 vs 23 13.8±5.8 6.9±5.4

Terran

5 vs 5 30.6±8.2 25.6±4.6
10 vs 10 32.5±5.8 28.1±3.4
10 vs 11 19.4±5.4 12.5±4.0
20 vs 20 29.4±3.8 11.2±3.2
20 vs 23 9.4±5.2 3.1±2.0

Zerg

5 vs 5 31.2±7.7 20.6±4.7
10 vs 10 33.8±11.8 21.2±7.2
10 vs 11 19.4±3.6 13.1±4.1
20 vs 20 9.4±6.2 5.6±1.3
20 vs 23 11.2±4.2 3.1±3.4

Table 25: Average winrates for ComaDICE and baselines on SMACv2 with different mixer settings.
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B.8 COMADICE ON THE PENALTY XOR GAME

We discuss how ComaDICE addresses the Penalty XOR Game, a benchmark task previously consid-
ered in the AlberDICE paper (Matsunaga et al., 2023; Fu et al., 2022).

Overview of the Penalty XOR Game. The Penalty XOR Game is a commonly used benchmark
in multi-agent cooperative reinforcement learning, designed to evaluate the agents’ ability to learn
coordinated policies. In this game, two agents interact with a shared environment defined by a
global state consisting of two binary features. Each agent selects a binary action, and the reward
is determined by the relationship between their actions and the global state (as illustrated in Figure
10). This game highlights key challenges in multi-agent learning, such as credit assignment and
coordination, as agents must infer the XOR-like reward logic from their experiences while aligning
their actions to optimize joint behavior. This benchmark is particularly valuable for testing algorithms’
capabilities in capturing inter-agent dependencies and handling sparse, state-dependent rewards.

Figure 10: The Penalty XOR Game environment.

Experimental Setup. Following the setup in AlberDICE, we construct four datasets with increasing
complexity: 1. (a) {AB} 2. (b) {AB, BA} 3. (c) {AA, AB, BA} 4. (d) {AA, AB, BA, BB}

Results. The optimal policy values returned by ComaDICE after a few epochs of training are
presented in Table 26. Our results show that ComaDICE successfully learns the optimal policy across
all four datasets. Compared to the results reported in the AlberDICE paper (Matsunaga et al., 2023),
ComaDICE achieves similar policy values while outperforming other baselines considered in that
study.

(a) A B

A 0.00 1.00

B 0.00 0.00

(b) A B

A 0.00 1.00

B 0.00 0.00

(c) A B

A 0.00 1.00

B 0.00 0.00

(d) A B

A 0.00 1.00

B 0.00 0.00

Table 26: Policy values after convergence returned by ComaDICE.

We now delve into the toy example to explain how ComaDICE achieves optimal policy values
by balancing the maximization of global reward and the minimization of divergence between the
occupancy of the learning policy and the behavior policy.

Consider the dataset {AB}, where the observation yields a high reward (i.e., 1). When optimizing
the global policy with this dataset, ComaDICE seeks a policy that maximizes the reward across the
dataset while aligning with the behavioral policy represented by {AB}. Consequently, it returns a
global optimal policy (in the form of an occupancy ratio) that assigns the highest possible probabilities
to the joint action {AB}. Subsequently, the weighted behavior cloning (BC) step learns decentralized
policies that also assign the highest possible probabilities to the joint action {AB}, producing the
desired optimal policy observed in our experiments.

For the dataset {AB,BA}, ComaDICE returns a global policy ensuring that the first player always
chooses A and the second always chooses B. To understand why this occurs, note that ComaDICE’s
learning objective consists of two terms: one aims to maximize the global reward, and the other
minimizes the divergence between the learned policy and the dataset. When the dataset includes
{AB,BA}, the occupancy-matching term favors a policy that assigns (uniformly) positive prob-
abilities to both joint actions {AB} and {BA}. However, since ComaDICE learns decentralized
policies, assigning significantly positive probabilities to both joint actions {AB} and {BA} implies
that both players would take both actions A and B with significant probabilities, leading to a lower
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expected global reward. In other words, exactly matching the dataset distribution would result in
suboptimal reward. To optimize the overall objective, ComaDICE assigns the highest probability to
one of the joint actions, {AB} or {BA}. In our experiments, it assigned the highest probability to
{AB}, achieving a better balance between reward maximization and divergence minimization. This
explains why ComaDICE converges to this optimal policy.

The other datasets can be explained similarly. For example, with the dataset {AA,AB,BA}, the
second term of the objective favors a policy that assigns equal probabilities (1/3) to these three joint
actions. However, this would imply that both players take both actions A and B with non-zero and
significant probabilities, resulting in lower accumulated rewards. To balance reward maximization
and dataset alignment, ComaDICE returns an optimal policy ensuring that the first player always
chooses A and the second always chooses B.

In comparison with OptDICE, both our experiments and those reported in the AlberDICE paper
demonstrate that OptDICE fails to return optimal policy values even when provided with an optimal
dataset, e.g., when the dataset is {AB,BA}. This is despite the fact that both OptDICE and
ComaDICE aim to balance maximizing the joint reward and matching the data distribution. Here, we
provide an intuitive explanation for why this occurs.

First, we note that while ComaDICE learns the global objective function over decentralized and
factorized policies, OptDICE learns only the global policy by directly solving the original objective
function. In this context, when the dataset is {AB,BA}, OptDICE learns a global policy that assigns
uniform probabilities to both joint actions {AB} and {BA}. However, when extracting local policies,
OptDICE will return local policies that make both the first and second players choose actions A and
B with probabilities of 0.25, as shown in Table 27, which is indeed suboptimal.

(b) A B

A 0.25 0.25

B 0.25 0.25

Table 27: Policy values returned by OptDICE with dataset (b).
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