
Unsupervised Learning for Solving the Travelling
Salesman Problem

Yimeng Min∗

Dept. of Computer Science
Cornell University
Ithaca, NY, USA

min@cs.cornell.edu

Yiwei Bai∗
Dept. of Computer Science

Cornell University
Ithaca, NY, USA

bywbilly@gmail.com

Carla P. Gomes
Dept. of Computer Science

Cornell University
Ithaca, NY, USA

gomes@cs.cornell.edu

Abstract

We propose UTSP, an Unsupervised Learning (UL) framework for solving the
Travelling Salesman Problem (TSP). We train a Graph Neural Network (GNN) us-
ing a surrogate loss. The GNN outputs a heat map representing the probability for
each edge to be part of the optimal path. We then apply local search to generate
our final prediction based on the heat map. Our loss function consists of two parts:
one pushes the model to find the shortest path and the other serves as a surrogate
for the constraint that the route should form a Hamiltonian Cycle. Experimen-
tal results show that UTSP outperforms the existing data-driven TSP heuristics.
Our approach is parameter efficient as well as data efficient: the model takes ∼
10% of the number of parameters and ∼ 0.2% of training samples compared with
Reinforcement Learning or Supervised Learning methods.

1 Introduction

Euclidean Travelling Salesman Problem (TSP) is one of the most famous and intensely studied
NP-hard problems in the combinatorial optimization community. Exact methods, such as Con-
corde Applegate et al. [2006], use the cutting-plane method, iteratively solving linear programming
relaxations of the TSP. These methods are usually implemented within a branch-and-cut framework,
integrating the cutting-plane algorithm into a branch-and-bound search. While these exact methods
can find solutions with guaranteed optimality for up to tens of thousands of nodes, the execution
time can be exceedingly expensive. A different strategy is using heuristics such as LKH Helsgaun
[2000]. These heuristics aim to find near-optimal solutions with a notable reduction in time com-
plexity. Typically, they are manually crafted, drawing upon expert insights and domain-specific
knowledge.

Recently, the success of Graph Neural Networks (GNNs) for a variety of machine learning tasks has
sparked interests in building data-driven heuristics for approximating TSP solutions. For example,
Kwon et al. [2020] uses a data-driven approach known as Policy Optimization with Multiple Optima
(POMO), POMO relies on Reinforcement Learning (RL) and avoids the utilization of hand-crafted
heuristics. Qiu et al. [2022] proposes a Meta-Learning framework which enhances the stability of RL
training. Sun and Yang [2023] applies Supervised Learning (SL) and adopts a graph-based diffusion
framework. Additionally, the authors use a cosine inference schedule to improve the efficiency of
their model. Joshi et al. [2019a] trains their GNN model in a SL fashion, and the model outputs an
edge adjacency matrix that indicates the likelihood of edges being part of the TSP tour. The edge
predictions form a heat map, which is transformed into a valid tour through a beam search method.
Similarly, Fu et al. [2021] trains the GNN model on small sub-graphs to generate the corresponding
heat maps using SL. These small heat maps are then integrated to build a large final heat map.
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Overall, these learning-based models usually build heuristics by reducing the length of TSP tours via
RL or directly learning from the optimal solutions via SL. However, since TSP is NP-hard, SL can
cause expensive annotation problems due to the costly search time involved in generating optimal
solutions. For RL, when dealing with big graphs, the model will run into the sparse reward problem
because the reward is decided after decoding a complete solution. The sparse reward problem results
in poor generalization performance and high training variance. Furthermore, both RL and SL suffer
from expensive large-scale training. These models take more than one million training samples
when dealing with TSP with 100 nodes, making the training process very time-consuming.

2 Our Model

In this work, we build a data-driven TSP heuristic in an Unsupervised Learning (UL) fashion and
generate the heat map non-autoregressively. We construct a surrogate loss function with two parts:
one encourages the GNN to find the shortest path, and the other acts as a proxy for the constraint
that the path should be a Hamiltonian Cycle over all nodes. The surrogate loss enables us to update
the model without decoding a complete solution. This helps alleviate the sparse reward problem
encountered in RL, and thus, it avoids unstable training or slow convergence Kool et al. [2019]. Our
UTSP method does not rely on labelled data, which helps the model avoid the expensive annotation
problems encountered in SL and significantly reduces the time cost. In fact, due to the prohibitive
time cost of building training datasets for large instances, many SL methods are trained on relatively
small instances only Fu et al. [2021]Joshi et al. [2019a]. Such SL models scale poorly to big in-
stances, while with our UTSP model, we can train our model on larger instances directly. Overall,
our training does not rely on any labelled training data and converges faster compared to RL/SL
methods.

The model takes the coordinates as the input of GNN. The distance between two nodes determines
the edge weight in the adjacency matrix. After training the GNN, the heat map is converted to a
valid tour using local search. We evaluate the performance of UTSP through comparisons on TSP
cases of fixed graph sizes up to 1,000 nodes. We note that UTSP is fundamentally different from RL,
which may also be considered unsupervised. While RL requires a Markov Decision Process (MDP),
and its reward is extracted after obtaining solutions, our method does not use a MDP and the loss
function (reward) is determined based on a heat map.

Overall, UTSP requires only a small amount of (unlabelled) data and compensates for it by em-
ploying an unsupervised surrogate loss function and an expressive GNN. The heat maps built using
UTSP help reduce the search space and facilitate the local search. We further show that the expres-
sive power of GNNs is critical for generating non-smooth heat maps.

3 Methodologies

In this paper, we study symmetric TSP on a 2D plane. Given n cities and the coordinates (xi, yi) ∈
R2 of these cities, our goal is to find the shortest possible route that visits each city exactly once and
returns to the origin city, where i ∈ {1, 2, 3, ..., n} is the index of the city.

3.1 Graph Neural Network

Given a TSP instance, let Di,j denote the Euclidean distance between city i and city j. D ∈ Rn×n

is the distance matrix. We first build adjacency matrix W ∈ Rn×n with Wi,j = e−Di,j/τ and node
feature F ∈ Rn×2 based on the input coordinates, where Fi = (xi, yi) and τ is the temperature. The
node feature matrix F and the weight matrix W are then fed into a GNN to generate a soft indicator
matrix T ∈ Rn×n.

In our model, we use Scattering Attention GNN (SAG), SAG has both low-pass and band-pass
filters and can build adaptive representations by learning node-wise weights for combining multiple
different channels in the network using attention-based architecture. Recent studies show that SAG
can output expressive representations for graph combinatorial problems such as maximum clique
and remain lightweight Min et al. [2022].

Let S ∈ Rn×n denote the output of SAG, we first apply a column-wise Softmax activation to the
GNN’s output and we can summarize this operation in matrix notation as Ti,j = eSi,j/

∑n
k=1 e

Sk,j .
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This ensures that each element in T is greater than zero and the summation of each column is 1. We
then use T to build a heat map H, where H ∈ Rn×n.

In our model, we use H to estimate the probability of each edge belonging to the optimal solution
and use T to build a surrogate loss of the Hamiltonian Cycle constraint. This will allow us to build
a non-smooth heat map H and improve the performance of the local search.

3.2 Building the Heat Map using the soft indicator matrix

Before building the unsupervised loss, let’s recall the definition of TSP. The objective of TSP is
to identify the shortest Hamiltonian Cycle of a graph. Therefore, the unsupervised surrogate loss
should act as a proxy for two requirements: the Hamiltonian Cycle constraint and the shortest path
constraint. However, designing a surrogate loss for the Hamiltonian Cycle constraint can be chal-
lenging, particularly when working with a heat map H. To address this, we introduce the T → H
transformation, which enables the model to implicitly encode the Hamiltonian Cycle constraint.

Coordinates

Wi,j = e−Di,j/τ
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Figure 1: We use a SAG to generate a non-smooth soft indicator matrix T. The SAG model is a
function of coordinates and weighted adjacency matrix. We then build the heat map H based on T
using the transformation in Equation 1.

To better understand the T → H transformation, we show a binary instance in Figure 1. Figure 1
illustrates a soft indicator matrix T, its heat map H following the transformation T → H, and their
corresponding routes. When we directly use the soft indicator matrix T as the heat map. It can result
in loops (parallel edges) between cities, such as (2,3) and (4,5) in Figure 1 (middle). After we apply
the T → H transformation, the corresponding heat H is a Hamiltonian Cycle, as shown in the right
part in Figure 1.

3.3 T → H transformation

We build the heat map H based on T. As mentioned, Hi,j is the probability for edge (i,j) to belong
to the optimal TSP solution. We define H as:

H =

n−1∑
t=1

ptp
T
t+1 + pnp

T
1 , (1)
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where pt ∈ Rn×1 is the tth column of T, T = [p1|p2|...|pn]. As shown in Figure 1, the first row in
H is the probability distribution of directed edges start from city 1, and since the third element is the
only non-zero one in the first row, we then add directed edge 1 → 3 to our TSP solution. Similarly,
the first column in H can be regarded as the probability distribution of directed edges which end in
city 1. Ideally, given a graph G with n nodes, we want to build a soft indicator matrix where each
row and column are assigned with one value 1 (True) and n − 1 values 0 (False), so that the heat
map will only contain one valid solution. In practice, we will build a soft indicator matrix T whose
heat map H assigns large probabilities to the edges in the TSP solution and small probabilities to the
other edges.

Overall, the T → H transformation in Equation 1 enables us to build a proxy for the Hamiltonian
Cycle constraint. We further prove that H represents one Hamiltonian Cycle when each row and
column in T have one value 1 (True) and n− 1 value 0 (False). We refer to the proof in appendix D.

3.4 Unsupervised Loss

In order to generate such an expressive soft indicator matrix T, we minimize the following objective
function:

L = λ1

n∑
i=1

(

n∑
j=1

Ti,j − 1)2︸ ︷︷ ︸
Row-wise constraint

+λ2

n∑
i

Hi,i︸ ︷︷ ︸
No self-loops

+

n∑
i=1

n∑
j=1

Di,jHi,j︸ ︷︷ ︸
Minimize the distance

.
(2)

The first term in L encourages the summation of each row in T to be close to 1. As mentioned,
we normalize each column of T using Softmax activation. So when the first term is minimized to
zero, each row and column in T are normalized (doubly stochastic). The second term penalizes
the weight on the main diagonal of H, this discourages self-loops in TSP solutions. The third
term can be regarded as the expected TSP length of the heat map H, where Di,j is the distance
between city i and j. As mentioned, since H corresponds to a Hamiltonian Cycle given an ideal soft
indicator matrix with one value 1 (True) and n − 1 value 0 (False) in each row and column. Then
the minimum value of

∑n
i=1

∑n
j=1 Di,jHi,j is the shortest Hamiltonian Cycle on the graph, which

is the optimal solution of TSP. To summarize, we build a loss function which contains both the
shortest and the Hamiltonian Cycle constraints. The shortest constraint is realized by minimizing∑n

i=1

∑n
j=1 Di,jHi,j . For the Hamiltonian Cycle constraint, instead of writing it in a Lagrangian

relaxation style penalty, we use a GNN which encourages a non-smooth representation, along with
the doubly stochastic penalty, and the T → H transformation.

3.5 Edge Elimination

Given a heat map H, we consider M largest elements in each row (without diagonal elements) and
set other n − M elements as 0. Let H̃ denote the new heat map, we then symmetrize the new
heat map by H′ = H̃ + H̃T . Let Eij ∈ {0, 1} denote whether an undirected edge (i, j) is in our
prediction or not. Without loss of generality, we can assume 0 < i < j ≤ n and define Eij as :

Eij =

{
1, if H′

ij = H′
ji > 0

0, otherwise
.

Let Π denote the set of undirected edges (i, j) with Eij = 1. Ideally, we would build a prediction
edge set Π with a small M value, and Π can cover all the ground truth edges so that we can reduce
search space size from n(n − 1)/2 to |Π|. In practice, we aim to let Π cover as many ground truth
edges as possible and use H′ to guide the local search process.

4 Local Search

4.1 Heat Map Guided Best-first Local Search

We employ the best-first local search guided by the heat map to generate the final solution. Best-first
search is a heuristic search that explores the search space by expanding the most promising node
selected w.r.t. an evaluation function f(node). In our framework, each node of the search tree is a
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complete TSP solution. For the initialization of one search tree, we randomly generate a valid TSP
solution and improve it using the 2-opt heuristic until no better solution is found. The expand action
of the search node refers to Fu et al. [2021] and is based on the widely used k-opt heuristic Croes
[1958], where it replaces k old edges (in the current solution) with k new edges, i.e., transforms the
old solution to a new solution. More formally, we use a series of cities, u1, v1, u2, . . . , uk, vk+1, to
represent an action, where vk+1 = u1 to ensure it is a valid solution. All the edges (ui, vi) (1 ≤
i ≤ k) are removed from the tour and (vi, ui+1)(1 ≤ i ≤ k) are added to the tour. Note that once
we know ui, vi is deterministically decided. u1 is randomly selected for each expansion, and v1
is decided subsequently. Then we select ui+1(i ≥ 1) as follows: (1) if ui+1 = u1, i.e., forms a
new TSP tour, leads to an improved solution then we set ui+1 = u1 and have a candidate solution.
(2) if i ≥ K, then we will discard this action and start a new expand action, where K is a hyper-
parameter which controls the maximal edges we can remove in one action. (3) otherwise, we select
ui+1 based on the heat map stochastically. We use Nu,v to denote the times the edge (u, v) is
selected during the entire search procedure. The likelihood of selecting the edge (u, v) is denoted

by Lu,v = H′
u,v + α

√
log(S+1)
Nu,v+1 , where α is a hyper-parameter and S is the local search’s total

number of expand actions. The first term encourages the algorithm to select the edge with a high
heat map value, while the second term diversifies the selected edges. Moreover, when selecting the
city v given u, we only consider the cities from the candidate set of v. This candidate set consists of
cities with the top M heat map value or the nearest M cities

Among all the possible new solutions, we use the tour’s length as the evaluation function f , i.e., we
select the solution of the shortest tour length as the next search node. For each search node, we
try at most T expand actions. From these T expand actions, if no improved solution is found, we
randomly generate a new initial solution and start another round of best-first local search.

4.2 Updating the Heat Map

We borrow the idea of the backpropagation used in Monte Carlo Tree Search (MCTS). We use s to
denote the current search node, s′ to denote the next search node (s′ has to improve s), and L(s) to
represent the tour length of node s. The heat map H′ is updated as:

H′
vi,ui+1

= H′
vi,ui+1

+ β[exp(
L(s)− L(s′)

L(s)
)− 1],

where β is a search parameters and (vi, ui+1)(1 ≤ i ≤ k) is the actions used to transform s to s′.
We raise the importance of the edges that lead to a better solution. If we cannot find an improved
solution for the current node, then no update is executed for the heat map.

4.3 Leveraging Randomness

Randomness is shown to be very powerful in the local search community Gomes et al. [1998],
Bresina [1996], Gomes et al. [2000]. Our local search procedure also employs it to improve perfor-
mance. When we stop the current round of local search by not finding an improved solution within
T expand actions and switch to a new best-first local search with a new initial solution, we randomly
modify the parameter K. A larger K value results in more time searching from one initial solution.
The intuition is that sometimes we want more initial solutions while sometimes we want to search
deeper (replace more edges in k-opt) for a specific solution. Besides that, we also randomly decide
how we construct the candidate set (based on the heat map or pairwise distance) for each city before
the new round of local search.

5 Experiments

5.1 Dataset

Our dataset contains 2,000 samples for training and 1,000 samples for validation. We use the same
test dataset in Fu et al. [2021]. The test dataset contains 10, 000 2D-Euclidean TSP instances for
n = 20, 50, 100, and 128 instances for n = 200, 500, 1, 000. We train our models on TSP instances
with 20, 50, 100, 200, 500, and 1,000 vertices. We then build the corresponding heat maps based on
these trained models.
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Table 1: Results of SAG + Local Search w.r.t. existing baselines. We evaluate the models on 10,000
TSP 20 instances and 10,000 TSP 50 instances. Baselines include GAT-RL1: Deudon et al. [2018];
GAT-RL2: Kool et al. [2019]; GCN-SL1: Joshi et al. [2019a]; POMO: Kwon et al. [2020] and Att-
GCRN Fu et al. [2021].

Method Type TSP20 TSP50
Length Gap (%) Time Length Gap (%) Time

Concorde Solver 3.8303 0.0000 2.31m 5.6906 0.0000 13.68m
Gurobi Solver 3.8302 -0.0001 2.33m 5.6905 0.0000 26.20m
LKH3 Heuristic 3.8303 0.0000 20.96m 5.6906 0.0008 26.65m
GAT-RL1 RL, S 3.8741 1.1443 10.30m 6.1085 7.3438 19.52m

GAT-RL1 RL, S
2-OPT 3.8501 0.5178 15.62m 5.8941 3.5759 27.81m

GAT-RL2 RL, S 3.8322 0.0501 16.47m 5.7185 0.4912 22.85m
GAT-RL2 RL, G 3.8413 0.2867 6.03s 5.7849 1.6568 34.92s
GAT-RL2 RL, BS 3.8304 0.0022 15.01m 5.7070 0.2892 25.58m
GCN-SL1 SL, G 3.8552 0.6509 19.41s 5.8932 3.5608 2.00m
GCN-SL1 SL, BS 3.8347 0.1158 21.35m 5.7071 0.2905 35.13m
GCN-SL1 SL, BS* 3.8305 0.0075 22.18m 5.6920 0.0251 37.56m
POMO RL 3.83 0.00 3s 5.69 0.03 16s

Att-GCRN SL+RL
MCTS 3.8300 -0.0074 23.33s + 5.6908 0.0032 2.59m +

1.05m 2.63m

UTSP (ours) UL, Search 3.8303 -0.0009 38.23s + 5.6894 -0.0200 1.34m+
1.04m 2.60m

5.2 Results

Table 2: Results of SAG + Local Search w.r.t. existing baselines. We evaluate the models on 10,000
TSP 100 instances and 128 TSP 200 instances. Baselines include GAT-RL1: Deudon et al. [2018];
GAT-RL2: Kool et al. [2019]; GCN-SL1: Joshi et al. [2019a]; POMO: Kwon et al. [2020] and Att-
GCRN Fu et al. [2021].

Method Type TSP100 TSP200
Length Gap (%) Time Length Gap (%) Time

Concorde Solver 7.7609 0.0000 1.04h 10.7191 0.0000 3.44m
Gurobi Solver 7.7609 0.0000 3.57h 10.7036 -0.1446 40.49m
LKH3 Heuristic 7.7611 0.0026 49.96m 10.7195 0.0040 2.01m
GAT-RL1 RL, S 8.8372 13.8679 47.78m 13.1746 22.9079 4.84m

GAT-RL1 RL, S
2-OPT 8.2449 6.2365 4.95h 11.6104 8.3159 9.59m

GAT-RL2 RL, S 7.9735 2.7391 1.23h 11.4497 6.8160 4.49m
GAT-RL2 RL, G 8.1008 4.3791 1.83m 11.6096 8.3081 5.03s
GAT-RL2 RL, BS 7.9536 2.4829 1.68h 11.3769 6.1364 5.77m
GCN-SL1 SL, G 8.4128 8.3995 11.08m 17.0141 58.7272 59.11s
GCN-SL1 SL, BS 7.8763 1.4828 31.80m 16.1878 51.0185 4.63m
GCN-SL1 SL, BS* 7.8719 1.4299 1.20h 16.2081 51.2079 3.97m
POMO RL 7.77 0.14 1m - - -

Att-GCRN SL+RL
MCTS 7.7616 0.0096 3.94m + 10.7358 0.1563 20.62s +

5.25m 1.33m

UTSP (ours) UL, Search 7.7608 -0.0011 5.68m + 10.7289 0.0918 0.56m+
5.21m 1.11m

Table 1, Table 2 and Table 3 present model’s performance on TSP 20, 50, 100, 200, 500 and 1,000.
The first three lines in the tables summarize the performance of two exact solvers (Concorde and
Gurobi) and LKH3 heuristic Helsgaun [2017]. The learning-based methods can be divided into RL
sub-category and SL sub-category. Greedy decoding (G), Sampling (S), Beam Search (BS), and
Monte Carlo Tree Search are the decoding schemes used in RL/SL. The 2-OPT is a greedy local
search heuristic.
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Table 3: Results of SAG + Local Search w.r.t. existing baselines. We evaluate the models on 128
TSP 500 instances and 128 TSP 1000 instances. Baselines include GAT-RL1: Deudon et al. [2018];
GAT-RL2: Kool et al. [2019]; GCN-SL1: Joshi et al. [2019a]; DIMES: Qiu et al. [2022]; DIFUSCO:
Sun and Yang [2023] and Att-GCRN Fu et al. [2021].

Method Type TSP500 TSP1000
Length Gap (%) Time Length Gap (%) Time

Concorde Solver 16.5458 0.0000 37.66m 23.1182 0.0000 6.65h
Gurobi Solver 16.5171 -0.1733 45.63h - - -
LKH3 Heuristic 16.5463 0.0029 11.41m 23.1190 0.0036 38.09m
GAT-RL1 RL, S 28.6291 73.0293 20.18m 50.3018 117.5860 37.07m

GAT-RL1 RL, S
2-OPT 23.7546 43.5687 57.76m 47.7291 106.4575 5.39h

GAT-RL2 RL, S 22.6409 36.8382 15.64m 42.8036 85.1519 63.97m
GAT-RL2 RL, G 20.0188 20.9902 1.51m 31.1526 34.7539 3.18m
GAT-RL2 RL, BS 19.5283 18.0257 21.99m 29.9048 29.2359 1.64h
GCN-SL1 SL, G 29.7173 79.6063 6.67m 48.6151 110.2900 28.52m
GCN-SL1 SL, BS 30.3702 83.5523 38.02m 51.2593 121.7278 51.67m
GCN-SL1 SL, BS* 30.4258 83.8883 30.62m 51.0992 121.0357 3.23h
DIMES RL+S 18.84 13.84 1.06m 26.36 14.01 2.38m
DIMES RL+MCTS 16.87 1.93 2.92m 23.73 2.64 6.87m
DIMES RL+AS+MCTS 16.84 1.76 2.15h 23.69 2.46 4.62h
DIFUSCO SL+MCTS 16.63 0.46 10.13m 23.39 1.17 24.47m

Att-GCRN SL+RL
MCTS 16.7471 1.2169 31.17s + 23.5153 1.7179 43.94s +

3.33m 6.68m

UTSP (Ours) UL, Search 16.6846 0.8394 1.37m + 23.3903 1.1770 3.35m+
1.33m 2.67m

We compare our model with existing solvers as well as different learning-based algorithms. The
performance of our method is averaged of four runs with different random seeds. The running time
for our method is divided into two parts: the inference time (building the heat map H) and the search
time (running search algorithm).

On small instances, our results match the ground-truth solutions and generate average gaps of
-0.00009%, -0.002% and -0.00011% respectively on instances with n = 20, 50, 100, where the
negative values are the results of the rounding problem. The total runtime of our method remains
competitive w.r.t. all other learning baselines. On larger instances with n = 200, 500 and 1, 000,
we notice that traditional solvers (Concorde, Gurobi) fail to generate the optimal solutions within
reasonable time when the size of problems grows. For RL/SL baselines, they generate results far
away from ideal solutions, particularly for cases with n = 1, 000. Our UTSP method is able to
obtain 0.0918%, 0.8394% and 1.1770% on TSP 200, 500 and 1, 000, respectively. We remark that
UTSP outperforms the existing learning baselines on larger instances (TSP 200, 500, 1000) 2. More
discussion between Fu et al. [2021] and UTSP can be found in Appendix C.

Our model takes less training time than RL/SL method because we require very few training in-
stances. Taking TSP 100 as an example, RL/SL needs 1 million training instances, and the total
training time can take one day using a NVIDIA V100 GPU, while our method only takes about
30 minutes with 2,000 training instances. The training data size does not increase w.r.t. TSP size.
Our training data consists of 2,000 instances for TSP 200, 500 and 1,000. At the same time, the
UTSP model also remains very lightweight. On TSP 100, we use a 2-layer SAG with 64 hidden
units and the model consists of 44,392 trainable parameters. In contrast, RL method in Kool et al.
[2019] takes approximately 700,000 parameters and the SL method in Joshi et al. [2022] takes ap-
proximately 350,000 parameters.

5.3 Expressive Power of GNNs

Our UL method generalizes well to unseen examples without requiring a large number of training
samples. This is because the loss function in Equation 2 is fully differentiable w.r.t. the parameters

2On TSP 500, when we increase the time budget for Search, we achieve 0.42% in 1.37m + 8.32m.
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in SAG and we are able to train the model in an end-to-end fashion. In other words, given a heat

Figure 2: TSP 100 training curve using Unsupervised Learning surrogate loss. We compare two
GNN models: GCN Kipf and Welling [2016] and SAG Min et al. [2022], where GCN is a low-pass
model and SAG is a low-pass + band-pass model.

map H, the model learns to assign large weights to more promising edges and small weights to
less promising ones through backpropagation without any prior knowledge of the ground truth or
any exploration step. However, when using SL, the model learns from the TSP solutions, which
fails when multiple solutions exist or the solutions are not optimal Li et al. [2018]. While for
RL, the model often encounters an exploration dilemma and is not guaranteed to converge Bengio
et al. [2021]Joshi et al. [2019b]. Overall, UTSP requires fewer training samples and has better
generalization compared to SL/RL models.

We aim to generate a non-smooth soft indicator matrix T and build an expressive heat map H to
guide the search algorithm. However, most GNNs aggregate information from adjacent nodes and
these aggregation steps usually consist of local averaging operations, which can be interpreted as
a low-pass filter and causes the oversmoothing problem Wenkel et al. [2022]. The low-pass model
generates a smooth soft indicator matrix T, which finally makes the elements in H become indistin-
guishable. So it becomes difficult to discriminate whether the edges belong to the optimal solution
or not. In our model, we assume all nodes in the graph are connected, so every node has n− 1 con-
nected to neighbouring nodes. This means every node receives messages from all other nodes and
we have a global averaging operation over the graph, this can lead to severe oversmoothing issue.

To avoid oversmoothing, one solution is to use shallow GNNs. However, this would result in nar-
row receptive fields and create the problem of underreaching Barceló et al. [2020]. Our model uses
SAG because this scattering-based method helps overcome the oversmoothing problem by combin-
ing band-pass wavelet filters with GCN-type filters Min et al. [2022]. Figure 2 illustrates the training
loss on TSP 100 and the differences between our SAG model and the graph convolutional network
(GCN) Kipf and Welling [2016], where GCN only performs low-pass filtering on graph signals Nt
and Maehara [2019]. When using GCN, the training loss decreases slowly, and the validation loss
reaches a plateau after we train the model for 20 epochs. This is because the low-pass model gen-
erates a smooth T. Such a smooth T results in an indistinguishable H, detrimentally impacting
the training process. Instead, we observe lower training and validation loss when using SAG; this
suggests that SAG generates a more expressive representation which facilitates the training process.

Figure 3 illustrates the generated heat maps using GCN and SAG on a TSP 100 instance, we choose
this instance from the validation set randomly. When using the GCN, due to the oversmoothing prob-
lem, the model generates a smooth representation and H becomes indistinguishable. The elements
in H have a small variance and most of them are ∼ 0.01. Instead, the SAG generates a discriminative
representation and the elements in the heat map have a larger variance.
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Figure 3: Left: The heat map H generated using GCN on TSP 100. The diagonal elements are set
to 0. X-axis and y-axis are the city indices, right: The heat map H generated using SAG on TSP
100. The diagonal elements are set to 0. X-axis and y-axis are the city indices.

Here, we train both GCN and SAG with the same loss function. So the differences illustrated in
Figure 3 are the direct result of overcoming the oversmoothing problem.

6 Search Space Reduction

To understand what happens during our training process, we study how the prediction edge set Π
changes with training time. As mentioned, let Π denote undirected edge set in H′, and let Γ denote
the ground truth edge set, η = |Γ ∩ Π|/|Γ| is the extent of how good our prediction set Π covers
the solution Γ. If η = 1, then Γ is a subset of Π, which means our prediction edge set successfully
covers all ground truth edges. Similarly, η = 0.95 means we cover 95% ground truth edges.

Figure 4: Left:Average edge overlap coefficient η w.r.t. training epochs using SAG and GCN on
TSP 100 (M = 10), right: Number of fully covered instances w.r.t. training epochs using SAG and
GCN on TSP 100. The validation set consists of 1,000 samples (M = 10).

Figure 4 shows how the average overlap coefficient η changes with training epochs. We calculate the
coefficient based on 1,000 validation instances in TSP 100. We notice that the coefficient quickly
increases to ∼ 98% after we train SAG for 10 epochs. This suggests that the surrogate loss suc-
cessfully encourages the SAG to put more weights on the more promising edges. We also compare
the performance with GCN. Since the loss does not decrease significantly during our training when
using GCN (shown in Figure 2), it is not surprising to see the average overlap coefficient of GCN
always maintains at a relatively low level. After training the model for 100 epochs, SAG model has
an average coefficient of 99.756% while GCN only has 33.893%.

We then study the number of cases where our prediction edge set Π covers the ground truth solution.
Figure 4 (right) illustrates how the number of fully covered instances (η = 1) changes with time.
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After training the model for 100 epochs, we observe 780 fully covered instances in 1,000 validation
samples using SAG while 0 instances using GCN. Finally, we calculate the average of size |Π|. Our
results show that SAG has an average size of 583.134 edges, while for GCN, the number is 738.739.

These results also indicate a correspondence between the loss and the quality of our prediction. In
most SL tasks such as classification or regression tasks, a smaller validation loss usually means we
achieve better performance and the minimum of the loss corresponds to the optimal solution (100%
accuracy). However, there is no theoretical guarantee that our loss in Equation 2 also measures the
solution quality. Our empirical results demonstrate that a lower surrogate loss encourages the model
to assign larger weights on the promising edges and reduces the search space. This implies that we
can assess the quality of the generated heat maps using our loss in Equation 2.

Overall, the UL training reduces the search space from 4950 edges to 583.134 edges with over 99%
overlap accuracy on average. This helps explain why our search algorithm is able to perform well
within reasonable search time.

7 Conclusion

In this paper, we propose UTSP, an Unsupervised Learning method to solve the TSP. We build a
surrogate loss that encourages the GNN to find the shortest path and satisfy the constraint that the
path should be a Hamiltonian Cycle. The surrogate loss function does not rely on any labelled
ground truth solution and helps alleviate sparse reward problems in RL. UTSP uses a two-phase
strategy. We first build a heat map based on the GNN’s output. The heat map is then fed into a search
algorithm. Compared with RL/SL, our method vastly reduces training cost and takes fewer training
samples. We further show that our UL training helps reduce the search space. This helps explain
why the generated heat maps can guide the search algorithm. On the model side, our results indicate
that a low-pass GNN will produce an indistinguishable representation due to the oversmoothing
issue, which results in unfavorable heat maps and fails to reduce the search space. Instead, after
incorporating band-pass operators into GNN, we can build efficient heat maps that successfully
reduce search space. Our findings show that the expressive power of GNNs is critical for generating
a non-smooth representation that helps find the solution.

In conclusion, UTSP is competitive with or outperforms other learning-based TSP heuristics in
terms of solution quality and running speed. In addition, UTSP takes ∼ 10% of the number of
parameters and ∼ 0.2% of (unlabelled) training samples, compared with RL or SL methods. Our
UTSP framework demonstrates that by providing a surrogate loss and a GNN which encourages a
non-smooth representation, we can learn the hidden patterns in TSP instances without supervision
and further reduce the search space. This allows us to build a heuristic by exploiting a small amount
of unlabelled data. Future directions include designing more expressive GNNs (such as adding edge
features) and using different surrogate loss functions. We anticipate that these concepts will extend
to more combinatorial problems.
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A Discussion

A.1 Definition of heat map

We can write H as:
H = TVTT , (3)

where

V =



0 1 0 0 · · · 0 0 0
0 0 1 0 · · · 0 0 0
0 0 0 1 · · · 0 0 0
...

...
...

. . . . . .
...

...
...

0 0 0 0
. . . 1 0 0

0 0 0 0 · · · 0 1 0
0 0 0 0 · · · 0 0 1
1 0 0 0 · · · 0 0 0


is the Sylvester shift matrix Sylvester [1909], V ∈ Rn×n. We can interpret V as a cyclic permutation
operator that performs a circular shift.

A.2 Unsupervised Loss

We can also write Equation 2 in a more compact form:

L = λ1

n∑
i=1

(

n∑
j=1

Ti,j − 1)2︸ ︷︷ ︸
Row-wise constraint

+

n∑
i=1

n∑
j=1

D̃i,jHi,j︸ ︷︷ ︸
Minimize the distance

,
(4)

where D̃ = D+ λ2In, In ∈ Rn×n is the identity matrix.

Table 4: Search parameters for all the TSP experiments.

α β M K T

TSP-20 0 10 8 10 60
TSP-50 0 10 8 [5, 15) 150
TSP-100 0 10 8 [5, 35) 300
TSP-200 0 10 8 [10, 90) 600
TSP-500 0 50 5 [30, 130) 1000
TSP-1000 0 50 5 [10, 110) 2000

B Training and Search Details

We train our model using Adam Kingma and Ba [2014]. All models are trained using Nvidia V100
GPU. All the search-related parameters are listed in Table 4. M is the size of the candidate set of
each city. K is the maximal number of edges we can remove in one action, and for each round
of local search, we randomly select one number from the listed interval. T is the total number of
actions we will try to expand one node. Here, we set α = 0 to show that our unsupervised model
generates an informative heat map. Lower α means the local search algorithm focuses more on the
edges with higher heat map value. Actually, in the experiments, we find the results are similar with
α ≤ 1.

C Running Time Discussion

As discussed in Kool et al. [2019], running time is important but hard to compare since it is affected
by many factors. In the table 1, we report the time for solving all the test instances.
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For the UTSP (our method) and the state-of-the-art learning-based method Att-GCRN Fu et al.
[2021], we run the search algorithm on exactly the same environment (one Intel Xeon Gold 6326)
for a fair comparison. And for other baselines, we refer to the results from Fu et al. [2021]. So, the
time there is only for indicative purposes since the computing hardware is different.

D Proof

Lemma D.1. Let qi denote the row index of the non-zero element in i-th column in T, Tqi,i = 1,
qi ∈ {1, 2, 3, 4, ..., n}. When each row and column in T have one value 1 (True) and n− 1 value 0
(False), then qi = qj if and only if i = j.

Proof. If there exist a (i, j) pair where qi = qj when i ̸= j, then Tqi,i = 1 and Tqj ,j = Tqi,j = 1.
This means qi-th row has two non-zero elements, which leads to a contradiction.

Lemma D.2. Consider graph G with n nodes, for any T ∈ Rn×n with Ti,j ≥ 0, when each row and
column in T have one value 1 (True) and n − 1 value 0 (False). Then, each row and column in H
also have one value 1 (True) and n− 1 value 0 (False), which means each city corresponds to only
one beginning point and one ending point.

Proof. First, it is clear that for ∀a, b, Ha,b ∈ Z≥0. Let’s assume Ta,l = Tb,m = 1(a ̸= b, l ̸= m),
since Hi,j =

∑n
k=1 Ti,kTj,k+1(mod n), we then have

n∑
j=1

Ha,j =

n∑
j=1

n∑
k=1

Ta,kTj,k+1(mod n)

=

n∑
k=1

Ta,k{
n∑

j=1

Tj,k+1(mod n)}

=

n∑
k=1

Ta,k = 1.

This implies that the summation of each row in H is 1. Similarly,

n∑
i=1

Hi,b =

n∑
i=1

n∑
k=1

Ti,kTb,k+1(mod n)

=
n∑

k=1

Tb,k+1(mod n){
n∑

i=1

Ti,k}

=

n∑
k=1

Tb,k+1(mod n) = 1.

This suggests the summation of each column in H is 1. Since each element in Hi,j ∈ Z≥0, we can
then conclude that each row and column in H have one value 1 (True) and n − 1 value 0 (False).
Also, Hii =

∑n
k=1 Ti,k+1(mod n)Ti,k = 0, this indicates that the elements in the main diagonal of

H are 0, which implies no self-loops.

As mentioned, the i-th row in H is the probability distribution of directed edges start from city i, and
the j-th column is the probability distribution of directed edges end in city j. Because each row and
column in H have one value 1 (True) element and H’s diagonal entries are all zero, this means that
each city is the beginning point of one directed edge and is also the ending point of another different
directed edge.

Lemma D.3. There is at least one cycle in H which contains n edges and visits all cities when each
row and column in T have one value 1 (True) and n− 1 value 0 (False).
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Figure 5: Illustration of building a cycle from transition matrix T. Here qk−1 = 3, qk = n − 2,
qk+1 = 2, qn−1 = 1, qn = n and q1 = 4, this means H contains the following four directed edges:
3 → n− 2, n− 2 → 2, 1 → n and n → 4.

Proof. Lemma D.1 indicates that qi ̸= qj when i ̸= j and qi ∈ {1, 2, 3, 4, ..., n}, then ∪n
i=1qi =

{1, 2, 3, 4, ..., n}. From Equation 3, we have

Hqi,qi+1
=

n∑
k=1

Tqi,kTqi+1,k+1(mod n)

≥ Tqi,iTqi+1,i+1(mod n)

≥ 1.

Using Lemma D.2, since each row and column in H have one value 1 (True) and n − 1 value 0
(False), it suffices to show that 1 ≥ Hqi,qi+1

≥ 1, therefore Hqi,qi+1
= 1. This suggests that there is

a directed edge from city qi to qi+1. We can then construct a cycle C from H, we can write C as

q1 → q2 → q3 → q4 → ... → qn → q1,

where → is a directed edge. Since ∪n
i=1qi = {1, 2, 3, 4, ..., n}, cycle C visits all n cities and have n

edges. One example of how to build Hqi,qi+1
from T is shown in Figure 5.

Corollary D.4. H represents one Hamiltonian Cycle when each row and column in T have one
value 1 (True) and n− 1 value 0 (False).

Proof. From Lemma D.3, cycle C contains n edges and visits all cities, if there exists another edge
(i, j) which does not belong to C, then city i is the starting point of at least two edges and city j is
the ending point of at least two edges. This results in a contradiction with Lemma D.2. Thus, it
suffices to conclude that C visits each city exactly once and H only contains the edges in C. This
implies that H represents one Hamiltonian Cycle.
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